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Quasiparticle and excitonic effects in the optical response of KNbO3
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The cubic, tetragonal, and orthorhombic phase of potassium niobate (KNbO3) are studied based on density-
functional theory. Starting from the relaxed atomic geometries, we analyze the influence of self-energy
corrections on the electronic band structure within the GW approximation. We find that quasiparticle shifts
widen the direct (indirect) band gap by 1.21 (1.44), 1.58 (1.55), and 1.67 (1.64) eV for the cubic, tetragonal, and
orthorhombic phase, respectively. By solving the Bethe-Salpeter equation, we obtain the linear dielectric function
with excitonic and local-field effects, which turn out to be essential for good agreement with experimental
data. From our results, we extract an exciton binding energy of 0.6, 0.5, and 0.5 eV for the cubic, tetragonal,
and orthorhombic phase, respectively. Furthermore, we investigate the nonlinear second-harmonic generation
(SHG) both theoretically and experimentally. The frequency-dependent second-order polarization tensor of
orthorhombic KNbO3 is measured for incoming photon energies between 1.2 and 1.6 eV. In addition, calculations
within the independent-(quasi)particle approximation are performed for the tetragonal and orthorhombic phase.
The novel experimental data are in excellent agreement with the quasiparticle calculations and resolve persistent
discrepancies between earlier experimental measurements and ab initio results reported in the literature.
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I. INTRODUCTION

Potassium niobate (KNbO3) [1] exhibits ferroelectric prop-
erties as well as strong optical nonlinearities and is there-
fore of high interest for technological applications, such as
second-harmonic generation [2], piezoelectricity [3], and data
storage [4]. Like many other perovskite materials, it also un-
dergoes a sequence of structural phase transitions in different
temperature regimes. Potassium niobate crystallizes at about
1325 K in a cubic structure (space group Pm3m) and shows a
transition to a tetragonal phase (space group P4mm) at 691 K,
to an orthorhombic phase (space group Bmm2) at 498 K, and
to a rhombohedral phase (space group R3m) at 263 K [5].
Furthermore, a monoclinic structure (space group Pm) was
recently observed in nanomaterials [6].

While experimental studies are usually limited to the or-
thorhombic room-temperature phase [7–11], theoretical stud-
ies tend to concentrate on the cubic and tetragonal phase,
whose simpler structure and higher degree of symmetry
make them more amenable to computationally expensive first-
principles simulations [12–15]. Although it is often claimed
that these high-temperature phases are a valid approximation
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for the more complex orthorhombic phase due to the relatively
small atomic displacements, only very few studies have ac-
tually compared different phases directly [5,16]. Therefore,
further efforts to examine the validity of this claim are highly
desirable. The objective of this work is to provide such a
systematic comparison of the atomic structure, electronic en-
ergy bands, and optical properties of these three most relevant
phases of potassium niobate, based on state-of-the-art first-
principles calculations.

An important prerequisite for quantitative predictions of
optical properties is a reliable electronic band gap. Although
standard density-functional theory is capable of yielding
highly accurate atomic structures, it is also known to sys-
tematically underestimate band gaps. One common way to
overcome this flaw is to use hybrid density functionals that
incorporate a certain amount of nonlocal exact exchange as
in Hartree-Fock calculations [16,17]. This approach is not
entirely satisfactory, however, because of the partially empir-
ical nature of hybrid density-functional theory, which leaves
some arbitrariness in choosing the mixing parameter and
thereby limits the explanatory power of the results. Even if the
amount of exact exchange is fixed to match the experimentally
measured band gap, as is often done in practice, the problem
does not vanish, because experimental values usually refer to
the optical band gap instead of the electronic transport gap
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[18–23]. It is unknown how large the deviation between the
electronic and the optical band gap is in the case of potassium
niobate, but for the very similar lithium niobate (LiNbO3), a
significant discrepancy has been found [24,25]. As an alterna-
tive, we employ Hedin’s GW approximation [26] to include
quasiparticle effects in the electronic band structure in this
work. This approach yields band gaps in very good agreement
with experimental photoemission measurements for a wide
range of materials [27] and has already been successfully
applied to lithium niobate [28,29]. To our knowledge, no GW
calculations have been reported for potassium niobate so far,
however.

In addition to the electronic band structure, we examine
the influence of many-body effects, such as electron-hole at-
traction and local-field effects, on the linear optical absorption
spectrum by solving the Bethe-Salpeter equation (BSE). This
goes beyond previous results for KNbO3 obtained with a
lower level of approximation [16] and should improve the
agreement with experimental data.

Arguably the most important property of potassium niobate
is its large optical nonlinearity, which makes this material
interesting for many technological applications. However,
there is surprisingly little actual data, because typical ex-
periments merely probe the nonlinear susceptibility at single
laser frequencies, usually at 1064 nm [30–33]. Even many
theoretical studies follow this lead and only give the nonlinear
susceptibility at certain discrete frequencies [34–36]. In order
to extend our knowledge of the nonlinear optical response, we
both measure and calculate the nonlinear susceptibility over a
larger frequency range in this work.

As the structural differences between the phases are rather
small, special emphasis must be placed on finding the best
geometrical data possible. Therefore, after describing our
computational and experimental methods in Sec. II, we test
different exchange-correlation functionals in Sec. III A and
compare our results with available experimental data. In
Sec. III B, the influence of quasiparticle corrections on the
electronic band structure is analyzed. In Secs. III C and III D
we then study the linear and nonlinear optical properties of
potassium niobate based on the frequency-dependent linear
dielectric function and the nonlinear susceptibility for second-
harmonic generation, respectively. Finally, Sec. IV summa-
rizes our conclusions.

II. METHODS

A. Computational approach

All calculations reported in this work are carried out with
the Vienna Ab initio Simulation Package (VASP) [37], a plane-
wave implementation of density-functional theory (DFT).
Specifically, we employ the projector-augmented-wave for-
malism [38] together with pseudopotentials optimized for
GW calculations to describe the electron-ion interaction.
In a recent preliminary study [17], we already compared
the performance of several exchange-correlation function-
als for KNbO3 and found that the PBEsol functional [39],
a revised version of the popular Perdew-Burke-Ernzerhof
(PBE) generalized gradient approximation (GGA) [40], repro-
duced the experimental lattice parameters across the different
phases satisfactorily and better than any of the considered

alternatives. Nevertheless, we choose to carry out further
testing here by extending our comparison to the so-called
strongly constrained and appropriately normed (SCAN) func-
tional [41], a meta-GGA that was recently claimed to be
particularly accurate for ferroelectric materials [42].

For the structure optimization within DFT, we use an
energy cutoff of 600 eV for the plane-wave basis set, which
is raised with respect to the default cutoffs for the pseudopo-
tentials in order to eliminate the Pulay stress, and a mesh
of 6 × 6 × 6 k points to sample the Brillouin zone, which
corresponds to a primitive real-space unit cell with the same
number of atoms for all three phases. The ionic relaxation is
performed by calculating the stress tensor and allowing all
external and internal degrees of freedom to change until the
forces are smaller than 0.001 eV/Å. These parameter values
are the same as in our previous study [17] and ensure well
converged structures.

The quasiparticle band structures within the GW approx-
imation are obtained using the implementation of Shishkin
and Kresse [43,44]. We include a certain degree of self-
consistency by iteratively updating the eigenvalues in the
Green function G used in the construction of the self-
energy, but not the eigenfunctions or the dynamically screened
Coulomb interaction W [44,45]. In a previous study [29] we
found that this approach, known nowadays as eigenvalue self-
consistent GW (evGW0), yields particularly accurate quasipar-
ticle band structures in the case of LiNbO3. For the evGW0

calculations, we use a plane-wave cutoff of 200 eV for the
response function, a 8 × 8 × 8 k-point mesh, and a total of
384 electronic energy bands. Wannier interpolation [46] is
employed to improve the sampling of the Brillouin zone.
These numerical parameters are chosen to ensure a conver-
gence of the evGW0 eigenvalues to better than 0.1 eV.

Subsequently, the Bethe-Salpeter equation (BSE) is solved
to account for the electron-hole attraction and local-field
effects in the linear optical spectra. To reduce the numerical
cost, we employ the Tamm-Dancoff approximation; many
studies, including Refs. [47–50], have shown that this approx-
imation has only a small effect on the optical absorption spec-
trum and yields almost the same results as the diagonalization
of the full BSE matrix. We use the implementation of Schmidt
et al. [51] and first obtain the imaginary part of the dielectric
function numerically in a finite frequency interval. The real
part is derived by means of the Kramers-Kronig relation from
the imaginary part, which is extended with an analytic high-
frequency tail for this purpose as described by Adolph et al.
[52]. All electronic states within a distance of 15 eV from
the Fermi energy are included, and the k mesh is increased
to 12 × 12 × 12 points for the linear optical properties. As
standard DFT calculations typically yield significantly too
small band gaps, quasiparticle or scissors shifts deduced from
the preceding evGW0 calculations are applied to widen the
band gap.

The components of the nonlinear susceptibility, which are
relevant for second-harmonic generation (SHG), are deter-
mined within the independent-(quasi)particle approximation
following the approach of Leitsmann et al. [53]. In this step,
we use a dense k mesh with 16 × 16 × 16 points, and include
all states within the energy window from 40 eV below to
30 eV above the Fermi energy. Although the peak positions
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of the nonlinear susceptibility are entirely determined by elec-
tronic transitions up to twice the incident frequency, the oscil-
lator strengths in the three-body contribution to the suscep-
tibility involve a summation over all valence and conduction
states [25]. The chosen energy window yields well-converged
spectra in Sec. III D below, where the nonlinear susceptibility
is shown up to an incident frequency of 8 eV.

B. Experimental setup

The analyzed samples are commercially available
orthorhombic stoichiometric KNbO3 crystals [Forschungsin-
stitut für mineralische und metallische Werkstoffe
Edelsteine/Edelmetalle GmbH (FEE) that were polished
for a smooth surface]. The components of the nonlinear
optical susceptibility χ (2) are determined at room temperature
by a broadly tunable titanium-sapphire laser (Spectra
Physics Tsunami HP) providing 80–150 fs pulses at a
repetition rate of 78 MHz ranging from 720 to 1080 nm.
Accordingly, the pulse energies lie between 10 and 35 nJ.
The accessible wavelength range is extended by doubling
the fundamental frequency using a commercially available
BBO crystal. The light is focused on the sample with
an appropriate achromatic doublet lens and is collected
similarly. The collimated beam is spectrally dispersed
in a rotatable prism to separate the different orders, and
the SHG is detected by a gallium phosphide photodiode.
A current-voltage preamplifier (Stanford SR570) and a
lock-in amplifier (Stanford SR830) are used to ensure a
good signal-to-noise ratio. Alternatively, all orders can
be detected by a Czechy-Turner spectrometer equipped
with a deep-depletion silicon charge-coupled-device array
sensor (Andor DU440) to evaluate the complete spectrum
of the emission in order to identify higher-order nonlinear
processes that could affect the efficiency measurements. All
experiments are performed with a synchronous reference
in a symmetric two-beam geometry to account for any
changes in pulse durations and energies, i.e., by using
identical amounts of reflective surfaces, focusing optics, and
optical path lengths. The sample is mounted under normal
incidence in one branch and a z-cut quartz crystal is used
for reference in the other, correcting the data for its known
absolute value of d11 = 0.3 pm/V at 1064 nm [54]. We use
Miller’s constant-delta condition [55] with a Miller delta of
δ11 = 1.328 × 10−2 m/C to account for the dispersion of the
second-order nonlinear coefficient of the quartz reference; the
Miller delta is calculated from the d11 value and the refractive
index at 1064 nm [56]. Reflection measurements for KNbO3

are performed in a commercially available UV-VIS-NIR
spectrophotometer (Perkin Elmer L900) in reflection mode.

III. RESULTS AND DISCUSSION

A. Structure optimization

In this work we focus on the orthorhombic phase of
KNbO3, which is stable at room temperature and hence of
central interest for technological applications, as well as the
structurally simpler cubic and tetragonal phase that often
serve as test systems in theoretical simulations. The cubic
phase displayed in Fig. 1(a) has only one independent lattice
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FIG. 1. Different phases of KNbO3: (a) cubic, (b) tetragonal, and
(c) orthorhombic (left: conventional orthorhombic unit cell, right:
primitive rhombic unit cell) with lattice parameters, angles, and space
groups in Hermann-Mauguin notation. The deformations are actually
very small and are exaggerated here for clarity.

parameter a, while the tetragonal phase shown in Fig. 1(b) has
two distinct lattice parameters a and c. In both cases, the three
crystal axes are perpendicular. The orthorhombic phase shown
in Fig. 1(c) can be represented using either the conventional
orthorhombic cell (left), which contains two formula units of
KNbO3, or the primitive rhombic cell (right), which contains
one formula unit. While the conventional orthorhombic cell
has three perpendicular lattice vectors of distinct length a′, b′,
and c′, two lattice vectors of the primitive cell are of equal
length but enclose an obtuse angle β.

As all known phases of KNbO3 are structurally nearly
degenerate, a very careful relaxation is necessary, and ex-
tensive testing of different exchange-correlation functionals
seems appropriate to ensure robust results. Therefore, we test
the GGA functionals PBE and PBEsol as well as the SCAN
meta-GGA functional for the three principal phases consid-
ered here. Table I shows the calculated lattice parameter and
the associated unit-cell volume for the cubic phase together
with experimental data by Shirane et al. [57] and by Fontana
et al. [5]. At first sight, the PBE results appear to be the
closest match, but one must keep in mind that the experiments
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TABLE I. Lattice parameter a and equilibrium unit-cell volume
V obtained with the PBE, SCAN, and PBEsol exchange-correlation
functionals for the cubic phase of KNbO3 together with available
experimental values.

PBE SCAN PBEsol Expt. [57] Expt. [5]

a (Å) 4.024 3.987 3.985 4.0214 4.022

V (Å
3
) 65.16 63.39 63.28 65.03 65.06

were performed at 698 and 708 K, respectively, while our
calculations correspond to 0 K and do not account for the
thermal lattice expansion. Indeed, if the lattice parameter a
of the cubic phase measured at different temperatures in [57]
is extrapolated to 0 K based on linear regression, one obtains a
limiting value of 3.990 Å, in good agreement with the SCAN
and PBEsol results.

While the ideal perovskite structure of cubic KNbO3 is
centrosymmetric and hence paraelectric, the transition to the
tetragonal phase is accompanied by internal atomic displace-
ments along the c axis that break the inversion symmetry
and give rise to a ferroelectric polarization. In the notation
of Hewat [58], the K atom is positioned at (0, 0,�(K)),
the Nb atom at ( 1

2 , 1
2 , 1

2 + �(Nb)), and the three O atoms
at ( 1

2 , 1
2 ,�(OI)), ( 1

2 , 0, 1
2 + �(OII )), and (0, 1

2 , 1
2 + �(OII ))

inside the tetragonal unit cell; OI refers to the oxygen atom
in the potassium layer and OII to the two equivalent oxygen
atoms in the niobium layer as illustrated in Fig. 1(b). During
the structure relaxation, we keep the Nb atom fixed, which
constrains �(Nb) = 0, while all other atoms are allowed to
shift along the c axis. Our results given in Table II show that
PBEsol yields lattice parameters in best agreement with the
experimental data, considering that the measurements were
performed at 543 K under the influence of thermal expansion;
if the lattice parameters of the tetragonal phase measured
at different temperatures in [57] are linearly extrapolated to
0 K, values of 3.973 and 4.053 Å are obtained for a and
c, respectively. The atomic displacements differ between the
three functionals but are overall in similarly good agreement
with the experimental data.

In the orthorhombic phase, which also exhibits a fer-
roelectric distortion, atomic displacements occur in a two-

TABLE II. Lattice parameters a and c, ratio c/a, equilibrium
unit-cell volume V , and atomic displacements along the c direction
obtained with the PBE, SCAN, and PBEsol exchange-correlation
functionals for the tetragonal phase of KNbO3 together with available
experimental values.

PBE SCAN PBEsol Expt. [58]

a (Å) 3.994 3.968 3.969 3.997
c (Å) 4.193 4.086 4.058 4.063
c/a 1.0498 1.0296 1.0224 1.0165

V (Å
3
) 66.87 64.34 63.93 64.91

�(K) 0.01762 0.01621 0.01462 0.018
�(Nb) 0 0 0 0
�(OI ) 0.06142 0.04838 0.04109 0.044
�(OII ) 0.04962 0.04266 0.03850 0.040

TABLE III. Atomic positions with respect to the conventional
orthorhombic unit cell as fractions of a′, b′, and c′.

K 0 0 �z(K)
K 1

2 0 1
2 + �z(K)

Nb 0 1
2

1
2 + �z(Nb)

Nb 1
2

1
2 �z(Nb)

OI 0 0 1
2 + �z(OI )

OI
1
2 0 �z(OI)

OII
1
4 + �y(OII ) 1

2
3
4 + �z(OII )

OII
3
4 − �y(OII ) 1

2
3
4 + �z(OII )

OII
1
4 − �y(OII ) 1

2
1
4 + �z(OII )

OII
3
4 + �y(OII ) 1

2
1
4 + �z(OII )

dimensional plane. In Table III we list the atomic posi-
tions with respect to the conventional orthorhombic unit cell,
following once more the notation of Hewat [58]. The oxygen
atoms in the niobium layer, but not those in the potassium
layer, are subject to sideward displacements along the a′
direction. In addition, all atoms shift along the c′ direction.
During the structure relaxation we again keep the niobium
atoms fixed, which leaves four independent dimensionless
internal parameters to be optimized simultaneous with the
three external lattice parameters.

Table IV shows our results for the orthorhombic phase
calculated with the PBE, SCAN, and PBEsol functional to-
gether with available data from other authors for comparison.
On the experimental side, we include data from single-crystal
x-ray measurements by Katz and Megaw [59] and from
powder diffraction by Hewat [58], both at room temperature.
Zhang et al. [22] also recently measured the displacements
using annular-bright-field scanning transmission electron mi-
croscopy (ABF-STEM) and obtained results in good agree-
ment with the earlier experimental measurements. Addition-
ally, they performed spin-polarized DFT calculations based
on the Wu-Cohen exchange-correlation functional. No values
for the external lattice parameters are reported in [22], but the
atomic displacements, shown in Table IV for comparison, are
in good agreement with our numerical results. Comparing the
three functionals, we observe that PBEsol predicts the ratios
a′/b′ and c′/b′ with the highest accuracy. The absolute values
of the lattice parameters are slightly underestimated, however,
which can again be attributed in part to thermal expansion,
as the experiments were performed at room temperature. As
an estimate, we convert the measured lattice parameters given
for the primitive rhombic unit cell in [57] to the orthorhombic
cell and linearly extrapolate these to 0 K, which yields the
limiting values 5.697, 3.950, and 5.727 Å for a′, b′, and
c′, respectively. It should be noted that the measured values
for a′ and c′ exhibit very little variation, while b′ and the
unit-cell volume shrink with decreasing temperature; the latter

extrapolates to 128.85 Å
3

at 0 K. In addition to highly accurate
lattice parameters, SCAN predicts the atomic displacements
in best agreement with the experiments, although the actual
quantitative deviation from PBEsol is not large. Finally, PBE
yields lattice parameters that even exceed the experimental
values and is clearly inferior to the other two functionals.
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TABLE IV. Lattice parameters a′, b′, and c′, ratios a′/b′ and c′/b′, equilibrium unit-cell volume V , and atomic displacements obtained with
the PBE, SCAN, and PBEsol exchange-correlation functionals for the orthorhombic phase of KNbO3, together with available experimental
and theoretical values for comparison.

PBE SCAN PBEsol Expt. [59] Expt. [58] DFT (WC) [22]

a′ (Å) 5.782 5.698 5.679 5.697 5.695 –
b′ (Å) 3.983 3.958 3.961 3.971 3.973 –
c′ (Å) 5.816 5.723 5.696 5.720 5.721 –
a′/b′ 1.4517 1.4396 1.4337 1.4347 1.4335 –
c′/b′ 1.4602 1.4459 1.4380 1.4404 1.4402 –

V (Å
3
) 133.94 129.07 128.11 129.42 129.44 –

�z(K) 0.01550 0.01402 0.01236 0.017 0.0138 0.007
�z(Nb) 0 0 0 0 0 0
�z(OI) 0.04160 0.03683 0.03261 0.021 0.0364 0.026
�z(OII ) 0.03915 0.03399 0.03008 0.035 0.0342 0.022
�y(OII ) 0.00542 0.00347 0.00190 0.004 0.0024 0.001

From our results, we conclude that PBEsol is very well
suited to describe the orthorhombic phase as well as the
simpler cubic and tetragonal phase of KNbO3, and that
there is overall no advantage in using SCAN in this case.
Therefore, we use optimized crystal structures obtained with
the PBEsol functional for all phases in the following if not
stated otherwise.

B. Band structures

To examine the influence of quasiparticle effects, the band
structure of KNbO3 is evaluated both within DFT and within
the evGW0 approximation. As explained in the previous sec-
tion, we use the geometries obtained with the PBEsol func-
tional, which are in very good agreement with the available
experimental data throughout the different phases. As PBEsol
is specifically designed for structure optimization but in gen-
eral performs worse for total or atomization energies [39], the
band structures themselves are here determined with the PBE
functional, although our tests indicate that the results would
actually be almost identical for KNbO3 if PBEsol were used
in this step.

Table V summarizes the band gaps calculated with the
PBE functional in the context of DFT and with the evGW0

approximation for the electronic self-energy. The direct band
gap refers to the distance between the valence and conduction
band edges at the � point, whereas the indirect band gap refers
to the distance between the valence-band maximum and the
conduction-band minimum. Compared to PBE, the evGW0

quasiparticle shifts widen the direct (indirect) band gap by

TABLE V. Direct and indirect band gaps of cubic, tetragonal, and
orthorhombic KNbO3 calculated within PBE and within the evGW0

approximation. All values are in eV.

Cubic Tetragonal Orthorhombic

PBE direct 2.40 2.48 2.82
PBE indirect 1.75 1.65 1.99
evGW0 direct 3.61 4.06 4.49
evGW0 indirect 3.19 3.20 3.63

1.21 (1.44), 1.58 (1.55), and 1.67 (1.64) eV for the cubic,
tetragonal, and orthorhombic phase, respectively.

Many experiments have been carried out to determine the
direct band gap of KNbO3, reporting results of 3.14 [19],
3.16 [20], and 3.24 eV [21] for the cubic, 3.08 [21] and
3.30 eV [18] for the tetragonal, and 3.15 [21], 3.17 [23],
and 3.25 eV [22] for the orthorhombic phase. In line with
earlier theoretical studies at the same level of approximation,
such as [60], our PBE results substantially underestimate the
measured band gaps for all three phases, a well-known draw-
back of DFT calculations with local or semilocal exchange-
correlation functionals. The evGW0 approximation is much
closer to the experimental values, but it must be kept in mind
that our calculations refer to the electronic band gaps while
the experimental data refer to optical band gaps, which are
additionally affected by electron-hole attraction. Systematic
deviations are therefore expected. Indeed, for the closely
related LiNbO3, the electronic and optical band gap are known
to differ significantly [29]. In the following section we solve
the Bethe-Salpeter equation to take the missing excitonic
effects in the optical absorption of KNbO3 into account. The
electron-phonon coupling, which is presently ignored in our
calculations, is also expected to have an influence; in the
case of LiNbO3, even the temperature-independent zero-point
renormalization alone reduces the band gap by several tenths
of an eV [61].

The results shown in Table V indicate that the evGW0

quasiparticle corrections increase the direct and indirect band
gap by a similar amount, especially for the tetragonal and
the orthorhombic phase, although the two band-gap values
refer to transitions between different electronic eigenstates.
This is further corroborated by Fig. 2, which shows the full
band structure for the orthorhombic phase and confirms that
the dispersion of the valence and conduction bands is almost
identical at both levels of approximation. The conduction
bands are shifted towards higher energies in the evGW0 cal-
culation, however. From this observation, we infer that the
inclusion of quasiparticle effects changes the form of the
band structure only to an insignificant degree and mostly
widens the band gap. This suggests the use of a scissors
operator for optical-response calculations that require a dense
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FIG. 2. Band structure in the Brillouin zone corresponding to the
primitive unit cell of the orthorhombic phase calculated with the PBE
functional (black solid lines) and with evGW0 quasiparticle shifts
(dashed blue lines).

k-point mesh. The scissors shifts used in this work are derived
from the quasiparticle correction of the direct band gaps and
amount to 1.21, 1.58, and 1.67 eV for the cubic, tetragonal,
and orthorhombic phase, respectively.

C. Dielectric function

We now turn to the linear optical properties of KNbO3.
Several methods to construct the dielectric function are com-
pared for the orthorhombic phase in Fig. 3: A pure DFT-PBE
calculation that takes only transitions between single-particle
eigenstates into account (black line), the same with a rigid
scissors shift based on the evGW0 approximation (blue line,
top) and with individually calculated evGW0 quasiparticle
shifts for all eigenstates (blue line, bottom), as well as the
solution of the BSE in combination with a scissors shift
(red line, top) and with individual quasiparticle shifts (red
line, bottom). In all cases, the same crystal structure obtained
from PBEsol is used. The theoretical results are furthermore
compared to experimental data (gray line) from [7].

The fact that the scissors and quasiparticle shifts yield
almost identical results, both at the single-particle level and in
the context of the BSE, supports our earlier statement that the
evGW0 self-energy correction mainly serves to widen the band
gap and may be replaced by a numerically less costly scissors
shift for practical purposes. While the pure PBE results are
significantly too low in energy, reflecting the too small band
gap, the inclusion of quasiparticle effects and the consequent
widening of the band gap cause a strong blueshift, beyond
the measured position of the optical spectrum. Finally, if the
BSE is solved, then the spectrum is slightly redshifted again,
in good alignment with the experimental data. Furthermore, a
marked redistribution of oscillator strength can be observed in
the BSE results: Whereas the first peak in the imaginary part
of the dielectric function is followed by larger peaks at the
DFT and evGW0 level of theory, this first resonance dominates
in the BSE results, in agreement with the experiment. This
behavior is typical for excitonic resonances in solids and
found in many materials, including LiNbO3 [24].

Based on the position of the first peak in the imaginary
part of the PBE and BSE spectra, both with identical scissors
shifts, we estimate an exciton binding energy of 0.5 eV for
the orthorhombic phase. Following the same procedure, we
obtain exciton binding energies of 0.6 and 0.5 eV for the cubic
and tetragonal phase, respectively. While these values may
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FIG. 3. Real (solid lines) and imaginary parts (dotted lines) of
the linear dielectric function of orthorhombic KNbO3 calculated with
different methods (top to bottom: DFT, DFT with scissors shift,
evGW0, BSE with scissors shift, evGW0-BSE). The experimental data
(gray lines) are taken from [7].

appear large at first glance, they are of similar magnitude as in
LiNbO3 [29].

As the explicit comparison for the orthorhombic phase
suggests that the state-dependent evGW0 quasiparticle shifts
can be replaced by a scissors operator for the optical response
without noticeable loss of accuracy, we use the latter approach
for all subsequent calculations. Figure 4 displays our BSE
results obtained in this way for the cubic (top), tetragonal
(middle), and orthorhombic phase (bottom). As all three
lattice vectors of the cubic phase are perpendicular and of
equal length, there is only one independent component of
the dielectric function in this case. In contrast, the tetragonal
phase features two independent components. The first, dom-
inant resonance in the real part of the xx and yy component
exhibits a double peak, as opposed to the single sharp peak
seen in the cubic structure, while the first resonance in the
zz component is shifted to considerably higher energies. As
a consequence, we observe a rather large splitting between
the two components. In the orthorhombic phase, there are
three independent components, each with a distinct height and
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FIG. 4. Real (solid red lines) and imaginary (dotted red lines)
parts of the dielectric function for cubic (top), tetragonal (middle),
and orthorhombic (bottom) KNbO3 calculated from the BSE with a
scissors shift.

position of the first peak in the real part. The splitting is overall
smaller than in the tetragonal phase.

Compared to the dielectric function of the orthorhombic
phase, we find that the spectrum of cubic (tetragonal) KNbO3

is redshifted by about 1 eV (0.5 eV). Altogether there are
many similarities between the three phases, however: The real
part always features a dominant peak at around 4 eV and a
broader resonance at around 8 eV, while the imaginary part
has two broad resonances near 5 and 9 eV. The general shape
of the dielectric function is also very similar in all cases. This
resemblance is no coincidence but should be expected, since
the actual structural differences between the phases are small.

In addition to the experimental data included in Fig. 3, we
can compare our results with a recent theoretical study by
Xu et al. [16], who calculated the linear dielectric function
of tetragonal and orthorhombic KNbO3 at the single-particle
level using the HSE06 functional. This hybrid functional adds
25 percent of nonlocal exact exchange to a DFT calculation,
which widens the band gap and can be interpreted as an
approximate static self-energy correction. As the electron-
hole attraction as well as local-field effects are neglected, this
approach can be compared to our DFT calculations with a

FIG. 5. Components of the imaginary part of the dielectric func-
tion for the (top to bottom) cubic, paraelectric tetragonal, ferro-
electric tetragonal, paraelectric orthorhombic, and ferroelectric or-
thorhombic phase calculated within DFT.

scissors shift (second from top in Fig. 3). Indeed, our results
at this level of approximation resemble those of Xu et al.,
including the general form of the resonances, the double-peak
structure of the first resonance in the real part of εxx and εyy

for the tetragonal phase, and the larger splitting in the tetrag-
onal compared to the orthorhombic phase. There are some
differences, however. In particular, our calculations predict the
splitting between the three independent components for the
orthorhombic phase in better agreement with the experimental
data [7]. Furthermore, the redshift that we find in the spectrum
of the tetragonal relative to the orthorhombic phase is absent
in [16]. This is likely related to the different underlying band
gaps: From our evGW0 results listed in Table V, we obtain a
deviation of 0.43 eV between the two phases, while Xu et al.
report a deviation of only 0.05 eV for the indirect band gap
based on HSE06. The smaller band gap of the tetragonal phase
in our calculations consequently shifts the spectrum towards
lower energies.

In order to gain more insight into the splittings and the
shifts of the spectral features, we further analyze the dielectric
function of cubic, tetragonal, and orthorhombic KNbO3 in
Fig. 5 at the level of DFT, where spectral resonances can
be directly related to electronic transitions between valence
and conduction bands. For the tetragonal and orthorhombic
phase, we consider not only the stable ferroelectric structures
obtained from the unconstrained ionic relaxation in Sec. III A,
which involves symmetry-breaking displacements of atoms
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FIG. 6. Band-decomposed charge density (yellow) of the three
highest valence bands (left) and the three lowest conduction bands
(right) of KNbO3 for the cubic phase (a) and tetragonal phase in
the paraelectric (b) and ferroelectric (c) configuration. Potassium,
niobium, and oxygen atoms are indicated by large purple, medium
green, and small red balls, respectively.

from their ideal positions, but also hypothetical paraelectric
configurations with identical lattice parameters and no atomic
displacements. The latter may be regarded as intermedi-
ate states that can be described in terms of a deformation
potential tensor applied to the cubic phase. Although the
spectral weights differ from the BSE results in Fig. 4, the
twofold splitting in the tetragonal phase and the threefold
splitting in the orthorhombic phase, including the ordering of
the components, as well as the overall blueshift that is stronger
for the tetragonal than the orthorhombic phase, are evidently
very similar in DFT for the ferroelectric configurations. In
contrast, the paraelectric configurations exhibit much smaller
splittings and no blueshift, retaining a strong similarity to
the cubic phase. This suggests that the internal atomic dis-
placements resulting from the ferroelectric polarization rather
than the deformation of the unit cell are responsible for the
observed changes in the dielectric function.

From a band decomposition, we further find that the onset
of the optical absorption is due to transitions from the three
highest valence bands to the three lowest conduction bands.

TABLE VI. Calculated direct band gaps for the cubic phase of
KNbO3 and for the tetragonal and orthorhombic phase in the para-
electric (p) and ferroelectric (f) configuration within DFT-PBEsol
(including evGW0 quasiparticle shifts) at high-symmetry points in
the Brillouin zone. All values are in eV.

k Cubic Tetr. (p) Tetr. (f) Orth. (p) Orth. (f)

X 2.55 (4.06) 2.49 3.47 (5.16) 3.53 3.96 (5.77)
Y 2.55 (4.06) 2.49 3.47 (5.16) 2.49 3.57 (5.32)
Z 2.55 (4.06) 2.55 2.56 (4.18) 3.54 4.07 (5.89)

Figure 6 illustrates the band-decomposed charge densities for
the cubic phase and for the tetragonal phase in the paraelectric
and ferroelectric configuration. We observe that the highest
valence bands originate from oxygen p orbitals, while the
lowest conduction bands originate from niobium d orbitals,
in line with the density of states reported earlier [17].

While the charge density of the lowest conduction bands is
insensitive to the structural details in Fig. 6, we find a marked
difference in the charge density of the highest valence between
the cubic phase and the tetragonal phase in the paraelectric
configuration on the one hand and the stable ferroelectric
configuration of the tetragonal phase on the other: In the latter
case, the charge density at the oxygen atoms in the potassium
layer clearly differs from that at the two equivalent oxygen
atoms in the niobium layer. Similar observations can be made
for the orthorhombic phase, where the principal changes to the
charge densities also arise from the ferroelectric polarization
rather than the deformation of the unit cell.

The symmetry lowering associated with the successive
structural modifications is accompanied by a lifting of de-
generacies in the electronic band structure, especially with
regard to the oxygen p orbitals, as illustrated by the direct
gaps at X , Y , and Z in the first Brillouin zone listed in
Table VI. Transitions close to these high-symmetry points are
chiefly responsible for the first major peak in the dielectric
function. In particular, the direct gap of 2.55 eV in the cubic
phase corresponds to the first shoulder at the same energy
in Fig. 5(a). There is no splitting, as all faces of the cubic
Brillouin zone are equivalent.

For the tetragonal phase, the small difference of merely
0.06 eV between the direct gaps at X and Z for the para-
electric configuration explains the minor splitting of the two
components in Fig. 5(b). While the gap at Z is nearly the same
for the ferroelectric configuration, the gap at X is drastically
enlarged. The resulting deviation of 0.91 eV and the enhanced
anisotropy of the electronic structure are reflected in the large
blueshift of the zz component relative to the xx component
seen in Fig. 5(c).

Due to the further symmetry reduction, the dielectric func-
tion has three distinct components in the orthorhombic phase.
In the paraelectric configuration, the xx and zz components
displayed in Fig. 5(d) are almost indistinguishable, however.
This very weak lateral anisotropy is also reflected in the nearly
identical gaps at X and Z . The ferroelectric displacements
again enhance the anisotropy, leading to larger deviations be-
tween the different high-symmetry points in combination with
increased absolute values of the band gaps. Consequently,
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TABLE VII. SHG components χ
(2)
i jk of tetragonal KNbO3 at ω =

0 calculated using geometries optimized with the PBE, SCAN, and
PBEsol functional, and the geometry determined experimentally in
[58], “sci” indicates if a scissors shift was used. We also include
theoretical results by Xue and Zhang [34] from a bond-charge model
(BCM) and by Cabuk [36] from DFT-LDA with a scissors shift. All
values are in Å/V.

BCM LDA
ijk PBE SCAN PBEsol PBEsol Hewat [34] [36]

sci yes yes yes no yes – yes
xxz 0.326 0.313 0.308 0.823 0.331 – 0.146
zxx 0.139 0.221 0.278 0.823 0.282 0.251 0.146
zzz 0.484 0.424 0.392 0.818 0.413 0.685 0.355

there is an overall blueshift in Fig. 5(e), and the splitting
between the xx and zz component increases.

Comparing the stable ferroelectric configurations of
the tetragonal and orthorhombic phase, we finally note
that the larger quantitative splitting of the components of
the dielectric function observed for the tetragonal phase
corresponds to a larger deviation of 0.91 eV between the
gaps at X and Z , signaling a stronger anisotropy than for the
orthorhombic phase, where the band-gap values in Table VI
differ only by 0.50 eV. This reduced splitting further accords
with the smaller displacements of the oxygen atoms found in
Sec. III A. Therefore, we conclude that the splittings and shifts
in the spectra are principally determined by the magnitude of
the ferroelectric displacements of the oxygen atoms from their
ideal positions rather than the deformation of the unit cell.

The inclusion of quasiparticle shifts at the evGW0 level
leads to larger absolute band gaps but does not change this
interpretation. As shown in Table VI for the cubic phase and
the two ferroelectric configurations, the quasiparticle shifts
are nearly identical at different k points in the Brillouin zone,
illustrating again the justification of a rigid scissors operator,
and furthermore vary only little between the three considered
phases.

D. Second-harmonic generation

Next we focus on the nonlinear optical properties. As cubic
KNbO3 is centrosymmetric and hence generates no second-
order optical response, we start with the tetragonal phase. For
computational reasons, we limit ourselves to the independent-
(quasi)particle approximation in this section. Table VII shows

the nonvanishing independent components of the static SHG
tensor at ω = 0 calculated with different approaches. In order
to probe the possible sensitivity to small atomic displace-
ments, we use the optimized geometries obtained from relax-
ations with the PBE, SCAN, and PBEsol functional, as well as
the structure experimentally determined by Hewat [58]. The
wave functions used to evaluate the nonlinear susceptibility
are obtained with the PBE functional in all cases, so that any
deviations in the resulting spectra arise exclusively from the
minor differences in the atomic positions. A scissors shift of
1.58 eV is usually employed, but for the PBEsol structure we
also show results obtained without any shift. Although there
are certain deviations between the calculated values for the
various geometries, the scissors shift clearly has the strongest
impact on the results.

For comparison, Table VII also shows values from other
theoretical studies. Xue and Zhang [34] calculated the nonlin-
ear coefficients from a bond-charge model based on the geom-
etry reported by Hewat [58], while Cabuk [36] employed DFT
within the local-density approximation (LDA) in combination
with a scissors shift. The latter corresponds most closely to
our PBE calculation with a scissors shift, which indeed yields
very similar numbers.

In Table VIII we show our results for the SHG tensor of or-
thorhombic KNbO3 at an energy of 1.16 eV, for which experi-
mental data are available. Besides the optimized geometries
obtained with the PBE, SCAN, and PBEsol functional, we
also consider the structure determined experimentally by Katz
and Hewat [59] as a starting point for SHG calculations. A
scissors shift of 1.67 eV is used in all cases. The fact that some
components of the SHG tensor vary by a factor of 3 between
the different geometries underlines the importance of accurate
structural data and thus justifies the efforts made in Sec. III A.
Like the values of the lattice parameters, the nonlinear optical
coefficients calculated with the SCAN functional typically
lie between those from PBE and PBEsol, and PBEsol yields
results closest to those obtained with the experimentally mea-
sured geometry. This illustrates the consistency between the
quality of the structural data and the SHG spectra calculated
on this basis.

Complementing our theoretical analysis, we also perform
frequency-resolved measurements of the SHG coefficients.
A comparison of our calculated spectra with the measured
xxz and zzz tensor components in the energy range between
1.2 and 1.6 eV for orthorhombic KNbO3 is displayed in
Fig. 7. While this energy window lies inside the nonresonant
region of the xxz component, optical nonlinearities are found

TABLE VIII. SHG components χ
(2)
i jk of orthorhombic KNbO3 at 1.16 eV calculated using geometries optimized with the PBE, SCAN, and

PBEsol functional, and the geometry (Katz) determined experimentally in [59]. A scissors shift is used in all cases. We also include measured
values by Baumert [33] as well as theoretical results by Xue and Zhang [34] from a bond-charge model (BCM) and by Duan et al. [35] from
DFT-LDA. All values are in Å/V.

ijk PBE SCAN PBEsol Katz Expt. [33] BCM [34] LDA [35]

xxz 0.234 0.143 0.086 0.128 0.330 – –
yyz 0.407 0.407 0.441 0.453 0.342 – –
zxx 0.612 0.631 0.683 0.596 0.316 0.158 0.663
zyy 0.232 0.357 0.514 0.757 0.366 0.154 0.287
zzz 0.149 0.134 0.127 0.112 0.548 0.433 0.252
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FIG. 7. Nonlinear susceptibility of orthorhombic KNbO3 calcu-
lated using DFT with a scissors shift (blue lines). The red marks
indicate the values measured in this work.

for the zzz component. The good overall agreement between
theory and experiment illustrates the predictive power of our
approach but also demonstrates the importance of self-energy
corrections, included here via a scissors shift. Unlike in linear
optics, where a scissors shift mainly displaces the spectrum
along the energy axis, it also changes the height and form
of a resonance significantly in the case of nonlinear optics.
This can be seen both in the SHG spectrum of the tetragonal
(Fig. 8) and orthorhombic (Fig. 9) phase. By including a
scissors shift of 1.58 eV for the tetragonal and 1.67 eV for the
orthorhombic phase, the nonlinear susceptibility is reduced to
half its value compared to a pure DFT calculation. Further-
more, the relative peak height of a resonance may change. The
zxx component of the tetragonal phase, for example, exhibits
two equally strong resonances at around 2 and 3.5 eV in the
pure DFT calculation. With the scissors shift, the first peak
is higher than the second, however. These drastic changes
caused by a simple scissors shift stress the importance of a
reliable underlying quasiparticle correction.

For comparison, Table VIII also shows theoretical results
from a bond-charge model by Xue and Zhang [34] and from
DFT-LDA calculations by Duan et al. [35]. The latter ap-
proach is similar to our own, except that no scissors shift was
used in [35], while the bond-charge model must be considered
more empirical. Furthermore, the table includes measured
values taken from Baumert et al. [33], which are close to those
obtained by other authors [30–32] using various experimental
techniques. Overall, our results are in good agreement with the
experimental data and predict the magnitude of the second-
order nonlinear coefficients correctly. The measured value of
the zzz component reported in [33] is notably larger than
that predicted by our own calculations, as well as larger than
found in the other theoretical studies. In particular, Duan et al.
[35] found the zzz component to be smaller than the zxx and
zyy component, in agreement with the present predictions.
Additionally, our experimental measurements support the the-
oretical results for the zzz as well as the xxz component.

Excitonic effects are presently not included in our SHG
calculations for computational reasons. Earlier studies for
simpler materials that compared results at the independent-
quasiparticle and BSE level [53,62–64] often found an
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FIG. 8. Nonvanishing components of the nonlinear susceptibility
for tetragonal KNbO3 calculated using DFT without (black lines)
and with a scissors shift (blue lines), compared to theoretical values
from a bond-charge model [34] (green crosses) and from LDA with
a scissors shift [36] (blue crosses).

enhancement of the nonlinearities due to excitonic effects.
In the case of KNbO3, most measured tensor components of
χ (2) are well reproduced by DFT with a scissors shift, with
the exception of the xxz and zzz component discussed above,
where some of the older reported experiments seem to be
better described by DFT without a scissors shift. This could
be interpreted as an indication for negligible excitonic effects
in the SHG data or, in the latter case, as a near cancellation
of self-energy and excitonic effects. However, we note that
there is not only an appreciable scatter in the experimental
data, especially for the zzz component, but that these also refer
to just a single, relatively low photon energy. In contrast, the
novel frequency-dependent measurements performed in this
work yield lower values for the nonlinear susceptibility, which
are in excellent agreement with the calculations that include
quasiparticle effects approximately by means of a scissors op-
erator for both the xxz and the zzz component. In this way they
resolve the previously observed discrepancy. Based on the
available experimental data and calculations, sizable excitonic
effects can certainly not be excluded, at least not in the energy
range of the optical resonances. Further calculations with full
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FIG. 9. Nonvanishing components of the nonlinear susceptibility
for orthorhombic KNbO3 calculated using DFT without (black lines)
and with a scissors shift (blue lines) as well as measurements
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inclusion of excitonic effects are thus highly desirable, but out
of reach with present numerical capabilities.

IV. CONCLUSIONS

The lattice parameters of the cubic, tetragonal, and or-
thorhombic phase of KNbO3 were optimized within DFT
using the PBE, SCAN, and PBEsol exchange-correlation
functional. Although all three functionals lead to reasonable
agreement with experimental data, we find that PBEsol per-
forms best on balance and that the results obtained with SCAN
typically lie between those from PBE and PBEsol.

Comparing the DFT band structure of orthorhombic
KNbO3 with the results from an evGW0 calculation, we find
that the self-energy correction essentially widens the band
gap but has little influence on the dispersion of the valence
or conduction bands. Thus we conclude that a numerically
simpler scissors shift may suffice to give a good description
of the electronic structure in optical-response calculations.
Indeed, an explicit comparison of the linear dielectric function
calculated either with state-dependent quasiparticle shifts or
with a rigid scissors shift demonstrates that the results are
almost indistinguishable. Besides the self-energy correction

of the electronic eigenstates, the inclusion of excitonic effects,
which were ignored in previous theoretical studies of KNbO3,
is also essential to achieve good quantitative agreement with
experimentally measured spectra. Based on the peak positions
in the imaginary part of the dielectric function obtained from
the BSE and the independent-quasiparticle approximation, we
deduce an exciton binding energy of 0.6, 0.5, and 0.5 eV for
the cubic, tetragonal, and orthorhombic phase, respectively.

The dielectric functions for the three considered phases
share many similarities regarding the position and form of
the resonances in both the real and the imaginary part. The
most obvious difference is the splitting between the various
components. While the cubic phase exhibits no splitting due
to symmetry reasons, there are three distinct components for
the orthorhombic phase, albeit with a rather small splitting.
The tetragonal phase features the largest splitting between
its two distinct components. These splittings result mainly
from the lifting of degeneracies of the oxygen p orbitals due
to symmetry-breaking displacements of the atoms from their
ideal positions in the ferroelectric configurations, whereas the
shape deformation of the unit cell has only a minor influence.
Furthermore, the spectrum for the tetragonal (cubic) phase
is shifted by about 0.5 eV (1 eV) towards smaller energies
compared to the orthorhombic phase, reflecting the variation
of the band gap between the three phases. The different
splitting characteristics and the shifts along the energy axis
must both be taken into account if the cubic or tetragonal
phase are chosen as a substitute for the structurally more
complicated orthorhombic phase, as has frequently been done
in earlier theoretical studies of KNbO3 in order to reduce the
computational effort.

The nonlinear optical response of the orthorhombic phase
was both measured with a tunable laser in the energy range
between 1.2 and 1.6 eV and theoretically modeled in the
independent-(quasi)particle approximation. We find a large
impact not only of the underlying atomic geometry but also
of the scissors shift on the calculated nonlinear susceptibility
regarding the peak positions, peak forms, and overall mag-
nitude of the coefficients. We also observe larger differences
between the tetragonal and orthorhombic phase than in linear
optics. Our results obtained with an appropriate scissors shift
deduced from the evGW0 approximation agree well with
the novel experimental data reported in this work and are
consistent with previous theoretical studies. The puzzling
discrepancy between earlier DFT results and experimental
data for some components, notably zzz, is thus no longer
present. Instead, the inclusion of a scissors shift to account
for quasiparticle effects in the electronic band structure leads
to excellent agreement with the available experimental data
for all components.
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