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LiNbO3 electronic structure: Many-body interactions, spin-orbit coupling, and thermal effects
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The influence of electronic many-body interactions, spin-orbit coupling, and thermal lattice vibrations on the
electronic structure of lithium niobate is calculated from first principles. Self-energy calculations in the GW

approximation show that the inclusion of self-consistency in the Green function G and the screened Coulomb
potential W opens the band gap far stronger than found in previous G0W0 calculations but slightly overestimates
its actual value due to the neglect of excitonic effects in W . A realistic frozen-lattice band gap of about 5.9 eV
is obtained by combining hybrid density functional theory with the QSGW0 scheme. The renormalization of the
band gap due to electron-phonon coupling, derived here using molecular dynamics as well as density functional
perturbation theory, reduces this value by about 0.5 eV at room temperature. Spin-orbit coupling does not
noticeably modify the fundamental gap but gives rise to a Rashba-like spin texture in the conduction band.
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I. INTRODUCTION

Lithium niobate (LiNbO3, LN, see Refs. [1] and [2]) is
a ferroelectric material frequently used for optical waveg-
uides, piezoelectric sensors, optical modulators, and a large
variety of linear and nonlinear optical applications. Despite
its widespread and longstanding use in optical devices, its
electronic band structure, and in particular, the precise size
of its fundamental band gap, is not really known. There
are no photoemission data available, and the direct gap of
3.78 eV— frequently cited in the literature—is derived from
optical experiments [3]. It is thus affected by electron-hole
attraction effects [4–7]. The same applies to other absorption
experiments that report a band gap ranging from 3.28 eV
(Ref. [8]) to values of 4.0, 4.3, or 4.5 eV (Refs. [9–11]). The
scatter of the experimental data may partially be related to
the fact that the crystal-growth process results in samples that
are not stoichiometric but to some extent Li deficient. In fact,
many LN applications depend on intentional impurities of the
material.

The theoretical understanding is equally incomplete. Most
first-principles band structure calculations, e.g., Refs. [12] and
[13], are based on (semi)local density functional theory (DFT)
and neglect quasiparticle effects that typically widen the band
gap between occupied and empty states by a large fraction
of its value [14,15]. The seemingly good agreement between
these single-particle band gaps and the measured data results
from a fortuitous error cancelation between the large exciton
binding energy and the electronic self-energy [6,7]. In fact,
an early study by Ching et al. [16] indicates the importance
of self-energy effects: using the approximate Sterne-Inkson
model [17], they predicted self-energy corrections of the order
of 1 eV. However, the single-particle gap in Ref. [16] is
already much smaller, 2.62 eV for the ferroelectric phase,
than in more recent studies, e.g., 3.48 eV in Ref. [12]
and 3.69 eV in Ref. [13]. Quasiparticle calculations in the
GW approximation [18] performed by some of the present
authors [6,7,19,20] report self-energy corrections of about
3 eV when a model dielectric function in conjunction with the
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single-plasmon-pole approximation [21] is used to describe
the screened Coulomb potential W , while a description of W

from first principles using the random-phase approximation
(RPA) yields distinctly smaller values. None of the previous
quasiparticle calculations included self-consistency in the
Green function G or in the screened Coulomb potential
W , i.e., the self-energy operator was approximated by the
convolution of the one-shot single-particle Green function G0

and the screened Coulomb interaction W0 calculated from the
single-particle wave functions and Kohn-Sham eigenvalues
obtained within density functional theory.

Despite this methodological limitation, the G0W0 calcu-
lations in Ref. [7]—yielding a fundamental gap of 5.4 eV—
seemingly come close to the actual value. While no direct
comparison with photoemission data is possible, the optical
absorption calculated on the basis of these quasiparticle
energies and taking excitonic and local-field effects into
account agrees remarkably well with experiments concerning
both line shape and peak positions. The absorption onset is
overestimated by about 0.2 eV, but this has been shown to
be largely due to intrinsic defects in the measured samples. In
particular, defect complexes that contain Nb vacancies redshift
the LN optical absorption by 0.1–0.2 eV [7,22].

The agreement between the calculated and measured data
is fortuitous, however. On the one hand, a strong redshift
of the absorption onset with rising temperature was found
experimentally [9]. On the other hand, recent first-principles
calculations based on density functional perturbation theory
predict a substantial zero-point renormalization (ZPR) of
0.41 eV in lithium niobate [23]. These are strong indications
that the good agreement between electronic-structure calcu-
lations that neglect lattice vibrations and room-temperature
experimental data is due to error cancellation rather than due
to the faithful modeling of the LN electronic structure. In
fact, G0W0 calculations based on DFT within the generalized
gradient approximation (GGA) frequently underestimate band
gaps [24–26].

Spin-orbit coupling (SOC) effects on the LN band structure
to our knowledge have not been investigated until now. The
combined effect of SOC and a Coulomb-potential asymmetry
in the direction perpendicular to the electron movement causes
a momentum-dependent splitting of the spin bands known
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as Rashba effect [27]. Studies of the Rashba effect have so
far mostly focused on surfaces or interfaces [28–31]—where
the inversion symmetry is intrinsically broken—because of
their potential applications in the field of semiconductor
spintronics, aiming at an all-electric control of spin trans-
port. However, large Rashba-type spin splittings are also
observed in noncentrosymmetric bulk semiconductors [32,33].
Ferroelectric lithium niobate is interesting in this context,
as it combines strong polarization-related electric fields—
the commonly accepted value for the bulk polarization of
stoichiometric LN is 0.71 C/m2 (Ref. [34])—with broken
inversion symmetry. Possibly novel functionalities could arise
from the coexistence and coupling between ferroelectricity,
switchable by an electric field [35], and the SOC-induced
Rashba effect. Therefore, exploring SOC effects on the LN
band structure, and in particular, the search for Rashba-like
spin textures, is worthwhile and partly motivates this study.

The present work aims at a thorough understanding of the
LN electronic structure. Thereby, we focus on stoichiometric
material and the ferroelectric phase. We start from well-
converged DFT calculations and examine the influence of
the pseudopotentials, lattice parameters, electronic exchange
and correlation, and spin-orbit coupling on the band structure.
Hybrid DFT [36,37] calculations are performed in addition
to calculations within the generalized gradient approximation.
Quasiparticle calculations are performed on top of the DFT
electronic structure. We go beyond the G0W0 method and
include self-consistency [38] in the Green function G and the
dynamically screened Coulomb potential W that enter the self-
energy operator as well as in the quasiparticle wave functions
themselves. Thermal effects on the band structure are also
addressed. On the one hand, we quantify the influence of the
lattice expansion on the excitation energies; on the other hand,
we calculate electron-phonon coupling effects. For this pur-
pose we use two complementary approaches, ab initio molec-
ular dynamics and density functional perturbation theory.

II. COMPUTATIONAL METHODS

Ferroelectric LN can be described using a rhombohedral 10-
atom unit cell with space group R3c [1,2]. Density functional
theory is used to calculate the structurally relaxed ground state
of the material. Specifically, the Vienna Ab Initio Simulation
Package [39] (VASP) is used to provide the electronic structure
for the quasiparticle calculations and the molecular dynamics
simulations, the QUANTUM ESPRESSO (QE) package [40] is
employed for relativistic calculations that address spin-orbit
coupling, and ABINIT [41–43] finally gives access to the
electron-phonon coupling via density functional perturbation
theory (DFPT).

The projector-augmented-wave (PAW) method [46] is used
to model the electron-ion interaction in the VASP calculations.
Three different standard pseudopotential (PP) sets for Li,
Nb, and O (see Table I) are used in order to probe the
influence of core states on the valence electronic structure.
Plane waves up to an energy cutoff of 400 eV are used
to expand the electronic orbitals. For the QE calculations,
PAW pseudopotentials with Li 2s, Nb 4d, 5s, and O 2s,
2p orbitals as valence states are generated. A plane-wave
cutoff energy of 1090 eV is required in this case to achieve

TABLE I. Calculated lattice parameter a in angstroms (Å) and
angle α in degrees (◦) for ferroelectric LiNbO3 using different
pseudopotential (PP) sets and exchange-correlation functionals in
comparison with room-temperature experimental data [44,45].

PP (i) (ii) (iii)

Li 2s1 2s1 1s22s1

Nb 4p64d45s1 4s24p64d45s1 4s24p64d45s1

O 2s22p4 2s22p4 2s22p4

PBE a 5.512 5.478 5.468
�a 0.33% −0.29% −0.47%
α 55.52 55.64 55.66

�α −0.63% −0.41% −0.38%

HSE06 a 5.459 5.414 5.479
�a −0.64% −1.46% −0.27%
α 55.57 55.74 55.82

�α −0.54% −0.23% −0.09%

Exp. a 5.494
α 55.87

convergence for the small relativistic energy shifts calcu-
lated with QE. The DFPT calculations with ABINIT are
performed using a plane-wave cutoff of 1250 eV in conjunction
with norm-conserving pseudopotentials corresponding to set
(iii) in Table I.

The Perdew-Burke-Ernzerhof (PBE) [47] and the HSE06
[37] functionals are used to describe electronic exchange and
correlation in the generalized gradient approximation and in
hybrid DFT, respectively. The atomic-structure relaxation is
performed using a convergence criterion of 0.01 eV/Å for the
Hellmann-Feynman forces.

Starting from the DFT ground-state electronic structure,
quasiparticle energies are calculated using the GW approx-
imation, i.e., the self-energy operator � is approximated by
the convolution of the Green function G and the dynamically
screened Coulomb potential W . This can be done at different
levels of self-consistency. In the simplest one-shot G0W0

scheme, the Green function and Coulomb potential are calcu-
lated based on the DFT electronic structure, and the resulting
self-energy operator � is used to calculate quasiparticle shifts
in first-order perturbation theory. Depending on whether the
energy eigenvalues that enter � are self-consistently updated
in G only, or in both G and W , this scheme leads to an
iterative GW0 or GW method, respectively. Nevertheless,
it still assumes that the quasiparticle wave functions are
very similar to the Kohn-Sham wave functions, rendering �

diagonal in this basis. If this assumption is dropped, one needs
to solve the quasiparticle equation directly. This is complicated
because the frequency-dependent self-energy operator makes
the quasiparticle equation non-Hermitian and nonlinear. De-
pending again on the inclusion of self-consistency either in G

only, or in G and W , this quasiparticle self-consistent approach
may be classified as QSGW0 or QSGW . Here we follow the
notation of Schilfgaarde et al. [48] in order to discriminate
the present method from the self-consistent iterative solution
of the Dyson equation often referred to as scGW [49,50],
which also incorporates the spectral satellites. Calculations
of the screened Coulomb potential W that go beyond the
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RPA indicate an error cancellation between the quasiparticle
corrections and the electron-hole attraction. In the QSGW

scheme, where both the wave functions and eigenvalues that
enter W are updated, the missing excitonic effects may lead to
an underestimation of the screening that yields too large band
gaps (see, e.g., Ref. [51]). Therefore, in addition to one-shot
G0W0 and fully self-consistent QSGW calculations, we also
present results that are based on the QSGW0 scheme. We use
the implementation of Shishkin and co-workers [38], where the
optical matrix elements are calculated in the longitudinal gauge
following Gajdos et al. [52] and are not normally updated con-
sequently to the update of the quasiparticle states [38,53,54].
As the resulting electronic structure then still depends on the
starting point of the QSGW calculations, which for LN leads
to an additional variation of the order of at most 100 meV
for the quasiparticle energies, the QSGW values presented
here are obtained from calculations where the optical matrix
elements are updated using the perturbation-expansion-after-
discretization finite-difference method according to Nunes and
Gonze [55]. No such update of the optical matrix elements is
performed in the case of the QSGW0 calculations.

Quasiparticle energies obtained from GW calculations may
be very sensitive with respect to the sampling of the frequency
axis, the cutoff Eχ corresponding to the number of plane
waves Nχ used to represent the response function, and the
total number of electronic bands included in the self-energy
calculations [56]. In Fig. 1 we show the influence of these
parameters on the G0W0 and QSGW band gaps determined
here. In particular, a strong dependence of the calculated gap on
Eχ is observed. The computing time scales roughly linearly
with respect to the number of bands in the self-energy and
nearly cubically with Eχ . Using 648 bands, Eχ = 200 eV,
and 200 sampling points on the frequency axis appears as
a meaningful compromise between computational effort and
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FIG. 1. G0W0 and QSGW gap variations dependent on the
numerical parameters for the PP sets (i), (ii), and (iii) (black, red, and
blue): (a) with respect to the number of bands (with 200 frequency
points and Eχ = 200 eV), (b) with respect to the sampling of the
frequency axis in the response function (with Eχ = 200 eV), and (c)
with respect to the plane-wave cutoff Eχ (number of plane waves
Nχ ) for different numbers of bands (denoted b). The 11th iteration
updating 192 states is shown for the QSGW values (see also Fig. 2).

accuracy. In the QSGW0 calculations, the lowest 256 states
are updated. The non-self-consistent and self-consistent GW

calculations are based on a 6×6×6 and a 4×4×4 sampling
of the Brillouin zone, respectively, which induces an error
bar of about 20 meV. Altogether, we expect the numerical
accuracy of the quasiparticle calculations with respect to the
above parameters to be better than 0.1 eV for the PP sets (ii)
and (iii) and slightly larger for the PP set (i) [see Fig. 1(a)].
The dependence of the results on the procedure to achieve
self-consistency is discussed below (see Fig. 2).

Spin-orbit coupling effects on the band structure are
studied with a numerically very efficient method recently
suggested and implemented by some of the present authors
[57]. It accounts for SOC by applying a two-component
version of Blöchl’s PAW transformation [58] on the spin-orbit
interaction term of the Foldy-Wouthuysen-transformed Dirac
Hamiltonian within the zero-order regular approximation and
is of similar accuracy as the fully relativistic Dal Corso
approach [59,60].

Electronic excitations in solids are obviously influenced by
lattice dynamics at finite temperature, and even at 0 K they
are affected by the zero-point motion. The lattice vibrations
modulate the wave-function overlap of neighboring atoms and
hence the band structure energies. The physical mechanisms
responsible for the temperature dependence may be separated
into lattice dynamics in the harmonic approximation and an-
harmonic effects, including thermal expansion. Theoretically,
thermal effects on the band gap can be accessed from the time
average of the band structures obtained using ab initio molec-
ular dynamics (AIMD) simulations [61,62]. This approach
captures effects beyond the harmonic approximation that
become increasingly relevant at high temperatures. However,
unless path-integral molecular dynamics [63] is performed, it
is based on the classical Boltzmann statistics for phonons,
which neglects zero-point motion effects and is hence of
limited accuracy for low temperatures. The Allen-Heine-
Cardona (AHC) theory [64–66], derived from a diagrammatic
approach to many-body perturbation theory, on the other
hand, employs the Bose-Einstein statistics for phonons and
thus properly describes the zero-point renormalization. Within
the commonly employed harmonic approximation, however,
the AHC theory is expected to be less reliable for high
temperatures. Therefore, the AIMD and the AHC approaches
can be considered to be complementary.

In the present work, the experimentally determined lattice-
parameter change [67–69] is used to study the thermal-
expansion effects on the electronic excitations. The internal
degrees of freedom are allowed to relax for the respective
lattice constants. For the temperature range from 0 K to 900 K,
we calculate a reduction of the fundamental and the direct
band gap at � by about 10 meV and 50 meV in DFT-PBE,
respectively (see Sec. III D). To address the electron-phonon
coupling effects, both AIMD and AHC calculations are
performed. In the former, a Nosé thermostat [70] is used
to control the temperature, and the PBE functional models
the electronic exchange and correlation energy. In order to
minimize spurious effects of the periodic boundary conditions
that tend to favor zone-center phonon modes, the AIMD
calculations are performed not only for the primitive 10-atom
unit cell, but also for 2×2×2 and 3×3×3 unit cells containing
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FIG. 2. Band structures of ferroelectric LiNbO3 calculated (a) within HSE06 (solid lines) and PBE+QSGW (red symbols) for ãexp and PP
set (iii) and (b) within PBE at zero temperature (solid lines) compared to room-temperature results obtained via AIMD (orange symbols) for
ãeq and PP set (i) within a single unit cell. The notation of the high-symmetry k points is shown in Fig. 3. (c) Dependence of the QSGW and
QSGW0 band gap on the iteration of the quasiparticle equation for ãexp and PP set (i). The inset shows the band gap depending on the number
of orbitals updated in the calculations.

80 and 270 atoms, respectively. After the system is equilibrated
at the respective temperature, 500 snapshot geometries per
picosecond are used to time average the density of states
(DOS) using a Brillouin sampling of 8×8×8, 4×4×4, and
2×2×2 k points and simulated time periods of 23, 2, and 0.8
ps for the 1×1×1, 2×2×2, and 3×3×3 unit cells, respectively.
Additionally, longer molecular dynamics simulations of 2 ps
are performed for the 3×3×3 unit cell with a k-point sampling
reduced to the zone center (see Sec. III D). Due to their small
size, thermal-expansion effects are neglected in the AIMD
calculations. The AHC calculations presented here are based
on the LN phonon density of states calculated within density
functional perturbation theory [23]. These calculations are
performed within the rigid-ion approximation as implemented
by Gonze and co-workers [71]. The technical details of the
AHC calculations are chosen in accordance with Ref. [23].

III. RESULTS

A. Pseudopotentials

The influence of the Li and Nb (semi)core states on the
calculated LN ground-state properties is probed by comparing
three sets of pseudopotentials (see Table I), where the Li 1s

and the Nb 4s states are either frozen into the core or included
in the valence shell. The calculated energies of the Nb 4s,
4p, 4d, the Li 1s, and the O 2s, 2p states are compared with
experimental data extracted from Ref. [72] in Table II.

The lattice parameters a and α calculated in either DFT-
GGA or hybrid DFT agree in most cases to within 1% with the
measured room-temperature data. The best agreement with
experiment is achieved when both the Li 1s and the Nb
4s states are included in the calculation, i.e., for the PP set

(iii), and when the calculations are performed within hybrid
DFT. The HSE06 calculations underestimate the measured
lattice constant by just 0.27%. This corresponds fairly well to
the effect of the thermal lattice expansion. The extrapolation
of the data measured in Refs. [67–69] suggests a zero-
temperature lattice constant that is ∼0.02 Å (∼0.3%) smaller
than the room-temperature data (see Sec. III D). A detailed
investigation of how the LN lattice parameters depend on the
exchange-correlation functional and the treatment of the core
states can be found in Refs. [73] and [23].

The various calculated equilibrium lattice geometries as
well as the experimental lattice constants are used to calculate
the direct and indirect band gap of lithium niobate using the
PBE and HSE06 functionals for the different pseudopotential
sets (see Table III). Complete band structures are shown in
Fig. 2. The PBE results for the PP set (i) essentially reproduce
earlier PW91 findings [7]. The inclusion of the Nb 4s states
increases the transition energies slightly by about 0.2 eV,
while the additional inclusion of Li 1s leads only to very

TABLE II. Calculated electron binding energies (in electronvolts
with respect to the valence-band maximum) in LiNbO3 in comparison
with measured data extracted from Ref. [72]. Where states are of
mixed character, the majority contribution is underlined.

PBE HSE06 QSGW Exp.

Nb 4s 54 58 57 57-54
Li 1s 43 45 52 51-50
Nb 4p 30 32 32 33-30
O 2s 17-15 19-17 19-17 19-16
O2p/Nb 4d 4-0 5-0 5-0 5-0
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TABLE III. Calculated indirect (direct) band gap for ferroelectric
LiNbO3 in electronvolts within (hybrid) DFT and with self-energy
corrections at different levels of theory. For all pseudopotential sets we
show values obtained at the optimized theoretical unit-cell parameters
ãeq (including lattice constant, angle, and internal structure, see
Table I).

ãeq PBE PBE+G0W0 PBE+QSGW0 PBE+QSGW

(i) 3.40 (3.48) 5.23 (5.33) 5.54 (5.68) 6.26 (6.33)
(ii) 3.59 (3.64) 5.23 (5.28) 5.64 (5.74) 6.31 (6.36)
(iii) 3.60 (3.66) 5.24 (5.30) 5.64 (5.75) 6.30 (6.38)

ãeq HSE06 HSE06+G0W0 HSE06+QSGW0 HSE06+QSGW

(i) 4.94 (5.03) 5.87 (5.97) 6.07 (6.24) 6.44 (6.52)
(ii) 5.21 (5.25) 5.89 (5.94) 6.23 (6.34) 6.50 (6.54)
(iii) 5.15 (5.16) 5.85 (5.86) 6.18 (6.23) 6.46 (6.46)

minor changes of the band gap. Similar relative changes are
observed for the HSE06 band structure. These changes of the
band structure are partially related to the different equilibrium
lattice constants calculated for the different pseudopotentials.
If the lattice constant is not varied, the pseudopotential
influence on the PBE and HSE06 band gaps is below 0.1 eV,
as can be seen from the calculations performed using the
experimental lattice parameters (see Table IV). The G0W0

quasiparticle calculations tend to result in smaller self-energy
shifts when the semicore states are included. This effect nearly
compensates the band-gap opening due to an underestimated
lattice constant and leads to a reduction of the calculated band
gap if the experimental lattice constant is used in conjunction
with the Li 1s and the Nb 4s states in the valence shell.
Besides, some numerical noise may arise from an inaccurate
representation of the valence wave functions near the core [53].

B. Quasiparticle energies

Quasiparticle corrections obtained within the G0W0 scheme
based on the PBE electronic structure arrive at a fundamental
gap of 5.1–5.3 eV, depending on whether or not semicore
states are included and which lattice parameters are used
(see Tables III and IV). This is close to the PW91+G0W0

gap of 5.4 eV determined in Ref. [7], as well as to the
HSE06 gap of 4.9–5.2 eV. As expected, the combination of
hybrid DFT with G0W0 substantially widens the band gap

TABLE IV. Calculated indirect (direct) band gap for ferroelectric
LiNbO3 in electronvolts within (hybrid) DFT and with self-energy
corrections at different levels of theory. For all pseudopotential sets
we show values obtained at the experimentally measured unit-cell
parameters ãexp (including lattice constant, angle, and corresponding
internal structure, see Table I).

ãexp PBE PBE+G0W0 PBE+QSGW0 PBE+QSGW

(i) 3.42 (3.42) 5.27 (5.28) 5.56 (5.56) 6.26 (6.26)
(iii) 3.48 (3.49) 5.08 (5.09) 5.52 (5.55) 6.13 (6.17)

ãexp HSE06 HSE06+G0W0 HSE06+QSGW0 HSE06+QSGW

(i) 4.84 (4.84) 5.75 (5.76) 5.92 (6.00) 6.29 (6.29)
(iii) 4.93 (4.94) 5.57 (5.58) 5.92 (5.95) 6.15 (6.17)

to a value between 5.6 and 5.9 eV. The band-gap difference
between HSE06+G0W0 and PBE+G0W0 thus amounts to
about one third of the difference between the HSE06 and PBE
fundamental gaps, but there is still an appreciable dependence
of the quasiparticle energies on the starting point of the
calculations. Also, as discussed in the Introduction, at least
the PBE+G0W0 gap is too small to account consistently for
the optical absorption data. Therefore, we next explore the
influence of self-consistency by means of QSGW calculations.

As can be seen in Fig. 2(c), about 15 iterations are required
for converged band gaps in the QSGW and QSGW0 calcula-
tions. If both the Green function and the screened Coulomb
potential are calculated self-consistently, the starting-point de-
pendence of the quasiparticle band gap is substantially reduced
but not quenched (see Table III). This is partially related to the
different lattice parameters ãeq determined within semilocal
and hybrid DFT. If such effects are eliminated by focusing
on the band gaps calculated for ãexp (see Table IV), one finds
that the HSE06+QSGW values are at most 30 meV larger than
the corresponding PBE+QSGW data. This is clearly within
the numerical error bar of the present calculations of about
100 meV. It should also be kept in mind that Hermitianizing the
Hamiltonian during the self-consistency cycle leads to some
additional inaccuracy.

Not only does the band gap widen upon inclusion of self-
energy effects, but the energies of the valence and (semi)core
states are also affected. As can be seen from Table II, the
quasiparticle corrections clearly improve the agreement with
the experimental data.

In order to explore how strongly the quasiparticle wave
functions deviate from the single-particle states, we calculate
the overlap matrices,

O
A,B
ij = ∣∣〈ψA

i

∣∣ψB
j

〉∣∣ = ∣∣ÕA,B
ij + R

A,B
ij

∣∣
=

∣∣∣∣
∫

[ψ̃A
i (�r)]∗ψ̃B

j (�r) d3r +
∑

S,p,p′

∫
�S

[
c
A,i
S,p

]∗
c
B,j

S,p′

× ([φS,p(�r)]∗φS,p′ (�r) − [φ̃S,p(�r)]∗φ̃S,p′ (�r)) d3r

∣∣∣∣, (1)

where A,B ∈ {PBE,HSE06,GW } denotes the type of calcula-
tion and ψ̃A

i corresponds to the plane-wave contribution within
the PAW scheme [46,58]. The partial and pseudopartial waves
related to site S are denoted by φS,p and φ̃S,p, respectively,
with the expansion coefficients c

A,i
S,r . The spatial integration

is performed over the spheres �S , and i,j denote the state
quantum number. The resulting overlap matrices between the
hybrid-DFT and DFT-GGA single-particle and quasiparticle
states for the energetically lowest 50 states at the � point of
the Brillouin zone are shown in Fig. 4. All matrices are clearly
diagonally dominant, indicating that the differences between
single-particle and quasiparticle states are generally very
small. The smallest variations overall are observed between the
PBE+QSGW and the HSE06+QSGW quasiparticle states,
where the 2×2 blocks along the diagonal arise exclusively
from degenerate quasiparticle states. This is a nice confirma-
tion that the solution of the quasiparticle equation is not only
well converged to self-consistency with respect to the quasi-
particle energies, but also with respect to the wave functions.
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TABLE V. Calculated high-frequency dielectric constant ε∞ for
ordinary (extraordinary) polarization compared with experimental
data from Refs. [74] and [75]. The calculated values are obtained
within the RPA by postprocessing the electronic-structure data
obtained at the respective level of theory.

PBE PBE+G0W0 PBE+QSGW0 PBE+QSGW

(i) 6.17 (5.71) 5.01 (4.67) 4.83 (4.51) 4.09 (3.81)
(iii) 5.99 (5.57) 4.98 (4.68) 4.78 (4.49) 4.15 (3.88)

HSE06 HSE06+G0W0 HSE06+QSGW0 HSE06+QSGW

(i) 4.71 (4.38) 4.37 (4.08) 4.28 (4.00) 4.08 (3.80)
(iii) 4.59 (4.29) 4.35 (4.08) 4.23 (3.97) 4.14 (3.87)

Exp. 4.98 (4.64)

Considering separately the contribution from the plane-
wave region, Õ

A,B
ij , and that from the PAW spheres, R

A,B
ij , we

find that the latter, in particular, is responsible for the appear-
ance of nondiagonal elements unrelated to degeneracies. While
Õ

A,A
ii accounts for about two-thirds of the wave-function

norm in most cases, Õ
A,B
ij contributes slightly less to the

wave-function mixing.
As discussed above, the fully self-consistent QSGW

scheme, where the wave functions and eigenvalues that enter
W are updated, may lead to too-large band gaps due to an
underestimation of the screening resulting from the neglect of
excitonic effects. In order to see to what extent such effects
occur in the present case, we calculate the high-frequency
dielectric constant ε∞ at different levels of theory (see
Table V). Due to the neglect of electron-hole attraction effects
in the present calculations, the values obtained within the
independent-(quasi)particle approximation should somewhat
underestimate the measured data, provided that the electronic
structure itself is described correctly. This is indeed the case
for almost all calculations with the exception of the PBE and
PBE+G0W0 data, which exceed or match the experimental
values. As expected, we observe the strongest underestimation
of ε∞ for the fully self-consistent QSGW schemes. A realistic
value for ε∞, on the other hand, is obtained from hybrid
DFT. One might hence argue that the HSE06 electronic
structure combined with a quasiparticle approach that does not
modify the screening, such as HSE06+QSGW0, is particularly
promising for accurate band structure calculations.

The vast majority of the present calculations predict
LN to be an indirect-gap semiconductor with the position
of the valence-band maximum located around 1

3�Z, while
the conduction-band minimum is either at the center of
the Brillouin zone or, if self-consistency is included in the
quasiparticle calculations, between F and L. In all cases,
however, the energy differences between the direct and the
indirect band gap are very small and not significant in light of
the numerical accuracy of the calculations.

C. Spin-orbit coupling

Compared to the quasiparticle effects, SOC is expected to
lead only to minor changes of the LN band structure. This is
confirmed by the present calculations summarized in Fig. 5.
Evidently, SOC causes a splitting of several orbital-degenerate

FIG. 3. Brillouin zone of the rhombohedral unit cell of ferro-
electric LiNbO3 with reciprocal lattice vectors b1,b2,b3 (blue) and
high-symmetry points �, Z, F , and L. Black arrows indicate the path
used for the band structures in Figs. 2 and 5. The orange region in
the yellow plane A perpendicular to the �Z direction is used for the
demonstration of the Rashba splitting in the inset of Fig. 5.

bands. The largest splitting is found for the conduction-band
minimum at �, where the originally twofold degenerate Nb
4d-derived bands (see, e.g., Ref. [7]) are split by about 24 meV.
The spin-orbit splitting is essentially symmetric with respect to
the degenerate scalar-relativistic level and leads to a very minor
reduction of the fundamental gap. Altogether, we find that the
scalar-relativistic corrections to the kinetic energy enlarge the
fundamental band gap by about 150 meV, whereas SOC effects
reduce it by about 10 meV.

The inset of Fig. 5 magnifies the dispersion of the two
lowest conduction bands—which are most susceptible to
SOC effects—in the vicinity of the Brillouin-zone center, as
indicated by the orange region in Fig. 3. It is clearly seen
that the spin splitting is momentum dependent and bears
a similarity to a Rashba-like spin texture. This holds, in
particular, for the lowest-but-one conduction band, for which
we calculate a Rashba parameter of 0.06 eV Å, which is
about 1 order of magnitude smaller than for the prototypical
Bi/Cu(111) surface alloy [30]. The plane of reference is here
perpendicular to the direction of the intrinsic LN polarization,
i.e., to the �Z direction (see Fig. 3). The dispersion is nearly
parabolic, resembling that of free electrons, and thus gives
rise to a textbooklike Rashba spin structure represented by the
upper (yellow) and lower (magenta) subbands in the inset
of Fig. 5. The lowest conduction band has a weaker and
nonparabolic dispersion, resulting in a spin splitting that does
not show the energy shift between the spin-polarized subbands
typical for the Rashba effect. The influence of relativistic
effects on the LN valence bands is generally weaker than on
the conduction bands.

Altogether, while we find that SOC effects have only a very
minor influence on the LN band gap, they still modify the
electronic properties and partially give rise to a textbooklike
Rashba splitting in the conduction bands.

D. Thermal effects

Summarizing the findings for the LN band gap obtained
so far, we find that the influence of SOC is essentially
negligible but that the precise modeling of the self-energy
is very important. The (partial) inclusion of self-consistency

075205-6



LiNbO3 ELECTRONIC STRUCTURE: MANY-BODY . . . PHYSICAL REVIEW B 93, 075205 (2016)

FIG. 4. Overlap integrals O
A,B
ij calculated according to (1) for the energetically lowest 50 states. The orbital character (with majority

contributions underlined) and the approximate energies are indicated. Occupied (unoccupied) states are framed red (green).

in the quasiparticle GW calculations distinctly increases the
band gap compared to G0W0, especially if both the screened
Coulomb potential and the Green function are updated. The

FIG. 5. Band structure of ferroelectric LiNbO3 calculated within
PBE (black solid lines) and including SOC (red dashed lines).
The notation of the high-symmetry k points is shown in Fig. 3.
The inset shows the dispersion of the two lowest spin-degenerate
conduction bands near � in the orange region of plane A (see Fig. 3),
which is perpendicular to the �Z direction and thus to the intrinsic
polarization.

PBE+G0W0 approach leads to excitation energies similar to
hybrid DFT. However, while the latter approach merely widens
the band gap, the G0W0 as well as the QSGW0 and QSGW

calculations also lead to an energetic reordering of the states
[see the band structures in Fig. 2(a)]. From the calculations
above, the HSE06+QSGW0 band gap of 5.9 eV appears the
most reasonable estimate for the frozen lattice.

A meaningful comparison with experiments must take
temperature effects into account, however. In order to address
these, we perform both AIMD and AHC calculations. The
electronic density of states calculated within PBE for the ideal
crystal as well as the time average over snapshot configurations
obtained from AIMD performed at room temperature for
1×1×1, 2×2×2, and 3×3×3 unit cells are shown in Fig. 6.
Considering the small thermal lattice expansion in LN [see
Fig. 7(a)] and its nearly negligible influence on the transition
energies [see Fig. 7(b)], the respective calculations are per-
formed for the theoretical zero-temperature equilibrium lattice
parameters. The pseudopotential set (i) is used. A comparison
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FIG. 6. Calculated averaged density of states in inverse electron-
volt per formula unit (FU) for LiNbO3 (a) at room temperature from
AIMD simulations for 0.8 ps and different cell sizes and (b) at various
temperatures for a 3×3×3 unit cell.
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FIG. 7. (a) Thermal expansion of the lattice parameters of
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(�ar) unit cells are shown. (b) Calculated band-gap reduction
due exclusively to lattice-expansion effects. (c) Average band-gap
reduction as a function of the AIMD simulation time calculated for a
3×3×3 unit cell at various temperatures. Solid (dashed) lines indicate
calculations with eight k points (one k point).

of the results for the various unit-cell sizes indicates that the
3×3×3 unit cell is sufficiently large to suppress spurious
effects due to the periodic boundary conditions [see Fig. 6(a)].
As expected, temperature effects broaden the DOS spectral
features and lead to a sizable redshift of the excitation energies
already at room temperature [see Fig. 6(b)]. The calculated
room-temperature band structure shown in Fig. 2(b) shows that
the inclusion of lattice vibrations leads to a clearly nonuniform
reduction of the transition energies throughout the Brillouin
zone.

Simulations over 23 ps at 293 K using a 1×1×1 unit cell
show that the averaged DOS is roughly converged after about
0.5 ps. A detailed analysis of the temperature-dependent av-
erage band-gap reduction �εGap(T ) = εGap(T ) − εGap(T = 0)
calculated for a 3×3×3 unit cell as a function of the AIMD
simulation time and the k-point sampling is shown in Fig. 7(c).
It can be seen that the AIMD results are not yet fully converged
for the numerical parameters that can be computationally
realized. In many instances, there are remaining short- and
long-wave oscillations of up to 20 meV for simulation times
exceeding 2 ps (see the data for 293 K and 700 K, respectively).
On the basis of these tests, 50 meV appears a conservative
estimate for the numerical error bar of the band-gap values
derived from AIMD.

Given these uncertainties, in Fig. 8 we show the band-gap
modification for temperatures between 0 and 1000 K obtained
from our AIMD simulations for a 3×3×3 unit cell that
cover a period of 2 ps and employ �-point sampling only,
as well as data obtained by sampling the Brillouin zone
with eight k points but restricting the simulation period to
0.8 ps. Also shown in Fig. 8 are the respective data from
the AHC calculations. The latter are offset by the zero-point
renormalization of the band gap derived in Ref. [23]. The
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FIG. 8. Temperature dependence of the LiNbO3 band gap calcu-
lated from AIMD and the AHC scheme compared with the measured
redshift of the optical absorption edge [9]. The AHC data are offset
by the ZPR energy of 0.41 eV reported in Ref. [23]. The AIMD
calculations use a 3×3×3 unit cell and, depending on the simulation
period, either eight k points or one k point.

calculated temperature dependence is compared with the
measured redshift of the optical absorption edge [9].

If the ZPR energy of 0.41 eV is taken into account, the
gap reduction calculated within the AHC scheme agrees very
well with the measured data. This holds for temperatures
up to about 500 K, where the calculated band-gap reduction
starts to underestimate the measured redshift, possibly due to
the neglect of anharmonic and lattice-expansion effects. The
AIMD results, on the other hand, deviate increasingly from
the measurements for temperatures below room temperature.
This is expected, since the velocity distribution in the AIMD
calculations does not obey the Bose-Einstein statistics and
hence does not contain the zero-point motion of the nuclei.
For temperatures higher than about 400 K, the AIMD results
predict a stronger redshift than measured. The AIMD and the
AHC results agree nicely at room temperature, however. In
particular, both approaches indicate that the electronic band
gap at room temperature is about 0.5 eV smaller than that
calculated for the frozen lattice at zero temperature.

If this temperature correction is added to the gap obtained
from the HSE06+QSGW0 frozen-lattice calculation discussed
above, we finally obtain a room-temperature quasiparticle gap

TABLE VI. Comparison of theoretical values for the quasiparticle
band gap of LiNbO3 from this work and other previous GW

calculations.

Gap (eV) Ref. Comments

6.5 [6] PW91+G0W0, model screening [21]
6.2 This work HSE06+QSGW

5.9 This work HSE06+QSGW0

5.4 This work HSE06+QSGW0 with electron-
phonon coupling at 293 K

5.4 [7] PW91+G0W0

5.4 [6] PW91+G0W0, model screening
including lattice polarizability [21]

4.7 [19] PBE+G0W0, FLAPW method [76]
3.6 [16] LDA + Sterne-Inkson model [17]
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of about 5.4 eV. Very similar values have been reported earlier
(see Table VI) on the basis of PW91+G0W0 calculations [7] as
well as a simplified GW scheme [6] based on a model dielectric
function that allows for including lattice-polarizability effects
in an empirical way [21]. We thus conclude that the excellent
agreement between the calculated and measured LN optical
absorption demonstrated in these earlier studies [6,7,20] is
largely due to a fortuitous error cancellation between the
simplified evaluation of the self-energy and the neglect of
lattice vibrations.

IV. SUMMARY

We have performed ab initio calculations to determine the
effects of the electronic self-energy, spin-orbit coupling, and
thermal vibrations on the LiNbO3 band structure. The inclu-
sion of spin-orbit coupling affects the band gap only slightly
by a few millielectronvolts but gives rise to a textbooklike
Rashba splitting of the lowest-but-one conduction band. In

contrast, self-energy effects have a major influence on the
band structure energies. Notably, we find that self-consistent
GW calculations lead to a far larger band gap than previous
perturbative G0W0 approaches. The self-consistent QSGW

gap amounts to about 6.2 eV and is expected to slightly
overestimate the actual value of the frozen-lattice band gap,
while the HSE06+QSGW0 value of 5.9 eV probably comes
close to the correct value. Electron-phonon coupling effects
reduce this value by about 0.5 eV at room temperature, so
that a nearly complete cancellation of self-consistency and
electron-phonon coupling effects occurs, leading to a band
gap of 5.4 eV that perfectly accounts for the optical response
of stoichiometric lithium niobate [7,22].
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Landolt, N. C. Plumb, J. H. Dil, and M. Radovic, Nat. Mater.
13, 1085 (2014).

[32] K. Ishizaka, M. S. Bahramy, H. Murakawa, M. Sakano, T.
Shimojina, T. Sonobe, K. Koizumi, S. Shin, H. Miyahara,
A. Kimura et al., Nat. Mater. 10, 521 (2011).

[33] A. Crepaldi, L. Moreschini, G. Autès, C. Tournier-Colletta, S.
Moser, N. Virk, H. Berger, P. Bugnon, Y. J. Chang, K. Kern
et al., Phys. Rev. Lett. 109, 096803 (2012).

[34] F. Johann and E. Soergel, Appl. Phys. Lett. 95, 232906 (2009).
[35] S. R. Phillpot and V. Gopalan, Appl. Phys. Lett. 84, 1916

(2004).
[36] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118,

8207 (2003).
[37] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria,

J. Chem. Phys. 125, 224106 (2006).
[38] M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev. Lett. 99,

246403 (2007).

075205-9

http://dx.doi.org/10.1007/BF00614817
http://dx.doi.org/10.1007/BF00614817
http://dx.doi.org/10.1007/BF00614817
http://dx.doi.org/10.1007/BF00614817
http://dx.doi.org/10.1063/1.346951
http://dx.doi.org/10.1063/1.346951
http://dx.doi.org/10.1063/1.346951
http://dx.doi.org/10.1063/1.346951
http://dx.doi.org/10.1103/PhysRevLett.80.4510
http://dx.doi.org/10.1103/PhysRevLett.80.4510
http://dx.doi.org/10.1103/PhysRevLett.80.4510
http://dx.doi.org/10.1103/PhysRevLett.80.4510
http://dx.doi.org/10.1103/PhysRevB.62.4927
http://dx.doi.org/10.1103/PhysRevB.62.4927
http://dx.doi.org/10.1103/PhysRevB.62.4927
http://dx.doi.org/10.1103/PhysRevB.62.4927
http://dx.doi.org/10.1103/PhysRevB.77.035106
http://dx.doi.org/10.1103/PhysRevB.77.035106
http://dx.doi.org/10.1103/PhysRevB.77.035106
http://dx.doi.org/10.1103/PhysRevB.77.035106
http://dx.doi.org/10.1103/PhysRevB.87.195208
http://dx.doi.org/10.1103/PhysRevB.87.195208
http://dx.doi.org/10.1103/PhysRevB.87.195208
http://dx.doi.org/10.1103/PhysRevB.87.195208
http://dx.doi.org/10.1088/0953-8984/4/11/022
http://dx.doi.org/10.1088/0953-8984/4/11/022
http://dx.doi.org/10.1088/0953-8984/4/11/022
http://dx.doi.org/10.1088/0953-8984/4/11/022
http://dx.doi.org/10.1063/1.1663089
http://dx.doi.org/10.1063/1.1663089
http://dx.doi.org/10.1063/1.1663089
http://dx.doi.org/10.1063/1.1663089
http://dx.doi.org/10.1080/00150197408234114
http://dx.doi.org/10.1080/00150197408234114
http://dx.doi.org/10.1080/00150197408234114
http://dx.doi.org/10.1080/00150197408234114
http://dx.doi.org/10.1016/0022-3697(94)90030-2
http://dx.doi.org/10.1016/0022-3697(94)90030-2
http://dx.doi.org/10.1016/0022-3697(94)90030-2
http://dx.doi.org/10.1016/0022-3697(94)90030-2
http://dx.doi.org/10.1103/PhysRevB.65.214302
http://dx.doi.org/10.1103/PhysRevB.65.214302
http://dx.doi.org/10.1103/PhysRevB.65.214302
http://dx.doi.org/10.1103/PhysRevB.65.214302
http://dx.doi.org/10.1063/1.1413942
http://dx.doi.org/10.1063/1.1413942
http://dx.doi.org/10.1063/1.1413942
http://dx.doi.org/10.1063/1.1413942
http://dx.doi.org/10.1088/0034-4885/61/3/002
http://dx.doi.org/10.1088/0034-4885/61/3/002
http://dx.doi.org/10.1088/0034-4885/61/3/002
http://dx.doi.org/10.1088/0034-4885/61/3/002
http://dx.doi.org/10.1103/PhysRevB.50.1992
http://dx.doi.org/10.1103/PhysRevB.50.1992
http://dx.doi.org/10.1103/PhysRevB.50.1992
http://dx.doi.org/10.1103/PhysRevB.50.1992
http://dx.doi.org/10.1103/PhysRevB.48.4388
http://dx.doi.org/10.1103/PhysRevB.48.4388
http://dx.doi.org/10.1103/PhysRevB.48.4388
http://dx.doi.org/10.1103/PhysRevB.48.4388
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1002/pssc.200982473
http://dx.doi.org/10.1002/pssc.200982473
http://dx.doi.org/10.1002/pssc.200982473
http://dx.doi.org/10.1002/pssc.200982473
http://dx.doi.org/10.1109/TUFFC.2012.2409
http://dx.doi.org/10.1109/TUFFC.2012.2409
http://dx.doi.org/10.1109/TUFFC.2012.2409
http://dx.doi.org/10.1109/TUFFC.2012.2409
http://dx.doi.org/10.1016/0038-1098(92)90476-P
http://dx.doi.org/10.1016/0038-1098(92)90476-P
http://dx.doi.org/10.1016/0038-1098(92)90476-P
http://dx.doi.org/10.1016/0038-1098(92)90476-P
http://dx.doi.org/10.1103/PhysRevB.91.174106
http://dx.doi.org/10.1103/PhysRevB.91.174106
http://dx.doi.org/10.1103/PhysRevB.91.174106
http://dx.doi.org/10.1103/PhysRevB.91.174106
http://dx.doi.org/10.1088/0953-8984/27/38/385402
http://dx.doi.org/10.1088/0953-8984/27/38/385402
http://dx.doi.org/10.1088/0953-8984/27/38/385402
http://dx.doi.org/10.1088/0953-8984/27/38/385402
http://dx.doi.org/10.1103/PhysRevB.77.184408
http://dx.doi.org/10.1103/PhysRevB.77.184408
http://dx.doi.org/10.1103/PhysRevB.77.184408
http://dx.doi.org/10.1103/PhysRevB.77.184408
http://dx.doi.org/10.1103/PhysRevB.78.085103
http://dx.doi.org/10.1103/PhysRevB.78.085103
http://dx.doi.org/10.1103/PhysRevB.78.085103
http://dx.doi.org/10.1103/PhysRevB.78.085103
http://dx.doi.org/10.1103/PhysRevB.84.075218
http://dx.doi.org/10.1103/PhysRevB.84.075218
http://dx.doi.org/10.1103/PhysRevB.84.075218
http://dx.doi.org/10.1103/PhysRevB.84.075218
http://dx.doi.org/10.1103/PhysRevLett.84.6074
http://dx.doi.org/10.1103/PhysRevLett.84.6074
http://dx.doi.org/10.1103/PhysRevLett.84.6074
http://dx.doi.org/10.1103/PhysRevLett.84.6074
http://dx.doi.org/10.1103/PhysRevB.81.245430
http://dx.doi.org/10.1103/PhysRevB.81.245430
http://dx.doi.org/10.1103/PhysRevB.81.245430
http://dx.doi.org/10.1103/PhysRevB.81.245430
http://dx.doi.org/10.1209/0295-5075/87/37003
http://dx.doi.org/10.1209/0295-5075/87/37003
http://dx.doi.org/10.1209/0295-5075/87/37003
http://dx.doi.org/10.1209/0295-5075/87/37003
http://dx.doi.org/10.1038/nmat4107
http://dx.doi.org/10.1038/nmat4107
http://dx.doi.org/10.1038/nmat4107
http://dx.doi.org/10.1038/nmat4107
http://dx.doi.org/10.1038/nmat3051
http://dx.doi.org/10.1038/nmat3051
http://dx.doi.org/10.1038/nmat3051
http://dx.doi.org/10.1038/nmat3051
http://dx.doi.org/10.1103/PhysRevLett.109.096803
http://dx.doi.org/10.1103/PhysRevLett.109.096803
http://dx.doi.org/10.1103/PhysRevLett.109.096803
http://dx.doi.org/10.1103/PhysRevLett.109.096803
http://dx.doi.org/10.1063/1.3269606
http://dx.doi.org/10.1063/1.3269606
http://dx.doi.org/10.1063/1.3269606
http://dx.doi.org/10.1063/1.3269606
http://dx.doi.org/10.1063/1.1669063
http://dx.doi.org/10.1063/1.1669063
http://dx.doi.org/10.1063/1.1669063
http://dx.doi.org/10.1063/1.1669063
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.2404663
http://dx.doi.org/10.1063/1.2404663
http://dx.doi.org/10.1063/1.2404663
http://dx.doi.org/10.1063/1.2404663
http://dx.doi.org/10.1103/PhysRevLett.99.246403
http://dx.doi.org/10.1103/PhysRevLett.99.246403
http://dx.doi.org/10.1103/PhysRevLett.99.246403
http://dx.doi.org/10.1103/PhysRevLett.99.246403


A. RIEFER et al. PHYSICAL REVIEW B 93, 075205 (2016)

[39] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
[40] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C.

Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo
et al., J. Phys.: Condens. Matter 21, 395502 (2009).

[41] X. Gonze, B. Amadon, P. M. Anglade, J. M. Beuken, F. Bottin,
P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté
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[70] S. Nosé, J. Chem. Phys. 81, 511 (1984).
[71] X. Gonze, P. Boulanger, and M. Côté, Ann. Phys. (Berlin, Ger.)
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