
Planning with Independent Task Networks

Felix Mohr, Theo Lettmann, Eyke Hüllermeier
{felix.mohr|lettmann|eyke}@upb.de

Department of Computer Science
Paderborn University, Germany

Abstract. Task networks are a powerful tool for AI planning. Classical approaches
like forward STN planning and SHOP typically devise non-deterministic algo-
rithms that can be operationalized using classical graph search techniques such as
A*. For two reasons, however, this strategy is sometimes inefficient. First, identi-
cal tasks might be resolved several times within the search process, i.e., the same
subproblem is solved repeatedly instead of being reused. Second, large parts of
the search space might be redundant if some of the objects in the planning domain
are substitutable.
In this paper, we present an extension of simple task networks that avoid these
problems and enable a much more efficient planning process. Our main innova-
tion is the creation of new constants during planning combined with AND-OR-
graph search. To demonstrate the advantages of these techniques, we present a
case study in the field of automated service composition, in which search space
reductions of several magnitudes can be achieved.

1 Introduction

Hierarchical planning is an established and powerful technique for AI planning [1,3,13].
One interesting application of hierarchical planning is automated service composition,
which is the task to compose a new software artifact from existing ones [8, 15, 19].
However, there are settings in which standard hierarchical planning, even when looking
like a natural approach, turns out to be infeasible.

As an illustration, we consider the example of nested dichotomies, a technique for
polychotomous classification in machine learning [5]. A nested dichotomy (ND) is a bi-
nary tree, in which every node n is labeled with a set c(n) ⊆ Y of classes Y , such that
the root is labeled with Y , and c(n) = c(n1)∪̇c(n2) for every inner node n with suc-
cessors n1 and n2. Fig. 1 shows two example dichotomies for the case of four classes.
An object to be classified is submitted to the root and, at every inner node, sent to one
of the successors by the binary classifier associated with that node; the class assigned is
then given by the leaf node reached in the end. Since different NDs give rise to different
sets of binary classification problems, the overall performance is strongly influenced by
the tree topology. Considering an ND as a “classification service”, hierarchical planning
appears to be a natural approach for its configuration: starting at the root, the splits are
configured iteratively until every leaf node is labeled with exactly one class.

The first problem with classical hierarchical planning is that, when enumerating
different NDs, the same subsolutions are computed several times. For example, both

Fig. 1: A partial and a complete ND for four classes.

NDs in Fig. 1 contain the node A,B, which is refined twice by a classical planner. The
second problem is that each node of the ND is represented by a planning constant, but
the constants actually have no specific meaning. For example, we need 7 constants, say
v1, .., v7, for the nodes of the right ND of Fig. 1. It does not matter which of the nodes
is represented by which constant, but a classical planner tries all combinations, which
yields an enormous and unnecessary search space explosion.

We propose planning with independent task networks (ITN) to overcome these
problems (Section 2). The main novelties are the on-the-fly creation of planning con-
stants and the reuse of subsolutions through the notion of AND-OR-graph search. In a
case study, we show that this can yield search space reductions of several orders of mag-
nitude (Section 3). The case study also sheds light onto a class of planning problems
rarely considered in the planning community, e.g., the typical competitions, namely
the one of automated service composition. While most frequently considered planning
problems may not exhibit the discussed property of independent tasks, it is a common
(sometimes essential) property in every recursive program. Drawing attention to this
class of planning problems is, hence, another aim of the paper.

2 Independent Task Network Planning

We introduce our method in four steps. The first two subsections explain the formal
basis of planning in general and hierarchical planning, respectively. We then describe
the core elements of ITN planning and the ITN algorithm. Finally, we address some
important aspects of the ITN that enable additional search space reductions.

2.1 Basic Elements of Planning

As for any planning formalism, our basis is a logic language L and planning op-
erators that are defined in terms of L. The language L has function-free first-order
logic capacities, i.e., it defines an infinite set of variable names, constant names, pred-
icate names, and quantifiers and connectors to build formulas. An operator is a tuple
〈nameo, preo, posto〉 where nameo is a name and preo and posto are formulas from
L that constitute preconditions and postconditions, respectively.

The postconditions posto are often restricted to be literal sets, like in STRIPS. We
relax this assumption a bit and allow conditional postconditions, i.e., posto is of the
form

∧
α→ β where α is a formula from L and β is a set of literals.

A plan is a sequence of ground operations. As usual, we use the term ground to
say that all variables have been replaced by terms that only consist of constants. That
is, an operation is ground if all variables in the precondition and postcondition have
been substituted by terms from L that only contain constants. Ground operators are
also called actions; we write prea and posta for its precondition and postcondition,
respectively.

The semantic of actions is that they modify the state in which they are applied. A
state is a set of ground positive literals. Working under the closed world assumption, we
assume that every ground literal not explicitly contained in a state is false. An action a is
applicable in state s iff s |=cwa prea. The successor state s′ induced by this application
is s if a is not applicable in s and (s ∪ add) \ del otherwise; here, add and del contain
all the positive and negative literals, respectively, that are in a conditional postcondition
of a whose condition is true in s.

2.2 Simple Task Networks

A simple task network (STN) is a partially ordered set T of tasks [7]. A task t(v0, .., vn)
is a name together with a list of parameters, which are variables or constants from L.
A task named by an operator is called primitive, otherwise it is complex. A task whose
parameters are constants is ground.

We are interested in deriving a plan from a task network. Intuitively, we can refine
(and ground) complex tasks iteratively until we reach a task network that only consists
of ground primitive tasks, i.e., a set of partially ordered actions. While primitive tasks
can be realized canonically by a single operation, complex tasks need to be decom-
posed by methods. A method m = 〈namem, taskm, prem, Tm〉 consists of its name,
the (non-primitive) task taskm it refines, a logic formula prem ∈ L that constitutes a
precondition, and a task network Tm that realizes the decomposition. Replacing com-
plex tasks by the network specified in the methods we use to decompose them, we
iteratively derive new task networks until we obtain one with ground primitive tasks
(actions) only.

The definition of a simple task network planning problem is then straight forward.
Given an initial state s0 and a task network T0, the planning problem is to derive a plan
from T0 that is applicable in s0. A simple task network planning problem is then a tuple
〈s0, T0, O,M〉, where O and M are finite sets of operators and methods, respectively.

Note that the definition of a method usually contains more variables than the task it
refines. That is, it makes use of objects that are not directly relevant for formulating the
task, yet relevant to solve it in the spirit of the respective method.

2.3 Independent Task Networks: General Idea

We propose independent task networks (ITNs), which are an extension of STNs, with
the purpose to enable an efficient decomposition of independent subproblems. The core
feature of ITNs is that tasks may be labeled as independent to assert that each of its
refinements is compatible with every refinement of non-preceding tasks. More formally,
let T be a task network with t ∈ T marked as independent, and let T ′ ⊂ T \ {t} be the
tasks in T that are no predecessors of t. Then for every state s on which we decompose

Fig. 2: The task network that refines node n of a partial nested dichotomy.

T , and for which plans π and π′ can be derived from {t} and T ′, respectively, such
that π.π′ is applicable in s, every derivable plan π′′ of {t} applicable in s must be
combinable with π′ such that π′′.π′ is applicable in s. In other words, the choice of the
first partial plan π′′ does not affect the applicability of the second partial plan π′.

As an example, consider the task network in Fig. 2. This is the task network belong-
ing to the method that refines a non-terminal node of a partial dichotomy by splitting
it up into two new child nodes. The first two tasks in the network are primitive, i.e.,
they can be realized by single actions, and the last three tasks are complex. The tasks
init(n, lc, rc, x), shift(y , x , lc, rc), and config(lc, rc) create the child nodes lc and rc
of n and define their labels; the exact formalization is given below in Section 3.2. The
tasks refine(lc) and refine(rc) mark a refinement of those child nodes, i.e., they are
independent since their solutions are independent of each other. Every plan derived for
refine(lc) can be combined with every plan derived for refine(rc).

The need to manually define whether or not a task is independent of the others has its
root in the difficulty to define complete conditions of independence that can be checked
automatically. Indeed, it is easy to specify sufficient conditions, e.g., based on the task
names. For example, we can syntactically check whether two tasks must be indepen-
dent if all methods and operators reachable from them have disjoint preconditions and
effects respectively. However, this specific rule is too strict in general, and we expect
that deciding independence in general is undecidable. On the other hand, in particular
when the planning algorithm simulates a recursive execution tree—like in our nested
dichotomy problem but also, the expert easily sees that the tasks are independent.

The non-deterministic independent forward decomposition (IFD) algorithm is shown
in Algorithm 1. In fact, the part for U = ∅ is equal to the partial forward decomposition
algorithm (PFD) [7][p.243] except that the recursive call is IFD and not PFD. So the
important points are the computation of the relevant recursive tasks U in the beginning
(line 1), and the final else-branch where those tasks are resolved (lines 16-19). Note that
there is no choice point in the last branch, because all of the tasks must be solved—no
decision is required. The independent tasks are solved in isolation and the solution of
the remaining problem is appended to the concatenation of subsolutions of the indepen-
dent tasks. It is easy to show that the routine is sound and complete; we omit the proofs
of these formal properties due to space limitations.

A deterministic implementation of the above algorithm can be devised by an AND-
OR-graph search such as general best first (GBF). As usual, the choice points (non-
deterministic choices) constitute OR-nodes in such a graph. While PFD induces a sim-
ple OR-graph, the last branch of RFD induces an AND-node with one successor for

Algorithm 1: IFD(s, T,O,M)

1 if T = ∅ then return the emply plan U ← {t | t ∈ T, t has no non-recursive predecessor
in T}

2 if U = ∅ then
3 choose any u ∈ T that has no predecessor in T
4 if u is a primitive task then
5 active← {(a, σ) | a is a ground instance of an
6 operator in O, σ is a substitution such that
7 namea = σ(tu), and a is applicable to s}
8 if active = ∅ then return failure choose any (a, σ) ∈ active

π ← IFD(γ(s, a), σ(T \ {u}), O,M)
9 if π = failure then return failure else return a.π

10 else
11 active← {(m,σ) | a is a ground instance of a
12 method in M , σ is a substitution such that
13 namem = σ(tu), and m is applicable to s}
14 if active = ∅ then return failure choose any (m,σ) ∈ active
15 return IFD(s, σ(Tm), O,M)

16 end
17 else
18 ∀u ∈ U : πu = IFD(s, {u}, O,M)}
19 πT−U ← IFD(s, T \ U,O,M)
20 return πu1 ...πun .πT−U

21 end

each u ∈ U and one for T \ U . Note that the child nodes here are partially ordered:
there is no order among the child nodes for u ∈ U , but all of them are ordered previ-
ously to the node for T \ U .

2.4 A Look at the Details

While the RFD algorithm is already sufficient to solve subproblems independently, we
allow for three more features that are important to actually achieve an efficiency im-
provement in the planning process. These features are constant creation, context func-
tions, and lonely methods.

First, we allow operators (and methods) to introduce new constants. Intuitively, the
connection to independent tasks is that those tasks constitute subproblems, which are
derived from the current one. In Fig. 2, for example, refining the child nodes lc and rc
are subproblems we derived from n. Since lc and rc are only relevant for this specific
task, it is reasonable that they are created only for this purpose and known only within
this method instead of being taken from a previously defined object storage. In the
algorithm, this becomes relevant when active methods and actions are determined. Here,
substitutions map output parameters not to constants of the state s but to globally unique
new constants from L.

Fig. 3: Context functions help identify search graph nodes.

Second, ITNs allow one to equip tasks with context functions that enable the iden-
tification of equal subproblems during the search process. We face the problem that we
may create independently solvable identical tasks that cannot be recognized as such. For
example, the nested dichotomies in Fig. 1 both contain the node labeledA,B. Covering
both dichotomies in the course of plan derivation, we would encounter a task refine(v1)
for some state s1 and refine(v2) for some state s2, where v1 and v2 are different con-
stants both encoding the refinement of A,B. That is, the subproblems refine(v1) and
refine(v2) are identical, but s1 6= s2 and v1 6= v2 prevent us from detecting this equal-
ity. A context function φt : S → S×Λ overcomes this problem by assigning a state s a
pair (s′, λ), where s′ ⊆ s is a reduction of the state s, such that a plan derived from {t}
is applicable in s′ iff it is applicable in s, and λ ∈ Λ is a bijective mapping of constants
in s′ to constants in L, i.e., a renaming of constants. In the above example, we would
have λ(v1) = AB = λ(v2), where AB is a constant, and the states are reduced to the
literals really relevant to the subproblems such that φrefine(v1)(s1) = φrefine(v2)(s2).

Incorporating context functions in the search algorithm simply means to change the
recursive call for the tasks u ∈ U in the lower else-branch toRFD(φ(s), {λ(u)}, O,M).
Fig. 3 shows how this allows for the identification of nodes in the search space.

Third, methods may be declared as lonely in order to denote that the possible deriva-
tions of the resulting task network do not depend on the choices of the parameters. This
is important for methods that only check some property while not affecting the state.
For example, we may want to check that a node n is labeled with exactly one class. We
achieve this by (i) choosing one class in the label of n, removing it, and (ii) checking
whether the node label is then empty. If n would be labeled with several classes, the
emptiness check (ii) would fail independently of which class we chose. Hence, we only
need one representative of the labels of n to check the condition, i.e., only one instance
of that method is required.

Just like simple task networks, ITNs induce a specific planning routine. It is com-
mon sense that simple task networks can only be reasonably solved through forward
planning [7]. For ITNs, this is particularly true due to the context functions, which can
not be evaluated until the state of invocation is known. Typically, this is only the case if
the task network is resolved in a forward fashion.

3 Case Study: Configuration of Dichotomies

The improvements that can be achieved by ITN planning (in the settings where it ap-
plies) obviously depend on the concrete problem at hand. Here, we focus on the prob-
lem of ND configuration already presented in the introduction. For this example, we
demonstrate a tremendous reduction of the search space (fully effective if AND-OR-
graph search can reasonably be applied). Prior to proceeding, let us again emphasize
that the approach is by no means restricted to this problem, but applies to other con-
figuration problems (e.g., the configuration of deep neural networks) in very much the
same way. All implementations are available for public1.

3.1 Nested Dichotomies

As already explained, nested dichotomies reduce a polychotomous classification prob-
lem to a set of binary problems (that are presumably easier to solve). To this end, the set
of classes is recursively partitioned into subsets, and for each such partition, a classifier
is trained on a given set of training data. The criterion to be optimized is the overall
prediction accuracy (percentage of correctly classified items), which depends on the
quality of the binary classifiers, and therefore on the topology of the ND. Given a di-
chotomy, the accuracy can be estimated by training the required binary classifiers and
applying the ND to suitable test data.

Since training and evaluation are not relevant here, we ignore these steps in our
case study; instead, we focus on searching the space of nested dichotomies (topologies).
This already constitutes a challenging planning problem. It has been shown that for n
classes, there are (2n−3)!! nested dichotomies [5], where !! is the double factorial (and
not taking the factorial twice). Hence, for 10 classes, there are 34,459,425 many nested
dichotomies—certainly too many for picking one by hand.

3.2 Problem Formalization

We now explain how the configuration of such NDs can be encoded as a hierarchical
planning problem. The formalization makes sure that each ND is constructed exactly
once. Besides the standard elements, it requires universal quantifiers, conditional post-
conditions whose conditions may be 2-CNFs, and outputs, which are separated by a
semicolon. We need five operators, which will correspond to primitive tasks:

1. init(n, x ; lc, rc)
Pre: in(x ,n)
Post:

∧
true → in(x , rc) ∧ bst(x , rc) ∧ sst(x , rc)
∀xn : in(xn ,n) ∧ xn 6= x → in(xn , lc)
∀x2, xo : x 6= x2 ∧ in(x2, n)∧

sst(x ,n) ∧ (¬in(xo ,n) ∨ xo > x2)→ sst(x2 , lc)
∀xs : sst(xs ,n) ∧ xs 6= x → sst(x , lc)

1 Sources are available at http://www.felixmohr.de/en/research/crc901/itn

2. shift(y , x , lc, rc)
Pre: in(x , l) ∧ bst(y , r)
Post: in(x, r) ∧ bst(x, r) ∧ ¬in(x, l) ∧ ¬bst(y, r)

3. close(l , lw , r , rw)
Pre: in(lw , l) ∧ in(rw , r)
Post: ∅

Intuitively, the idea behind these operators is to split up the labels of a node until
every leaf node is labeled with a single class. A node is refined by creating two child
nodes (via the init operator), where initially all classes except one (x) of the parent
are in the left child. Then, we can use the shift operator to move single classes from
the left to the right child. The predicates bst and smt are used to memorize the biggest
and smallest elements of nodes, which is necessary to avoid mirroring NDs, i.e. one
separating A,B from C,D and the other C,D from A,B The close operator is used
to guarantee the existence of at least one class in each of the children, which are the
“witnesses” lw an rw.

We need two tasks with five methods to complete the specification. The first task
is refine(n), which means that the classes of node n shall be split up somehow. The
second task is config(l , r), which means that classes are to be moved from the left to
the right child of some node. In the following, lonely methods are annotated with an
asterisk, and independent tasks are underlined. There are three methods for refine(n):

1. finalSplit∗(n, x , y ; lc, rc)
Pre: in(x ,n) ∧ in(y ,n) ∧ y > x ∧ ∀z : in(z ,n)→ z = x ∨ z = y
Task Network:
init(n, lc, rc, y)

2. isolatingSplit(n, x ; lc, rc)
Pre: in(x ,n)
Task Network:
init(n, lc, rc, y)→ refine(lc)

3. doubleSplit(n, x , y ; lc, rc)
Pre: in(x ,n) ∧ in(y ,n) ∧ y > x ∧ ¬sst(x ,n)
Task Network:

init(n, lc, rc, y)→ shift(y , x , lc, rc)→ config(lc, rc)→ refine(lc)→ refine(rc)

There are two methods for config(l , r), which are

1. shiftElementAndConfigure(l , r , x , y)
Pre: in(x , l) ∧ bst(y , r) ∧ x > y
Task Network: shift(x, y, l, r)→ config(l, r)

2. closeSetup∗(l , lw , r , rw)
Pre: in(lw , l) ∧ in(rw , r)
Task Network: close(l, lw, r, rw)

The initial task network is then simply {refine(root)} where the initial state s0
defines root and the ordering of classes. That is, s0 = ϕ(C)∧

∧
x∈C in(x, root) where

C is the set of classes and ϕ maps C to an arbitrary explicit total order of items of C,
e.g., the lexicographical order. The latter one is important to maintain the bst and sst
predicates.

3.3 Results

The evaluation is a mixture of experiments and rough bound estimates. On the one hand,
it is non-trivial to calculate the exact search space sizes for a problem. Moreover, since
the results cannot be immediately generalized, this calculation is not worth the effort.
On the other hand, since we only want to demonstrate the general effects, namely orders
of magnitudes of search space reduction, accurate values only distract from the key
message. For the same reason we omit the proofs for the bounds. In fact, we determined
better bounds than the ones we report here, but these are complicated to compute, which
is not justified in light of the limitations imposed by the setup and space.

The results are summarized in Fig 4. In cases where the number could not be com-
puted algorithmically, values with an asterisk were estimated based on expansion mod-
els. We now discuss the results in detail.

The Baseline: Standard STN/PFD Planning We can easily modify the above encod-
ing to make it fit to standard STN planning. Since standard planning cannot create new
objects, we must define a set of objects for the nodes of the dichotomy already in the
initial state. Every nested dichotomy for k classes has 2k−1 many nodes, one of which
is the root, so the initial state of the problem must define the root node object and 2k−2
additional node objects. The methods and operators that create objects are redefined in
the sense that the outputs are now inputs. An auxiliary predicate inuse(x), which is ini-
tially true for the root node and false for the other node objects, is required to be false
in the preconditions of the “creating” methods and operator, and it is set to true in the
postcondition of the creating operators. In addition, we add lc 6= rc to the preconditions
in order to make sure that the two “created” objects are distinct. Such a problem can
then be fed to an implementation of PFD [7]; since we are interested in the total search
space size, we used a simple breadth first search.

In principle, a more efficient encoding is possible for STN planning. When using
alternative effects with universal quantifiers, we could simulate the constant generation
process. However, these are not supported by common hierarchical planners, and such
an encoding would also require a neat implementation of the planner in order to avoid an
explosion of the node expansion time. Besides, this option is limited to cases where we
already know the number of required constants, which is not the case in many scenarios,
e.g., the configuration of a deep neural network.

The search space growth under this encoding renders the search process hopeless.
One can show that the number of nodes induced for an OR-graph by PFD planning is
at least (2k − 3)!!k, where k is the number of classes.

The extreme search space explosion is caused by an unnecessary redundancy in the
set of found solutions. This is because different node objects are used to carry out the
same operation. For example, a node ni is split into children (ni+1, ni+2), (ni+1, ni+3),
.., (ni+1, nl), .., (nl−1, nl), even though only one of those would be sufficient. This is
avoided by creating new constants, which are built exactly for that single refinement
purpose. This problem was discussed previously in the context of automated service
composition [9]. As a consequence, PFD produces 2, 72, and 17 280 solution nodes
for k = 2, 3, and 4, respectively, although there are actually only 1, 3, and 15 distinct
solutions.

classes PFD PFD + OC RFD
2 1 15 18
3 27 59 64
4 56 625 349 202
5 1.3E+10* 2 694 625
6 7.1E+17* 26 000 1 935
7 1.3E+28* 301 833 5 988
8 1.1E+41* 4 094 241 18 456
9 5.8E+56* 42 788 697* 56 563
10 2.4E+75* 660 099 747* 172 381

(a) Number of edges

2 3 4 5 6 7 8 9 10
Number of classes

100

102

104

106

108

1010

N
um

be
ro

fe
dg

es

NDs
PFD
PFD + OC
RFD

(b) Number of dichotomies/edges.

Fig. 4: Search space sizes for the three models measured in terms of the number of
edges, which corresponds to the number of nodes for STN. Values with asterisk were
obtained by estimates, since the model exceeded the machine resources.

Improvement by Creating Constants Now consider the case that we still stick to an
OR-graph search like PFD but allow the creation of new objects. That is, the encoding is
as specified above, except that we apply PFD instead of the RFD algorithm introduced
in Section 2.3. In the following, we call this strategy PFD + OC.

In comparison to the naive approach of a standard STN encoding, the search space
size already looks much more feasible. For values of k = 2, .., 10, the values are con-
tained in the second column of the table in Fig. 4. Clearly, the search space is still quite
huge, i.e., still grows exponentially in the number of classes, but the order of magni-
tude is much less. More precisely, we can safely upper bound the search space size by
c · k · (2k − 3)!!, where k is the number of classes and c is a small constant. By the
above lower bound for naive search, this implies that the search space size is smaller by
a factor of at least (2k−3!!c·k)k−1 > (2k − 3!!)k−2. This enormous gap can be observed
in Fig. 4 between the green and the red line.

Improvement by ITN Planning Let us now consider the savings achieved by ITN
planning. That is, we apply the RFD algorithm to the problem description as given
above.

The result is again a dramatic search space reduction. The search space growth is
still exponential but significantly less than in the case of STN planning with object
creation. We can lower bound the search space size of PFD + OC by k · (2k − 3)!! �
10k−2 and upper bound the search space size of ITN planning by 3k+1. These bounds
imply that the search space size of PFD + OC is at least 3k−2 times higher than the
search space size induced by running an AND-OR-graph search on the graph imposed
by the RFD algorithm. In other words, for deriving NDs, the search space of PFD + OC
is exponentially larger than the one of ITN planning.

Another important (though maybe typical) observation one can make by comparing
the two blue lines in Fig. 4 is that the number of edges in ITN planning grows slower

than the number of solutions. This is because the solutions are implicitly stored in the
sub-graphs of the search space, so we actually need less nodes and edges to cover all
solutions than in the other approaches. The impact of such an efficient representation
can be quite paramount. For example, for the case of NDs it is often said that one cannot
consider all NDs [5], which is a reasonable assertion at first sight given their tremen-
dous number. Of course, there are limits. However, with an admissible and sufficiently
informative heuristic for solution bases, we can actually (implicitly) consider all NDs
even for sizes that significantly exceed the possibilities of OR-graphs.

3.4 Discussion

The case study of ND configuration impressively shows the potential benefits of ITN
planning with respect to the search space size. In fact, the improvements are so obvious
that no further discussion is needed. Instead, we dedicate the remaining space to the
discussion of some more subtle aspects.

For example, a reduction of the search space does not immediately imply better
solutions. First, in spite of all savings, we usually cannot construct the complete search
graph. Instead, we still need to rely on heuristic search to explore promising parts of the
search space. If these heuristics are good enough, it may happen that we find comparable
solutions, or even the optimal ones, within a given time bound.

Second, an important requirement for successful AND-OR-graph search is that the
quality of a solution can be aggregated from its partial solutions. If this is not directly
possible, AND-OR-graph search may even deliver worse results than a simple best-first
search, which has a complete solution base available in every node, no matter the search
space size. However, at least for the shift from classical STN planning to STN planning
with object creation, we can be certain that solution qualities will be at least as good
and often better. Any heuristic we can apply for the classical STN planning version, we
can also apply for the one with object creation. More precisely, for each node n of the
search space of the object creation version, there is a set N(n) of actually equivalent
nodes in the search space of the classical problem formulation that are very likely to be
all expanded before any solution is found.

To summarize, an ITN planning encoding does significantly decrease the search
space size regardless of whether the search takes place in an OR-graph or an AND-OR-
graph. Compared to the use of a classical encoding, this enables a much more efficient
search. In this regard, AND-OR-graph search is even better than OR-graph search, but
this approach assumes that solution quality can be aggregated from partial solutions.

4 Related Work

We are not the first in pointing out the necessity to create new constants during plan-
ning. In particular, for web service composition [10], the positive effect of allowing
the introduction of new objects on the search space size was already discussed in [9].
In fact, such a technique was even incorporated earlier into a forward planning, [17],
backward planning [12], and partial ordered planning [11]. However, we are not aware
that constant creation has been used in hierarchical planning.

Constant creation can be simulated with effects that allow for negation, universal
quantifiers, and implications. However, the only planners allowing universal quantifiers
we are aware of, which are SIPE-2 [18], SHOP2 [13], and SIADEX [2], have no sup-
port for conditional effects; SHOP2 and SIADEX do not even support negations in the
effects [6]. But in many cases, we have no canonical upper bound for these constants
anyway. While we do have one in our example, in others, like configuring a deep neural
network, there is no such bound for the number of layers.

A recent survey [6] categorizes HTN planning methods and discusses expressive-
ness of HTN planning languages and their impact on parallelizability. Currently, the
most popular approach to implement HTN planning is depth first search in an OR-
graph, which is adopted for instance by SIPE-2 [18], UCMP [3], SHOP2 [13], and
SIADEX [2]. We are not aware of any other hierarchical planning algorithm that ap-
plies AND-OR-graph search.

The idea of reusing subsolutions has been addressed through the notion of “task
sharing”. Task sharing identifies common sub-tasks for sharing within a plan [16]. In [1]
the HTN formalism is compared to a unified version of Hierarchical Goal Network
(HGN) [14] and task sharing. However, task sharing only reuses subsolutions within a
plan but does not use this knowledge within plan search, e.g., by organizing the search
space like ITN.

5 Conclusion

We have introduced independent network planning as an alternative to classical hierar-
chical planning methods such as STN planning. While we do not claim that the required
property of independent tasks is satisfied in planning problems frequently considered in
the competitions (which it is probably not), we have shown at the example of nested di-
chotomy configuration that there are relevant practical problems where the conditions
apply and where the search space size is decreased by several orders of magnitude.
Nested dichotomies are not a pathological case: Since the core idea is to reuse computa-
tion results, we assume that ITN planning plays a role similar to dynamic programming,
which makes it a key technology in automated service composition problem.

Our current work is focused on the use of ITN planning for automated machine
learning [4], i.e., the automated configuration of data processing and model induction
pipelines for learning predictive models from data. While our example of nested di-
chotomies originates from this domain, it constitutes only a first step and small share in
this endeavor.

Acknowledgements: This work was supported by the German Research Foundation
(DFG) within the Collaborative Research Center ”On-The-Fly Computing” (SFB 901).

References

1. R. Alford, V. Shivashankar, M. Roberts, J. Frank, and D. W. Aha. Hierarchical planning:
Relating task and goal decomposition with task sharing. In Proc. IJCAI, pages 3022–3029,
2016.

2. L. Castillo, J. Fdez-Olivares, Ó. Garcı́a-Pérez, and F. Palao. Temporal enhancements of an
HTN planner. In Conference of the Spanish Association for Artificial Intelligence, pages
429–438. Springer, 2005.

3. K. Erol, J. A. Hendler, and D. S. Nau. UMCP: A sound and complete procedure for hier-
archical task-network planning. In Proceedings of the Second International Conference on
Artificial Intelligence Planning Systems, University of Chicago, Chicago, Illinois, USA, June
13-15, 1994, pages 249–254, 1994.

4. M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Efficient and
robust automated machine learning. In Advances in Neural Information Processing Systems,
pages 2962–2970, 2015.

5. E. Frank and S. Kramer. Ensembles of nested dichotomies for multi-class problems. In
Machine Learning, Proceedings of the Twenty-first International Conference (ICML 2004),
Banff, Alberta, Canada, July 4-8, 2004, 2004.

6. I. Georgievski and M. Aiello. HTN planning: Overview, comparison, and beyond. Artif.
Intell., 222:124–156, 2015.

7. M. Ghallab, D. S. Nau, and P. Traverso. Automated Planning - Theory and Practice. Elsevier,
2004.

8. M. Klusch, A. Gerber, and M. Schmidt. Semantic web service composition planning with
OWLS-XPlan. In Proceedings of the 1st Int. AAAI Fall Symposium on Agents and the Se-
mantic Web, pages 55–62, 2005.

9. F. Mohr. Issues of automated software composition in AI planning. In ACM/IEEE Interna-
tional Conference on Automated Software Engineering, ASE ’14, Vasteras, Sweden - Septem-
ber 15 - 19, 2014, pages 895–898, 2014.

10. F. Mohr. Automated Software and Service Composition - A Survey and Evaluating Review.
Springer Briefs in Computer Science. Springer, 2016.

11. F. Mohr. Towards Automated Service Composition Under Quality Constraints. PhD thesis,
Paderborn University, 2017.

12. F. Mohr, A. Jungmann, and H. Kleine Büning. Automated online service composition. In
2015 IEEE International Conference on Services Computing, SCC, pages 57–64, 2015.

13. D. S. Nau, T. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Yaman. SHOP2: an
HTN planning system. J. Artif. Intell. Res. (JAIR), 20:379–404, 2003.

14. V. Shivashankar, U. Kuter, D. S. Nau, and R. Alford. A hierarchical goal-based formalism
and algorithm for single-agent planning. In Proc. AAMAS, pages 981–988, 2012.

15. E. Sirin, B. Parsia, D. Wu, J. A. Hendler, and D. S. Nau. HTN planning for web service
composition using SHOP2. J. Web Sem., 1(4):377–396, 2004.

16. D. E. Smith, J. Frank, and W. Cushing. The ANML language. In Proc. KEPS, 2008.
17. I. M. Weber. Semantic Methods for Execution-level Business Process Modeling: Modeling

Support Through Process Verification and Service Composition, volume 40. Springer, 2009.
18. D. E. Wilkins. Can ai planners solve practical problems? Computational intelligence,

6(4):232–246, 1990.
19. D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S web services

composition using SHOP2. In International Semantic Web Conference, pages 195–210.
Springer, 2003.

