
Fakultät für Elektrotechnik, Informatik und Mathematik
Arbeitsgruppe Codes und Kryptographie

Post-Quantum Secure Group
Signatures

Master’s Thesis
in Partial Fulfillment of the Requirements for the

Degree of
Master of Science

by
Laurens Porzenheim

submitted to:
Prof. Dr. Johannes Blömer

and
Jun. Prof. Dr. Sevag Gharibian

Paderborn, February 1, 2019

Declaration
(Translation from German)

I hereby declare that I prepared this thesis entirely on my own and have not
used outside sources without declaration in the text. Any concepts or quotations
applicable to these sources are clearly attributed to them. This thesis has not
been submitted in the same or substantially similar version, not even in part, to
any other authority for grading and has not been published elsewhere.

Original Declaration Text in German:

Erklärung
Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen worden ist. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen worden sind, sind als solche gekenn-
zeichnet.

City, Date Signature

iii

Contents
1 Introduction 1

2 Notation 3

3 Basic Cryptographic Definitions 5
3.1 Pseudo-Random Generator . 5
3.2 Pseudo-Random Function . 6
3.3 Hash Function . 6
3.4 Secret Sharing Scheme . 7
3.5 Commitment Scheme . 7
3.6 Digital Signature Scheme . 8
3.7 Group Signature Scheme . 9

3.7.1 Fixed Group Size . 9
3.7.2 Dynamic Group Size . 12

3.8 Σ-Protocol . 16
3.9 Non-Interactive Proof System . 16
3.10 Unruh’s Transform . 18
3.11 Multi-Party Computation Protocol 19
3.12 Input Pre-Processing Model . 20
3.13 Merkle Tree . 21

4 Symmetric-Key Primitive Based Group Signatures 23
4.1 The Construction of Katz et al. 23

4.1.1 An MPC Protocol . 23
4.1.2 A Proof of Knowledge for Any NP-Relation 27
4.1.3 The Group Signature of Katz et al. 32
4.1.4 Efficiency . 39

4.2 Conclusion Katz . 40
4.3 Extension to a Dynamic Group Signature 40

5 Lattice Based Group Signatures 45
5.1 Basic Definitions for Lattice-Based Cryptography 45
5.2 The Group Signature of Gordon et al. 48

5.2.1 Building Blocks . 48
5.2.2 Construction . 50
5.2.3 Techniques . 52

Bibliography 55

v

1 Introduction
In provable security, digital signatures are the equivalent to traditional signatures.
They allow a user to digitally sign a document. As in the traditional setting, a
verifier then can check the signature for authenticity to confirm the right person
signed the document. Furthermore, digital signatures offer integrity, meaning the
document cannot be altered after it was signed without the signature becoming
invalid.
An extension to digital signatures are so-called group signatures. With them,

a user that belongs to a group can sign a document on behalf of the group.
While group signatures also offer authenticity and integrity, they also hide which
specific user created a signature, which is called anonymity. Thus, it can only be
verified that someone of the group is the author of the signature. For example,
this is useful when a company wants to grant multiple employees the ability to
sign a contract, but a third party should not see who exactly is responsible to
prevent direct influencing. This example motivates another desired property of
group signatures, called opening. While anonymity of group members protects
the employees, the board of directors wants to be able to look up authorship of a
signature, in case an employee misuses his signing power. Then, we want that the
board, i.e. a trusted party, and only the board is able to break anonymity.
There exists a standard technique to construct a group signature scheme, called

the sign-encrypt-proof paradigm. That technique uses a digital signature scheme,
an encryption scheme and a proof of knowledge. The digital signature scheme
is used to provide authenticity. Members of the group are given a certificate of
membership, which is a digital signature of an identifier. Then, the encryption
scheme is used for traceability A member encrypts his certificate and adds the
ciphertext to its group signature. The board of directors, as they are in possession
of the decryption key, can then decrypt the ciphertext to reveal who signed a
signature. However, in this scenario a user can be dishonest and encrypt something
else than his certificate. To prevent this, the proof of knowledge is used. He needs
to prove somehow that he encrypted a valid certificate. Therefore, the proof of
knowledge is used to identify the signer as registered and to link the encryption
scheme and identification, thus also the digital signature, together. The user also
needs to incorporate the message in this process somehow, to link the message to
the signature.
Although the sign-encrypt-proof paradigm produces a secure group signature

scheme, one can consider other techniques. This may have different reasons, for
example efficiency. When using the standard technique, group signature sizes or
public key sizes may get large. Furthermore, the runtime of the signing algorithm

1

1 Introduction

or the verification algorithm may become impractical. Another consideration is
the security model of the group signature scheme. If the application allows a more
relaxed model, then other components may be enough to satisfy the requirements.
When deciding the security model, one needs to consider what an adversary is

capable of. Due to the recent progress of the capabilities of quantum computers,
it is advisable to use security models that allow an adversary capable of quantum
operations. For example, Shor [16] showed that a sufficiently large quantum com-
puter is able to solve factorization and the discrete logarithm problem. Therefore,
constructions relying on these problems are not secure anymore when faced with a
quantum adversary. Thus, it is of great interest to come up with new constructions
that are secure even against quantum computers, i.e. post-quantum secure.
This thesis presents two construction of post-quantum secure group signature

schemes, one from Katz et al. [10] and one from [8]. For both schemes, we
present their building blocks and the construction itself. While we only discuss
the security of the scheme of Gordon et al., we provide our own security proofs
for several building blocks of the construction of Katz et al. as well as for their
scheme itself. Furthermore, we discuss what techniques both constructions use
and what advantages and disadvantages they entail. We also provide a candidate
construction of a group signature scheme of our own. For that, we learn from the
techniques of the other constructions. We give only a discussion that explains the
intuition.

2

2 Notation
Before we begin with the content of the paper, we introduce some notation.
By writing a||b we mean the concatenation of two strings a, b. We define [n] =
{x ∈ N : 1 ≤ x ≤ n} for an n ∈ N. If S is a finite set, x ← S denotes drawing
a uniformly random x from that set and |S| denotes the size of the set. If A is a
probabilistic algorithm with input x, we denote by y ← A(x) assigning y a value
according to the distribution A(x). We say that an algorithm A is ppt, if it is
a probabilistic polynomial time algorithm. For a probabilistic algorithm A with
input x, [A(x)] denotes the set of all possible outputs of A(x). By ⊕ we denote
the bit-wise XOR-operator.
We denote vectors as lower-case bold-face letters, e.g a and matrices as upper-

case bold-face letters, e.g. A. By AT we denote the transpose of the matrix. ‖a‖
denotes a norm of vector a. In this paper, we use the `2-norm, but other norms
can be used as well. The norm ‖A‖ of matrix is defined as maxi‖ai‖, where the
ai are the columns of A. By Ã we denote the Hermite normal form of matrix A.
For an x ∈ R, bxe denotes rounding x to the nearest y ∈ Z.
We denote by A ↔ B two interactive algorithms A,B that interact with each

other.

3

3 Basic Cryptographic Definitions

We begin with defining formal models for some cryptographic primitives, so that
we have a framework for our later constructions. Furthermore, we give security
definitions for the primitives. This way, we know when our constructions are
considered to be secure.
One of the most basic definitions is that of a negligible function. We need such

a function to be able to define asymptotic security. In general, we require that
the probability that an adversary breaks the security of a primitive is less than a
negligible function. Then, we know that increasing the security parameter makes
it harder for an adversary to be successful.
Definition 3.1 A function f is called negligible, if for all c ∈ N there exists a
n0 ∈ N, such that for all n ≥ n0 we have that f(n) < n−c.
Another basic definition we need is that of a keyed function. This definition is

just a formalism, but we need it to describe a construction.
Definition 3.2 A keyed function F is a tuple (Kg, f) of a ppt key generation
algorithm Kg : 1λ 7→ k ∈ K and a polynomial-time computable function
f : K ×X → Y.

3.1 Pseudo-Random Generator
With a pseudo-random generator, one is able to expand a short, random string
into a longer string. The distribution of the latter string is then computationally
indistinguisihable from that of a random string of the same length. This is useful,
for example, if one needs to send a long random string, but wants to make the
message shorter by only sending the input for the pseudo-random generator.
Definition 3.3 A pseudo-random generator is a deterministic polynomial time
algorithm RNG such that

• on input s ∈ {0, 1}∗ outputs some y ∈ {0, 1}∗ with |y| = p(|s|), for some
polynomial p(·),

• for every ppt adversary A there exists a negligible function negl(·) such that∣∣∣Pr[r ← {0, 1}p(λ) : A(r) = 1]− Pr[s← {0, 1}λ : A(RNG(s)) = 1]
∣∣∣ ≤ negl(λ).

5

3 Basic Cryptographic Definitions

3.2 Pseudo-Random Function
A primitive related to pseudo-random generators is the pseudo-random function.
In contrast to the former, the output of the keyed function is indistinguishable
from that of a random function, instead of a uniformly random string.
Definition 3.4 A pseudo-random function PRF for an input space X is a tuple
of two algorithms PRF = (Kg, f).

• Kg(1λ)→ k: the ppt key-generation algorithm takes a security parameter λ
as input and outputs a key k.

• f(k, x) → y: on input key k and x ∈ X , the deterministic function outputs
some y ∈ Y.

Furthermore, we require that for every adversary A there exists a negligible func-
tion negl(·), such that the advantage of A, defined by

|Pr[k ← Kg(1λ) : Af(k,·)(1λ) = 1]− Pr[g ← F(X ,Y) : Ag(·)(1λ) = 1]|,

is smaller than negl(λ), where F(X ,Y) is the set of all functions from X to Y.

3.3 Hash Function
A hash function is primarily used to map large strings to smaller ones. This
property can be useful to improve efficiency of a construction, as messages or
outputs can be shorter.
Definition 3.5 A hash function is a tuple of two algorithms H = (Kg, H).

• Kg(1λ)→ k: on input 1λ for a security parameter λ, the ppt key generation
algorithm outputs a key k.

• H(k, x) → y: on input key k and bit string x, the deterministic algorithm
outputs a hash value y.

We may write Hk(x) as shorthand for H(k, x). Since we map a large space into
a smaller space, there exist inputs to the hash function that map to the same
image. This may influence security of a construction, thus we are interested in
so-called collision-resistant hash functions.
Definition 3.6 Let λ be a security parameter. We call a hash function H(Kg, H)
collision-resistant, if for all ppt adversaries A there exists a negligible function
negl(·), such that

Pr[k ← Kg(1λ), (x1, x2)← A(1λ, k) : Hk(x1) = Hk(x2)] ≤ negl(λ).

6

3.4 Secret Sharing Scheme

3.4 Secret Sharing Scheme
As the name suggests, a secret sharing scheme is useful when one wants to share
a secret value among a group. Then, each member gets a so-called secret share.
If all members come together, the secret shares can be used to reconstruct the
original secret. However, without all of the secret shares, it is not possible to
learn anything about the original secret.
Definition 3.7 An n-out-of-n secret sharing scheme Π for a finite secret space
K is a tuple (Share,Recon) of ppt algorithms.

• Share(s)→ (si)i∈[n]: on input s ∈ K the algorithm outputs a vector (si)i∈[n]
of secret shares.

• Recon((si)i∈[n])→ s: when given a vector (si)i∈[n] of secret shares, the algo-
rithm outputs some secret s.

We call such a secret sharing scheme correct, if for all s ∈ K we have that
Pr[Recon(Share(s)) = s] = 1.
Definition 3.8 We call an n-out-of-n secret sharing scheme Π = (Share,Recon)
for secret space K perfectly private, if for all s, s′ ∈ K, all T ⊆ [n] with 1 ≤ |T | <
n, all possible vectors of shares (si)i∈T , we have that

Pr[(Share(s))i∈T = (si)i∈T] = Pr[(Share(s′))i∈T = (si)i∈T].

A simple secret sharing scheme, that we use later, is the XOR-secret sharing
scheme.
Construction 3.9 The n-out-of-n XOR-secret sharing scheme for K = {0, 1}
consists of the following algorithms:

• Share(s): Choose (si)i∈[n−1] ∈ {0, 1}n−1 uniformly at random. Compute
sn = s⊕⊕n−1

i=1 si. Output (si)i∈[n].

• Recon((si)i∈[n]): Output
⊕n
i=1 si.

The scheme is correct because s = ⊕n
i=1 si by definition. Furthermore, by

definition for every set T ⊆ [n] with |T | ≤ n − 1, we know that for an adversary
seeing (sj)j∈T all sj look uniformly at random, due to the properties of XOR.
Lemma 3.10 The n-out-of-n XOR-secret sharing scheme is correct and perfectly
private.

3.5 Commitment Scheme
A commitment scheme allows a user to commit to a value. The commitment then
hides the original value, but it can be opened to the original value by using an
additional information, called opening value. An example for this process is an

7

3 Basic Cryptographic Definitions

auction, where bidders submit their bid by committing to it, so it cannot be seen
what others do. After that, every bid is opened and the highest one wins.
Definition 3.11 A commitment scheme consists of three ppt algorithms
(Kg,Com,Open) with the following properties:

• Kg(1λ) → pk: the key generation takes as input 1λ where λ is some secu-
rity parameter. Then, it outputs a public key pk. This implicitly defines a
message spaceM.

• Com(pk,m) → (com, d): on input public key pk and message m, the com-
mitment algorithm outputs a commitment com and an opening value d.

• Open(pk, com, d) → m: when given public key pk, commitment com and
opening value d, the opening algorithm outputs either a message m or the
error symbol ⊥.

We call a commitment scheme correct, if for all security parameters λ, all pk ∈
[Kg(1λ)], all m ∈M we have that Pr[Open(pk,Com(pk,m)) = m] = 1.
Definition 3.12 We call a commitment scheme Π = (Kg,Com,Open) secure, if
it satisfies the following conditions:

Perfectly Hiding For every security parameter λ, all pk ∈ [Kg(1λ)], all m,m′ ∈
M, we have that the distributions of (com, ·) ← Com(pk,m) and
(com, ·)← Com(pk,m′) are the same.

Computationally Binding For all ppt adversaries we have that the probability
that they output a commitment and two different opening values, such that
the commitment is opened to two different messages, is negligible. Formally,
let λ be a security parameter. Then, for every ppt adversary A there exists
a negligible function negl(·) such that

Pr[pk← Kg(1λ), (com, d1, d2)← A(1λ, pk) : d1 6= d2 ∧
Open(pk, com, d1) 6= Open(pk, com, d2)∧

Open(pk, com, d1),Open(pk, com, d2) 6=⊥] ≤ negl(λ).

3.6 Digital Signature Scheme
A digital signature scheme is the equivalent of a traditional signature, where one
can sign documents or messages, which can then be checked for validity. However,
in the digital signature scheme, a signer gets a secret signing key, with which he
can sign something. Then, everyone can check for validity by using a public key.
Definition 3.13 A signature scheme consists of three ppt algorithms
(Kg, Sign,Vrfy) with the following properties:

8

3.7 Group Signature Scheme

Expeuf-cma
Π,A (λ)

1 : (pk, sk)← Kg(1λ)
2 : (m∗, σ∗)← ASign(sk,·)(pk)
3 : If Vrfy(pk,m∗, σ∗) = 1 and m∗ was never queried for, output 1, else 0.

Figure 3.1: The unforgeability game for a digital signature.

• Kg(1λ) → (sk, pk): the key generation outputs a public key pk and a secret
key sk when given 1λ, where λ is a security parameter. The public key
implicitly defines a message spaceM.

• Sign(sk,m) → σ: the signing algorithm on input secret key sk and message
m outputs a signature σ.

• Vrfy(pk,m, σ)→ b: on input public key pk, message m and signature σ, the
verifying algorithm outputs a bit b, where 1 denotes the signature is accepted.

A signature scheme is correct, if for all security parameters λ, all
(pk, sk) ∈ [Kg(1λ)], all m ∈M, we have that Pr[Vrfy(pk, Sign(sk,m)) = 1] = 1.

Definition 3.14 Let λ be a security parameter. We call a signature scheme
Π = (Kg, SignVrfy) existentially unforgeable under chosen message attack (EUF-
CMA), if for all ppt adversaries A there exists a negligible function negl(·) such
that

Pr[Expeuf-cma
Π,A (λ) = 1] ≤ negl(λ).

3.7 Group Signature Scheme
Group signatures are an extension of digital signatures. Instead of a single signer,
there exists a group of signers. As before, we do not want that anyone except the
approved signers, i.e. the group members, are able to sign messages. Furthermore,
we want that group members stay anonymous in their group. This means that one
cannot distinguish which group member signed a message. However, there exists
a group manager that is able to trace people, i.e. see who signed a signature.

3.7.1 Fixed Group Size
There exist different formal models for group signatures. One distinction is
whether a group signature scheme has a fixed size for groups or a dynamic one.
In the former case, before the group signature scheme is set up, it is known how
many group members exist, denoted by ` ∈ N.

9

3 Basic Cryptographic Definitions

ExptraceΠ,A (λ, `)

1: Initialize empty sets M,C.
2: (gpk,msk, (uski)i∈[`])← Kg(1λ, 1`)
3: A is given gpk,msk and gets access to the following oracles:
• S(i,m): Return Sign(uski,m) to the adversary. Add (m, i) to M.

• Corrupt(i): Return uski to the adversary. We say user i is corrupted. Add
i to C.

4: A outputs m∗, σ∗.
5: If Vrfy(gpk,m∗, σ∗) = 1 and Open(msk,m∗, σ∗) =: i /∈ C and (m∗, i) /∈M, the

experiment outputs 1 and we say that A wins. Else, he loses.

Figure 3.2: The traceability game for a static group signature scheme.

Definition 3.15 A fixed size group signature Π consists of four ppt algorithms:

• Kg(1λ, 1`) → (gpk,msk, (uski)i∈[`]): the key-generation algorithm takes as
input a security parameter 1λ and a length parameter 1` and outputs a group
public key gpk, master secret key msk, and user signing keys uski for each
i ∈ [`]. The group public key implicitly defines a message spaceM.

• Sign(uski,m) → σ: the signing algorithm gets a user secret key uski and a
message m, and then outputs a signature σ.

• Vrfy(gpk,m, σ) → b: with the group public key gpk, a signature σ and a
message m, the verifying algorithm outputs a bit b, where 1 means the veri-
fication accepts.

• Open(msk,m, σ) → i: when given the master secret key msk, a message m
and a signature σ, the opening algorithm outputs an index i ∈ [`] or an error
symbol ⊥.

A fixed size group signature is correct, if there exists a negligible function negl(·)
such that for all security parameters λ, all length parameters ` ∈ N, all
(gpk,msk, (uski)i∈[`]) ∈ [Kg(1λ, 1`)], all m ∈M and all i ∈ [`] we have that

Pr[Vrfy(gpk,m, Sign(uski,m)) = 1] = 1 and

Pr[Open(msk,m, Sign(uski,m)) = i] ≥ 1− negl(λ).

To define security for a group signature, we define two games, one for traceability
and one for anonymity.
Definition 3.16 A fixed size group signature Π = (Kg, Sign,Vrfy,Open) is trace-
able, if for all ppt adversaries A and all polynomials `(·), there exists a negligible

10

3.7 Group Signature Scheme

ExpanonΠ,A (λ, `)

1: Initialize empty set C.
2: (gpk,msk, (uski)i∈[`])← Kg(1λ, 1`)
3: A is given gpk and gets access to the following oracles:
• S(i,m): Return Sign(uski,m) to the adversary.

• Corrupt(i): Return uski to the adversary. We say user i is corrupted. Add i to C.

• Trace(m,σ): Return Open(msk,m, σ).
4: A outputs a message m∗ and some i0, i1 ∈ [`].
5: b← {0, 1}, σ∗ ← Sign(uskib ,m∗)
6: A gets σ∗ and outputs b′. He may query his oracles, except for Trace(m∗, σ∗).
7: If b = b′ and i0, i1 /∈ C, the experiment outputs 1 and we say that A wins.

Figure 3.3: The anonymity game for a static group signature scheme.

function negl(·) such that

Pr[ExptraceΠ,A (λ, `(λ)) = 1] ≤ negl(λ).

Definition 3.17 A fixed size group signature Π offers weak anonymity, if for all
ppt adversaries A and all polynomials `(·) there exists a negligible function negl(·),
such that

Pr[ExpanonΠ,A (λ, `(λ)) = 1] ≤ 1
2 + negl(λ).

There exists an alternate anonymity definition, where the adversary gets no
tracing oracle, but gets the keys of the users. This implies that users cannot even
distinguish signatures signed by them from others. Due to the lack of the tracing
oracle, we assume that the group manager is honest.

Expanon−cpaΠ,A (λ, `)

1 : (gpk,msk, (uski)i∈[`])← Kg(1λ, 1`)
2 : (m∗, i0, i1 ∈ [`])← A(gpk, (uski)i∈[`])
3 : b← {0, 1}, σ∗ ← Sign(uskib ,m∗)
4 : A gets σ∗ and outputs b′. If b = b′ the experiment outputs 1, else 0.

Figure 3.4: An game for an anlternate definition of anonymity of a static group
signature scheme.

11

3 Basic Cryptographic Definitions

Definition 3.18 A fixed size group signature Π offers CPA-anonymity, if for all
ppt adversaries A and all polynomials `(·) there exists a negligible function negl(·),
such that

Pr[Expanon−cpaΠ,A (λ, `(λ)) = 1] ≤ 1
2 + negl(λ).

3.7.2 Dynamic Group Size
In the dynamic case, the scheme is set up with an empty group and the role of
the group manager is split into the role of the issuer and the opener. Then, users
can join by registering with the issuer, who updates a registry with registration
information. Additionally, there exists a judge algorithm. This way, we can allow
the opener to be potentially corrupt. However, he also has to output a proof that
he correctly opened a signature. This proof is then verified by the judge algorithm.
For the definitions of the formal model and security, we follow the work of [3].

Definition 3.19 A dynamic group signature scheme Π consists of five ppt algo-
rithms Setup,UKg, Sign,Vrfy,Open and a protocol Join↔ TJoin.

• Setup(1λ) → (gpk, isk, osk): The setup algorithm takes as input a security
parameter and outputs a group public key gpk, an issuing key isk and an
opening key osk. It also sets up a registry reg.

• UKg(1λ, gpk) → (uski, upki): The user key generation algorithm takes as
input a security parameter and outputs a user secret key uski and a user
public key upki.

• Join(uski) ↔ Issue(upki, isk): When Join is given a user secret key uski,
while Issue gets the user public key upki and the issuing secret key isk, the
algorithms interact with each other. At the end, Join outputs a certificate
certi and Issue, which has write access to reg, updates regi.

• Sign(uski, certi,m) → σ: The signing algorithm gets as input a user secret
key uski, a certificate certi and a message m, and then outputs a signature
σ.

• Vrfy(gpk,m, σ) → b: With the group public key gpk a signature σ and a
message m, the verifying algorithm outputs a bit b, where 1 means the veri-
fication accepts.

• Open(osk,m, σ)→ (i, π): When given the tracing key osk, a message m and
a signature σ, the opening algorithm, which has read access to reg, outputs
an index i together with a non-interactive proof π or an error symbol ⊥.

• Judge(gpk, i, upki,m, σ, π) → b: When given the group public key gpk, an
index i with the associated user public key upki, a message m, a signature σ
and a proof π, the judge algorithm outputs a bit b.

12

3.7 Group Signature Scheme

Expd−corrΠ,A (λ)

1: Create empty set U.
2: (gpk, jsk, tsk)← Setup(1λ)
3: Run A(1λ), while the adversary gets read access to reg and access to the

following oracle:
• Add(i): If i ∈ U, the oracle returns ⊥. Else, add i to U and run

(uski, upki)← UKg(1λ, gpk). Then, run Join(1λ, uski)↔ Issue(1λ, upki, isk)
to get certi and an updated reg. The oracle then returns upki.

4: A outputs (j,m).
5: If j /∈ U or certi =⊥, output 0.
6: σ ← Sig(uskj , certj ,m)
7: If Vrfy(gpk,m, σ) = 0 output 1.
8: (k, π)← Open(osk,m, σ)
9: If j 6= k or Judge(gpk, j, upkj ,m, σ, π) = 0 output 1, else 0.

Figure 3.5: The correctness game for a dynamic group signature scheme.

In contrast to the static model, we use a game to define correctness of a dynamic
group signature scheme. This is due to the different numbers and orders of users
that can join.
While we use the security game from [3], we relax their security requirements.

Instead of unbounded adversaries, we only require correctness to hold for ppt
adversaries. Furthermore, we allow a negligible error.

Definition 3.20 We say that a dynamic group signature scheme Π is correct, if
for all ppt adversaries A there exists a negligible function negl(·), such that

Pr[Expd−corrΠ,A (λ) = 1] ≤ negl(λ).

Since the dynamic model differs from the static model, we have to split the
the traceability property of the static model into two new properties. While one
of them is also called traceability, this requires only that an adversary is not
able to create a signature that opens to nobody. The other property, called non-
frameability, provides us with the guarantee that a signature created by group of
corrupted users does not open to an honest user. While we allow for the latter
game that the issuer may be corrupted, we assume that the issuer is honest for
the traceability game.

Definition 3.21 We say that a dynamic group signature Π is traceable, if for all
ppt adversaries A there exists a negligible function negl(·) such that

Pr[Expd−traceΠ,A (λ) = 1] ≤ negl(λ).

13

3 Basic Cryptographic Definitions

Expd−traceΠ,A (λ)

1: Initialize empty sets U,C.
2: (gpk, isk, osk)← Setup(1λ)
3: A is given gpk and osk, gets read access to reg and access to the following oracles:
• AddU(i): if i ∈ U∪C return ⊥. Else, compute (uski, upki)← UKg(1λ, gpk). Then,

add i to U and give upki to A.

• Corrupt(i, upk): if i ∈ U, give uski, certi to A, remove i from U and add i to C. If
upk 6=⊥ and i ∈ U ∪ C set upki = upk.

• J(i): if i ∈ U, then execute Join(uski)↔ Issue(upki, isk). If i ∈ C, then A interacts
with Issue(upki, isk).

4: A outputs m∗, σ∗.
5: If Vrfy(gpk,m∗, σ∗) = 0, output 0.
6: (j, π)← Open(osk,m∗, σ∗) =⊥
7: If j = 0 or Judge(gpk, j, upkj ,m, σ, π) = 0 the experiment outputs 1, else 0.

Figure 3.6: The traceability game for a dynamic group signature scheme.

Expnf
Π,A(λ)

1: Initialize empty sets U,C,M.
2: (gpk, isk, osk)← Setup(1λ)
3: A is given gpk, isk and osk, gets write access to reg and access to the following oracles:

• AddU(i): if i ∈ U∪C return ⊥. Else, compute (uski, upki)← UKg(1λ, gpk). Then,
add i to U and give upki to A.

• Corrupt(i, upk): if i ∈ U, give uski, certi to A, remove i from U and add i to C. If
upk 6=⊥ and i ∈ U ∪ C set upki = upk.

• J(i): if i ∈ U, then Join(1λ, uski) interacts with A.

• S(i,m): if i ∈ U and certi 6=⊥, return Sign(uski, certi,m) and add (i,m) to M.
Else, return ⊥.

4: A outputs m∗, σ∗, j, π.
5: If Vrfy(gpk,m∗, σ∗) = 1 and Judge(gpk, j, upkj ,m, σ, π) = 1 and j ∈ U and

certj 6=⊥ and (j,m∗) /∈M, the experiment outputs 1, else 0.

Figure 3.7: The non-frameability game for a dynamic group signature scheme.

14

3.7 Group Signature Scheme

Expd−anonΠ,A (λ)

1: Initialize empty sets U,C.
2: (gpk, isk, osk)← Setup(1λ)
3: A is given gpk and isk, gets write access to reg and access to the following oracles:
• AddU(i): if i ∈ U∪C return ⊥. Else, compute (uski, upki)← UKg(1λ, gpk). Then,

add i to U and give upki to A.

• Corrupt(i, upk): if i ∈ U, give uski, certi to A, remove i from U and add i to C. If
upk 6=⊥ and i ∈ U ∪ C set upki = upk.

• J(i): if i ∈ U, then execute Join(uski)↔ Issue(upki, isk). If i ∈ C, then A interacts
with Issue(upki, isk). Else, return ⊥.

• S(i,m): if i ∈ U, return Sign(uski, certi,m). Else, return ⊥.

• Trace(m,σ): Return Open(osk,m, σ).
4: A outputs a message m∗ and some i0, i1 ∈ U, such that certi0 , certi1 6=⊥.
5: b← {0, 1}∗, σ∗ ← Sign(uskib , certib ,m∗).
6: A gets σ∗ and outputs b′. During this, he may query his oracles, except for

Trace(m∗, σ∗).
7: If b = b′, the experiment outputs 1, else 0.

Figure 3.8: The anonymity game for a dynamic group signature scheme.

Definition 3.22 We say that a dynamic group signature Π offers non-frameability,
if for all ppt adversaries A there exists a negligible function negl(·) such that

Pr[Expnf
Π,A(λ) = 1] ≤ negl(λ).

As in the static model, anonymity is a desired property. We adapt the definition
of [3] to resemble anonymity in the static model. However, this means we weaken
the security model in two places. First, we do not give the user secret keys to
the adversary. This means we do not guarantee selfless anonymity, where even a
himself user cannot distinguish his own signatures from that of others. Second,
we assume that the issuer is honest. Therefore, in our model the adversary does
not get the issuer secret key and Issue is executed honestly.

Definition 3.23 We say that a dynamic group signature Π is anonymous, if for
all ppt adversaries A there exists a negligible function negl(·), such that

Pr[Expd−anonΠ,A (λ) = 1] ≤ negl(λ).

15

3 Basic Cryptographic Definitions

3.8 Σ-Protocol
A Σ-protocol allows a prover to convince a verifier that the former knows some
secret value relative to some statement. We use NP-relations to formalize the
relations between statements and secret values.
Definition 3.24 A binary relation R is called an NP relation, if there exists
a deterministic polynomial time algorithm that decides R(·, ·) and if for each
(x,w) ∈ R we have that |w| is polynomial in |x|.
We call w a witness for x, if (x,w) ∈ R.

Definition 3.25 An interactive argument for an NP relation R consists of two
interactive ppt turing machines P ,V. We call P the prover and V the verifier.
Then, for any (x,w) ∈ R we have that when P is given (x,w) and interacts with
V on input x, then V outputs 1 with probability greater than 2

3 at the end of their
interaction. Furthermore, for any x /∈ LR and any interactive algorithm P∗ on
input x that interacts with V on input x, we have that the verifier accepts with
probability less than 1

3 .
A Σ-protocol is then defined in the following way.

Definition 3.26 A Σ-protocol Π = (P ,V) for an NP-relation R is a three-way
interactive argument with the following properties:

Correctness: for every (x,w) ∈ R, we have that Pr[P(x,w)↔ V(x) = 1] = 1.

Special Soundness: there exists an extractor E that when given x ∈ LR and two
accepting transcripts (a, c, r), (a′, c′, r′) of Π, such that a = a′ and c 6= c′,
outputs some w such that (x,w) ∈ R with overwhelming probability over
some security parameter.

Honest Verifier Zero-Knowledge: there exists a simulator S that on input x out-
puts transcripts, such that for all (x,w) ∈ R we have that the distributions
of transcripts of P(x,w)↔ V(x) and S(x) are the same.

3.9 Non-Interactive Proof System
While Σ-protocols themselves are difficult use in practice, as they assume that
the verifier is honest, they can serve as a building block for non-interactive proof
systems. Such a proof system also allows a prover to convince a verifier that he
knows a witness for a statement, albeit with better security guarantees, namely a
dishonest verifier. Furthermore, a non-interactive proof system does not require
interaction between the prover and verifier. Instead, the prover prepares a proof,
which a verifier can check. We take our formal definitions from [4].
Definition 3.27 A non-interactive proof system for an NP-relation R consists
of two ppt algorithms (P ,V), such that there exists a negligible function negl(·)
such that for every (x,w) ∈ R we have that Pr[V(x,P(x,w)) = 1] ≥ 1 − negl(λ).

16

3.9 Non-Interactive Proof System

Furthermore, we assume that there exists a well defined set L that is decidable in
polynomial time and for which LR ⊆ L holds.
Definition 3.28 A non-interactive proof system (P ,V) for an NP-relation R
is called zero-knowledge if there exists a simulator S if for all ppt adversaries,
that have access to an oracle O and a proof oracle OP , the following settings are
computationally indistinguishable.

• Queries to O are answered by a random oracle. If the adversary queries
OP (x,w), the response is P(x,w) if (x,w) ∈ R, else ⊥.

• If A queries O(x), the simulator S gets x and answers with some value. On
a query OP (x,w), if (x,w) ∈ R, the simulator gets x and answers with some
proof π. If (x,w) /∈ R, the response is ⊥.

ExpSSEΠ,S,A,K(λ)

1: Choose randomness r for A.
2: Run (x, π)← AS.O(·),S.OP (·)(r). Let Q be the list of query/answer pairs that
A makes.

3: If V(x, π) = 0 or (x, π) ∈ Q, the experiment outputs 1 and we say that K wins.
4: Run w ← K(Q, x, π). During this, K may query invoke. On such a query, the

challenger runs A(r) again, but K may respond to the oracle queries of A.
5: If (x,w) ∈ R, then the experiment outputs 1 and we say that K wins. Else,

the experiment outputs 0 and K loses.

Figure 3.9: The simulation-sound extractability game for a non-interactive proof
system.

Definition 3.29 A non-interactive zero-knowledge proof system Π = (P ,V) for
an NP-relation R is called simulation-sound extractable, if there exists a simula-
tor S, that fulfills the zero-knowledge property of Π and when queried OP (x′) for
x′ ∈ L the simulator returns π such that V(x′, π) = 1 with overwhelming proba-
bility, and there exists an extractor K such that for every prover A we have that
Pr[ExpSSEΠ,S,A,K(λ)] = 1] is non-negligible.
We may refer to a non-interactive zero-knowledge simulation-sound extractable

proof system as a NIZKPoK.
As mentioned before, Σ-protocols can serve as a building block for a non-

interactive proof system. The idea is to compute the announcement of the Σ-
protocol and to hash it together with the statement, which results in a challenge.
The announcement and challenge are then used to compute the response of the
Σ-protocol. This way of constructing a non-interactive proof system from a Σ-
protocol is called strong Fiat-Shamir transform.

17

3 Basic Cryptographic Definitions

Construction 3.30 Let Σ = (P ,V) be some Σ-protocol. Let H = (Kg, H) be a
hash function. Construct a non-interactive proof system (P ′,V ′) in the following
way. P ′ computes an announcement a by using P(x,w). It then computes its
own challenge c = H(x, a) and uses P(x, a, c) to compute a response r. P ′ then
outputs (a, r). The verifier V ′ computes c = H(x, a) and then uses V(x, a, c, r) to
verify the proof. Denote sFS(Σ) = (P ′,V ′).

Theorem 3.31 ([4]) Let Σ be a Σ-protocol with a challenge space exponentially
large in a security parameter λ. If Σ has correctness, special soundness and special
honest-verifier zero-knowledge, and we model H as a random oracle, then sFS(Σ)
is a non-interactive proof system that is zero-knowledge and simulation-sound ex-
tractable with respect to expected polynomial-time adversaries.

3.10 Unruh’s Transform

Although the Fiat-Shamir transform allows us to get a non-interactive
zero-knowledge simulation-sound extractable proof system from a Σ-protocol,
there is a caveat. The theorem only guarantees security against classical adver-
saries, i.e. non-quantum. Furthermore, there is a result [2] showing that relative
to certain oracles the Fiat-Shamir transform produces insecure non-interactive
proofs, although the underlying Σ-protocol is secure, if the adversary is able to
query the hash function in superposition. This indicates that the Fiat-Shamir
transform may not be secure in general against a quantum adversary.
To alleviate this problem, Unruh [17] created another transform to get non-

interactive proofs from a Σ-protocol, called Unruh’s transform. He proved his
construction to be secure even against quantum adversaries.

Theorem 3.32 For every Σ-protocol Σ, there exists a non-interactive proof sys-
tem Unruh(Σ) with access to a random oracle that is correct, zero-knowledge and
simulation-sound online-extractable, if Σ is correct and has special soundness as
well as honest-verifier zero-knowledge.

Note that we did not define simulation-sound online extractability. The idea
behind this is that the extractor does not get access to a list of queries the adver-
sary did, but instead gets a description of the state of the oracle. However, for
this thesis, it suffices to know that the extractor can successfully extract a witness
for the non-interactive proof. This means that whenever we use the Fiat-Shamir
transform, we can use Unruh’s transform instead to make the proof secure against
a quantum adversary. As expected, this comes at a cost. A proof generated with
Unruh’s transform consists of multiple transcripts of the Σ-protocol, while the
Fiat-Shamir transform uses only one.

18

3.11 Multi-Party Computation Protocol

3.11 Multi-Party Computation Protocol

A multi-party computation protocol is a protocol where multiple parties compute
an output of a function together. Every party gets its own, private input and can
send messages to other parties. At the end of their interaction, they each output
some (possibly different) value. We adopt the formal definitions of [9].

Definition 3.33 A multi-party computation (MPC) protocol Π for a function
f : X ×W1× ..×Wn → Yn with parties P1, .., Pn, public input x ∈ X and private
input wi ∈ Wi is defined by a deterministic polynomial-time algorithm Next, called
the next message function.

• Next(i, x, wi, ri, (m1, ..,mj)): the algorithm is given index i ∈ [n], public
input x ∈ X , private input wi ∈ Wi and randomness ri. Furthermore, it
gets tuples mk of messages that party i received in round k for 1 ≤ k ≤ j.
Then, the algorithm Π outputs either the tuple of messages party i sends in
round j + 1 or a bit indicating that party i is finished along with the final
(local) output of i.

Denote by the view Viewi in a protocol run the tuple of the public input x,
private input wi, the randomness ri and all messages received by party i.

Definition 3.34 We call an MPC protocol Π for a function f : X×W1×..×Wn → Yn
correct, if for all x ∈ X , and all (w1, .., wn) ∈ W1 × ..×Wn we have that

Pr[r1, .., rn ← R : Π(x,w1, .., wn; r1, .., rn) = f(x,w1, .., wn)] = 1,

where Π(x,w1, .., wn; r1, .., rn) denotes the composed output of all parties in Π
started with (x,wi; ri) respectively and R denotes a distribution of uniformly ran-
dom bit strings of appropriate length.

When using an MPC protocol, the parties want their private inputs to stay
secret. For this notion, there exists two adversarial models. Either, we assume
that all parties stay honest and adhere to the protocol, while still trying to learn
information about other parties’ secret. We call these honest-but-curious parties.
The other adversarial model is where parties need not adhere to the protocol, i.e.
they may send messages that better their chance of learning others’ secrets. For
our usage of MPC protocol, only the honest-but-curious model is relevant.

Definition 3.35 We call an MPC protocol Π for a function f : X×W1×..×Wn → Yn
t-private , where 1 ≤ t < n, if there exists a ppt simulator S, such that for all x ∈
X , all (w1, .., wn) ∈ W1 × .. × Wn, every set of corrupted players
T ⊆ [n] with |T | ≤ t, we have that the joint view of all parties in T , denoted by
ViewT (x,w1, .., wn) is distributed exactly as S(T, x, (wi)i∈T , (f(x,w1, .., wn))i∈T).

19

3 Basic Cryptographic Definitions

3.12 Input Pre-Processing Model
While we later want to use an MPC protocol in a construction, the protocol we
require does not fit the standard model. Thus, we create our own model, called
input pre-processing model.
In the normal MPC protocol model is it assumed that every party possesses its

own private input, along with some public input. What we require is that there
exists a public input along with a single secret input. Then, we assume there
exists a trusted party, that gets the public input and secret input and computes
some pre-processing secrets, one for each party, and hands the respective secrets
to the parties. The parties engage in their protocol to compute the target function
based on the public input and their respective pre-processing secret. In short, the
parties use the pre-processing secrets instead of the secret input to compute the
function. Furthermore, we want that no party learns what the secret input to the
pre-processing was, unless a large enough subset of them acts together.
One could argue that the existence of the trusted party defeats the purpose of

the MPC, since the trusted party knows the secret input and can thus compute
the function value himself. However, this model can be useful in a scenario where
the trusted party has only limited computing power, whereas calculating the func-
tion value is costly. Another argument, as mentioned before, is that we need an
MPC protocol from this model in a later construction. We intend to simulate the
MPC protocol in that construction, thus our use case is very specific. Thus, it is
admissible if the model does not reflect the real world accurately.
We begin with the formal definition of an MPC protocol in the input pre-

processing model. Since the model is based on a standard MPC protocol, the
definitions look similar. Here, however, we have the algorithm Pre in addition,
which models the generation of the pre-processing secrets by the trusted party.
Definition 3.36 A multi-party computation protocol Π in the input pre-processing
model for a function f : X ×W → Yn with parties P1, .., Pn, public input x ∈ X
and private input w ∈ W is a tuple (Pre,Next) of a ppt algorithm Pre and a
deterministic polynomial-time algorithm Next.

• Pre(x,w): on input x,w the pre-processing algorithm outputs pre-processing
secrets (w1, .., wn).

• Next(i, x, wi, ri, (m1, ..,mj)): the algorithm is given index i ∈ [n], public
input x, pre-processing secret wi and randomness ri. Furthermore, it gets
tuples mk of messages that party i received in round k for 1 ≤ k ≤ j. Then,
the algorithm Π outputs either the tuple of messages party i sends in round
j + 1 or a bit indicating that party i is finished along with the final (local)
output of i.

If all entries of the output of f are always the same, we simply speak about a
function f : X ×W → Y and all parties output the same value.

20

3.13 Merkle Tree

We again can define the view Viewi of a party i. As before, it consists of the
public input x, the respective pre-processing secrets wi and randomness ri, as well
as all messages the party received during the protocol execution. Furthermore,
we define the correctness of an MPC protocol in this model.
Definition 3.37 We call an MPC protocol Π in the input pre-processing model
for a function f : X ×W → Yn correct, if for all x ∈ X , and all w ∈ W we have
that

Pr[(w1, .., wn)← Pre(x,w), r1, .., rn ← R : Π(x, (wi, ri)i∈[n]) = f(x,w)] = 1,

where Π(x, (wi, ri)i∈[n]) denotes the composed output of all parties in Π started
with x and their respective wi, ri.
This is similar to the standard definition, except that we include the generation

of the wi in the probability.
At last, we also want our MPC protocol to be secure. As in the standard model,

we do not want an honest-but-curios set of parties up to a certain size to learn
anything about the pre-processing secrets of the other parties. Additionally, we
want that no such set of parties is able to learn anything about the original secret
input. We reflect these requirements in the formal definition below.
Definition 3.38 We call an MPC protocol Π in the input pre-processing model
for a function f : X ×W → Yn t-private , where 1 ≤ t < n, if there exists a ppt
simulator S, such that for all x ∈ X , all w ∈ W, every set of honest-but-curious
players T ⊆ [n] with |T | ≤ t, we have that

Pr[(wi)i∈[n] ← Pre(x,w) : ViewT (x, (wi)i∈[n]) = v]
= Pr[S(T, x, (f(x,w))i∈T) = v],

where ViewT (x, (wi)i∈[n]) denotes the joint view of all i ∈ T , when the protocol is
started with input (x, (wi)i∈[n]) and f(x,w)i∈T denotes f(x,w) restricted to entries
with index in T .

3.13 Merkle Tree
When dealing with large datasets, a user may want to show to another that a
specific data point is in the set. However, if the verifying party is not in posses-
sion of the data set, there is no direct way for the party to check the inclusion
themselves. To solve this problem, one can use a Merkle tree. It builds a binary
tree of hashes of the dataset, so that the whole data set is represented by a single
(small) hash value.
Definition 3.39 Let H = (Kg, H) be some hash function. Let k ∈ Kg(1λ). Let
d1, .., dn be some data points. Assume wlog. that n = 2` for some ` ∈ N. Then, a
Merkle tree of those data points is a complete binary tree, where the i-th leaf node
is Hk(di). An inner node then is the hash value of the concatenated values of its

21

3 Basic Cryptographic Definitions

H(H(H(d1)||H(d2))||H(H(d3)||H(d4)))

H(H(d1)||H(d2))

H(d1) H(d2)

H(H(d3)||H(d4))

H(d3) H(d4)

Figure 3.10: A Merkle tree. The blue nodes are the path from d2 to the root. The
red nodes thus belong to the validation set of d2. The key for the
hash function is left out for readability.

children. We call the root of that tree a Merkle root.
Then, to show inclusion of a data point, one needs to present a small number

of hashes to convince the verifying party, called validation set.
Definition 3.40 A validation set of a data point di consists of the values of nodes
that are siblings to nodes of the path from the data point to the root. We call a set
of such values valid regarding a root value r, if the successive re-computation of
nodes on the shortest path to the root, given only the data point and the validation
set, result in r. Furthermore, we say that a validation set matches some Merkle
tree, if every node in the validation set can be found in the Merkle tree at the
correct position.
An example of a Merkle tree and a validation set can be seen in Figure 3.10.

Lemma 3.41 There exists a deterministic polynomial time algorithm that given
a data point d and validation set s∗ that does not match some Merkle tree, but
is valid regarding its root r, computes a collision for the hash function H used to
compute the Merkle tree.

Proof. Since s∗ does not match the Merkle tree, there must exist a node v∗ 6= r
in the partial tree induced by s∗ and d that is different from the corresponding
node v in the Merkle tree, but their parent nodes must be equal, since s∗ is valid.
Assume wlog. that v∗ is a left child. Thus, if we take the sibling nodes v∗s , vs of
v∗, v respectively, we know that (v∗||v∗s), (v||vs) form a collision for H.

22

4 Symmetric-Key Primitive Based
Group Signatures

Constructions of group signatures can be classified into different classes. One such
class consists of constructions that are based on symmetric-key primitives only.
Since the latter are conjectured to be quantum-secure (cf. [5]), such constructions
are secure if they are secure against non-quantum adversaries. This property
makes the class of symmetric-key based group signatures attractive, as symmetric-
key primitives are well understood.
In this chapter, we gradually explain one construction of a group signature that

belongs to the aforementioned class, in particular the construction of Katz et al.
[10]. Furthermore, we prove that this construction is not secure in the way it was
presented by the original authors. However, we show that with a small change the
group signature can be made secure. We also discuss the asymptotic efficiency
and drawbacks of the construction, as well as the techniques that can be learned
from it. Last, we construct a new group signature that draws ideas from the first
construction and aims to improve it.

4.1 The Construction of Katz et al.
The idea of the construction of Katz et al. [10] can be explained in three steps.
First, they show how to construct a special MPC protocol, which parties can use
to compute the output of any circuit together. Then, they construct a proof of
knowledge based on this MPC protocol. The proof of knowledge supports every
NP-relation by using the verifier of the NP-relation as the circuit for the MPC.
After that, they use this proof of knowledge and a special pseudo-random function
to create the group signature itself.

4.1.1 An MPC Protocol
Katz et al. construct an MPC protocol in the input pre-processing model, so that
for every circuit C consisting of only AND-gates and XOR-gates and any input w
to that circuit, the protocol distributes information about w and additional secret
input to the parties. Then, they jointly compute C(w), without them getting to
know the exact w.
The idea to construct this MPC protocol is to assign a mask λα to every wire

α of the circuit in the pre-processing step, therefore also to the input. Then, the

23

4 Symmetric-Key Primitive Based Group Signatures

Pre(x,w)

1 : Parse x = C, where C is a circuit consisting of AND-gates and XOR-gates.
2 : Choose µα ← {0, 1} for each circuit input wire α.
3 : Choose µβ ← {0, 1} for each output wire β of an AND-gate.

4 :
Iterate through all gates of the circuit: For each output wire γ of an XOR-gate with input
wires α and β, compute µγ = µα ⊕ µβ. For each AND-gate with input wires α and β,
compute µα,β = µα · µβ.

5 : y = w ⊕ µα1 ||, .., ||µαk , where α1, .., αk are the input wires of C.

6 :
For each such µα, µβ, µα,β compute the shares ([µα]i)i∈[n] ← Share(µα) and
([µβ]i)i∈[n], ([µα,β]i)i∈[n] respectively.

7 :
Set wi to be the vector of all i-th shares [µδ]i with δ ∈ IW ∪ OA ∪ A, where IW is the set of
input wires, OA is the set of output wires of an AND-gate and A is the set of all identifiers
(α, β), where α and β are input wires of an AND-gate.

8 : return (y, (wi)i∈[n])

Figure 4.1: A pre-processing algorithm for an MPC protocol.

masks are shared among the parties with a secret sharing scheme, so that every
party holds a share [λα] for every wire α. Furthermore, every party gets to know
the masked input ŵ. With this information, they can jointly compute a masked
wire value ẑα for each wire in the circuit, including the output wire. After that,
they each make their wire mask share of only the output wire public. Thus, every
party can reconstruct the mask share of the output and compute the real wire
value zα for the output wire α, which every party outputs. To realize this, we
use the XOR-secret sharing scheme (Share,Recon), as can be seen in Figures 4.1
and 4.2.

As can be seen in the pre-processing algorithm, we only need to output mask
shares of the circuit input wires as well as the output wires of all AND-gates. This
is because the mask shares and masked wire values of an XOR-gate output can
be computed locally by a party, if the corresponding values of the input wires are
known. To be able to compute the masked output value of an AND-gate, however,
we also need an additional value for each AND-gate. Thus, we compute and share
µα,β to help with that issue.

Lemma 4.1 Let C be any circuit consisting of AND-gates and XOR-gates. Let
w be an input to that circuit. The pre-processing function from Figure 4.1 and
the next-message function from Figure 4.2 define a correct MPC protocol for the
function f(C,w) = C(w).

24

4.1 The Construction of Katz et al.

Next(i, y, wi, ri, (m1, ..,mj))

1: Parse x = C, where C is a circuit consisting of AND-gates and XOR-gates.
2: Parse wi = (a, b, c).
3: Parse a as a vector of [µα], one entry for each input wire α of C.
4: Parse b as a vector of [µα], one entry for each output wire α of an AND-gate in C.
5: Parse c as a vector of [µα,β], one entry for each AND-gate of C with input wires α, β.
6: Recompute the previous state by invoking Next(i, x, wi, ri, (m1, ..,mj−1)).
7: If mj is a broadcast for the output wire α of the last gate, parse mj = ([µα])i∈[n],

output ẑα
⊕n
i=1[µα]i and stop.

8: Else, parse mj = ([s]i)i∈[n].
9: For the j-th AND-gate, compute ẑγ = ẑαẑβ

⊕n
i=1[s]i, for input wires α, β,

output wire γ.
10: For each XOR-gate "between" the j-th and j+1-th AND-gate of C with input wires

α, β, compute the value of the output wire by ẑγ = ẑα ⊕ ẑβ.
11: Furthermore, for that XOR-gate, compute [µγ] = [µα]⊕ [µβ].
12: Then, for output wire γ of the j + 1-th AND-gate compute

[s] = ẑα[µβ]⊕ ẑβ[µα]⊕ [µα,β]⊕ [µγ].
13: Broadcast the share [s].
14: At any time, after the last gate is processed, broadcast all [µα] for the output wires

α of the circuit.

Figure 4.2: A next-message function for an MPC protocol. If α is a wire of C,
denote by zα the value on that wire and by ẑα the masked value.
Assume wlog. that the gates in the description of C are ordered by
depth.

25

4 Symmetric-Key Primitive Based Group Signatures

Proof. We prove this with an invariant stating that the masked values ẑα that
the parties compute are always the real value zα XOR-ed with the mask, i.e.
ẑα = zα ⊕ µα for any wire α of C. First, let α, β be the input wires of an XOR-
gate and γ be the output wire. Assume that each party holds values ẑα, ẑβ fulfilling
the invariant. Then, we know that

ẑα ⊕ ẑβ =zα ⊕ µα ⊕ zβ ⊕ µβ
=zα ⊕ zβ ⊕ µα ⊕ µβ
=zγ ⊕ zγ.

Thus, every party can compute the correct ẑγ.

An observation that we need for the XOR-gates is that assuming each party
knows its shares [µα], [µβ] for the input wires of an XOR-gate, it can compute its
share [µγ] = [µα] ⊕ [µβ] for the output wire γ of the XOR-gate. This is correct,
since we have that

µα ⊕ µβ =
n⊕
i=1

[µα]i ⊕ [µβ]i

=
n⊕
i=1

[µγ]i

=µγ.

Now, let α, β be the input wires of an AND-gate, while γ is the output wire.
Assume that each party holds values ẑα, ẑβ fulfilling the invariant. By the ob-
servation we can assume that each party holds or computes its shares [µα], [µβ].
Furthermore, by definition each party has [µα,β] and [µγ]. The parties compute [s]
locally, broadcast their share and compute ẑγ = ẑαẑβ

⊕n
i=1[s]i. This is the correct

masked value, due to the following equations. By definition, we know that

ẑγ =ẑαẑβ ⊕
n⊕
i=1

[s]i

=ẑαẑβ ⊕
n⊕
i=1

ẑα[µβ]i ⊕ ẑβ[µα]i ⊕ [µα,β]i ⊕ [µγ]i.

Using the distributive property and the definition, we get

ẑγ =ẑαẑβ ⊕ ẑα
(

n⊕
i=1

[µβ]i
)
⊕ ẑβ

(
n⊕
i=1

[µα]i
)
⊕
(

n⊕
i=1

[µα,β]i
)
⊕
(

n⊕
i=1

[µγ]i
)

=ẑαẑβ ⊕ ẑαµβ ⊕ ẑβµα ⊕ µα,β ⊕ µγ.

26

4.1 The Construction of Katz et al.

Then, using the distributive property twice, we get

ẑγ =ẑα(ẑβ ⊕ µβ)⊕ µα(ẑβ ⊕ µβ)⊕ µγ
=ẑαzβ ⊕ µαzβ ⊕ µγ
=(ẑα ⊕ µα)zβ ⊕ µγ
=zαzβ ⊕ µγ != zγ ⊕ µγ,

thus the computed value is the correct masked value.

Lemma 4.2 Let C be any circuit consisting of AND-gates and XOR-gates. Let w
be an input to that circuit. The MPC protocol in the input pre-processing model for
the function f(C,w) = C(w) defined by the pre-processing function from Figure 4.1
and the next-message function from Figure 4.2 has n− 1-privacy.

Proof. The secret inputs and the messages sent are shares of the XOR-secret
sharing scheme. Since the n-out-of-n XOR-secret sharing scheme is perfectly n−1-
private, for any set of parties T with |T | ≤ n−1 the shares look uniformly random.
Thus, a simulator for the MPC protocol outputs a uniformly random value for
each required witness and message.

4.1.2 A Proof of Knowledge for Any NP-Relation
With the MPC control from above, we can construct a Σ-protocol for any NP-
relation, that we later turn into a (non-interactive) proof of knowledge. The idea
behind the Σ-protocol is the so-called MPC-in-the-head paradigm. It tells us that
the prover in a proof of knowledge executes the MPC protocol by himself by
simulating all parties. The circuit, for which he does this, simply is a verification
algorithm deciding whether a witness belongs to the NP-relation. Then, the prover
commits to the initial views and messages sent by the simulated parties and sends
the commitments to the verifier. That verifier chooses one of the parties at random
and responds to the prover with it as the challenge. The prover opens the views by
all parties except for the challenged one together with all messages sent and reveals
that to the verifier. To verify the proof, the verifier then has to recompute the
MPC protocol by himself with the information given to him by the prover. Since
he knows the secret inputs for all parties except for one, the verifier recomputes the
view of all of them, but whenever they expect a message from the challenged party,
the verifier uses the message provided by the prover. If everything is consistent
and the MPC protocol outputs the desired output, the verifier accepts. Honest-
verifier zero-knowledge is then guaranteed by the hiding of the commitment and
privacy of the MPC protocol, while special soundness follows from the binding of
the commitment.
In our case, we have to adapt the MPC-in-the-head paradigm a bit. Since our

MPC protocol also has a pre-processing stage, we have to include that in the
protocol as well. This works in a way similar to before. Instead of committing to

27

4 Symmetric-Key Primitive Based Group Signatures

the initial view of the parties as well as the messages, we now have two stages.
In the first, the prover computes several outputs of the pre-processing algorithm.
Then, for each such output and each party, the prover commits to the initial
view of the party for that pre-processing output. The verifier then chooses all
but one of the pre-processing outputs that the prover has to open fully. The
output that he did not choose remains unopened. After that, in the second stage,
we continue with the standard MPC-in-the-head paradigm, where we use the
unopened pre-processing output to simulate the MPC protocol. Let (msgsi)i∈[n] ←
MPC(C, (y, (wi)i∈[n])) be the shorthand for the messages output by the parties
when starting the MPC protocol defined by Figure 4.2 with input (C, (y, (wi)i∈[n])),
where msgsi is the vector of messages sent by party i. We can formally define the
protocol described above:

P(C,w) V(C)
For all j ∈ [m]

(yj , (wj,i)i∈[n])← Pre(C,w)
For all i ∈ [n]

(comj,i, dj,i)← Com(wj,i)

(comj,i)j∈[m],i∈[n]

c c← [m]

(wj,i, dj,i)j 6=c,i∈[n]

(msgsi)i∈[n] ← MPC(C, (yc, (wc,i)i∈[n]))

yc, (msgsi)i∈[n]

p p← [n]

(wc,i, dc,i)i 6=p

Check

Figure 4.3: A 5-round protocol. Check is an algorithm that takes all information
available to the verifier, recomputes the simulation of the MPC proto-
col based on this and checks for consistency. If everything is consistent,
it outputs 1, else 0. For this protocol, we do not formally define Check.

Although this is a 5-round protocol and we want to have a Σ-protocol, i.e. three
rounds, it helps us understand the three-round version. To construct a three-round

28

4.1 The Construction of Katz et al.

version from the 5-round protocol, we compress the two stages into one. Thus,
the prover prepares several pre-processing outputs and immediately simulates the
MPC protocol for each output and commits as usual. The verifier then chooses
pre-processing stages and parties that he wants to be opened together and the
prover responds with the requested information.

P(C,w) V(C)
For all j ∈ [m]

(yj , (wj,i)i∈[n])← Pre(C,w)
(msgsj,i)i∈[n] ← MPC(C, (yj , (wj,i)i∈[n]))
For all i ∈ [n]

(comj,i, dj,i)← Com(wj,i)

(comj,i,msgsj,i)j∈[m],i∈[n]

c← [m]

c, p p← [n]

(dj,i)j 6=c,i∈[n], (dc,i)i 6=p, yc

Check

Figure 4.4: A Σ-protocol. Check is defined below.

Check gets as input the whole view of the verifier. It opens all comc,i for i ∈ [n]
to get the private inputs for the parties. For each j 6= c, the it checks whether
the masks µα,β for the AND-gates are consistent with the other masks, i.e. if
µα,β = µα⊕ µβ. Then, the Check uses the private inputs of pre-processing output
c and yc to simulate every non-challenged party of the c-th iteration of the MPC
protocol himself, i.e. MPC(C, (yc, (wc,i)i∈[n])). Note that it does not know wc,p,
thus he does not simulate party p. Instead, whenever a simulated party expects
a message from p, Check uses the messages provided by msgsc,p. During this, he
checks whether the computed messages match the msgsc,i. If they do and the
output of all opened parties is 1, the verifier accepts. With the protocol formally
described, we can state and prove some properties it has, namely that it is a
Σ-protocol.
Theorem 4.3 For any circuit C consisting of only AND-gates and XOR-gates,
the protocol from Figure 4.4 is a Σ-protocol for the relation R(C,w) = 1⇔ C(w) =
1.
Lemma 4.4 For any circuit C consisting of only AND-gates and XOR-gates, the
Σ-protocol from Figure 4.4 is correct.

29

4 Symmetric-Key Primitive Based Group Signatures

S(C)

1: Choose c← [m], p← [n].
2: For j ∈ [m]:
3: (yj , (wj,i,msgsj,i)i∈[n])← SΠ([n]\{p}, C, 1)
4: Compute comj,i as the honest prover would for j ∈ [m], i ∈ [n]\{p}.
5: Compute comj,p ← Com(a) for j ∈ [m] with a← {0, 1}|wi|.

6: Output
(
(comj,i,msgsj,i)j∈[m],i∈[n], c, p,

(dj,i)j∈[m]\{c},i∈[n], (dc,i)i∈[n]\{p}, yc,msgsc,p
)
.

Figure 4.5: A simulator for the Σ-protocol from Figure 4.4

Proof. The underlying MPC protocol is correct, thus the MPC protocol started
with the input and messages generated by the prover would output 1 at the end.
Furthermore, since the commitment scheme is correct, the sent commitments along
with the opening values open to the private inputs that were computed by the
prover. This, together with the fact that the protocol is deterministic, means that
when the verifier simulates the MPC protocol himself, he gets the same messages
and outputs as the prover. Thus, the verifier accepts.

Lemma 4.5 For any circuit C consisting of only AND-gates and XOR-gates, the
protocol from Figure 4.4 has honest-verifier zero-knowledge, if the commitment
scheme used is perfectly hiding and the MPC protocol has n− 1-privacy.

Proof. Let C be a circuit consisting of only AND-gates and XOR-gates. Let SΠ
be the simulator of the underlying MPC protocol. Construct a honest-verifier
zero-knowledge simulator S as seen in figure Figure 4.5.
Then, S outputs transcripts with the same distribution as the real protocol, due

to the following reasons: The values comj,i for j ∈ [m], i ∈ [n]\{p} are computed
as the honest prover would, on values that are generated by the pre-processing
simulator. comj,p for j ∈ [m] is computed honestly on a random value a of
appropriate length. Thus, by the perfect hiding property of the commitment
scheme, these values have the correct distribution as well. The msgsj,i values for
j ∈ [m], i ∈ [n] are generated by a simulator and thus have the correct distribution
by definition. c and p are chosen as in the real protocol. For the dj,i we have that
the values are either generated honestly on simulator output (for i 6= p) or we have
the following case: If j ∈ [m]\{c} and i = p, the verifier does not get to know yj,
thus he cannot verify whether the a, that the commitment opens to, is consistent
with the rest of the pre-processing. Thus, a is consistent with the adversary’s
view. At last, yc and msgsc,p are generated by the MPC simulator and thus have
the correct distribution.

30

4.1 The Construction of Katz et al.

Lemma 4.6 For any circuit C consisting of only AND-gates and XOR-gates, the
protocol from Figure 4.4 has special soundness, if the commitment scheme used is
computationally binding.

Proof. Assume we have two accepting transcripts (a, z, r) and (a, z′, r′) with z 6= z′

and z = (c, p). We construct an extractor E that differentiates between the cases
where either c 6= c′ or c = c′, p 6= p′. In the first case, the extractor takes yc
from the first transcript and dc,i for i ∈ [n] from the second transcript. In the
second case, he takes yc and (dc,i)i∈[n]\{p} from the first transcript and dc,p from
the second transcript. In either case, the extractor then uses these opening values
along with the commitments from the announcement to compute (wc,i)i∈[n]. At
last, he outputs w = yc

⊕n
i=1wc,i.

What we need to prove now is that this extractor always outputs a valid witness
for C, unless the binding of the commitment fails. This is due to the announcement
and thus the commitments being equal. If the binding does not fail, we have either
c 6= c′ or c = c′, p 6= p′. In the first case, we get from the first transcript the value
yc. Furthermore, we get the (wc,i)i∈[n] from the second transcript, which by the
non-failed binding of the commitment are the same as for the first transcript.
Thus, if we XOR all the secrets together, we get the mask for the input and then
can calculate the non-masked input together with yc. Therefore, we have that
C(w) = 1 for the w the extractor outputs.
In the second case, the transcripts different sets of private inputs for the same

pre-processing output (provided the binding does not fail). If we now take the
conjunction of the private inputs, we know all of them, thus we can again unmask
yc and we have that C(w) = 1. However, if the binding of the commitment does
fail, we cannot be sure whether the w output by the extractor is valid or not, since
then the commitment opens to another value. Let negl(·) be the negligible limit
for the success chance of any adversary against the binding of the commitment
scheme. Then, we have that

Pr[w ← E((a, c, r), (a, c′, r′)) : C(w) = 1] ≤ 1− n · negl(λ),

since we have n points where the binding may fail.

Then, we can turn this Σ-protocol into a NIZKPoK by either the Fiat-Shamir
transform or Unruh’s transform.
Construction 4.7 Let Σ be the Σ-protocol from Figure 4.4. Construct a non-
interactive proof system by transforming Σ with the Fiat-Shamir transform, i.e.
construct sFS(Σ). By Theorem 3.31 we know that this is a NIZKPoK.
Construction 4.8 Let Σ be the Σ-protocol from Figure 4.4. Construct a non-
interactive proof system by transforming Σ with Unruh’s transform, i.e. construct
Unruh(Σ). By Theorem 3.32 we know that this is a non-interactive zero-knowledge
simulation-sound online-extractable proof system.

31

4 Symmetric-Key Primitive Based Group Signatures

Note that the Fiat-Shamir transform requires that the Σ-protocol has an ex-
ponentially large challenge space in order to produce secure non-interactive proof
system. While the Σ-protocol from Figure 4.4 does not have such a challenge
space, we can repeat the protocol a certain number of times to achieve a large
enough space. Thus, we wlog. assume that Construction 4.7 produces a zero-
knowledge simulation-sound extractable non-interactive proof system.

4.1.3 The Group Signature of Katz et al.
In general, when designing a secure group signature scheme, we need something
that guarantees authenticity of the signer and a way for the group manager to
correctly open a signature. Furthermore, the group signature must not reveal who
signed it. In the standard construction (cf. Chapter 1) authenticity is covered by
the digital signature and traceability by the encryption scheme, while the proof
of knowledge is used to tie the two components together. An adversary cannot
identify the signer, as else he would be able to either compute the signing key or
the message in the encryption.
To achieve a better efficiency in their scheme compared to the standard con-

struction, Katz et al. replace the digital signature by the validation set of a Merkle
tree to guarantee authenticity. Each user is assigned a pair k0, k1 of PRF keys
as his secret key and a leaf node in the Merkle tree, where the value of that leaf
is f(k0, 0λ)||f(k1, 0λ). Then, the root of the Merkle tree is the public key of the
group signature.
Furthermore, Katz et al. do not use an encryption scheme to open a signature.

Instead, they add an image of the PRF to the signature, parameterized by k0 and
the message to be signed. Then, the master secret key consists of all k0 from the
users. The group manager can then trace a signature by trying out all k0 he knows
until he finds one that fits.
To complete the signature, a user cannot show his validation set directly, as else

he can be identified. Thus, the second part of the signature is a NIZKPoK proving
that his validation set is valid regarding the public Merkle root. Furthermore, the
user proves that his k0 is also used to compute the image of the function, therefore
tying together the validation set and the image.
To formally describe this, we first construct a circuit that we use to instantiate

the proof of knowledge.
Construction 4.9 Let f : K × X → Y be a function. Let x ∈ X , y ∈ Y and
k0, k1 ∈ K and y∗, s be some values. We define a circuit Cx,y,y∗ that on input
(k0, k1, s) computes yb = f(kb, 0λ) for b ∈ {0, 1}. Then, if y = f(k0, x) and s is a
valid validation set for the value (y0, y1) with respect to y∗, the circuit outputs 1.
Using this, we can construct the group signature scheme of Katz et al.

Construction 4.10 Let H = (H.Kg, H) be a hash function. Let F = (F .Kg, f)
be a keyed function. Then, we can construct a fixed size group signature scheme.

• Kg(1λ, 1`) : Generate khash ← H.Kg(1λ). For each user i ∈ [`], generate

32

4.1 The Construction of Katz et al.

k
(i)
0 , k

(i)
1 ← F .Kg(1λ) and compute y(i)

b ← f(k(i)
b , 0λ) for b ∈ {0, 1}. Compute

a Merkle tree for data points (y(i)
0 , y

(i)
1)i∈[`] with Hkhash. Let y∗ be the root of

that Merkle tree. Compute the validation set si for each data point. Return
gpk = y∗, msk = (k(i)

0)i∈[`] and uski = (k(i)
0 , k

(i)
1 , si) for each user i.

• Sign(uski,m): Parse uski = (k(i)
0 , k

(i)
1 , si). Compute y = f

k
(i)
0

(m). Use the
prover of Construction 4.7 to create a non-interactive proof π for circuit
Cm,y,gpk with input (k(i)

0 , k
(i)
1 , si), where the circuit is defined as in Construc-

tion 4.9. Output σ = (π, y).

• Vrfy(gpk,m, σ): Parse σ = (π, y). Let Cm,y,gpk be the circuit from Construc-
tion 4.9. Use the verifier of Construction 4.7 to check whether the proof π
is valid for that circuit. If it is, output 1. Else, output 0.

• Open(msk,m, σ): Parse msk = (k(i)
0)i∈[`]. Parse σ = (π, y).

If Vrfy(gpk,m, σ) = 0, output ⊥. Else check for each i ∈ [`] whether
f(k(i)

0 ,m) = y. If there is such an i, output the first of them. If no such i
can be found, output ⊥.

Lemma 4.11 If Construction 4.7 is a correct non-interactive argument, then
Construction 4.10 is a correct fixed size group signature.

Proof. Let λ be a security parameter and ` ∈ N. Let m ∈ M and i ∈ [`].
Let (gpk,msk, (uski)i∈[`]) ∈ [Kg(1λ, 1`)]. Then, for σ = (π, y) ← Sign(uski,m),
we know that by the correctness of Construction 4.7 the verifier of that proof
returns 1. Thus, we also have that Vrfy(gpk,m, σ) = 1. Furthermore, we know
that y = f(k(i)

0 ,m). Therefore, Open(msk,m, σ) will find some k(j)
0 such that

y = f(k(j)
0 ,m), either with j = i or j 6= i. However, the case that j 6= i happens

only with negligible probability, since the keys are generated by the key generation
of a pseudo-random function.

Attack on Traceability

As stated before, Katz et al. intend to use a pseudo-random function to instantiate
F . However, it is possible to construct a pseudo-random function that makes it
easy to find keys k 6= k′ such that f(k, 0λ) = f(k′, 0λ) An adversary can use this
to create signatures that cannot be traced, as can be seen in the proof of the
following theorem.
Theorem 4.12 There exists a pseudo-random function PRF′, such that Construc-
tion 4.10 does not offer traceability when F is instantiated with PRF′.

Proof. Let PRF = (Kg, f) be some pseudo-random function. Construct an algo-
rithm Kg′ that on input 1λ uses k ← Kg(1λ), chooses x∗ ← X from the associated

33

4 Symmetric-Key Primitive Based Group Signatures

input space and computes y∗ ← f(k, x∗). It then outputs k′ = (k, x∗, y∗). Fur-
thermore, define a function

f ′(k′, x) =

f(k, x), x 6= x∗

y∗, x = x∗
for k′ = (k, x∗, y∗).

Now, we argue that PRF′ = (Kg′, f ′) is still a pseudo-random function. Let A
be an adversary that has non-negligible advantage against PRF′. Then, A has the
same advantage against PRF, since for a key generated by Kg′, we have that f ′
behaves exactly as f . Thus, PRF′ is a pseudo-random function as well.
However, if we instantiate Construction 4.10 with F = PRF′ we can attack the

traceability of the group signature. In the attack, we corrupt a user i to get his
k

(i)
0 , k

(i)
1 and si, from which we can compute y0 = f ′(k(i)

0 , 0λ) and y1 analogously.
Furthermore, we choose k ← Kg(1λ) such that f(k,m) 6= f ′(k(i)

0 ,m) for some
messagem. We can find such a k easily since f ′ is a pseudo-random function. Note
that k is a key of PRF, while the k(i)

b are keys of PRF′. Then, we can construct keys
k∗b = (k, 0λ, yb) for b ∈ {0, 1} If we use those keys along with the si and m as input
to the sign algorithm to get a signature σ = (π, y). This signature is valid, since
f ′(k∗b , 0λ) = yb by definition and it is created by the signing algorithm. However,
if the group manager computes j ← Open(msk,m, y), we have that j 6= i, since
we chose k such that f(k,m) 6= f ′(k(i)

0 ,m). Thus, we created a signature that is
not traceable.

Restoring Traceability

As we have seen in Theorem 4.12, if Construction 4.10 instantiated with F be-
ing a pseudo-random function, then the construction does not offer necessar-
ily traceability. However, in order to get a secure group signature, we want
to have that property. To do that, we require an additional property from
the pseudo-random function that prevents our and similar attacks. In our at-
tack we used that it is easy for an adversary, given a key, to find another key
such that for some input the function evaluates to the same for either key, i.e.
Pr[(k′,m) ← A(k) : f(k,m) = f(k′,m) ∧ k 6= k′] is high. To prevent this, we
require that the function is a one-way function if we switch the roles of key and
input, formally we require that for all x ∈M and all adversaries A we have that
Pr[k ← Kg(1λ), k∗ ← A(1λ, f(k, x)) : f(k, x) = f(k∗, x)] is negligible in λ. If we
assume that property, we can prove traceability of Construction 4.10.
Lemma 4.13 If the protocol from Construction 4.7 is a non-interactive proof of
knowledge, H is collision resistant and f(·, x) is a one-way function for all inputs
x, then Construction 4.10 offers traceability.
The intuition why this holds is as follows. In order to create a valid signature,

an adversary has to use a validation set s that was issued by the trusted party. If

34

4.1 The Construction of Katz et al.

not, the adversary was able to find a collision of the hash function. Furthermore,
the adversary must prove possession of keys such that the values of the pseudo-
random function at 0λ are a leaf in the Merkle tree, such that the used s is a
valid validation set. If he can prove possession of such keys he either was able to
find a hash collision that occurred when computing the leaf or he knows keys that
evaluate to the value in the leaf. Since the adversary wants to output a signature
that does not trace to him, he then has to use keys that are either unknown to
the trusted party or are from an honest user. However, the one-wayness of the
pseudo-random function prevents the adversary from computing such keys.

Proof. Let Π be the group signature from Construction 4.10. Let E be the knowl-
edge extractor of Construction 4.7 and S the simulator. Assume that the con-
struction is not traceable. Then, there exists an adversary A with non-negligible
probability to win ExptraceΠ,A (λ). From that, we construct adversary AOWF against
the one-wayness of f .

AOWF(1λ, y∗)

1: Choose a user i← [`] for some ` and initialize empty sets M,C.
2: Generate (gpk,msk, (uski)i∈[`])← Kg(1λ, 1`) while storing the Merkle tree.
3: Replace y1 of user i by y∗ and recompute the Merkle tree honestly and store it.
4: Simulate AS.O(·) by giving him gpk,msk. Answer his oracle queries as in the tracing

game, except for the following queries involving i:

• Sig(i,m): Reply with σ =
(
S.OP (C

m,f(k(i)
0 ,m),gpk), f(k(i)

0 ,m)
)
. Add (m, i) to M.

• Corrupt(i): Abort.
5: A outputs m∗, σ∗.
6: If Vrfy(gpk,m∗, σ∗) = 1 and Open(msk,m∗, σ∗) = j /∈ C and (m∗, j) /∈M hold,

continue, else abort.
7: If j 6= i, abort.
8: Use E on A to get some (k∗0, k∗1, s∗).

9: If s∗ matches the Merkle tree, f(k∗0, 0λ) = f(k(i)
0 , 0λ) and f(k∗1, 0λ) = y∗, return k∗1.

Figure 4.6: An adversary against the one-wayness of f .

Furthermore, we construct adversary AH against the collision-resistance of H.

35

4 Symmetric-Key Primitive Based Group Signatures

AH(1λ, k)

1: Initialize empty sets M,C.
2: Generate (gpk,msk, (uski)i∈[`])← Kg(1λ, 1`) for some `, but instead of generating

khash, set khash = k. Additionally, store the Merkle tree.
3: Simulate A by giving him gpk,msk. Answer oracle queries as in the tracing game.
4: A outputs m∗, σ∗.
5: If Vrfy(gpk,m∗, σ∗) = 1 and Open(msk,m∗, σ∗) =: i /∈ C and (m∗, i) /∈M, use E to

get some (k∗0, k∗1, s∗).
6: If s∗ matches the Merkle tree and @j ∈ [`] such that

f(k∗0, 0λ) = f(k(j)
0 , 0λ) and f(k∗1, 0λ) = f(k(j)

1 , 0λ), then return collision
(f(k∗0, 0λ), f(k∗1, 0λ)), (f(k(i)

0 , 0λ), f(k(i)
1 , 0λ)).

7: Else, compare s∗ to the Merkle tree. Compute and output the collision.

Figure 4.7: An adversary against the collision-resistance of H.

For these two adversaries, we can define an event Extract, that happens if the
extractor E outputs a valid witness. Then, we can define two events OW,Hash
that can happen after A outputs a forgery σ∗ = (π, y) for a message m∗ in the
traceability security game and we successfully extract some (k∗0, k∗1, s∗). The first
event, OW , happens if every node of s∗ output by the extractor can be found at the
correct location in the Merkle tree (s∗ matches the tree) and f(k∗0, 0λ) = f(k(i)

0 , 0λ)
and f(k∗1, 0λ) = f(k(i)

1 , 0λ), where j = Open(msk,m∗, σ∗). Thus, the adversary
used an s∗ that was issued and the keys he used do not form a hash collision.

The second event, Hash, happens either if s∗ does not match the tree or if it
matches the tree, but either f(k∗0, 0λ) 6= f(k(i)

0 , 0λ) or f(k∗1, 0λ) 6= f(k(i)
1 , 0λ). Then,

the adversary used a hash collision to form the signature. This collision is found
either in the tree (if s∗ does not match the tree) or when computing the leaf.

From the construction of AOWF and AH we can see that they perfectly simulate
the view of A. While AH uses exactly the same steps and computations as the
traceability game, AOWF uses the zero knowledge simulator to generate proofs
(and thus signatures) of a random user i. However, the simulator outputs proofs
with the exact same distribution, thus the view of A is perfectly simulated. Only
in the case that A queries Corrupt(i) does AOWF not simulate the view perfectly,
as it then aborts. However, if Corrupt(i) is queried in the real tracing game and
the forgery opens to j = i, the adversary loses anyways and if j 6= i, we do not

36

4.1 The Construction of Katz et al.

care about the forgery and abort. Thus, we have that

Pr[ExptraceΠ,A (λ, `) = 1 ∧ Extract] = Pr[OW ∧ ExptraceΠ,A (λ, `) = 1 ∧ Extract]
+ Pr[Hash ∧ ExptraceΠ,A (λ, `) = 1 ∧ Extract]

⇔ Pr[ExptraceΠ,A (λ, `) = 1] =(Pr[Extract|ExptraceΠ,A (λ, `) = 1])−1

·
(
Pr[OW ∧ ExptraceΠ,A (λ, `) = 1 ∧ Extract]

+ Pr[Hash ∧ ExptraceΠ,A (λ, `) = 1 ∧ Extract]
)
.

At this point, we wlog. assume that Pr[Extract|ExptraceΠ,A (λ, `) = 1] ≥ 1
c
for some

constant c ∈ N, since this is achievable with standard techniques. Then, we have
that

Pr[ExptraceΠ,A (λ, `) = 1] ≤c ·
(
Pr[OW ∧ ExptraceΠ,A (λ, `) = 1 ∧ Extract]

+ Pr[Hash ∧ ExptraceΠ,A (λ, `) = 1 ∧ Extract]
)
.

Now, if OW ∧ ExptraceΠ,A (λ, `) = 1 ∧ Extract happens, we know that AOWF has
some k∗0, k∗1, s∗, such that the s∗ was honestly generated for values y(j)

0 , y
(j)
1 , where

j is the user the signature output by A opens to. Furthermore, AOWF knows some
k∗0, k

∗
1, such that f(k∗0, 0λ) = y0 and f(k∗1, 0λ) = y1. Thus, if AOWF correctly and

independently guessed i = j, he computed a pre-image k∗1 for f(k∗1, 0λ) = y
(i)
1 = y∗.

Therefore, we have that

Pr[OW ∧ ExptraceΠ,A (λ, `) = 1 ∧ Extract]
= ` · Pr[k∗ ← PRF.Kg(1λ), x∗ ← AOWF(1λ, f(k∗, 0λ)) : f(k∗, 0λ) = f(x∗, 0λ)].

In the case of Hash ∧ ExptraceΠ,A (λ, `) = 1 ∧ Extract, we can make another case
distinction. If we know that s∗ matches the Merkle tree and either

f(k∗0, 0λ) 6= f(k(i)
0 , 0λ) or f(k∗1, 0λ) 6= f(k(i)

1 , 0λ),

we have that (f(k∗0, 0λ), f(k∗1, 0λ)) is a pre-image of the hash belonging to user i.
Thus, we know that

H(f(k∗0, 0λ), f(k∗1, 0λ)) = H(f(k(i)
0 , 0λ), f(k(i)

1 , 0λ)),

but f(k∗0, 0λ), f(k∗1, 0λ) 6= f(k(i)
0 , 0λ), f(k(i)

1 , 0λ). Therefore, AH found a collision.
In the other case, where s∗ does not match the Merkle tree, we can compute a
hash collision by Lemma 3.41.

37

4 Symmetric-Key Primitive Based Group Signatures

Therefore, we have that

Pr[Hash ∧ ExptraceΠ,A (λ, `) = 1 ∧ Extract] =
Pr[k ← H.Kg(1λ), (x1, x2)← AH(1λ, k) : Hk(x1) = Hk(x2)].

Taking all the cases together, we thus have

Pr[ExptraceΠ,A (λ, `) = 1] ≤
c ·
(
` · Pr[k∗ ← [PRF.Kg(1λ)], x∗ ← AOWF(1λ, f(k∗, 0λ)) : f(k∗, 0λ) = f(x∗, 0λ)]

+ Pr[k ← H.Kg(1λ), (x1, x2)← AH(1λ, k) : Hk(x1) = Hk(x2)]
)
,

which contradicts the assumption that A has non-negligible advantage.

Lemma 4.14 If the protocol from Construction 4.7 is zero-knowledge and PRF is
a pseudo-random function, then Construction 4.10 offers weak anonymity.

Proof. Let S be the zero-knowledge simulator of the proof of knowledge in the
group signature. We prove anonymity by a series of games.

• G0: the original anonymity game.

• G1: the same as G0, except proofs π are generated by S.

• G2: the same as G1, except f(k(1)
0 , ·) is replaced by a truly random function.

. . .

• G`+1: the same as G`, except f(k(`)
0 , ·) is replaced by a truly random function.

Now we need to argue, why views of a ppt adversary in consecutive games are
computationally indistinguishable. Since S outputs proofs with the same distri-
bution as honest provers by the zero-knowledge property of the NIZKPoK, games
G0 and G1 are perfectly indistinguishable. If we assume that G1 and G2 are dis-
tinguishable by some ppt A, we can construct a decider that is able to break the
pseudo-randomness of PRF. That decider simply plays the role of the challenger
in G2, except whenever f(k(0)

0 , x) would be evaluated, the decider uses the value
O(x) of his oracle instead.Then, it outputs whatever A outputs. Thus, G1 is com-
putationally indistinguishable from G2. By a similar argument, we can argue that
for all i ∈ {2, .., `} the games Gi and Gi+1 are computationally indistinguishable.
Let negl(·) be an upper bound of an adversary against the pseudo-randomness

of PRF. Since in G`+1 we have that all signatures σ = (π, y) are generated by a
simulator and a truly random function, their distribution does not depend on b.
Therefore, by these two facts and the sequence of games we know that

Pr[b′ = b|b = 0]− Pr[b′ = b|b = 1] ≤ ` · negl(λ).

38

4.1 The Construction of Katz et al.

Thus, any adversary wins the anonymity game with only negligible probability.

Then, the following theorem follows directly from Lemmata 4.13 and 4.14.
Theorem 4.15 If the protocol from Construction 4.7 is a NIZKPoK, H is colli-
sion resistant and PRF is a pseudo-random function that is also a one-way func-
tion for any arbitrary but fixed input, then Construction 4.10 is correct and offers
traceability and weak anonymity.
Although this theorem only considers classical adversaries, we can replace the

non-interactive proof system by Construction 4.8. Then, since we conjecture
that symmetric-key primitives are post-quantum secure, we deduce that Con-
struction 4.10 is post-quantum secure.

4.1.4 Efficiency
The non-interactive proof system from Construction 4.7 as it is defined is not
very efficient. One reason is that in the simulated MPC protocol there are many
messages being sent and each such message contributes to the size of the proof.
Furthermore, the many repetitions of the Σ-protocol to get a exponentially large
challenge space also increases the proof size. However, Katz et al. present several
steps to optimize their construction, with which the size of the proof can be greatly
reduced.
In their paper [10], Katz et al. not only construct a group signature scheme

based on their proof of knowledge, but also construct a digital signature scheme
with a similar idea. Due to the optimizations mentioned above, they show eval-
uations supporting their claim that their digital signature scheme is competitive
in signature size and verification time compared to the currently best known al-
ternatives. Furthermore, they show that the proof of knowledge they use for the
signature is the most efficient compared to two constructions of other papers, but
only for circuits that have between 300 and 100000 AND-gates. Since the main
difference between their digital signature scheme and their group signature scheme
is the relation that is used for the proof of knowledge, they expect that their group
signature scheme is very efficient as well. In fact, they claim their construction is
the most efficient currently known one.
While the proof size is expected to be small in comparison (due to the evalua-

tions from before), the technique by which Katz et al.’s scheme offers traceability
leads to drawbacks. First, their construction has a fixed size, meaning it is not
easy to add new members to the group beyond the old size without invalidating
old signatures. But creating a very large group in the beginning is also not a good
solution. This is due to the fact that both the runtime of the signing algorithm
and the verification algorithm have a runtime of O(log n), where n is the size of
the group.
Another drawback of their construction is that opening a signature takes time
O(n), as the group manager has to iterate through all group members to find the
correct one. This is obviously worse than in the standard construction of sign,

39

4 Symmetric-Key Primitive Based Group Signatures

encrypt and proof (cf. Chapter 1), where the group size has no influence on the
running time of the opening algorithm, as it simply decrypts.

4.2 Conclusion Katz
To understand the results of Katz et al.’s approach better, we discuss their tech-
niques in a more abstract way.
The main point to take away from Katz et al.’s construction is the ability to

construct proofs of knowledge for any circuit while using only symmetric-key prim-
itives (cf. Theorem 4.3). With this, we are able to construct proofs of knowledge
for any NP-relation, as the circuit we use for the proof is simply the algorithm
verifying a witness. This gives us a very powerful and flexible tool. When con-
structing a group signature in a way similar to the standard technique, it allows
us to use any type of certificate , as long it can be verified as valid. Furthermore,
the proof of knowledge hides which certificate is used.
However, the size of the proof increases with the size of the certificate. There-

fore, Katz et al. use a Merkle tree in place of the signature. A certificate for a
Merkle tree, which is the validation set, has a size of log ` hash values. Further-
more, verification is simple, as one has to make log ` computations of the hash
function, as well as one comparison. This benefits the construction of Katz et al.
insofar that the size of the proof of knowledge scales with the complexity of the
verification circuit. However, the drawback of using the Merkle tree is having only
a fixed-size group signature scheme.
Another technique Katz et al. use is replacing the encryption scheme of the

standard technique by a pseudo-random function that is also a one-way function
in respect to the key. Thus, the group manager can easily trace by finding which
key was used to compute the y. This is possible, since we use a proof of knowledge
that works for any circuit. By also proving that we know the key that was used
to compute y and linking it to the certificate, we can guarantee the verifier that
we "encrypted", i.e. embed our identity, honestly. However, then the running
time of the opening algorithm is linear in the number of group members, where
in the standard technique it is constant. Depending on the use case of the group
signature scheme, this may be a big drawback or a little one. If the tracing
algorithm is used only rarely, an expensive opening algorithm does not have a big
impact.

4.3 Extension to a Dynamic Group Signature
As mentioned before, Construction 4.10 is only a static group signature. However,
with techniques similar to the previous construction, one can extend the idea to
a dynamic group signature. In particular, we replace the Merkle tree that was
used for authenticity with a signature scheme as in the standard group signature

40

4.3 Extension to a Dynamic Group Signature

construction. Since the proof of knowledge of Katz et al. allows us to create
proofs for any NP-relation, we can use a standard technique to construct a digital
signature. For that, we define the following circuit.
Construction 4.16 Let F = (F .Kg, f) be a keyed function. Define the circuit
Csig

pk that on input sk ∈ [F .Kg(1λ)] computes fsk(0λ) and checks whether this value
is equal to pk. If it is, the circuit outputs 1, else 0.
With this circuit, we can then formally define the digital signature.

Construction 4.17 Let F = (F .Kg, f) be a keyed function.

• Kg(1λ): Choose sk← F .Kg(1λ). Compute pk = f(sk, 0λ). Output (sk, pk).

• Sign(sk,m): Use the prover of Construction 4.7 to create a non-interactive
proof σ for the circuit Csig

pk from Construction 4.16 with input sk. When
computing the challenge with the Fiat-Shamir transform, also append m to
the input of the hash function. Output σ.

• Vrfy(pk,m, σ): Use the verifier of Construction 4.7 to verify whether σ is
valid for the circuit Csig

pk . When computing the challenge with the Fiat-
Shamir transform, also append m to the input of the hash function. Output
whatever the verifier outputs.

The intuition behind this construction is that to sign a message, we prove
ownership of the function key used to compute the public key. To make the
signature dependent on the message, we include it when generating the challenge
for the underlying Σ-protocol.
Lemma 4.18 If F is a one-way function with regards to the key for inputs of
form 0λ, then Construction 4.17 is existentially unforgeable under chosen message
attack.
We omit the proof for this lemma, as the technique of using a non-interactive

proof of knowledge in this way is commonly used. Furthermore, Katz et al. [10]
and Chase et al. [5] claim similar results.
With this digital signature, we can continue with our original goal of construct-

ing a dynamic group signature. For that, we again first define a circuit. Since
our goal was to replace the Merkle tree with digital signature scheme, this circuit
checks whether a signature is valid. As in Construction 4.9, the circuit also checks
whether the given x, y, k0 fulfill y = f(k0, x) for some function f .
Construction 4.19 Let Π′ = (Kg′, Sign′,Vrfy′) be the digital signature from Con-
struction 4.17. Let f : K × X → Y be a function. Define the circuit Cx,y,pk that
on input (k0, k1, σ

′) outputs 1 if y = f(k0, x) and Vrfy′(pk, (k0||f(k1, 0λ)), σ′) = 1.
Else it outputs 0.
Then, we can use circuit in the construction of the group signature scheme. The

signing works similar to Construction 4.10: we compute the image of a pseudo-
random function with the k0 key and include a proof of knowledge for a circuit,
but this time the circuit from Construction 4.19. Thus, the very algorithm also

41

4 Symmetric-Key Primitive Based Group Signatures

works very similar, as it has to check for validity of the proof. Since the new
construction is a dynamic group signature, instead of being static, we have to
adjust the key generation a bit and construct a joining protocol.
Construction 4.20 Let Π′ = (Kg′, Sign′,Vrfy′) be the digital signature from Con-
struction 4.17. Let F = (F .Kg, f) be a keyed function. Construct a dynamic
group signature scheme.

• Setup(1λ): Generate (pk, sk) ← Kg′(1λ). Set gpk = pk as the public key,
isk = sk as issuer secret key and osk = ∅ as the tracing key. Output
(gpk, isk, osk).

• UKg(1λ, gpk): Generate two keys k0, k1 ← F : Kg(1λ) and compute y1 =
f(k1, 0λ). Set usk = (k0, k1), upk = y1.

• Join(uski) ↔ Issue(upki, isk): The user parses (k0, k1) = uski. He then
sends k0 as well as a NIZKPoK that he knows k1 such that f(k1, 0λ) =
upki to the issuer. If the proof is valid, the group manager responds with
σ′ ← Sign′(isk, (k0, upki)) and sets regi = k0. The user outputs certi = σ′.

• Sign(uski, certi,m): Parse uski = (k0, k1, σ
′). Compute y = f(k0,m). Use

the prover of Construction 4.7 to create a non-interactive proof π for the
circuit Cm,y,gpk with input (k0, k1, certi), where the circuit is defined as in
Construction 4.19. Output σ = (π, y).

• Vrfy(gpk,m, σ): Parse σ = (π, y). Let Cm,y,gpk be the circuit from Construc-
tion 4.19. Use the verifier of Construction 4.7 to check whether the proof π
is valid for that circuit. If it is, output 1. Else, output 0.

• Open(osk,m, σ): Parse σ = (π′, y). If Vrfy(gpk,m, σ) = 1, check for each
regi 6=⊥ in reg whether f(regi,m) = y. Let regj be the first such key. Com-
pute a NIKZPoK π for knowing regj such that f(regj,m) = y. Output (j, π).

• Judge(gpk, j, upkj,m, σ, π): Parse σ = (π′, y). If π is valid for the circuit
f(·,m) = y, output 1, else 0.

We construct the mentioned NIZKPoKs with Construction 4.7.
As always, we are interested in the security of such constructions. However, due

to time constraints, we cannot give a full proof. Instead, we state a conjecture
and give a short argument, why the conjecture should hold.
Conjecture 4.21 If Π′ is a EUF-CMA secure signature scheme, F = (F .Kg, f)
is pseudo-random function and f(·, x) is a one-way function for all inputs x, then
Construction 4.20 is a dynamic group signature scheme that is correct and offers
anonymity and traceability.
It can easily be seen that correctness and anonymity should hold. The former

follows from the correctness of the digital signature scheme and the fact that an
honest signature contains a y = f(k(i)

0 ,m) for some k(i)
0 which is contained in osk,

42

4.3 Extension to a Dynamic Group Signature

thus the opening manager can output the corresponding i, similar to the proof of
Lemma 4.11.
The proof for anonymity works very similar to the proof of Lemma 4.14, since

in both the construction of Katz et al. and the new construction, the signatures
consist of a proof of knowledge and the image of a pseudo-random function. Thus,
to write a formal proof, one simply has to adapt the proof of Lemma 4.14 to the
dynamic group signature definition.
To win the traceability game, an adversary has to produce a signature that is

valid, but opens to nobody, or the proof output by Open has to be invalid. To
ensure that Open(osk,m∗, σ∗) =⊥, the adversary has to find a key k∗, such that
there exists no key k(i)

0 among all users, such that f(k∗,m∗) = f(k(i)
0 ,m∗). While

this alone is easy, the adversary also has to produce a valid proof that uses k∗
as a witness. Thus, he either has to use a honestly generated certi, but then he
also needs that f(k∗, 0λ) = f(k(i)

0 , 0λ). However, this is hard for him, as f(·, 0λ)
is a one-way function. The other possibility is that the adversary creates his own
certificate with which he creates the proof. This also hard for him, as the digital
signature scheme is unforgeable. Therefore, Open finds a k′ in the registry, such
that f(k′,m) = y and computes a valid proof. Thus, our construction is traceable.
An adversary can win the non-frameability game in two ways. Either he forges

a signature that opens to an honest user or he creates a proof that attests that
some signature opens to an honest user. For the second possibility, an adversary
has to find a k∗, such that f(k∗,m) = y, where m, y are from the signature that
he outputs. Then, he can claim that any user signed the message by creating the
proof. But finding such a k∗ is hard, as f(·,m) is a one-way function. On the other
hand, an adversary has to guess the user secret key k1 of an honest user to forge
a signature, else he cannot create the proof needed for the signature. However,
since f(·, 0λ) is a one-way function this is hard.

43

5 Lattice Based Group Signatures
Another approach to construct quantum-secure cryptographic primitives is us-
ing lattices and related problems. This is advantageous, as lattices require only
multiplication and addition of matrices and vectors to be implemented. Further-
more, progress in solving lattice problems is slow and currently there is no known
algorithm for solving them efficiently for useful parameters (cf. [15]).
This chapter is structured the following way. First, we formally explain what

lattices and related problems are. Then, we define a collection of constructions
whose security is based on lattice problems. After that, we use those constructions
as building blocks to construct the group signature itself and explain its security.
At last, we discuss the techniques of the group signature.

5.1 Basic Definitions for Lattice-Based
Cryptography

A lattice is similar to a vector space, in that for each lattice there exists a basis.
Elements of the lattice are then linear combinations of the basis vectors, how-
ever all coefficients must be integers. In the two-dimensional space, this creates
a structure that resembles a lattice if lattice points are connected by the basis
vectors, thus the name.
Definition 5.1 ([15]) A lattice L(b1, ., ,bn) is defined by n linearly independent
vectors b1, ..,bn ∈ Rn as L(b1, ., ,bn) = {∑n

i=1 xibi : xi ∈ Z}. We can alterna-
tively write L(B), if we set B to the matrix with the bi as columns. We call
b1, ..,bn or B a basis for lattice L(B).
It is important to note that a lattice does not possess a unique basis. In fact, it is

possible to compute a different basis for the same lattice by computing B′ = BU,
where U ∈ Zn×n with det(U) = ±1.
One central computational problem of lattices that is important for cryptogra-

phy is finding a short vector given a lattice basis. In fact, the adversary needs
to output a vector whose length is smaller than the length of the shortest vector
times some factor.
Definition 5.2 In the γ-approximate shortest vector problem (SVPγ), an adver-
sary A given a basis B of a lattice L(B) has to find a non-zero vector v, such that
‖v‖ ≤ ‖v0‖ · γ, where v0 ∈ L(B) is the shortest non-zero vector of L(B).
Note that the adversary is given an arbitrary basis. This means he needs to be

able to solve any instance, even the hardest, if he wants to solve the problem.

45

5 Lattice Based Group Signatures

There are many approaches to solving this problem, for example the LLL-
algorithm [11]. While this algorithm is one of the best currently known algorithms,
it has exponential runtime if γ is a polynomial in n. Conversely, if we restrict the
algorithm to a polynomial runtime, it only guarantees to find a vector with length
within an exponential factor of the shortest one. Due to this and slow progress in
finding better algorithms (cf. [15]), the SVPγ problem is conjectured to be hard.
Conjecture 5.3 ([15]) Any quantum ppt adversary A has only negligible success
probability of solving SVPγ, if γ is some polynomial in n, where n is the dimension
of the lattice.
It is important to note that this conjecture holds even for quantum adversaries.

This means that a scheme that bases its security on lattice problems, such as
SVPγ, is considered to be post-quantum secure.
The SVP mentioned above is an approximation problem. There are several

variants of this problem (and of other lattice problems). For example, there exists
a decision variant, where an adversary given a lattice basis and some rational
number has to decide whether the norm of the shortest non-zero vector of the
lattice is smaller than the given number or not. Another variation is a relaxation
of the decisional variant, a so-called promise problem. In a promise problem, an
adversary is given an input that either satisfies a Yes condition or a No condition.
The conditions need to be mutually exclusive, but in difference to the decisional
variant, the conditions need not be exhaustive, i.e. there may exist instances that
are neither a Yes or No instance. An adversary then has to decide, whether the
input satisfies the Yes or No condition. For inputs that satisfy neither condition,
there are no requirements for what the adversary outputs. Thus, formally the
promise version of SVPγ looks as follows.
Definition 5.4 ([12]) In the shortest vector promise problem (GapSVPγ), an
adversary A, given a basis B of a lattice L(B) and a d ∈ Q, has to decide between
Yes inputs with ‖v0‖ ≤ d and No inputs with ‖v0‖ > γ · d, where v0 ∈ L(B) is the
shortest non-zero vector of L(B).
While one can base the security of cryptographic constructions on SVP or

GapSVP, there exists another lattice-related problem that is useful. The prob-
lem, called shortest integer solution problem, deals with q-ary lattices.
Definition 5.5 A q-ary lattice Λ⊥q (A) is defined by a matrix A ∈ Zn×mq as
Λ⊥q (A) = {y ∈ Zm : Ay = 0 mod q}.
The SIS problem then asks for a short non-zero vector that belongs to the lattice.

As the problem is an average-case problem, the adversary gets a uniformly random
lattice. Formally, it is defined the following way.
Definition 5.6 ([12]) In the shortest integer solution problem (SISq,m,β) an ad-
versary, given an integer q, a uniformly random matrix A ∈ Zn×mq and β ∈ R,
has to find a non-zero vector z ∈ Zm \{0} such that Az = 0 mod q and ‖z‖ ≤ β.
There exists a similar problem to SIS, called SIS′. This differs from SIS in so far

that for the output z of the adversary it additionally has to hold that z ∈ Zm\2Zm.

46

5.1 Basic Definitions for Lattice-Based Cryptography

Although SIS′ is an average-case problem, there exists a reduction to the worst-
case problem SVP.

Theorem 5.7 ([12]) There exist parameters β,m, q, γ such that there is a poly-
nomial time reduction from solving GapSVPγ in the worst case to solving SIS′q,m,β
in the average case.

This also means that the reduction reduces to SIS if q is odd.
The existence of such a reduction implies that solving SIS in the average case

is at least as hard as solving SVP in the worst case. This in turn means that we
can base the security of our constructions on the SIS problem instead, which is
advantageous since q-ary lattices are easier to use and implement, as they only
use integer arithmetic.
There exists another problem related to lattices, where an adversary has to

distinguish between two different distributions. In one case, the adversary gets a
random vector, while in the other case he gets a random lattice point on which an
error vector is added, where the latter is drawn from a known error distribution.

Definition 5.8 ([15]) In the learning with errors problem (LWEm,q,χ), that is
parametrized by integers n,m, q and a probability distribution χ on Zq, an adver-
sary is given a uniformly chosen matrix A ∈ Zm×nq as well as a vector v. This
vector is either chosen uniformly at random from Zmq or set to be v = As + e,
where s ← Znq is chosen uniformly at random and e ← χm. The adversary then
has to distinguish between those two cases.

If we use the truncated m-dimensional continuous Gaussian distribution as the
error distribution, we can relate LWE to GapSVP.

Definition 5.9 Let Ds(x) = 1
s
· exp(−π(x

s
)2) be the density function of the trun-

cated one-dimensional continuous Gaussian distribution over R, where s ∈ R+

and x ∈ R with |x| < s · ω(
√

log n).

Definition 5.10 ([8]) The distribution Ψm
α over [0, q) is defined by the follow-

ing algorithm: Choose η1, .., ηm ← Dα, set ei = q · ηi mod q for i ∈ [m], and
output e = (e1, .., em)T .

Formally, the relation between LWE and GapSVP can be expressed by the fol-
lowing reduction.

Theorem 5.11 ([14]) There exist parameters α, γ, ζ, q,m such that there is a
polynomial time reduction from solving GapSVPζ,γ in the worst case (with over-
whelming probability) to solving LWEm,q,Ψmα .

Note that in this theorem, GapSVP has an additional parameter ζ. The defini-
tion of GapSVPζ,γ is very similar to GapSVPγ, but has some additional restrictions
on which bases B can be used for the lattice. Still, this theorem implies that the
LWE problem is hard if GapSVP is hard.

47

5 Lattice Based Group Signatures

5.2 The Group Signature of Gordon et al.
The group signature scheme of Gordon et al. [8] follows the standard construction
of a group signature (cf. Chapter 1) which consists of a signature scheme, an
encryption scheme and a proof of knowledge linking both together. Furthermore,
they base the security of these building blocks on lattice assumptions, thus the
group signature scheme is secure if these assumptions hold.
In the following, we first define the building blocks Gordon et al. used. After

that, we present their group signature scheme and explain their techniques.

5.2.1 Building Blocks
A very important building block is an algorithm called TrapSample. It outputs
two matrices A and T. The idea behind this algorithm that it is hard for an
adversary given A and a vector v to win the LWE game. However, if one also
knows T, then it is easy to distinguish whether v is a uniformly random vector or
a perturbed lattice point. In fact, if v = As + e, one can even compute s and e.
Lemma 5.12 ([1]) There exists a ppt algorithm TrapSample, that on input 1n, 1m, q
outputs matrices A ∈ Zn×mq and T ∈ Zm×m, such that

• the distribution of A is statistically indistinguishable from that of a uniformly
random matrix from Zn×m,

• the columns of T form a basis of Λ⊥(A),

• ‖T‖ = O(n log q) and
∥∥∥T̃∥∥∥ ≤ C ·

√
n log q,

where q ≥ 2,m ≥ 8n log q and C < 40 is some constant.
This idea works, since T consists only of short, orthogonal column vectors.

Then, one can use Babai’s rounding algorithm [15], which on input T and v =
As+e is defined as TbT−1ve, to compute s. One can use TrapSample and Babai’s
rounding algorithm to construct an encryption scheme, where a ciphertext is v =
As+e with s = G(m) modeled as a random oracle [12], where G somehow encodes
m to a vector. Decrypting is then using Babai’s algorithm.
With the knowledge of a T output by TrapSample, it is possible to construct

another interesting algorithm, called PreSample. This algorithm is able to invert
a lattice point, i.e. given an A and u is able to compute an e such that Ae = u.
Lemma 5.13 There exists a ppt algorithm PreSample, that on input A ∈ Zn×mq ,
T ∈ Zm×m that were output by TrapSample and some s as well as u ∈ Znq outputs
a vector e ∈ Zmq . This vector is distributed uniformly at random conditioned on
Ae = u.
We can then combine TrapSample and PreSample to create a signature scheme.

The idea is to choose a public key A and secret key T with TrapSample. Then,
the signer can sign a message by computing a pre-image of the message with

48

5.2 The Group Signature of Gordon et al.

PreSample. Security relies on the fact that, assuming SIS is hard, it is hard for an
adversary to compute such a pre-image without knowing T.
Construction 5.14 ([7]) Let q = poly(n) be prime. Let m ≥ 5n log q. Let
H : {0, 1}∗ → Znq be a random oracle. The GPV signature scheme then is defined
as follows.

• Kg(1λ): Compute (A,T)← TrapSample(1λ, 1m, q). Set sk = T, pk = A.

• Sign(sk,m): Output e← PreSamp(A,T, H(m)).

• Vrfy(pk,m, σ): If Ae = H(m) mod q and ‖e‖ ≤ s
√
m, return 1, else 0.

Lemma 5.15 ([7]) If H is modeled as a random oracle and SISq,m,2s√m is hard,
then Construction 5.14 is a EUF-CMA secure signature scheme.
Another building block that Gordon et al. use is the algorithm OrthoSample.

This algorithm has a similar output to TrapSample, but it gets as additional input a
matrix B. The matrix A output by the algorithm then guarantees that ABT = 0
mod q.
Lemma 5.16 ([8]) There exists a ppt algorithm OrthoSample, that on input
1n, 1m, q and a matrix B ∈ Zn×mq outputs matrices A ∈ Zn×mq and T ∈ Zn×m,
such that

• the distribution of A is statistically indistinguishable from that of a uniformly
random matrix from Zn×m conditioned on ABT = 0 mod q

• the columns of T form a basis of Λ⊥(A)

• each column of T is distributed independently according to DΛ⊥(A),s

where q ≥ 2,m ≥ n+ 8n log q, C < 40 some constant, s = C ·
√
n log q · ω(logm)

and DΛ⊥(A),s is Ds with support restricted to Λ⊥(A).
Gordon et al. further prove that it is possible to generate (B,S)← TrapSample

and (A,T) ← OrthoSample(B) and use A,T as the keys for the GPV signature
scheme. Then, we can use B,S as the keys for our encryption scheme component.
Thus, the signature scheme and encryption scheme used to construct the group
signature scheme are already related, since ABT = 0.
However, we still need a proof of knowledge to ensure that a signer encrypted

a valid signature. For this, Gordon et al. define a gap language and use results
from other work [13, 6] to construct the proof for this language.
Definition 5.17 The language Ls,γ is a gap language that is defined by LYes and
LNo as follows:

LYes =
{(

B1, ..,BN

z1, .., zN

)∣∣∣∣∃c ∈ Znq ∃i ∈ [N] :
∥∥∥zi −BT

i c
∥∥∥ ≤ s

√
m

}

LNo =
{(

B1, ..,BN

z1, .., zN

)∣∣∣∣∀c ∈ Znq ∀i ∈ [N] :
∥∥∥zi −BT

i c
∥∥∥ > γ · s

√
m

}

49

5 Lattice Based Group Signatures

A witness for Ls,γ is an s and an i satisfying a Yes instance.
Since this is a gap language, a proof of knowledge does not need to guarantee

anything for instances that are neither a Yes instance or No instance. Furthermore,
Gordon et al. do not need a zero-knowledge proof of knowledge. Instead, it suffices
to have a witness-indistinguishable proof. This means that the distribution of the
proof is independent from the witness used.
Lemma 5.18 ([8]) There is a non-interactive witness-indistinguishable proof sys-
tem for the language Lc,γ in the random oracle model, where γ ≥ O(

√
m

logm).
It is important to note that in their construction, Gordon et al. use the Fiat-

Shamir transform to get a non-interactive proof system from a Σ-protocol. As we
have mentioned before (cf. Section 3.10), there exist results that lead to believe
that the Fiat-Shamir transform produces proof systems that are not secure against
a quantum adversary. Therefore, although the lattice problems are conjectured
to be post-quantum secure, a construction using the Fiat-Shamir transform may
not be post-quantum secure due to the transform. However, we propose that
if we use Unruh’s transform instead, the proof system mentioned above is also
post-quantum secure.

5.2.2 Construction
With these building blocks defined, we can construct the static group signature
scheme. We generate our keys with TrapSample and OrthoSample to set up an en-
cryption component and signature scheme respectively, one for each group mem-
ber. Then, to sign a message a group member i uses the digital signature scheme
to sign the hash of the message, i.e. ei ← PreSample(Ai,Ti, H(m)), and encrypts
it by computing zi = BT

i w + ei for a uniformly random w. At this point, the
group signature does not offer anonymity, as the signature would be valid only
for the public key that belongs to the correct signer. To circumvent this issue,
the signer also creates dummy signatures, one for each other group member. This
dummy signature is simply an ej that satisfies Ajej = H(m). For such a dummy
signature to be valid, ej would have to be short, however computing such a vector
without length restriction is not hard. The group member i then encrypts the ej
as well. He also prepares a proof that one of the ek is short. This means that at
least one of the ek is a valid signatures is valid, but an adversary cannot check
which.
To verify a signature, one needs to check whether the proof is valid and whether

Akzk = H(m). This way, the verifier checks whether each dummy signature
fulfills the necessary condition that Akek = H(m) and that there exists a real
signature. Note that a verifier can check the necessary condition in this way, since
we have that ABT = 0. To open a group signature, the opening manager simply
decrypts the zk and outputs the index for which the decrypted vector is small. By
construction, this is true for the real signature, but with high probability not for
the dummy signatures.

50

5.2 The Group Signature of Gordon et al.

Formally, the construction looks as follows.
Construction 5.19 Let λ be the security parameter. Let q = poly(λ),
m ≥ 8λ log q, s ≥ C

√
λ log q · ω(

√
logm). Let H = (H.Kg, H) be a hash func-

tion with H : {0, 1}∗ → Znq .

• Kg(1λ, 1`): Compute (B1,S1), .., (B`,S`)← TrapSample(1λ, 1m, q) as well as
(Ai,Ti) ← OrthoSample(1λ, 1m, q,Bi). Compute khash ← H.Kg(1λ). Let
gpk = ((Ai,Bi)`i=1, khash). Let msk = (Si)`i=1 and uski = Ti. Output
gpk,msk, (uski)`i=1.

• Sign(uski,m): Choose r ← {0, 1}λ. Compute hj = Hkhash(m||r||j) for
j ∈ [`]. Compute ei ← PreSample(Ai,Ti, s,hi). For j ∈ [`]\{i} choose
ej ∈ Zmq uniformly at random conditioned on Ajej = hj mod q. For k ∈ [`],
choose wk ← Znq and compute zk = BT

kwk + ek mod q. Construct a NIWI
proof π for Ls,γ with witness (wi, i). Output σ = (r, z1, .., z`, π).

• Vrfy(gpk,m, σ): Parse σ = (r, z1, .., z`, π). If Ajzj = Hkhash(m||r||j) for all
j ∈ [`] and π is correct, output 1, else 0.

• Open(msk,m, σ): If Vry(gpk,m, σ) = 1, parse σ = (r, z1, .., z`, π).
For j ∈ [`], compute ej = zj − BT

j

(
SjbS−1

j zje
)
. Output the smallest j,

for which it holds that ‖ej‖ ≤ s
√
m.

Lemma 5.20 The static group signature from Construction 5.19 is correct and
offers traceability and CPA-anonymity, if H is modeled as a random oracle.
In this thesis, we do not give a full proof for this lemma, as it can be found in

[8]. However, we explain the intuition why the three properties hold.

Correctness

For a honestly generated signature σ by user i, we know that Ajej = Hkhash (m||r||j)
holds by construction for j ∈ [`] \ {i}. We also know that this equation holds for
j = i, due to the properties of PreSample. By definition of OrthoSample we know
that AjBT

j = 0, thus we have that Ajzj = AjBT
j wj + Ajej = Ajej. Therefore,

the first check of Vrfy is true.
The second check holds, because we know that ei = zk −BT

i wj is short due to
the properties of PreSample. Thus, the prover gets a valid witness as input and π
verifies as true.
For correctness, we also need that an honestly generated signature opens to the

correct user. As before, we know that ej is short. Therefore, Babai’s rounding
algorithm [15] is able to correctly invert zi to wi, since we know that Si also fulfills
the requirements of Babai’s algorithm. Thus, he also computes the correct ei, as
ei = zi − BT

i wi by definition. Since it is highly probable that the other ej that
are computed by Open are not short, the signature opens to i.

51

5 Lattice Based Group Signatures

Anonymity

An adversary looking at a signature is able to see a random value r, the zj and a
proof π. Since the random value is chosen uniformly at random, it does not help
the adversary in distinguishing who signed the signature.
When we look at two signatures σ and σ′ that were signed by i and j respectively,

the only difference is in the computation of zi and zj. Let zi be the value from
σ, while z′i is from σ′. Then, we know that zi was computed with an ei that
was output by PreSample, while z′i was computed with an ei that was chosen
uniformly at random conditioned on Aie′i = h′i. From this, Gordon et al. are
able to construct a distinguisher for LWE, as the distributions of zi and z′i are
statistically close to v = As + e from the LWE game and a uniformly random v
respectively. Since by Definition 5.11 we know that LWE is hard if GapSVP is hard,
an adversary cannot distinguish between the encryption of a dummy signature and
a real one. This in turn means that an adversary cannot distinguish between two
statements for the proof π, where one instances was created by user i and the
other by user j 6= i. Then, by the witness indistinguishability of the proof, the
distribution of the proof in both instances looks the same for the adversary. Thus,
he cannot distinguish who created a signature and the scheme offers anonymity.

Traceability

In order to output a valid signature that opens to a non-corrupted user, an ad-
versary has to find a zj, such that ej = zj − BT

j

(
SjbS−1

j zje
)
≤ s
√
m and j is

uncorrupted, as well as a valid proof π. However, such an ej also fulfills Ajej = hj
mod q, since the forgery is valid. But this means, that the adversary was able to
create a forgery for the GPV signature scheme, which is a contradiction.

5.2.3 Techniques
As mentioned before, Gordon et al. follow the standard technique of combining
a signature scheme, an encryption scheme and a proof of knowledge for tying the
previous two together to get a group signature scheme. An important technique
they use is computing keys for the digital signature scheme with OrthoSample. This
way, they relate the (public) keys of the encryption scheme and digital signature
scheme to each other. Due to this, verification is made easier, since ABT = 0
now holds. Furthermore, the proof of knowledge needs less functionality, i.e. the
statement that needs to be proven is simpler. As mentioned before, Gordon et al.
only need to prove that a short vector was encrypted, instead of also proving that
the encryption was done honestly.
The drawback to using OrthoSample is that Gordon et al. have to use multiple

instances of the digital signature scheme and encryption scheme, one for each user.
Thus, the size of the signatures is in O(`), which is a heavy penalty.
A thing to note is that the encryption scheme that Gordon et al. use is not

52

5.2 The Group Signature of Gordon et al.

semantically secure. As mentioned before, it "encrypts" a vector e computing the
ciphertext z = As + e for a uniformly random s. Although this reminds of an
LWE instance, the e is not random. Even if we want to encrypt a message m
and thus compute e := H(m) (with a random oracle) first, e is the same if we
encrypt twice. If we computed e := H(m||r) for a uniformly random r instead,
Micciancio et al. [15] claim that this yields a secure encryption scheme. However,
this shows us that a secure encryption scheme is not required to build a group
signature scheme. In fact, Gordon et al. require a function f , such that the
distribution of f(e) where e is drawn uniformly at random is computationally
indistinguishable from the distribution of f(e) where e is drawn from a certain
distribution. Furthermore, they also need that there exists a way to invert, i.e.
"decrypt", f(e), when in possession of a secret value.

53

Bibliography
[1] Joël Alwen and Chris Peikert. Generating shorter bases for hard random

lattices. Theory of Computing Systems, 48(3):535–553, 2011.

[2] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks
on classical proof systems: The hardness of quantum rewinding. In Founda-
tions of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on,
pages 474–483. IEEE, 2014.

[3] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures:
The case of dynamic groups. In Topics in Cryptology – CT-RSA 2005, volume
3376, pages 136–153. Springer Berlin Heidelberg, 2005.

[4] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove
yourself: Pitfalls of the fiat-shamir heuristic and applications to helios. In
International Conference on the Theory and Application of Cryptology and
Information Security, pages 626–643. Springer, 2012.

[5] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebas-
tian Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha.
Post-quantum zero-knowledge and signatures from symmetric-key primitives.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security - CCS ’17. ACM Press, 2017.

[6] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of par-
tial knowledge and simplified design of witness hiding protocols. In Annual
International Cryptology Conference, pages 174–187. Springer, 1994.

[7] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In Proceedings of the fortieth
annual ACM symposium on Theory of computing, pages 197–206. ACM, 2008.

[8] S Dov Gordon, Jonathan Katz, and Vinod Vaikuntanathan. A group sig-
nature scheme from lattice assumptions. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 395–
412. Springer, 2010.

[9] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge proofs from secure multiparty computation. SIAM Journal on
Computing, 39(3):1121–1152, 2009.

55

Bibliography

[10] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-
interactive zero knowledge with applications to post-quantum signatures.
Cryptology ePrint Archive, Report 2018/475, 2018. https://eprint.iacr.
org/2018/475.

[11] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring
polynomials with rational coefficients. Mathematische Annalen, 261(4):515–
534, 1982.

[12] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions
based on gaussian measures. SIAM Journal on Computing, 37(1):267–302,
2007.

[13] Daniele Micciancio and Salil P Vadhan. Statistical zero-knowledge proofs
with efficient provers: Lattice problems and more. In Annual International
Cryptology Conference, pages 282–298. Springer, 2003.

[14] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract. In Proceedings of the 41st annual ACM sym-
posium on Symposium on theory of computing - STOC ’09, page 333. ACM
Press, 2009.

[15] Oded Regev. Lattice-based cryptography. In Annual International Cryptology
Conference, pages 131–141. Springer, 2006.

[16] Peter W Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[17] Dominique Unruh. Non-interactive zero-knowledge proofs in the quantum
random oracle model. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 755–784. Springer, 2015.

56

https://eprint.iacr.org/2018/475
https://eprint.iacr.org/2018/475

	Introduction
	Notation
	Basic Cryptographic Definitions
	Pseudo-Random Generator
	Pseudo-Random Function
	Hash Function
	Secret Sharing Scheme
	Commitment Scheme
	Digital Signature Scheme
	Group Signature Scheme
	Fixed Group Size
	Dynamic Group Size

	-Protocol
	Non-Interactive Proof System
	Unruh's Transform
	Multi-Party Computation Protocol
	Input Pre-Processing Model
	Merkle Tree

	Symmetric-Key Primitive Based Group Signatures
	The Construction of Katz et al.
	An MPC Protocol
	A Proof of Knowledge for Any NP-Relation
	The Group Signature of Katz et al.
	Efficiency

	Conclusion Katz
	Extension to a Dynamic Group Signature

	Lattice Based Group Signatures
	Basic Definitions for Lattice-Based Cryptography
	The Group Signature of Gordon et al.
	Building Blocks
	Construction
	Techniques

	Bibliography

