
Cooperative static analysis of Android
applications

by

Felix Pauck

Fakultät für Elektrotechnik, Informatik und Mathematik
Heinz Nixdorf Institut und Institut für Informatik
Fachgebiet Softwaretechnik
Warburger Straße 100
33098 Paderborn

Cooperative static analysis of
Android applications

Master’s Thesis
Submitted to the Software Engineering Research Group

in Partial Fulfillment of the Requirements for the
Degree of

Master of Science

by
Felix Pauck
Warburger Str. 52
33098 Paderborn

Thesis Supervisor:
Prof. Dr. Heike Wehrheim

and
Prof. Dr. Eric Bodden

Paderborn, May 2017

Declaration
(Translation from German)

I hereby declare that I prepared this thesis entirely on my own and have not
used outside sources without declaration in the text. Any concepts or quotations
applicable to these sources are clearly attributed to them. This thesis has not
been submitted in the same or substantially similar version, not even in part, to
any other authority for grading and has not been published elsewhere.

Original Declaration Text in German:

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen worden ist. Alle Ausführun-
gen, die wörtlich oder sinngemäß übernommen worden sind, sind als solche ge-
kennzeichnet.

City, Date Signature

v

Contents

1 Introduction 1
1.1 Approach . 2
1.2 Thesis’ Contents . 2

2 Fundamentals 5
2.1 Android . 6

2.1.1 Components . 6
2.1.2 Permissions . 7
2.1.3 Inter-Component Communication 8
2.1.4 Manifest . 9
2.1.5 Running Example (1/3): The Scenario 9

2.2 Analyses . 13
2.2.1 Information Flow Analyses 13
2.2.2 Challenges & Solutions . 14
2.2.3 Tools . 15
2.2.4 Running Example (2/3): Cooperative Analysis 17

3 Conceptual Design 23
3.1 Analysis Query Language (AQL) 23

3.1.1 AQL-Questions . 24
3.1.2 AQL-Answers . 26
3.1.3 Attributes . 28
3.1.4 AQL-Operators . 29
3.1.5 AQL-Queries . 30

3.2 AQL-System . 32
3.2.1 Configuration . 32
3.2.2 Workflow . 34

3.3 AQL Syntax . 37
3.3.1 Syntax of AQL-Queries . 37
3.3.2 Syntax of AQL-Answers 42
3.3.3 Running Example (3/3): AQL in Practice 47

4 Implementation 55
4.1 Overview . 55

4.1.1 Configuration . 55
4.1.2 Implementation Details . 58

vii

Contents

4.2 Structure . 60
4.3 Manual . 63

5 Evaluation 67
5.1 RQ1a: Can analysis tools combined through the AQL be more

precise than immature tools? . 67
5.2 RQ1b: Can analysis tools combined through the AQL be more

precise than mature tools? . 70
5.2.1 Annotations . 76

5.3 RQ2: Can the power of a single analysis tool be increased by means
of the AQL? . 77

5.4 RQ3: Is the AQL-System capable of analyzing sets of one or more
real world apps efficiently? . 79

5.5 RQ4: Can the AQL improve the performance of an analysis? . . . 81
5.6 Summary . 83

6 Conclusion 85
6.1 Summary . 85
6.2 Future Work . 86

Appendix

A XML Schema Definitions (XSDs) 89
A.1 AQL-Answer XSD . 89
A.2 Configuration XSD . 93

B Digital Appendix 95

Bibliography 97

viii

List of Figures

2.1 Android Activity Lifecycle . 7
2.2 Running Example Overview . 10

3.1 AQL-System Overview . 32
3.2 AQL-System Workflow . 34
3.3 AQL-Answer as Graph . 53

4.1 AQL-System: UML Class Diagram 61
4.2 AQL-System: UML Sequence Diagram 62
4.3 Screenshot of AQL-System’s GUI 65

5.1 Screenshot of PAndA2’s result (SimpleApp) 69
5.2 Workflow of the FD+IC3-System 71
5.3 Workflow of the IccTA-System . 71
5.4 Workflow of AQL-Comparer . 72
5.5 Bar-chart (Absolute successful and failed cases) 75
5.6 Bar-chart (Precision, Recall, F-Measure, Successrate) 76
5.7 Workflow sketch of the AQL-Minimizer 82

ix

List of Tables

3.1 Grammar of AQL Questions . 38

4.1 Parameters . 64

5.1 DroidBench Evaluation Results 74
5.2 Evaluation Results for the set of Real World Apps 80

xi

1 Introduction

Nowadays not only computers are used for electronic data processing. Quite the
contrary is the case: We live in the age of the Internet of Things. In this term
”Things” refers to a plethora of devices that are meant to make life easier. To do
so, they collect, process and exchange data. Excellent examples are smartphones
and tablets, which have already become indispensable. Smartwatches, smart-TVs
and intelligent board computers in cars are becoming more and more a part of
everyday life.

All these ”Things” deal with all sorts of data. The user knowingly enters data
such as contact information, messages and mails as well as passwords and banking
accounts. Additionally, the devices collect data on their own with sensors that are
always active. For example, many devices track their location, scan fingerprints
or automatically record what the user hears and sees. Since this data should be
considered private and security-sensitive, it has to be protected.

Thus, there are rules and mechanisms that offer protection. For example, it is
prohibited by law to access data without authorization. Infringement would result
in penalties. Furthermore, any piece of software should be designed with aspects
of security in mind to avoid unintentional data leaks. However, since it is difficult
and thereby time consuming and expensive to develop secure software, security
often cannot be guaranteed. Nevertheless, tools that are able to automatically
find security issues, can be used to convince a user that a piece of software is
trustworthy and secure.

This thesis focuses on such tools in the context of mobile devices, more precisely,
on the analysis of mobile applications (apps). Apps are usually downloaded and
installed without checking their functionality. Some apps, for example, might
do a lot more than the user expects them to. Along with that, data might be
leaked by accident or be revealed on malicious purpose. To develop an analysis
that detects such security issues is challenging for various reasons. First, the
field of app analysis is rather new in comparison to the analysis of other software
artifacts. Second, each mobile operating system has its unique features which
makes it tough or impossible to apply existing mechanisms. Third, most mobile
operating systems are updated quite frequently. As a consequence analyses may
have to be updated as well in order to stay up-to-date. Fourth, the ongoing race
between attackers who hide malicious code and program analysts who try to detect
this hidden code, makes it hard to keep the precision of an analysis at its best.
Luckily, mature tools are available to precisely answer certain analysis questions.
However, one tool capable of accurately answering question A might be imprecise
when it comes to question B.

1

1. Introduction

To avoid imprecise answers we want to bring expert tools together to coopera-
tively answer analysis questions as precisely as possible. This can be realized by
following the divide and conquer approach: A complex analysis task is divided
into parts and each part is answered by the most precise tool. To this end, a com-
mon language is required that allows us to generally formulate analysis tasks and
questions as well as solutions and answers. Consequently, the conceptual design
of such a language that permits the cooperation of analysis tools represents the
main goal of this thesis.

1.1 Approach

The approach used to achieve the main goal of this thesis, developing a language
that allows the formulation of analysis questions and answers, is summarized in
the following.

First, the content of such a language or, more precisely, the content of such
analysis questions and answers is specified. To do so, a formal definition of all
possibly occurring elements in questions and answers is provided. Second, it
is defined how to process questions and answers in order to combine analyses.
Therefor, it is described how to split analysis questions into smaller parts and
how to combine the answers associated with these smaller parts. The third part
explains how to acquire these associated answers: The concept of a system is
presented that can be used to interact with analysis tools.

These three parts lead to the syntactic definition of one language, that can be
used to represent the formally defined questions and answers. It describes how to
split and combine questions and answers respectively, and explains when to ask
analysis tools for their precise results. This definition represents the main goal of
this thesis.

Furthermore, to test this approach in practice and to evaluate its use and power,
a tool that uses this language is described and implemented.

1.2 Thesis’ Contents

In the first part, all required fundamentals are introduced. For that purpose, the
operating system Android, which represents the field of application, along with
its unique features, properties and challenges is described (see Section 2.1). Next,
a general description of program analyses is provided and followed by a detailed
presentation of specific program analyses considering apps built for Android (see
Section 2.2). As a part of the fundamentals chapter, a running example is intro-
duced and continued in the following chapters.

The conceptual design (see Chapter 3), presented thereafter, explains the pre-
viously described approach in detail. Thereby the terms analysis question and
answer are introduced and explained. Of central importance in this chapter is

2

1.2 Thesis’ Contents

the formal and syntactic definition of a language that can be used to precisely
describe such questions and answers as well as a system that uses this language.

In Chapter 4 the structure of an implementation of such a system is described.
Furthermore, it is highlighted how this implementation is linked to the concept.
The next chapter deals with the evaluation, which shows that this implemented
system works as expected. Additionally, the results of several experiments con-
sidering different scenarios are presented.

This thesis ends with a summary of what has been achieved. In addition an
outlook is given that explains why and how to continue the project started with
this thesis.

3

2 Fundamentals

In the field of information technology, security generally refers to the protection of
sensitive and private data. More precisely, it corresponds to the ”protection of in-
formation and information systems from unauthorized access, use, disclosure, dis-
ruption, modification, or destruction in order to provide confidentiality, integrity,
and availability” [oNSS17]. In this context confidentiality tells us that information
should only be accessible to authorized and trusted individuals and software ar-
tifacts. The property integrity stands for the completeness and accuracy of data.
Last, availability refers to the need, that information has to be accessible whenever
it is required. When it comes to mobile devices such as smartphones, for example,
the device’ location or the stored contact data demand protection. On the one
hand, nobody should be able to access or modify that information without being
permitted to do so. On the other hand, once the permission is granted, the access
to such data should be immediate and accurate.

Typical security flaws in the area of mobile devices have its origins in the apps
which are installed. Apps can be downloaded from various markets and are de-
veloped by thousands of different developers. Although this does not seem to be
a problem at first glance, it becomes a problem once we realize that we cannot
trust some developers, markets or apps. Apps might be developed and shipped in
order to steal, corrupt or manipulate data. This is why techniques are needed to
prevent or detect security issues.

Constructive techniques can be used to restrict the access to certain resources
or to avoid unwanted communication and thereby prevent security problems.
For example, apps built for the operating system called Windows Phone 7 ”can
only send messages to a small number of trusted system applications (e.g. the
browser)” [CFGW11]. The operating system Android protects resources such as
the camera of a mobile device with permissions which have to be requested and
granted, otherwise an app cannot use the resource. All these constructive tech-
niques have to be implemented into the system itself and cannot be changed often
or quickly since all apps built for the system would have to be changed as well.
Hence, it is very important to find a compromise between restriction and open-
ness, for example, an app should be able to communicate with other apps but
there should be rules to do so. Whether an app follows such rules can be shown
with analytic techniques. Analyses are capable of showing certain properties and
detecting security problems that cannot be prevented. For instance, an analysis
could be built to detect whether a resource such as the camera of a mobile device
is accessed by an app or not.

In this chapter we present some analyses along with tools implementing them.

5

2. Fundamentals

Furthermore, we show how these analyses could be brought together to cooperate.
The analyses and tools, which stand in the focus of this thesis, are built for
a specific operating system, namely Android. This is necessary, because every
operating system has its own unique features, as does Android. These features
and the arising analysis challenges are explained in the following section.

2.1 Android

Android is an open-source operating system for mobile devices such as smart-
phones, tablets, notebooks and even cars. Google took over the development of
Android in 2005. Since then the operating system has become more and more
popular. Nowadays, Android is the leading operating system with more than
86% [Gar17, tF17] of all mobile devices utilizing it. Primarily, this operating
system supports the execution of smaller software products, mostly called appli-
cations or apps in the context of mobile devices. Apps provide a broad variety of
different functionalities, ranging from simple text editing or text messaging apps
to banking or 3D-gaming apps. The programming language used to develop An-
droid apps is based on Java1. Thus, it can also be imagined as Java extended
by Android libraries. Nevertheless, the structure of Android apps differs from the
structure of Java programs. In the following, these differences, along with the gen-
eral structure of Android apps, are described. Furthermore, some security features
of Android and available app-to-app communication mechanisms are explained.

2.1.1 Components

Each Android app consists of a set of components. There are four types of com-
ponents available in Android, which are represented by Java classes [Goo17c]:

1. Activity components serve as the user interface of an app. Hence, any in-
teraction with the user is handled by an Activity. Each Activity represents
only one view of the complete user interface. This is why most apps consist
of multiple Activities associated with different functionalities, for example,
to take photos, view maps, send emails etc.

2. Service components are mostly used to execute long-running operations in
the background such as polling data from the Internet in order to display
notifications on certain events. In contrast to Activities, Services have no
user interface.

3. A Content provider manages the access to any sort of structured data com-
parable to a database. For instance, the contact data is stored and handled
by a Content provider.

1Java is a well known, object-oriented programming language.

6

2.1 Android

4. Broadcast receiver components can receive messages from other components
or directly from the operating system. Thereby, an app can react on system
wide events. For example, the operating system broadcasts a message once
the battery of a mobile device runs low.

SIM App

Permission:
READ_PHONE_STATE

Source:
String secret = …

.getSimSerialNumber()

Intent-Sink:
Intent intent = new Intent(...);
intent.putExtra("Secret", secret);
startActivity(intent)

Intent-Source:
String secret =

getIntent().getStringExtra("Secret")

Sink:
… .sendTextMessage(… , secret, ...);

Permission:
SEND_SMS

Question 1

Question 2

Question 3

SMS App

Cooperation Analysis

Tool 1
(e.g. PAndA²)

Tool 2
(e.g. Dare, IC3, Primo)

ask
q

u
estio

n
 1

an
sw

er
q

u
estio

n
 1

ask
q

u
estio

n
 3

an
sw

er
q

u
estio

n
 3

Tool 3
(e.g. FlowDroid)

ask
q

u
estio

n
 2

an
sw

er
q

u
estio

n
 2

Analyzed app
(.apk)

Environment apps
(.apk)

Analysis
result

AQL-System (Cooperation Analysis)

Analysis
Question

Question 1

Question 2

Question 3

To
o

l 3
(e

.g
. F

lo
w

D
ro

id
)

To
o

l 2
(e

.g
. I

C
3

)

To
o

l 1
(e

.g
. P

A
n

d
A

²)

Analysis
Result

Answer 1

Answer 2

Answer 3

AQL-System

Parser Asker

Result
Parser

Result
Parser

Result
Parser

Question Answer

Tool Collection
(e.g. PAndA², FlowDroid, IC3, …, AQL-System)

AQL-System (Cooperation Analysis)
Analysis
Question

Question 1

Question 2

Question 3

Analysis
Answer

Answer 1

Answer 2

Answer 3AQL-System (IC3)

AQL-System (FlowDroid)

AQL-System (PAndA²)

SIM App

Permission:
READ_PHONE_STATE

Source:
String secret = …

.getSimSerialNumber()

Intent-Sink:
Intent intent = new Intent(...);
intent.putExtra("Secret", secret);
startActivity(intent)

Intent-Source:
String secret =

getIntent().getStringExtra("Secret")

Sink:
… .sendTextMessage(… , secret, ...);

PAndA²

FlowDroid

IC3

FlowDroid

Permission:
SEND_SMS

PAndA²

SMS App

onCreate()

onResume()

onPause()

onDestroy()

Activity
launched

Activity
running

Activity
shut down

[User
returns]

[User
navigates]

Figure 2.1: Android
Activity
Lifecycle

A single app can contain an arbitrary amount of
components of any kind.

In contrast to ordinary Java programs there exists
no single starting point to launch an app. The execu-
tion of a component is started by a call to a predefined
callback method. For instance, the Android Activity
lifecycle describes the set of callback methods for Ac-
tivities. Figure 2.1 shows a simplified version of this
lifecycle which consists of a subset of all available call-
back methods and connections between them. This
simplified version is sufficient to describe how it works:
Each node in the figure stands for a callback method or
the state of the Activity whereas the edges represent
the execution order. Once an Activity component is
launched the onCreate() method is executed followed
by the onResume() method. Before an Activity is shut
down the two methods onPause() and onDestroy()

are executed. It is called a cycle, because the first
two methods (onCreate() and onResume()) can be
executed again after the onPause() method has been
executed. If the user simply returns to the running Ac-
tivity only the onResume() method is executed again.
However, the system might kill the Activity process to
spare resources for example. In this case and if the user
navigates to the Activity again, the onCreate() and
onResume() methods are executed again.

Once an app is started at least one component has to
be launched. Which one is launched and which other ways are available to make
use of other components is defined in an app’s manifest file which is described at
the end of this section (see Section 2.1.4).

2.1.2 Permissions

Android has several security mechanisms. For instance, any app is executed in
its own runtime environment, represented by a virtual machine. One emerg-
ing consequence is that one app cannot directly access the data of another one.
Other security mechanisms can be found when it comes to cost generating ac-
tions such as sending SMS to well-known premium receivers. In such a case, the
Android operating system double-checks if the user really wants to perform this

7

2. Fundamentals

action [Goo17a].
Furthermore, Android possesses a permission system. Through this system cer-

tain resources, such as the camera of a mobile device, are protected against being
used without knowledge of the user. Accessing a permission-protected resource is
mostly implemented through an Android API call. As soon as the system receives
an API call, it checks whether the involved permission has been granted to the
app. Which permissions are required by an app has to be specified in its manifest
(see Section 2.1.4). Before Android version 6.0 the user had to grant all required
permissions before the installation of the app. In the current version, the user has
to grant each permission individually, once the app requests the usage [Goo17a].
An attempt to access a resource protected by a permission without declaring the
use of this permission in the manifest or without being granted to use it, results
in an app-crash triggered by an exception.

However, only a subset of all available permissions has to be granted by the
user, others are granted by default. The permission attribute protection-level tells
us, which permissions belong to this subset. The protection-level can be set to
one of the following values:

• dangerous - These permissions have to be granted by the user, because the
resources protected by these are considered as security-sensitive.

• normal - These permissions are granted by default.

”Normal” permissions should imply minor risk and serve only as
a ”heads-up” for the user that the application is requesting access
to such functionality.[AYU+09]

• signatureOrSystem - A permission of this type is granted automatically, if
the app requiring the permission belongs to the operating system or if it is
signed with the same signature as the app declaring the permission.

• signature - The app requiring a permission of this type has to be signed with
the same signature as the app declaring it.

Developers can also use available permissions or define their own custom per-
missions in order to protect components of their own. Custom permission have to
be declared in the Android manifest (see Section 2.1.4). How to launch or interact
with a component of another app is explained in the following.

2.1.3 Inter-Component Communication

Android components communicate with each other via so-called intents. From an
abstract perspective intents can be described as envelopes. These envelopes might
be filled with data and sent from a sender component to a receiver component.
If the sender knows the receiver component, the intent can be send explicitly by
naming the class of the receiver component. In case the receiver is unknown, an

8

2.1 Android

intent can be send implicitly by defining properties of a possible receiver. Whether
a component can receive this intent or not depends on its intent-filters. Only if the
properties of at least one intent-filter match the properties of the implicit intent,
it is a valid receiver. Three different properties can be used:

• action - This property refers to a string which mostly hints at the function-
ality of the receiving component. For example, if the value of this string,
namely the action-string, is ”SEND” the component can be used to send
data.

• category - Setting the category to ”READABLE”, for instance, indicates
that the receiver should be a text viewing or editing component.

• data - This last property consists of different attributes which describe the
content of any data sent to the receiver which can be URLs, phone numbers
etc.

Whether these properties match is decided by the Android system and has been
described in a paper by Damien Octeau et al. [OJD+16]. Both, explicit and
implicit intents can target components of the same app or components of other
apps. In the latter case an additional flag (exported) has to be set to true. In
the following the expression inter-app is used to state that more than one app is
involved. The opposite is the case if the expression intra-app is used.

An intent-filter can be defined dynamically in an app’s source code. However,
the most common way is to define it statically by placing its definition in the
Android manifest which is described in the subsequent section.

2.1.4 Manifest

Every Android app comes with exactly one manifest file in XML2 format. This
manifest is a static, predefined collection of various information. First it holds
general information like the app’s name, version or the package it belongs to. It
also contains information mentioned before such as components and their intent-
filters as well as information about used and custom permissions. Two examples
of such a manifest are shown in the following example.

2.1.5 Running Example (1/3): The Scenario

In this section, a scenario is introduced, which is used as running example from
here on. The scenario consists of two apps which are interacting with each other
in order to overcome their limitations and thereby leak security sensitive data.
The two apps are presented now and along with that parts of their source code
and their Android manifests are highlighted. These parts play an important role
in the analyses used to detect the security issue.

2The Extensible Markup Language (XML) is used to manage structured data.

9

2. Fundamentals

SIM App

Permission:
READ_PHONE_STATE

Source:
String secret = …

.getSimSerialNumber()

Intent-Sink:
Intent intent = new Intent(...);
intent.putExtra("Secret", secret);
startActivity(intent)

Intent-Source:
String secret =

getIntent().getStringExtra("Secret")

Sink:
… .sendTextMessage(… , secret, ...);

Permission:
SEND_SMS

Question 1

Question 2

Question 3

SMS App

Cooperation Analysis

Tool 1
(e.g. PAndA²)

Tool 2
(e.g. Dare, IC3, Primo)

ask
q

u
estio

n
 1

an
sw

er
q

u
estio

n
 1

ask
q

u
estio

n
 3

an
sw

er
q

u
estio

n
 3

Tool 3
(e.g. FlowDroid)

ask
q

u
estio

n
 2

an
sw

er
q

u
estio

n
 2

Analyzed app
(.apk)

Environment apps
(.apk)

Analysis
result

AQL-System (Cooperation Analysis)

Analysis
Question

Question 1

Question 2

Question 3

To
o

l 3
(e

.g
. F

lo
w

D
ro

id
)

To
o

l 2
(e

.g
. I

C
3

)

To
o

l 1
(e

.g
. P

A
n

d
A

²)

Analysis
Result

Answer 1

Answer 2

Answer 3

AQL-System

Parser Asker

Result
Parser

Result
Parser

Result
Parser

Question Answer

Tool Collection
(e.g. PAndA², FlowDroid, IC3, …, AQL-System)

AQL-System (Cooperation Analysis)
Analysis
Question

Question 1

Question 2

Question 3

Analysis
Answer

Answer 1

Answer 2

Answer 3AQL-System (IC3)

AQL-System (FlowDroid)

AQL-System (PAndA²)

SIM App

Permission:
READ_PHONE_STATE

Source:
String secret = …

.getSimSerialNumber()

Intent-Sink:
Intent intent = new Intent(...);
intent.putExtra("Secret", secret);
startActivity(intent)

Intent-Source:
String secret =

getIntent().getStringExtra("Secret")

Sink:
… .sendTextMessage(… , secret, ...);

PAndA²

FlowDroid

IC3

FlowDroid

Permission:
SEND_SMS

PAndA²

SMS App

Figure 2.2: Running Example Overview

Figure 2.2 depicts the complete scenario: On the left-hand-side the SIMApp can
be found. An extract from the source code of this app is shown in Listing 2.1. This
app uses the READ PHONE STATE permission by calling the getSimSerialNumber()
method (see Line 6 of Listing 2.1) in order to get the serial number of the SIM-card.
Then this app sends the serial number via an implicit intent to another compo-
nent (see Lines 9-11 of Listing 2.1). If the SMSApp (right-hand-side in Figure 2.2)
receives the intent, it proceeds by extracting the serial number from this intent.
This happens by calling the getStringExtra(..) method (see Line 5 of List-
ing 2.2). Afterwards the extracted serial number is send via SMS to a potentially
untrustworthy recipient. For this purpose, the sendTextMessage(..) method is
called (see Lines 8 of Listing 2.2). This call requires the SEND SMS permission.

1 public class SIMAppMainActivity extends Act iv i ty {
2 . . .
3 private void source () {
4 // Source
5 TelephonyManager manager = (TelephonyManager)

getSystemServ ice (Context .TELEPHONY SERVICE) ;
6 St r ing s e c r e t = manager . getSimSerialNumber () ;
7

8 // Intent Sink
9 In tent i n t e n t = new In tent (”de . upb . fpauck .CALLSINK”) ;

10 i n t e n t . putExtra (” Sec r e t ” , s e c r e t) ;
11 s t a r t A c t i v i t y (i n t e n t) ;
12 }
13 }

Listing 2.1: SIMApp (Source Code)

10

2.1 Android

1 public class SMSAppMainActivity extends Act iv i ty {
2 . . .
3 private void s ink () {
4 // Intent Source
5 St r ing s e c r e t = ge t In t en t () . ge tSt r ingExtra (” Sec r e t ”) ;
6

7 // Sink
8 SmsManager . ge tDe fau l t () . sendTextMessage (”+49111111111” ,

null , s e c r e t , null , null) ;
9 }

10 }

Listing 2.2: SMSApp (Source Code)

Listings 2.3 and 2.4 show the manifests of the SIMApp and the SMSApp respec-
tively. In the following, the content, which is relevant for this example, is ex-
plained. First of all, the uses-permission tags in each manifest show the per-
missions required by each app (see Line 4 of Listing 2.3 and Listing 2.4). These
tags are followed by the application tag. Each application tag contains a
definition of all components and their intent-filters. In case of the SIMApp, one
activity component can be found, namely the SIMAppMainActivity. For this
component only one intent-filter is defined (see Lines 8-11 of Listing 2.3). The
action-string and category of this intent-filter tell the system that this component
should be launched once the app is explicitly started, for example, through the
user interface. The same intent-filter is defined for the SMSAppMainActivity Ac-
tivity which is the only component of the SMSApp. However, another intent-filter
is defined for this component (see Lines 12-15 of Listing 2.4). This tells us that
another way to communicate with this component exists. Furthermore, since the
exported flag is not set explicitly for this intent-filter, the default value (true) is
supposed. Thereby, communication between this component and components of
other apps is not forbidden.

11

2. Fundamentals

1 <?xml v e r s i o n =”1.0” encoding=”utf−8”?>
2 <manifest xmlns : android=” http :// schemas . android . com/apk/ r e s / android ”

package=”de . upb . fpauck . simapp”>
3

4 <uses−permission android : name=” android . permis s ion .
READ PHONE STATE” />

5

6 <application [. . .] >
7 <activity android : name=” . SIMAppMainActivity”>
8 <intent−f i l t e r>
9 <action android : name=” android . i n t e n t . a c t i on .MAIN” />

10 <category android : name=” android . i n t e n t . category .
LAUNCHER” />

11 </intent−f i l t e r>
12 </activity>
13 </application>
14

15 </manifest>

Listing 2.3: SIMApp (Manifest)

1 <?xml v e r s i o n =”1.0” encoding=”utf−8”?>
2 <manifest xmlns : android=” http :// schemas . android . com/apk/ r e s / android ”

package=”de . upb . fpauck . smsapp”>
3

4 <uses−permission android : name=” android . permis s ion .SEND SMS” />
5

6 <application [. . .] >
7 <activity android : name=” . SMSAppMainActivity”>
8 <intent−f i l t e r>
9 <action android : name=” android . i n t e n t . a c t i on .MAIN” />

10 <category android : name=” android . i n t e n t . category .
LAUNCHER” />

11 </intent−f i l t e r>
12 <intent−f i l t e r>
13 <action android : name=”de . upb . fpauck .CALLSINK” />
14 <category android : name=” android . i n t e n t . category .

DEFAULT”/>
15 </intent−f i l t e r>
16 </activity>
17 </application>
18

19 </manifest>

Listing 2.4: SMSApp (Manifest)

In summary, the SIMApp requires the READ PHONE STATE permission and tries to
transfer security sensitive data to the SMSApp which leaks this information. To do
so, it also requires a permission, namely the SEND SMS permission. An analysis, for
example a so-called taint analysis which is described in the next section, should
automatically find such a leakage of information.

12

2.2 Analyses

2.2 Analyses

Analyses can focus on different aspects. On the one hand, there exist analyses
that measure and rate the performance of a piece of hard- and/or software. On
the other hand, there exist analyses, called program or software analyses, which
focus on certain properties of software. For example, a software analysis could
be used to determine which values a variable could hold. A general introduction
into software analyses as well as information on how to build an analysis and
well-known analyses examples can be found in the book Principles of Program
Analysis [NNH99].

Software analyses can be of differing accuracy. There exist flow-insensitive anal-
yses that do not consider any kind of flow. Such analyses assume that any state-
ment might be executed after any other statement. This is why information
flow analyses, which are described in more detail in this section, are always flow-
sensitive. However, analyses can still be of differing precision, depending on its
context-, field- or object-sensitivity [ARF+14]. Additionally, an analysis for An-
droid apps could be intra- or inter-procedural as well as it could only consider
intra- or inter-component/app flows.

Furthermore, Android with its unique structure and features leads to some
challenges in the field of software analyses. These challenges and how to deal with
them is also addressed in this section. Next in this section, some state-of-the-art
tools performing analyses on Android apps are introduced. Lastly, the running
example is continued.

2.2.1 Information Flow Analyses

Information flow analyses can be used to find security issues. Such analyses con-
sider information flows in a piece of software. An information flow describes the
transfer of information from one point to another. If, for example, a variable x is
assigned to a variable y, there exists a direct information flow from x to y. In con-
trast, an information flow can also be indirect. For instance, it could be checked
whether the value stored in one variable matches the value held by another one.
In such a case we gain the information that both variables are equal or not which
allows inferences about the values stored in both variables.

Type-based information flow analysis [MS13] assigns security levels to each vari-
able. The most basic version considers only two levels: H meaning high security
or private/sensitive data and L representing low security or public data. In addi-
tion, one of the simplest security policies says that flows from variables in H to
variables in L are forbidden. For instance, let us assume variable x holds private
data, then x ∈ H holds. If y ∈ L holds as well and an analysis detects a flow from
x to y, then a security leak is detected since data from a variable in H flows to a
variable in L.

Another type of information flow analyses considers graphs, mostly program
dependence graphs (PDGs) [FOW87]. Because of that, analyses of this type are

13

2. Fundamentals

called PDG-based information flow analyses [MS13]. A PDG, for example, rep-
resents all information flows by edges. If there exists a flow from x to y, then
there also exists an edge from any node representing a definition of x to a node
representing y. Assuming that such a flow is forbidden, an analysis can search for
a path between these two nodes in order to detect a security leak.

A third type, so-called taint analyses, can be imagined as a combination of type-
and PDG-based analyses. Comparable to a PDG, a graph is used to find paths
between predefined sources (H) and sinks (L). In this context, a source refers to a
statement which loads or generates security sensitive data. An Android example
for such a statement could be a statement accessing the serial number of a mobile
device. Other statements which leak information to the outside are considered
sinks. In Android this, for instance, could be a statement used to send an SMS
or a simple logging statement. A taint analysis reports any path that leads from
a source to a sink. As a part of this thesis, an inter-app taint analysis is build by
combining different analyses.

2.2.2 Challenges & Solutions

When it comes to Android app analyses, some challenges have to be overcome. In
the following, two of those are described in more detail.

As mentioned before Android apps have no single starting point. That means
there is no main(..) method as in Java programs. Thereby, a typical flow-
sensitive analysis cannot be executed since it misses an initial starting point in
order to construct the information flow paths from there on. One way to overcome
this issue is to create such a single starting point. This is mostly done by auto-
matically generating a dummy main method based on all callback methods which
belong to the analyzed app [ARF+14]. These can be methods which are called
once a button has been pressed or methods of the Activity lifecycle for instance.

Since Android components mostly communicate via intents, these intents have
to be analyzed as well in order to find out if an intent can be received by a certain
component. In other words, to determine inter-component or inter-app flows which
lead from one component or app to another. To do so can be challenging as there
are dozens of ways to generate intents and intent-filters. In addition, there are
even more ways to define, for example, the action-string of an intent. To address
this challenge different approaches can be applied. One state-of-the-art approach
is to dynamically execute the app partially and log which components are called
in all possible execution orders.

Luckily, there are some mature tools available which are already able to over-
come such challenges. In the next section, two tools which handle the two chal-
lenges described above are introduced among other tools.

14

2.2 Analyses

2.2.3 Tools

There exist a lot of tools for static Android app analyses. Most of them perform
information flow analyses based on different approaches and with distinct focuses
[ARF+14, LBB+15a, KFB+14, GKP+15, RCT+14]. Other tools like COVERT
[BSGM15] or PAndA2 [JTP16] concentrate on analyzing Android permissions.
Again other tools focus on the analysis of inter-component and inter-app commu-
nication [OLD+15, OMJ+13]. In the following, three mature tools, which represent
implementations of static analyses, are described in more detail. They have been
chosen because they can be combined into a highly precise inter-app taint flow
analyses that uses permission-protected statements as sources and sinks. Fur-
thermore, in contrast to many other tools, these tools are up-to-date and freely
available.

• FlowDroid [ARF+14] is one of the most precise taint analysis tools available
for Android apps, because it is context-, flow-, field- and object-sensitive.
Furthermore, it generates a dummy main method as a single starting point
for the analysis. However, its potential is limited since it only considers
intra-component flows.

It takes an Android Application Package file (.apk file) as input and gener-
ates a textual result which represents the constructed, tainted flows. Among
other options, a predefined list of sources and sinks as well as several depen-
dencies in the classpath can be used to configure FlowDroid.

• IC3 [OLD+15] can mainly be used to analyze inter-component and inter-app
communication. Therefor, it extracts the three properties action, category
and data from intents and intent-filters of an entire app. The analysis used
to extract these values is an inter-procedural analysis which is context- and
flow-sensitive.

IC3 uses Java classes as input. However, it can be applied on Android apps
since the developers of IC3 provide another tool3 which can reproduce these
classes from an .apk file. The output generated by IC3 can directly be
written into a database or output in form of a protocol buffer [Goo17d].

• PAndA2 [JTP16] is a framework for analyses of Android apps. It comes
with different built-in analyses. One of those is an intra-app taint analysis.
Another one focuses on analyzing the permissions used by an app. To this
end, it detects whether a permission is declared as being used in the manifest
and checks whether there exists a statement whose execution requires this
permission.

It takes an .apk file as input and produces filterable textual and graphical
results at different levels of detail. The format of the textual result can

3The tool Dare reproduces Java bytecode from .apk files [OJM12].

15

2. Fundamentals

be plain text or an interactively viewable HTML document. The graphical
result comes as a scalable vector graphic embedded in an HTML document.

FlowDroid and PAndA2 are based on the soot framework [VRCG+10]. Further-
more, these two and also IC3 use Jimple [VRCG+10] as intermediate language
to reference statements, methods and classes. Jimple is a simplified version of
Java source code, developed as a part of the soot framework. One specialty is
the use of at most three components per statement. Thereby, for example, the
number of different types of statements is reduced to less than a tenth compared
to instructions available in Java bytecode. That is one reason why it is perfectly
suited for analyses.

Apart from that, the results produced by all three tools have nothing in common
and without further work their results cannot be combined. Nevertheless, each
tool is powerful and precise in their analysis field.

Because of these commonalities it seems likely to combine the three tools. In
fact there have been attempts to do so before, for example, the two tools called
IccTA [LBB+15a] and DidFail [KFB+14] combine the results of FlowDroid with
results of Epicc [OMJ+13]. Epicc is the predecessor of IC3. Just like IC3 it is
used to analyze inter-component and inter-app communication. However, it is
less precise. In contrast to IccTA, DidFail was not designed to replace Epicc with
another tool or updated to use IC3 instead of Epicc. This is one reason, why IccTA
is still one of the most powerful implementations of an inter-app taint analysis.
Other tools such as DroidSafe [GKP+15] or FUSE [RCT+14] are also performing
inter-app taint analyses and neither use FlowDroid nor Epicc or IC3. However,
these are outdated and no further updates are planed.

Next to these tools performing static analyses there exist a few tools that run dy-
namic analyses. TaintDroid, for example, is able to execute a dynamic taint analy-
sis which is described in the associated paper by William Enck et al. [EGC+10]. In
contrast to this outdated dynamic analysis tool, Harvester [RAMB16] is a state-of-
the-art one. It was designed to deobfuscate malicious apps, for instance, malware
that tries to hide its malicious code through extensive use of reflection. Therefore,
Harvester precisely determines all possible values that can be used in the context
of a certain statement. For example, harvester can find out which method is called
by a reflective call of Java’s getMethod function. In the context of Android, Har-
vester can also be used to determine intent and intent-filter attributes (action,
category, data) which cannot be determined by static analyses.

In the next section the three tools (FlowDroid, IC3, PAndA2) presented above
are applied on the two apps introduced with the running example in Section 2.2.4.
The results of all three tools are combined in order to detect a security leak
that would remain undetected otherwise. In the chapter hereafter, a concept is
presented that allows arbitrary combinations of analysis tools.

16

2.2 Analyses

2.2.4 Running Example (2/3): Cooperative Analysis

The previously started example considering the SIMApp and the SMSApp is con-
tinued here. A look at the results produced by the tools FlowDroid, IC3 and
PAndA2 enables us to understand how these results have been produced and how
to combine them.

As stated above, FlowDroid detects intra-app taint flows. Therefor, it firstly
determines all sources and sinks that can be found in a single app. Sources and
sinks are represented by specific statements in the source code. A source always
reveals security sensitive data, for example the SIM card’s serial number. A sink
leaks information to the outside by sending an SMS for instance. FlowDroid finds
these sources and sinks through a comparison of all statements with a predefined,
configurable list of sources and sinks. Once the tool has found all sources and sinks,
it determines all paths between these sources and sinks. The result produced for
the SIMApp looks as follows:

...
Found a flow to sink virtualinvoke $r0.

<de.upb.fpauck.simapp.SIMAppMainActivity: void startActivity(

android.content.Intent)>($r1),
from the following sources:

• $r4 = virtualinvoke $r3.

<android.telephony.TelephonyManager: java.lang.String

getSimSerialNumber()>() (in <de.upb.fpauck.simapp.SIMAppMainActivity:
void source()>)

...

FlowDroid found a flow from the only source (getSimSerialNumber()) to the
only sink (startActivity(..)). A similar flow can be found in the SMSApp:

...
Found a flow to sink virtualinvoke $r3.

<android.telephony.SmsManager: void sendTextMessage(

java.lang.String,...String,...String,android.app.PendingIntent,

...PendingIntent)>("+49111111111", null, $r2, null, null),

from the following sources:

• $r2 = virtualinvoke $r1.<android.content.Intent:
java.lang.String

getStringExtra(java.lang.String)>("Secret")
(in <de.upb.fpauck.smsapp.SMSAppMainActivity: void sink()>)

...

This time the source is represented by the getStringExtra(..) statement that
is connected to a sink, which in turn is represented by the sendTextMessage(..)

statement. Figure 2.2 on page 10 depicts these two flows through the two edges
annotated with FlowDroid. A third edge connects the only sink of the SIMApp

with the only source of the SMSApp. In order to detect the flow represented by
this edge, IC3 comes into play. In contrast to FlowDroid, IC3 does not directly
output flow paths, but it indirectly collects sources and sinks. More precisely, it

17

2. Fundamentals

collects intent-sources and intent-sinks. These types of sources and sinks refer to
statements, that are involved once a component communicates with another one.
The results produced for the SIMApp and the SMSApp are presented in Listing 2.5
and Listing 2.6, respectively.

1 name : ”de . upb . fpauck . simapp”
2 v e r s i on : 1
3 used pe rmi s s i on s : ” android . permis s ion .READ PHONE STATE”
4 components {
5 name : ”de . upb . fpauck . simapp . SIMAppMainActivity”
6 kind : ACTIVITY
7 exported : true
8 i n t e n t f i l t e r s {
9 . . .

10 }
11 e x i t p o i n t s {
12 i n s t r u c t i o n {
13 statement : ” v i r t u a l i n v o k e r0 .<de . upb . fpauck . simapp .

SIMAppMainActivity : void s t a r t A c t i v i t y (android . content .
In tent)>(r1) ”

14 c lass name : ”de . upb . fpauck . simapp . SIMAppMainActivity”
15 method : ”<de . upb . fpauck . simapp . SIMAppMainActivity : void source

()>”
16 id : 10
17 }
18 kind : ACTIVITY
19 i n t e n t s {
20 a t t r i b u t e s {
21 kind : ACTION
22 value : ”de . upb . fpauck .CALLSINK”
23 }
24 a t t r i b u t e s {
25 kind : EXTRA
26 value : ” Sec r e t ”
27 }
28 }
29 }
30 }
31 a n a l y s i s s t a r t : 1479897285
32 a n a l y s i s e n d : 1479897290

Listing 2.5: IC3 result for the SIMApp

18

2.2 Analyses

1 name : ”de . upb . fpauck . smsapp”
2 v e r s i on : 1
3 used pe rmi s s i on s : ” android . permis s ion .SEND SMS”
4 components {
5 name : ”de . upb . fpauck . smsapp . SMSAppMainActivity”
6 kind : ACTIVITY
7 exported : true
8 ex t ra s {
9 ext ra : ” Sec r e t ”

10 i n s t r u c t i o n {
11 statement : ” r1 = v i r t u a l i n v o k e r2 .<android . content . In tent : java

. lang . S t r ing getSt r ingExtra (java . lang . S t r ing)>(\” Sec r e t \”) ”
12 c lass name : ”de . upb . fpauck . smsapp . SMSAppMainActivity”
13 method : ”<de . upb . fpauck . smsapp . SMSAppMainActivity : void s ink ()>

”
14 id : 2
15 }
16 }
17 i n t e n t f i l t e r s {
18 a t t r i b u t e s {
19 kind : ACTION
20 value : ”de . upb . fpauck .CALLSINK”
21 }
22 a t t r i b u t e s {
23 kind : CATEGORY
24 value : ” android . i n t e n t . category .DEFAULT”
25 }
26 }
27 i n t e n t f i l t e r s {
28 . . .
29 }
30 }
31 a n a l y s i s s t a r t : 1479897295
32 a n a l y s i s e n d : 1479897300

Listing 2.6: IC3 result for the SMSApp

The intent-sink is represented by the Lines 11-30 of Listing 2.5. On the one hand,
the referenced statement (startActivity(..)) can be found there. On the other
hand, the intent attributes belonging to the intent, which is used to start another
activity, are listed. For example the action-string ”de.upb.fpauck.CALLSINK”.
This action-string can be found in the result produced for the SMSApp, too (see
Line 20 in Listing 2.6). In this case, the origin of the intent-source is represented by
the Lines 11-13 of Listing 2.6. In particular, the statement getStringExtra(..)
is referenced. Thereby, the complete intent-source is described with its origin and
its intent-filter attributes. Since the two action-strings match, it can be assumed
that there exists a flow from the detected intent-sink to the detected intent-source.

In the following an extract from the analysis result output by PAndA2 for the
SIMApp is shown:

19

2. Fundamentals

...
-----$r4 = virtualinvoke $r3.<android.telephony.TelephonyManager:
java.lang.String getSimSerialNumber()>() in method

<de.upb.fpauck.simapp.SIMAppMainActivity: void source()>-----

• android.permission.READ PHONE STATE (REQUIRED)

...
-----specialinvoke $r1.<android.content.Intent:
void <init>(java.lang.String)>("de.upb.fpauck.CALLSINK") in method

<de.upb.fpauck.simapp.SIMAppMainActivity: void source()>-----

• android.permission.READ PHONE STATE (MAYBE REQUIRED)

...

It shows the READ PHONE STATE permission and all statements that require this
permission. In this case, the statement calling the getSimSerialNumber() method
requires this permission to directly access resources protected by it. This is sym-
bolized through the permission group which is displayed in brackets behind the
permission’s name. The call to the constructor of an Intent object might also re-
quire that permission, because the intent could possibly address a receiver who re-
quires it. PAndA2 informs about that possibility by assigning the MAYBE REQUIRED

permission group.

Similarly, the SEND- and WRITE SMS permission can be found in the result for
the SMSApp:

...
-----virtualinvoke $r3.<android.telephony.SmsManager:
void sendTextMessage(java.lang.String,java.lang.String,

java.lang.String,android.app.PendingIntent,android.app.PendingIntent)>
("+49111111111", null, $r2, null, null) in method

<de.upb.fpauck.smsapp.SMSAppMainActivity: void sink()>-----

• android.permission.SEND SMS (REQUIRED)

• android.permission.WRITE SMS (MISSING)

...

The call of the sendTextMessage(..) method requires two permissions, namely
the SEND SMS and the WRITE SMS permission. From the manifest of the SMSApp

(see Listing 2.4 on page 12) we know that the SEND SMS has been marked as used.
The WRITE SMS permission instead is not marked as used. However, this is no
problem since the protection level of this permission is set to normal. Thereby, it
is guaranteed, that the app will work as expected even if that permission is not
declared for use.

The results of all three tools look completely different. Nevertheless, there
are some parts, which appear in all of them. For example the statement calling
the getSimSerialNumber() method is referenced in one result of FlowDroid as
well as in one result of IC3 and PAndA2. Based on these common elements the

20

2.2 Analyses

results can be merged in order to analyze the complete scenario (see Figure 2.2 on
page 10). Thereby we can detect an inter-app taint flow from a source to a sink,
both protected by at least one permission. This flow starts with the statement
calling the getSimSerialNumber() method. PAndA2 tells us that this statement
requires the READ PHONE STATE permission and FlowDroid has detected a flow
from this statement to an intent-sink of the SIMApp. IC3 connects this intent-
sink of the SIMApp with an intent-source of the SMSApp. FlowDroid in turn tells
us that this intent-source is connected to the sendTextMessage(..) statement.
According to PAndA2 this statement requires two permissions. In summary, a
flow from the getSimSerialNumber() statement, requiring the READ PHONE STATE

permission, to the sendTextMessage(..) statement, requiring the SEND SMS and
WRITE SMS permissions, is found. This flow represents a possible security issue
since the SIMApp was neither meant to send an sms nor to leak the sim card’s
serial number.

The concept which is developed in the next chapter precisely describes a way
how to automatically combine such results. Thus, this example is continued at
the end of the next chapter.

21

3 Conceptual Design

The running example at the end of the previous chapter indicates that it is reason-
able to combine different analysis results computed by mature tools. This chapter
focuses on designing a concept that can be used to achieve this. It brings analysis
tools together and makes them cooperate, which can be advantageous in various
situations:

• Whenever a program analyst is confronted with analysis results that are too
imprecise and do not match their expectations, they can try to apply other
tools or combinations of other tools in order to achieve more precise results.

• Analysis developers could build new analyses on the basis of other analyses
while having in mind that the results are combined in the end. Thereby
they do not have to rebuild the basis. More importantly, they need a way
to combine these analyses with their new one.

• During the execution of one analysis, different questions may arise. Some of
them might be answered precisely by the analysis itself. Other answers to
such questions might be approximated or guessed. To avoid such approxi-
mations or guesses, specialized tools could be asked on demand once such a
question arises.

In all these situations, a language is required, that allows the formulation of anal-
ysis questions and answers. In this chapter the concept of a query language for
Android app analysis tools, namely the Analysis Query Language (AQL), is pro-
posed. Therefor, two structural parts are defined formally and syntactically. First,
the structure of questions which can be asked in order to execute analysis tools
and, second, the structure of answers that represent the results produced by these
tools. As a third part of this chapter, the conceptual structure of a system using
the AQL is explained. At the end of this chapter the running example is continued
again. In doing so, it is demonstrated how the AQL and an associated system
works.

3.1 Analysis Query Language (AQL)

Query languages are typically used to manage structured information. Two fa-
mous examples are the Structured Query Language (SQL), that is used to access
data held in a relational database, or the XML Path Language (XPath), that can

23

3. Conceptual Design

be used to navigate to and process certain nodes of XML documents. However,
there exist slightly different query languages such as the Program Query Language
(PQL) [MLL05] which is used to initialize static analyses in order to detect and
resolve issues in a program. For instance, the PQL allows to formulate queries
that can be issued to eliminate security concerns like points of attack for SQL-
Injection. In this case the program represents the structured information that is
managed.

All query languages have in common, that they allow different actions to read,
filter, combine or, speaking generally, process some sort of information. In case
of the AQL, this functionality is needed as well. Analysis results, which represent
the information of interest, should be readable in order to reuse them. Different
analysis tools should be cooperating by combining their results. Lastly, any re-
sults, combined or not, should be filterable to reduce its content to the essential
parts.

In the next sections, the structure of the AQL is defined. Among other parts,
questions and answers that belong to the AQL are formally described. This defi-
nition and formal description is used as a basis for the syntax of the AQL defined
in the sections thereafter.

3.1.1 AQL-Questions

In the context of Android app analyses, different questions can be asked. The
analyst Bob for example might want to know whether there exists an information
flow from one program location in an app to a second location in the same or an-
other app. If Alice wants to answer these questions, she could ask for information
about intent-sinks and -sources in order to find inter-component flows. To assist
her, Bob could have already asked for a list of intents and intent-filters. A third
person, Charlie, could be interested in a completely different field, for example
he might want to know whether there are any permissions required to execute a
certain method. To sum it up, a collection of questions that can be asked is shown
below:

• Does there exist a flow from x to y?

• Which explicit/implicit intents are launched by x?

• Which intent-filters are defined for x?

• Which intent-sinks or -sources can be found in x?

• Which permissions are required by x?

Hereby, x and y reference statements, methods or classes of an app or an entire
app. These questions are precisely formulated here.

First, it has to be specified what we are asking for. For this purpose, the
questioner must choose a subject of interest from the following set of subjects (S):

24

3.1 Analysis Query Language (AQL)

S = {Flows, Intents, IntentFilters, IntentSinks, IntentSources, Permissions}

Second, the analysis target has to be referenced. Since an analysis can target
parts such as program locations of one or more apps as well as one or more
entire apps, a way to describe all these possible targets is required. Therefore,
let us assume, the abstract set App describes the set of all existing apps, then
StatementsX , MethodsX and ClassesX represent sets of all statements, methods
and classes of apps in X ⊆ App. Putting these sets together adds up to a set of
all references (R) which can be used in a question:

R = {(sX ,mX , cX , X) | sX ∈ StatementsX ∪ {ε} ∧mX ∈ MethodsX ∪ {ε}∧
cX ∈ ClassesX ∪ {ε} ∧X ⊆ App}

In this context, ε stands for null values. Accordingly, sX , mX and/or cX might be
null in a reference. X is not allowed to be empty, because it has to be set in order
to know which apps should be analyzed. Furthermore, let RC describe a subset
of R that only contains references to components. For these component references
sX = ε and mX = ε always holds. Considering the collection of questions given
above, x and y are elements of the set R.

With these two sets a question (q) can be described in a tuple consisting of a
subject of interest (s) and a subset of the available references (Rq): q = (s, Rq).
Thus, the set of all questions (Q) is:

Q = {(s, Rq) | s ∈ S ∧Rq ⊂ R ∧ 1 ≤ |Rq| ≤ 2}

The cardinality of Rq is bounded because we only ask for properties in a reference
or for flows from one reference to another. To do so, at least one and not more
than two references are required.

Someone could, for example, ask for a list of all permissions that are required by
the sendTextMessage(..) statement in the SMSApp from the running example.
This question (q′) can be formulated as follows:

s′ = Permissions

R′ = {(sendTextMessage(..), ε, ε, {SMSApp})}
q′ = (s′, R′)

Asking for flows from the SIMApp to the SMSApp, for instance, would require two
references (cf. q′′):

s′′ = Flows

R′′ = {(ε, ε, ε, {SIMApp}), (ε, ε, ε, {SMSApp})}
q′′ = (s′′, R′′)

From now on the term AQL-Questions refers to all questions in Q. The number
of these can be increased by extending the set of subjects of interest, but in
the scope of this thesis only the subjects of interest in S are considered. The
counterpart, namely the AQL-Answers, is specified next.

25

3. Conceptual Design

3.1.2 AQL-Answers

AQL-Answers should be able to present information for each subject of interest
in S. A general definition of all available answers (A) is:

A =
⋃
s∈S
As

As refers to the information relevant for each subject of interest s. What infor-
mation belongs to which subject of interest is specified in the following:

• [s = Flows]

A flow symbolizes the transfer of information from one program location to
another. To describe such a flow, these two locations have to be specified.
The set of references R can be used to do so. Thereby, the set of all flows
can be described by:

AFlows = {(rstart, rend) | rstart, rend ∈ R}

• [s = Intents]

Intents are used for inter-component communication. One component sends
an intent to another component. To describe the sending component the set
of references (R) can be used again. In case of an explicit intent the receiver
can be identified by a component reference (r ∈ RC). But in case of an
implicit intent the receiver needs to be recognized through the information
triple action, category and data. Let us assume

I = {i | i = (action, category, data)}

is the set of all combinations of these three properties. Then the set of all
intents can be described as:

AIntents = {(rorigin, t) | rorigin ∈ R ∧ t ∈ RC ∪ I}

• [s = IntentFilters]

Intent-filters can be predefined in the Android manifest or assigned at run-
time, but anyway intent-filters are described by the three properties summa-
rized in I. These properties tell us which intents can be received by the app
that specifies the filter. The set of intent-filters can be defined as follows:

AIntentFilters = {(rorigin, i) | rorigin ∈ RC ∧ i ∈ I}

Since any intent-filter belongs to a component, rorigin refers to this compo-
nent.

26

3.1 Analysis Query Language (AQL)

• [s = IntentSinks]

Intent-sinks are special intents. That is why they can be described in the
same way intents can be described:

AIntentSinks ⊆ AIntents

However, intent-sinks implicitly carry more information than intents, since
they represent ends of information flow paths. This means that there is
some information, for example, tainted data in a taint analysis, that reaches
the origin referenced by an intent-sink.

• [s = IntentSources]

Intent-sources represent the counterpart of intent-sinks. An intent-source
might be the starting location of an information flow path. They can be
described just like intent-sinks and intents with one small but important
difference: The reference (rorigin) has to refer to a statement that, for in-
stance, extracts information from an intent. Nevertheless, the definition is
completely equal:

AIntentSources = {(rorigin, t) | rorigin ∈ R ∧ t ∈ RC ∪ I}

Note that t refers to a component reference in case of an explicit intent
and to an information triple in case of an implicit intent. Furthermore,
AIntentSources ∩AIntents = ∅ and AIntentSources ∩AIntentFilters = ∅ holds, because
intent-sources never have an origin (rorigin) in common with an intent or an
intent-filter. Additionally, intent-filters only reference implicit intents.

• [s = Permissions]

In the context of AQL-Answers, we might want to show which permissions
are used by a reference. Assuming that P describes the set of permissions
that are available in the Android system, APermissions can be defined as fol-
lows:

APermissions = {(rorigin, p) | rorigin ∈ R ∧ p ∈ P}

Using this description of answers and considering question q′ which asked for
permissions required by the sendTextMessage(..) statement the answer should
be A′:

r1 = (sendTextMessage(..), sink(), SMSAppMainActivity, {SMSApp}) ∈ R
A′ = {(r1, SEND SMS), (r1,WRITE SMS)} ⊂ APermissions ⊂ A

This answer contains both permissions (SEND SMS and WRITE SMS) that are re-
quired by the precisely linked statement (r1).

Question q′′ which asks for flows from the SIM- to the SMSApp could be answered
as follows:

27

3. Conceptual Design

r2 = (startActivity(..), source(), SIMAppMainActivity, {SIMApp}) ∈ R
t2 = (de.upb.fpauck.CALLSINK, ε, ε) ∈ I

A2 = {(r2, t2)} ⊂ AIntentSinks

r3 = (getStringExtra(..), sink(), SMSAppMainActivity, {SMSApp}) ∈ R
t3,1 = (ε, ε, SMSAppMainActivity, {SMSApp}) ∈ RC

t3,2 = (android.intent.action.MAIN, android.intent.category.LAUNCHER, ε) ∈ I
t3,3 = (de.upb.fpauck.CALLSINK, ε, ε) ∈ I

A3 = {(r3, t3,1), (r3, t3,2), (r3, t3,3)} ⊂ AIntentSources

A4 = {(r2, r3)} ⊂ AFlows

A′′ = A2 ∪ A3 ∪ A4 ⊂ A

A′′ tells us that there exists a flow from the startActivity(..) statement in the
SIMApp to the getStringExtra(..) statement in the SMSApp. It consists of three
parts. On the one hand, A2 contains information about the intent-sinks of the
SIMApp. On the other hand, A3 contains descriptions of the intent-sources of the
SMSApp. We can conclude that there exists a flow between both apps, because one
intent-sink shares an information triple with one intent-source. More precisely, t2
is equal to t3,3. Lastly, the set A4 shows the flow between both apps and thereby
answers question q′′.

3.1.3 Attributes

Some information generated by analysis tools is very specific, for example, the
permission groups assigned by PAndA2. This information should not get lost once
the tool’s result is transformed into an AQL-Answer. This is why the attribute-
function is introduced consequently. Let the set P contain all name-value-pairs,
that represent the analysis specific information, and P∗ all available combinations
of answer elements and the information

P = {p | p = (name, value)}
P∗ = {(a, p) | a ∈ A ∧ p ∈P}

then the function can be defined as:

attribute: A → 2P(P)

with

attribute(a) = {p | (a, p) ∈P∗}

Considering the answer A′, for example, the permission groups generated by
PAndA2 can be restored:

attribute((r1, SEND SMS)) = {(permission group, REQUIRED)}
attribute((r1,WRITE SMS)) = {(permission group, MISSING)}

28

3.1 Analysis Query Language (AQL)

For now, we assume that the elements in P are known. Later on, it is described
where this information is located and how it can be determined (cf. Section 3.3.2).

3.1.4 AQL-Operators

In this section three AQL-Operators, which can be used to combine or filter AQL-
Answers, are introduced.

The unify operator unifies AQL-Answers. This means that it collects all infor-
mation from two different AQL-Answers and puts it into one. The function unify
defines the operator precisely:

unify : A×A → A
(A1, A2) 7→ A1 ∪ A2

The second operator is called connect operator. To define it, we first introduce
a new set operator: t. It can be used to create a set of flows by connecting
intent-sinks (A1 ⊆ AIntentSinks) with intent-sources (A2 ⊆ AIntentSources):

A1 t A2

= {a | ∃a1 = (r1, t1) ∈ A1 ∃a2 = (r2, t2) ∈ A2 with t1 = t2 : a = (r1, r2)} ⊆ AFlows

The resulting set contains one flow from reference r1 to r2 for each intent-sink and
intent-source that holds the same information triple or component reference as
target (t1 = t2). With this operator the connect operator can be defined through
the following connect function:

connect : A×A → A

with

connect(A1, A2) = A1 ∪ A2 ∪(
((A1 ∪ A2) ∩ AFlows) ∪(

((A1 ∪ A2) ∩ AIntentSinks) t
((A1 ∪ A2) ∩ AIntentSources)

))∗
Equally to the unify operator it constructs the set-union of both inputs. Further-
more, all flows are added that are part of the transitive closure of all flows in
both input sets as well as the flows constructed by connecting all intent-sinks and
intent-sources of both input sets. For example, if the flows (rx, ry) and (ry, rz)
exist, a flow from rx to rz is added. If in addition an intent-sink (rv, t) and an
intent-source (rw, t) exists, the flow (rv, rw) is added as well. Let us assume there
also exists a flow from rz to rv, then, for instance, the flow (rx, rw) is added as
well since the whole transitive closure is considered.

The third operator takes only one input set. It is called filter operator and the
function filter1 specifies what it does:

29

3. Conceptual Design

filter1 : A → A

with

S = {Permissions, IntentSinks, IntentSources} ⊂ S

and

filter1(A) = (A ∩ AIntents) ∪ (A ∩ AIntentFilters) ∪(⋃
s∈S
{a | ∃a1 = (r, i) ∈ A ∩ As ∃a2 = (rx, ry) ∈ A ∩ AFlows

with (r = rx) ∨ (r = ry) : a = (r, i)}
)

It outputs the input set, but beforehand it removes all permissions, intent-sinks
and -sources (a1) whose reference does not appear in any flow paths (a2). Intents
and intent-filters from the input set are kept in the output set.

The filter operator can also be used together with a subject of interest in order to
filter out all elements of the selected subject of interest. Function filter2 describes
how it works.

filter2 : A× S → A

with

filter2(A, s) =
⋃

s′∈S\{s}
A ∩ As′

It is also possible to provide a name-value-pair along with the subject of interest.

filter3 : A×P × S → A

with

p = (name, value) ∈P

and

filter3(A, p, s) ={
{a | a ∈ A with attribute(a) = (name, value)} if s = ε

{a | a ∈ A ∩ As with attribute(a) = (name, value)} ∪ filter2(A, s) else

In this case only those elements are kept in the output set, that have the chosen
name-value-pair assigned or belong to a different subject of interest. If no subject
of interest is specified (s = ε) only elements with the chosen name-value-pair
assigned to it are kept in the output set.

3.1.5 AQL-Queries

In the previous section three AQL-Operators were introduced which are able
to combine AQL-Answers. When to apply which operator is defined by AQL-
Queries. The precise syntax of AQL-Queries is defined in form of a grammar in

30

3.1 Analysis Query Language (AQL)

Section 3.3.1. However, in the following two functions are introduced that allow us
to describe these queries in an abstract way. First, the function ask is defined. It
symbolically connects questions with their associated answers without providing
information how to get or compute these answers:

ask : Q → A
q 7→ A

In this definition A refers to the answer associated with question q. More precisely,
if question q is asked and there exists an analysis tool capable of answering this
question, it replies a result that represents the answer A. In the next section,
it is explained how an AQL-Answer is computed based on the input of an AQL-
Question. But for now we assume that the answer to any question is known. With
this function any query can be formulated through the function query which should
rather be interpreted as an abstract sequence of instructions than a mathematical
function:

query : Q∪A → A

with

query(x) =

{
x if x ∈ A
ask(x) if x ∈ Q

In the following two examples are presented that explain how to interpret such
queries. For example, query u′ is used to ask question q′:

u′ = query(q′)
→ ask(q′)
→ A′

Each line started with an arrow symbol illustrates one instruction of the query.
At the end of the sequence, only the answer to query u′ is left. Another query
(u′′), that uses the unify operator in order to combine the answers to questions q′

and q′′, looks like:

u′′ = query(unify(ask(q′), ask(q′′)))

Interpreted as sequence of instructions, this query tells us that we first have to ask
for the answers to q′ and q′′ before the answers to these questions can be combined
with the unify operator which in turn can be used to produce the final answer.
Thus, the following three steps have to be done in order to respond to the query:

u′′ = query(unify(ask(q′), ask(q′′)))
→ query(unify(A′, A′′))
→ query(A′ ∪ A′′)
→ A′ ∪ A′′

31

3. Conceptual Design

Let these two queries (u′ and u′′) as well as any other constructible query belong
to the set U , the set of all AQL-Queries. Since the output of any query always is
a single AQL-Answer, U ⊆ A holds. Nevertheless, queries are more than answers
once they are interpreted as sequences of instructions as described above.

Furthermore, let the function parts refer to all questions inside a query u ∈ U :

parts : U → 2P(Q)
u 7→ {q0, ..., qn} with n ∈ N

This function abstractly describes the process of looking up all questions that are
mentioned in a query u. For instance, parts(u′) is equal to {q′} whereas parts(u′′)
is equal to {q′, q′′}.

Queries such as u′ and u′′ are used as input by the system introduced in the
next section.

3.2 AQL-System

In this section we describe the structure of a system using the AQL, namely an
AQL-System. A very brief overview of such a system is presented in Figure 3.1.
An AQL-System works like a black-box that takes an AQL-Query as input and
computes a fitting AQL-Answer as output. Inside the black-box, the system is
asking one or more analysis tools for their precise results. To do so, it requires a
configuration that is visible to and editable from the outside to link these tools with
the system. How to do so is described precisely in the next section. Afterwards,
the processes inside the black-box are explained in detail.

AQL-System

Process
Answer

AQL-
Question-

Query

AQL-
Answer

AQL-System

Parse
Query

Preprocess
Apps

Select
tools

Transform
question

Ask tool
Convert
result

Apply
operators

Process
Answer

AQL-
Question
-Query

(q0)

AQL-
Question

(q0)

AQL-
Question

(q1)

AQL-Question
(qx)

AQL-
Question

(qx+1)

AQL-
Question

(qfinal)

Tool
results

AQL-
Answers
(a0, …, an)

AQL-
Answer

(a)

[No applicable tool]

Split
questionAQL-

Question-
parts

(p0, …, pn)

Configuration

Configuration

Tool Collection
(e.g. FlowDroid, IC3, PAndA², Harvester)

HW-/SW-Description
(e.g. available memory, path to Android platforms)

Figure 3.1: AQL-System Overview

3.2.1 Configuration

The configuration plays a central role in the conceptual design of an AQL-System,
because it describes the links between the system and the tools that are executed
while a question is being answered. It significantly decides how powerful and

32

3.2 AQL-System

extensible a system is. First of all, a configuration should contain all the relevant
information about the hard- and software of the host, for example, how much
memory is available or where the Android libraries can be found. Second, the
configuration has to define a list of tools that can be asked for their precise results.
For each tool in the list, general information such as the name and version of the
tool has to be stored along with information about how and in which cases a
certain tool should be executed and which type of information the result holds.

To answer the question which tool is executed in which case, we first want to
differentiate between two types of tools, namely analysis tools and preprocessors.
Whereas analysis tools like FlowDroid, IC3 or PAndA2 take an app as input and
produce a result of their own format as output, preprocessors also take an app or a
description of an app as input and produce a preprocessed app version as output.
For instance, Harvester in the role of a preprocessor can produce a deobfuscated
version of an app. In the workflow section it is explained, that both types of tools
come into play during different stages (see Section 3.2.2).

To determine which tool should be asked for its precise result or to preprocess
an app, let us assume the set Tc is used to model analysis tools and preprocessors
defined in a configuration c. Then, each piece of software t ∈ Tc is described by
its name:

Tc = {t0, ..., tn}, n ∈ N
For example: Tc = {FlowDroid, PAndA2, IC3, Harvester}

Furthermore, for each t ∈ Tc at least one keyword has to be stored in configuration
c. These keywords hint at the functionality of the tool. The function keywords
returns these keywords for a certain analysis tool or preprocessor:

keywords : Tc → Ktools ∪Kpreprocessors

with

Ktools = {IntraAppFlows, InterAppFlows} ∪ (S \ {Flows}) =
{IntraAppFlows, InterAppFlows, Intents, IntentFilters, IntentSinks, IntentSources, Permissions}

Kpreprocessors = {k0, ..., kn}

and

keywords(t) =

{
Kt ⊆ Ktools if t is an analysis tool

Kt ⊆ Kpreprocessors if t is a preprocessor

Notice that the set of keywords to describe analysis tools (Ktools) is related to the
set of subjects of interest (S) introduced along with the AQL-Questions. While
this set is predefined, the elements of Kpreprocessors are defined directly in the con-
figuration. The keywords function helps to determine which tool or preprocessor
should be used (see next section).

33

3. Conceptual Design

3.2.2 Workflow

The internal workflow of an AQL-System is depicted in Figure 3.2. As the black-
box in the Figure 3.1, the AQL-System takes a query asked by a user or a program
and outputs a fitting answer that can be processed further.

AQL-System

Process
Answer

AQL-
Question-

Query

AQL-
Answer

AQL-System

Parse
Query

Preprocess
Apps

Select
tools

Transform
question

Ask tool
Convert
result

Apply
operators

Process
Answer

AQL-
Query

(q0)

AQL-
Query

(q0)

AQL-
Query

(qx = q1)

AQL-Query
(qx)

AQL-
Query

(qx = qx+1)

AQL-
Query
(qfinal)

Tool
results

AQL-
Answers
(a0, …, an)

AQL-
Answer

(a)

[No applicable
tool]

Split
query

AQL-
Questions
(p0, …, pn)

Configuration

Configuration

Tool Collection
(e.g. FlowDroid, IC3, PAndA², Harvester)

HW-/SW-Description
(e.g. available memory, path to Android platforms)

Figure 3.2: AQL-System Workflow

At first, an AQL-System parses the query (q0). Then the apps that are involved
in the query are preprocessed. On this stage various things can happen, for
example, an app could be replaced with its up-to-date version, downloaded from
a market, or a deobfuscated version, which is generated on-the-fly by Harvester.
Which preprocessor should be executed exactly has to be declared in a question
itself. Since the set Apps holds all available apps it also holds the preprocessed
ones. Function preprocess defines how to address such a preprocessed version
inside a question:

preprocess : Apps×Kpreprocessors → Apps

with

k ∈ keywords(s)

and

preprocess(a, k) = a preprocessed by preprocessor s = a′

In this context a′ correlates to a version of app a preprocessed by a preprocessor t.
Thus, if a configuration holds the keyword k1 for preprocessor s1, this preprocessor

34

3.2 AQL-System

can be applied in context of a question like q′′′, that asks for information about
flows in the deobfuscated version of the SIMApp:

k1 = DEOBFUSCATE

q′′′ = (Flows, {
(
ε, ε, ε, {preprocess(SIMApp, k1)}

)
})

After inserting the preprocessed apps, and thereby transforming q0 into q1, the
system has to determine which tools should be executed (see ”Select tools” in
Figure 3.2). This step is executed in a loop. During each iteration of the loop, the
system attempts to find analysis tools capable of answering all questions inside
query qx. The first iteration of the loop is started with qx = q1 as input. On the
one hand, if all parts (parts(qx) = {p0, ..., pn}) of query qx can be answered with
analysis tools declared in configuration c, the system exits the loop. On the other
hand, if at least one part cannot be answered, because there is no suitable tool
available, the system tries to transform the question. Thereby, qx becomes qx+1

and the next iteration of the loop is started with qx = qx+1 as input. If the query
cannot be transformed, the system cannot answer the query and has to abort1.

The function selectTool comes into play, once we want to determine whether
all questions inside a query can be answered with the available tools. It is used
to match the subject of interest of each question p ∈ parts(qx) with keywords
declared for a tool in configuration c. selectTool(p) = s then refers to the tool
that is capable of answering p. The function itself is defined as follows:

selectTool : Q→ Tc

with

selectTool(p = (s, R)) =

tsoi if ∃tsoi ∈ Tc : s ∈ keywords(tsoi)

tinter if ∃tinter ∈ Tc : InterAppFlows ∈ keywords(tinter) ∧ s = Flows ∧ [|R| = 2 ∧
rx,1 = (s1,m1, c1, a1), rx,2 = (s2,m2, c2, a2) ∈ R with a1 6= a2]

tintra if ∃tintra ∈ Tc : IntraAppFlows ∈ keywords(tintra) ∧ s = Flows ∧ [|R| = 2 ∧
rx,1 = (s1,m1, c1, a1), rx,2 = (s2,m2, c2, a2) ∈ R with a1 = a2]∨
[|R| = 1]

ε else

If the subject of interest of the question considers information flows, depending on
the references, tinter or tintra is selected. If it is only one reference or two references
that refer to the same app, tintra is selected. If in contrast two references refer to
different apps, tinter is selected. Otherwise if a different subject of interest than
information flows is chosen, tsoi is picked. If there is no tool available in c that
fits, a null value is output by the function.

For example, the query could consider flows between two different apps. In such
a case the system looks for a tool that is capable of answering inter-app information

1For the sake of clarity this abort is not depicted in Figure 3.2.

35

3. Conceptual Design

flow questions. If such a tool is specified in the system’s configuration, it can be
executed in the next step. Otherwise the system can try to transform the query
in order to produce a query that can be answered with the tools available. For
instance, instead of asking for inter-app flows, we could ask for intent-sinks and
-sources and connect them with the connect operator. Which transformations are
feasible is up to the system itself. In the context of this thesis, we only consider
one transformation described by the following rule:

If a query of the following format is detected and shall be transformed

query(
(Flows, {r1 = (s1,m1, c1, A1), r2 = (s2,m2, c2, A2)})

) with A1 6= A2

it is transformed into the following one:

query(filter(
connect(ask((Flows, {r1})),

connect(ask((Flows, {r2})),
connect(ask((IntentSinks, {r1})),

ask((IntentSources, {r2}))
)

)
)

))

Thereby an inter-app analysis can be composed of an intra-app analysis and an
analysis capable detecting intent-sinks and -sources as presented in the running
example. This rule is applied in the continuation of the running example at the
end of this chapter.

The next step is titled ”Split query”. While this step is executed the query is
split into its questions inside the query. Then finally the tools capable of answering
the individual questions are asked for their precise results. In particular, for each
question p ∈ parts(qfinal) the tool selectTool(p) is executed. How to execute these
tools has to be specified in the configuration. Continuing the example mentioned
before, one question could consider the intent-sinks and another one the intent-
sources. This step as well as the preprocessing step can be done in parallel.
Multiple instances of the same tool or different tools can be executed at the same
time as long as the system requirements are not exceeded, for example, the tools
executed at the same time require more memory than the host can offer.

Once a tool has finished its analysis, the produced result has to be converted
into an AQL-Answer. Therefor, a tool specific converter is required that parses
and interprets the produced result in order to output an AQL-Answer. If finally
all results have been converted into AQL-Answers (a0, ..., an) the AQL-Operators
are applied according to the order they were specified in the query. After this step

36

3.3 AQL Syntax

the AQL-System outputs a single AQL-Answer. This answer may be processed
further afterwards, for instance, it could be evaluated, viewed or used in a bigger
analysis.

3.3 AQL Syntax

In this section the syntax of the AQL that was introduced in the previous section is
specified. Thereto, a grammar and an XML schema definition (XSD) is presented.
During this presentation it is explained, why these two elements are sufficient to
describe the syntax of AQL-Queries and AQL-Answers. Additionally, new and
technical but content-independent elements of AQL-Queries and AQL-Answers
are introduced along with an explanation why they are needed. At the end of this
section, the presented syntax is used in a continuation of the running example.

3.3.1 Syntax of AQL-Queries

Grammar G in EBNF2 format defines language L(G) that can be used to formu-
late AQL-Queries (see Grammar 3.1). Such queries have to define which AQL-
Questions should be answered and which AQL-Operators should be applied on
the produced answers. Derivation examples using this grammar can be found in
the running example at the end of this chapter.

The terminals (T) of G consist of 6 sets. The first two sets represent the subjects
of interest of AQL-Questions: While TFromTo stands for all subjects of interest that
can be used together with two references in order to, for example, describe flows
from one point to another, TIn stands for all subjects of interest that can only
be used together with one reference. The next two sets, namely Top1 and Top2,
describe all three previously defined AQL-Operators. All operators that combine
one or more answers are defined in Top1. In contrast, Top2 holds the filter operator
which can only be applied on a single answer. The next set consists of a collection
of symbols that are required to structure the language L(G). The last set adds
arbitrary strings to the set of all terminals T .

The set N holds the non-terminals of grammar G. These are explained in the
context of the set of production rules (P). In the following we walk through this
set and thereby describe how to derive AQL-Queries.

AQL-Queries

The non-terminal 〈query〉 is defined as start symbol of G and used on the left-
hand side of the first production rule (p1). This production rule tells us, that
each 〈query〉 can be represented by one or more 〈element〉s. An 〈element〉 can be
derived by applying p2:

2Extended Backus–Naur Form

37

3. Conceptual Design

G = (T,N, P, S)

TFromTo = {”Flows”}
TIn = {”Permissions”, ”IntentSources”, ”IntentSinks”, ”IntentFilters”, ”Intents”}
Top1 = {”UNIFY”, ”CONNECT”}
Top2 = {”FILTER”}
T = TFromTo ∪ TIn ∪ Top1 ∪ Top2 ∪

{"?", "!", "’", "FROM", "TO", "IN", "->", "(", ")", "[", "]", "|",
"=", "Statement", "Method", "Class", "App"} ∪
{w | w = (any symbol except "’")+}

N = {〈answer〉, 〈element〉, 〈fromTo〉, 〈in〉, 〈operator〉, 〈operators1〉,
〈operators2〉, 〈query〉, 〈question〉, 〈reference〉, 〈string〉, 〈soi〉,
〈soiFromTo〉, 〈soiIn〉}

S = 〈query〉
P = {

p1 : 〈query〉 ::= 〈element〉+,
p2 : 〈element〉 ::= 〈question〉 "?" | 〈answer〉 "!" | 〈operator〉,
p3 : 〈question〉 ::=

(〈soiFromTo〉 (〈fromTo〉 | 〈in〉))
| (〈soiIn〉 〈in〉),

p4 : 〈answer〉 ::= 〈string〉,
p5 : 〈operator〉 ::=

(〈operators1〉 "[" 〈element〉 (","〈element〉)* "]")
| (〈operators2〉 "[" 〈element〉

("|" 〈string〉 "=" 〈string〉)?

("|" 〈soi〉)? "]"),
p6 : 〈fromTo〉 ::= "FROM" 〈reference〉 "TO" 〈reference〉,
p7 : 〈in〉 ::= "IN" 〈reference〉,
p8 : 〈reference〉 ::=

("Statement" "(" 〈string〉 ")" "->")?

("Method" "(" 〈string〉 ")" "->")?

("Class" "(" 〈string〉 ")" "->")?

"App" "(" 〈string〉 ("|" 〈string〉)? ")",
p9 : 〈operators1〉 ::= {w | w ∈ Top1},
p10 : 〈operators2〉 ::= {w | w ∈ Top2},
p11 : 〈soi〉 ::= 〈soiFromTo〉 | 〈soiIn〉,
p12 : 〈soiFromTo〉 ::= {w | w ∈ TFromTo},
p13 : 〈soiIn〉 ::= {w | w ∈ TIn},
p14 : 〈string〉 ::= "’" (any symbol except "’")+ "’"

}

Grammar 3.1: Grammar of AQL Questions

38

3.3 AQL Syntax

• On the one hand, if an 〈element〉 is derived to 〈question〉 "?", it indirectly
refers to an answer. More precisely, to the answer of a question represented
by 〈question〉. The question mark at the end highlights the end of such a
question.

• On the other hand, if derived to 〈answer〉 "!", it directly refers to a pre-
viously computed answer. The exclamation mark at the end distinguishes
directly addressed answers from indirectly addressed answers. 〈answer〉 sym-
bols can be derived to 〈string〉 symbols by rule p4. In this context 〈string〉s
represent locations of .xml files which are used to store answers.

• If derived to 〈operator〉, the first thing expected is an AQL-Operator which
in turn combines one or more 〈element〉s (cf. p5). This part is accurately
described below in the paragraph about AQL-Operators.

Note that each AQL-Query might consist of arbitrary many AQL-Questions that
can be combined by AQL-Operators or not.

AQL-Questions

Rule p3 is used to derive AQL-Questions. On the left-hand side the non-terminal
〈question〉 can be found. On the right-hand side two options can be chosen.

p3 : 〈question〉 ::= (〈soiFromTo〉 (〈fromTo〉 | 〈in〉))
| (〈soiIn〉 〈in〉)

Option one is used to derive an AQL-Question that possibly considers more than
one reference, for example, a question that asks for flows from a specific location
to another. Option two is used to derive questions that always consider only one
reference. Option one and two respectively use the non-terminals 〈soiFromTo〉 and
〈soiIn〉 to derive subjects of interest of the sets TFromTo and TIn (cf. p12 and p13).
Furthermore, the non-terminals 〈fromTo〉 and 〈in〉 are employed to structure the
involved references and thereby produce easily readable questions.

References

Any reference can consist of at most four parts as shown before: r = (s,m, c, A) ∈
R (see Section 3.1.1). In context of p8 each of these four parts is introduced with a
keyword: "Statement", "Method", "Class" or "App". While the first three parts
are optional the last part is not. Each part is separated from another by an arrow
symbol ("->").

To this end, a statement should be defined by its Jimple representation. Hence,
the 〈string〉 symbol is, for instance, derived to a string such as:

$r4 = virtualinvoke $r3<android.telephony.TelephonyManager: java.lang.String

getSimSerialNumber()>()

39

3. Conceptual Design

It depends on the system how these strings are processed. For example, while
comparing the statement above to other statements it might be reasonable to
ignore variables and only provide and use the generic version of the statement:

<android.telephony.TelephonyManager: java.lang.String getSimSerialNumber()>

Similarly, methods and classes should be defined by their Jimple representation.
However, when it comes to apps the first 〈string〉 symbol somehow represents the
app, for example, by its file path whereas the second, optional 〈string〉 symbol
after the optional pipe ("|") represents a preprocessor. One valid derivation to
reference an app can, for example, look like the following one:

App(’/path/to/apkfile.apk’)

The .apk file is directly referred in order to precisely reference the app. It depends
on the configuration of an AQL-System which preprocessors are available, but the
following two derivations might be valid, too:

App(’/path/to/apkfile.apk’, ’DEOBFUSCATE’)

App(’pkg.class.app’, ’PLAYSTORE’)

The first one again references an app by its .apk file, but this time a preprocessor
is defined. The keyword ’DEOBFUSCATE’, for instance, could call the tool Harvester
in order to deobfuscate the referenced app. The deobfuscated version of this app
is used in order to answer the associated question then.
The second one references an app by its package- and classname. These are
unique in Google’s PlayStore3. Thus, a preprocessor addressed by the keyword
’PLAYSTORE’ could, for example, download the current version of a certain app from
the PlayStore.

AQL-Operators

AQL-Operators are derived by rule p5. On the left-hand side of this rule we find
the nonterminal 〈operator〉. On the right-hand side one of two alternatives can be
chosen.

p5 : 〈operator〉 ::= (〈operators1〉 "[" 〈element〉 (","〈element〉)* "]")
| (〈operators2〉 "[" 〈element〉

("|" 〈string〉 "=" 〈string〉)?

("|" 〈soi〉)? "]")

The first alternative considers AQL-Operators such as the unify or connect
operator. These operators are referenced by the nonterminal 〈operators1〉 and
can be further derived by rule p9. Furthermore, these operators come along with
one or more 〈element〉s. These 〈element〉s refer to answers, as described before

3https://play.google.com/store - Accessed on 04/03/2017

40

https://play.google.com/store

3.3 AQL Syntax

(see paragraph about AQL-Queries), that should be combined with the assigned
operator.
Note that arbitrary many 〈element〉s might be combined here. To do so, the
functions representing the two operators have to be interleaved. Let us assume
a1, a2, ..., an ∈ A with n ∈ N refer to n answers, then the unify operator, for
example, can be applied as follows:

UNIFY [a1, a2, ..., an]

Accordingly, the unify function has to be applied n − 1 times to compute the
unified answer.

unify(a1, unify(a2, ... unify(an−1, an)...))

The second alternative considers the filter operator, which is derivable by rule
p10. It always considers only one 〈element〉. Since the filter operator represents
overall three functions, the optional parts of this alternative are used to distinguish
which function should be utilized. If the shortest form without any optional
parts is given, function filter1 is applied. The first optional part ((〈string〉 "="
〈string〉)?) can be used to define a name-value-pair. Thereby, the first occurrence
of 〈string〉 represents the name. The second one represents the value. Once a
name-value-pair is assigned, function filter2 is used. With the second optional
part (("|" 〈soi〉)?) a specific subject of interest that should be filtered may be
added. If only a subject of interest and no name-value-pair is provided function
filter3 is used, once the operator is applied. The selected subject of interest is
filtered out in this case.

Annotations regarding Grammar G

Grammar G can easily be extended by adding subjects of interest or operators.
For that purpose, we only have to change the respective sets of terminals. For
example, in order to add a new operator, namely unify2, we just have to add
”UNIFY2” to Top1. Additionally, the possibilities to filter certain answers could
quickly be extended. Instead of simple name-value-pairs, boolean terms could be
supported. However, in the context of this thesis the included filter mechanisms
are sufficient.

Next we discuss why the definition of grammar G (see Grammar 3.1) is imprecise
to some extend. For example, the keywords to address certain preprocessors are
not explicitly included in the list of terminals. Anyhow, they have to be defined
in the configuration of a AQL-System.
Defining any part of references by arbitrary strings is imprecise as well. However,
on the one hand, we can benefit from this imprecision, since we are not forced to
use Jimple as intermediate representation. On the other hand, this can become
a disadvantage once we try to combine answers that use different intermediate
representations. This is why we suggest to use Jimple only.

41

3. Conceptual Design

3.3.2 Syntax of AQL-Answers

The XSD (see Listing A.1 in the Appendix) defines how AQL-Answers can be
represented in a single XML document. Since most of the XSD’s code is repetitive
and neither self-explanatory nor easily readable, the XSD is not described in detail
in the following. Instead we walk through examples of valid instances and thereby
describe the schema defined by the XSD.

An XML document that represents a valid instance of this XSD can contain
arbitrary many representations of flows, intents, intent-filters, intent-sinks, intent-
sources and permissions. Each of those contains at least the information formally
described in Section 3.1.2, even if this information is represented in a different
way.

1 <reference>
2 <statement>
3 <statementfull>r1 = v i r t u a l i n v o k e r2 .& l t ; android . content .

In tent : java . lang . S t r ing getSt r ingExtra (java . lang . S t r ing)&
gt ; (” Sec r e t ”)</statementfull>

4 <statementgeneric>android . content . In tent : java . lang . S t r ing
getSt r ingExtra (java . lang . S t r ing)</statementgeneric>

5 <parameters>
6 <parameter>
7 <type>java . lang . S t r ing</ type>
8 <value>” Sec r e t ”</value>
9 </parameter>

10 </parameters>
11 </statement>
12 <method>&l t ; de . f o e l l i x . s inkapp . SinkMainActiv ity : void s ink ()> ;<

/method>
13 <classname>de . f o e l l i x . s inkapp . SinkMainActivity</classname>
14 <app>
15 < f i l e>SMSApp. apk</ f i l e>
16 <hashes>
17 <hash type=”MD5”>505197 d 8 8 5 9 3 0 3 a f c 6 0 f f e e 8 f f 2 9 8 f 3 9</hash>
18 <hash type=”SHA−1”>9

c2e f3ad3b0376 f6c023b fca15 f402 f0eb00c976</hash>
19 </hashes>
20 </app>
21 </reference>

Listing 3.1: References

Most elements refer to parts of an app by using references. References (r =
(s,m, c, A) ∈ R) are represented as depicted in Listing 3.1. Each reference still
consists of descriptions of a statement, a method, a class and an app. However,
in this case each of these elements is described in more detail. A statement is
defined by its original Jimple representation that was found by the analysis, a
generic description of this statement and a detailed list of the involved parameters
(cf. Lines 2-15). Methods and classes are only specified through their Jimple
representation (cf. Lines 16-18 and 19-21). An app is described in two different

42

3.3 AQL Syntax

ways: On the one hand, the .apk file helps to directly recover an app. On the other
hand, the declaration of hashes helps to recognize an app if the path, filename
or environment has been changed. It can be checked whether an app equals
the app used during the analysis by checking if their hashes match. Note that
the declaration of a statement, method and classname is optional whereas the
declaration of an app is required by the XSD.

Intents and intent-filters as well as intent-sinks and -sources require a way to
describe the triple action, category and data (i = (action, category, data) ∈ I).
Listing 3.2 shows how this triple can be described in context of the XSD.

1 <action>android . i n t e n t . a c t i on .VIEW</action>
2 <category>android . i n t e n t . category .BROWSABLE</category>
3 <data>
4 <scheme>http</scheme>
5 <host>www. webs i te . com</host>
6 <path>/path/on/ s i t e</path>
7 </data>

Listing 3.2: action, category, data

The elements action and category refer to the strings that, for example, can be
found in the Android manifest. The data element is represented by several sub-
elements that match the attributes available to describe data in Android. There
are even more attributes accessible in Android then shown in Listing 3.2. However,
the XSD offers possibilities to describe all of them. The triple that is described in
Listing 3.2 could be assigned to an intent-filter, for example. Such an intent-filter
would only accept intents that want to browse a website that can be found on the
web under the following address: http://www.website.com/path/on/site.

The attribute function is implemented by arbitrary sets of attributes consisting
of name and value tags. These describe the name-value-pairs that can be used to
filter answers. Listing 3.3 shows an example.

1 <attributes>
2 <attribute>
3 <name>PermissionGroup</name>
4 <value>REQUIRED</value>
5 </attribute>
6 <attribute>
7 <name>FoundBy</name>
8 <value>PAndA2</value>
9 </attribute>

10 </attributes>

Listing 3.3: Attributes

From here on references, the action-category-data triple and attributes are
shortened for the sake of clarity. In the following, examples for all subjects of
interest are shown.

We can describe flows as demonstrated in Listing 3.4.

1 <flows>

43

3. Conceptual Design

2 <flow>
3 <reference type=”from”> . . .</reference>
4 <reference type=” to ”> . . .</reference>
5 <attributes> . . .</attributes>
6 </ flow>
7 </ flows>

Listing 3.4: Flows

There can be multiple flow-tags included in one flows-tag. Each flow is described
by two references that describe the start- (type=”from”) and endpoint (type=”to”)
of the flow. Additionally, a set of attributes can be added to each flow.

Intents can be displayed differently depending on whether they are explicit or
implicit (cf. Listing 3.5). Lines 2-10 show an implicit intent. The reference refers
to the startActivity(..) statement that uses this intent. In this case, the target
is described by the action-category-data triple. In case of an explicit intent (see
Lines 11-16), the target is described by a reference to the targeted class. These
references should neither have a statement nor a method assigned. To any of these
intents attributes can be attached, even if the example does not show attributes
for the explicit intent.

1 <intents>
2 <intent>
3 <reference> . . .</reference>
4 <target>
5 <action> . . .</action>
6 <category> . . .</category>
7 <data> . . .</data>
8 </target>
9 <attributes> . . .</attributes>

10 </ intent>
11 <intent>
12 <reference> . . .</reference>
13 <target>
14 <reference> . . .</reference>
15 </target>
16 </ intent>
17 </ intents>

Listing 3.5: Intents

Intent-filters are defined by a reference, a target and optionally by attributes.
The references of intent-filters refer to the component they are assigned to. Which
intents are received by this component is described in the target-tag. See List-
ing 3.6 for an example.

1 <intent f i l ters>
2 <intent f i l ter>
3 <reference> . . .</reference>
4 <target>
5 <action> . . .</action>
6 <category> . . .</category>

44

3.3 AQL Syntax

7 <data> . . .</data>
8 </target>
9 <attributes> . . .</attributes>

10 </ intent f i l ter>
11 </ intent f i l ters>

Listing 3.6: IntentFilters

Intent-sinks and -sources are described by the exact same elements as visible
in Listing 3.7. Each sink or source is respectively described by a reference that
either points to a location where an intent is launched or a statement that somehow
extracts information from an intent. Furthermore, the target of each intent-sink
or -source is described through an action-category-data triple or a component
reference, that allows us to match intent-sinks and -sources. Attributes can be
added to both descriptions.

1 <intentsinks>
2 <intentsink>
3 <target>
4 <action> . . .</action>
5 <category> . . .</category>
6 <data> . . .</data>
7 </target>
8 <reference> . . .</reference>
9 <attributes> . . .</attributes>

10 </ intentsink>
11 <intentsink>
12 <target>
13 <reference> . . .</reference>
14 </target>
15 <reference> . . .</reference>
16 </ intentsink>
17 </ intentsinks>
18

19 <intentsources>
20 <intentsource>
21 <target>
22 <action> . . .</action>
23 <category> . . .</category>
24 <data> . . .</data>
25 </target>
26 <reference> . . .</reference>
27 <attributes> . . .</attributes>
28 </ intentsource>
29 <intentsource>
30 <target>
31 <reference> . . .</reference>
32 </target>
33 <reference> . . .</reference>
34 </ intentsource>
35 </ intentsources>

Listing 3.7: IntentSinks

45

3. Conceptual Design

Lastly, permissions are represented by their name, a reference and attributes
(see Listing 3.8).

1 <permissions>
2 <permission>
3 <name>android . permis s ion .SEND SMS</name>
4 <reference> . . .</reference>
5 <attributes> . . .</attributes>
6 </permission>
7 </permissions>

Listing 3.8: Permissions

The name-tag directly refers to the name of the permission which is predefined
in the Android system or defined as a custom permission. The reference points
at the location where the permissions is required. That might, for example, be
a location where an intent is launched or otherwise a statement that attempts to
access a resource like the camera of a mobile device.

There can be arbitrary many elements of each type and attributes can be as-
signed to any of these. All flows, intents, intent-filters, intent-sinks, intent-sources
and permissions are collected as subelements of the answer tag. Following the
rules of this indirectly described schema results in well-formed XML documents
that represent complete AQL-Answers. In the next section, the running exam-
ple is continued. The AQL-Answers presented there are valid instances of the
introduced XSD.

46

3.3 AQL Syntax

3.3.3 Running Example (3/3): AQL in Practice

The running example associated with the SIMApp and the SMSApp is continued
now. In order to get to know whether there exists a flow from a permission-
protected source of the SIMApp to a permission-protected sink of the SMSApp, we
formulate an AQL-Query. Considering this query and assuming that we got an
AQL-System which is setup to use the tools FlowDroid, IC3 and PAndA2, we
explain the AQL-Answer expected as output of such a system.

The following derivation sequence depicts the derivation of the initial query:

〈query〉
p1−→ 〈element〉
p2−→ 〈question〉 ?
p3−→ 〈soiFromTo〉 〈fromTo〉 ?
p12−−→ Flows 〈fromTo〉 ?
p6−→ Flows FROM 〈reference〉 TO 〈reference〉 ?
p8−→ Flows FROM App(〈string〉) TO 〈reference〉 ?
p14−−→ Flows FROM App(’SIMApp.apk’) TO 〈reference〉 ?
p8,p14−−−→ Flows FROM App(’SIMApp.apk’) TO App(’SMSApp.apk’) ?

Each line symbolizes the appliance of one or more production rules of grammar
G. Which rules are applied is denoted on top of the arrows on the left-hand
side. The last line shows the final derivation of the initial query (q0). Since
there are no preprocessors assigned, the system can directly try to find applicable
tools to answer all questions inside query q0. In this case, it is only one question
that considers inter-app flows. However, the configuration of the assumed AQL-
System does not offer any applicable tool, because FlowDroid is only capable of
answering intra-app flow questions and IC3 as well as PAndA2 cannot answer
any flow questions at all. According to this the function selectTool returns a
null value for query q0. As a consequence the system attempts to transform the
query. Thereto, the transformation rule described in Section 3.2.2 is used. The
transformed query q1 looks as follows:

FILTER [

CONNECT [

Flows IN App(’SIMApp.apk’) ?,

Flows IN App(’SMSApp.apk’) ?,

IntentSinks IN App(’SIMApp.apk’) ?,

IntentSources IN App(’SMSApp.apk’) ?

]

]

47

3. Conceptual Design

Query q1 is similar to the query q0 even if it looks completely different. The
two flow questions contained in q1 consider the intra-app flows from source to
intent-sink and from intent-source to sink. Asking for intent-sinks of the SIMApp

and intent-sources of the SMSApp and combining the associated answers with the
connect operator allows us to construct the inter-app flow part of the complete
flow visualized in Figure 2.2 on Page 10. Furthermore, connecting this flow with
the two intra-app flows gives us the complete flow. Applying the filter operator
on top removes irrelevant intent-sinks and -sources as well as flows that are not
part of the complete flow.

Now, the function selectTool can find a tool for each of the four questions
included in query q1. FlowDroid can handle the intra-app flow questions whereas
IC3 is able to answer the intent-sink and -source questions. Once the results
produced by these tools are computed and converted into AQL-Answers, these
answers can be combined by applying the connect operator. Thereafter, the filter
operator can be applied and the final answer can be output. According to our
expectations the answer to query q1 should look as denoted in Listing 3.9. The
denoted answer is shortened to only show the essential parts for the sake of clarity.

1 <?xml v e r s i o n =”1.0” encoding=”utf−8” standa lone=”yes ”?>
2 <answer>
3 <intentsources>
4 . . .
5 <intentsource>
6 <target>
7 <action>de . upb . fpauck .CALLSINK</action>
8 . . .
9 </target>

10 <reference>
11 <statement>
12 . . .
13 <statementgeneric>android . content . In tent : java .

lang . S t r ing getSt r ingExtra (java . lang . S t r ing)</
statementgeneric>

14 . . .
15 </statement>
16 . . .
17 <app>
18 < f i l e>SMSApp. apk</ f i l e>
19 . . .
20 </app>
21 </reference>
22 </ intentsource>
23 </ intentsources>
24

25 <intentsinks>
26 <intentsink>
27 <target>
28 <action>de . upb . fpauck .CALLSINK</action>
29 </target>
30 <reference>

48

3.3 AQL Syntax

31 <statement>
32 . . .
33 <statementgeneric>de . upb . fpauck . simapp .

SIMAppMainActivity : void s t a r t A c t i v i t y (android
. content . In tent)</statementgeneric>

34 . . .
35 </statement>
36 . . .
37 <app>
38 < f i l e>SIMApp . apk</ f i l e>
39 . . .
40 </app>
41 </reference>
42 </ intentsink>
43 </ intentsinks>
44

45 <flows>
46 . . .
47 <flow>
48 <reference type=”from”>
49 <statement>
50 . . .
51 <statementgeneric>android . te lephony .

TelephonyManager : java . lang . S t r ing
getSimSerialNumber ()</statementgeneric>

52 </statement>
53 . . .
54 <app>
55 < f i l e>SIMApp . apk</ f i l e>
56 . . .
57 </app>
58 </reference>
59 <reference type=” to ”>
60 <statement>
61 . . .
62 <statementgeneric>android . te lephony . SmsManager :

void sendTextMessage (java . lang . Str ing , java .
lang . Str ing , java . lang . Str ing , android . app .
PendingIntent , android . app . PendingIntent)</
statementgeneric>

63 . . .
64 </statement>
65 . . .
66 <app>
67 < f i l e>SMSApp. apk</ f i l e>
68 . . .
69 </app>
70 </reference>
71 <attributes>
72 <attribute>
73 <name>complete</name>
74 <value>t rue</value>

49

3. Conceptual Design

75 </attribute>
76 </attributes>
77 </ flow>
78 </ flows>
79 </answer>

Listing 3.9: Expected AQL-Answer

The answer consists of three parts: Intent-sources, intent-sinks and flows. The
intent-source part shows the defined action for this source, namely de.upb.fpauck-

.CALLSINK. The intent-sink part shows this action string, too. Thereby, it can
be assumed that these apps can communicate with each other. More precisely,
there exists a flow from the startActivity(..) statement of the SIMApp to the
getStringExtra(..) statement of the SMSApp. This flow as well as the two ex-
pected intra-app flows are part of the flows contained in this answer. However,
to display this answer in a compact way only the constructed complete flow is
denoted. It leads from getSimSerialNumber() to sendTextMessage(..) and is
recognizable as complete flow by the assigned attribute.

This AQL-Answer almost completely answers our initial question, except the
fact that our source and sink should require a permission. Thus, we want to check
if the detected source and sink require a permission. In particular, which permis-
sions are required by the getSimSerialNumber() and the sendTextMessage(..)

statement. Let us assume that the answer presented above is stored in the file
answer.xml, then we can formulate the following query in order to attach the
permissions:

UNIFY [

’answer.xml’ !

Permissions IN

Statement(’android.telephony.TelephonyManager: java.lang.String
getSimSerialNumber()’)

-> Method(’de.upb.fpauck.simapp.SIMAppMainActivity: void source()’)
-> Class(’de.upb.fpauck.simapp.SIMAppMainActivity’)
-> App(’SIMApp.apk’)

?,

Permissions IN

Statement(’android.telephony.SmsManager: void sendTextMessage(..)’)
-> Method(’de.upb.fpauck.smsapp.SMSAppMainActivity: void sink()’)
-> Class(’de.upb.fpauck.smsapp.SMSAppMainActivity’)
-> App(’SMSApp.apk’)

?

]

PAndA2 is used to answer the two new questions. After that the unify operator
is applied in order to unify the final result. This adds the lines denoted in List-

50

3.3 AQL Syntax

ing 3.10 to the previously shown answer.

1 . . .
2 <permissions>
3 <permission>
4 <name>android . permis s ion .READ PHONE STATE</name>
5 <reference>
6 <statement>
7 . . .
8 <statementgeneric>android . te lephony .

TelephonyManager : java . lang . S t r ing
getSimSerialNumber ()</statementgeneric>

9 </statement>
10 . . .
11 <app>
12 < f i l e>SIMApp . apk</ f i l e>
13 . . .
14 </app>
15 </reference>
16 <attributes>
17 <attribute>
18 <name>PermissionGroup</name>
19 <value>REQUIRED</value>
20 </attribute>
21 </attributes>
22 </permission>
23 . . .
24 <permission>
25 <name>android . permis s ion .SEND SMS</name>
26 <reference>
27 <statement>
28 . . .
29 <statementgeneric>android . te lephony . SmsManager :

void sendTextMessage (java . lang . Str ing , java .
lang . Str ing , java . lang . Str ing , android . app .
PendingIntent , android . app . PendingIntent)</
statementgeneric>

30 . . .
31 </statement>
32 . . .
33 <app>
34 < f i l e>SMSApp. apk</ f i l e>
35 . . .
36 </app>
37 </reference>
38 <attributes>
39 <attribute>
40 <name>PermissionGroup</name>
41 <value>REQUIRED</value>
42 </attribute>
43 </attributes>
44 </permission>

51

3. Conceptual Design

45 . . .
46 </permissions>
47 . . .

Listing 3.10: Expected AQL-Answer

These lines tell us, that the getSimSerialNumber() statement is requiring the
READ PHONE STATE permission whereas the sendTextMessage(..) statement re-
quires the SEND SMS and WRITE SMS permissions. Furthermore, the permission-
groups assigned by PAndA2 are visible as attributes.

The complete AQL-Answer is pictured in Figure 3.3. All references that are
part of this answer are shown at the bottom in blue. The blue arrows under
these references symbolize the flows. All bold arrows stand for flows that are
not part of another flow. These are marked by the attribute complete with the
value true (see Lines 73-74 in Listing 3.9). Intent-sources can be found on the
right-hand side in red color whereas intent-sinks are placed on the left-hand side
in green color. Lastly, the permissions can be found on the top of the picture in
purple. The red, green and purple arrows connect the associated elements with
the references they refer to. This picture reveals, for example, the connection
between the READ PHONE STATE permission and the SEND SMS permission. We can
simply follow the edges from one permission to another.

52

3.3 AQL Syntax

F
ig

u
re

3.
3:

A
Q

L
-A

n
sw

er
as

G
ra

p
h

53

4 Implementation

In the previous chapter the AQL along with the concept of a system using the AQL
was introduced. Now the Java implementation of a tool that follows this concept
is described. From hereon the term AQL-System refers to this tool. At first in this
chapter a short overview is given that highlights how this implementation is linked
to the concept and which technologies are used to construct it. The structure of
this AQL-System is briefly presented thereafter. Furthermore, it is explained how
to configure, install and use the tool.

4.1 Overview

The previous chapter contained a detailed description of the different steps a
system has to perform in order to fully use the AQL (cf. Figure 3.2 on page 34).
These steps are summarized in the following four phases:

1. Parsing – During this phase, the input AQL-Query is parsed.

2. Preprocessing – While this phase is executed, all preprocessors mentioned
in the query are executed.

3. Analyzing – During the third phase, the analysis tools, specified in the con-
figuration and selected by the system in order to answer the query, are
executed.

4. Converting – In this last phase, the results of all executed tools are converted
into AQL-Answers and combined with the associated AQL-Operators.

Before the implementation details of these four phases are described, the config-
uration used by the AQL-System is described.

4.1.1 Configuration

Any tool can typically be configured through parameters or one or more config-
uration files. In case of the AQL-System, configuration files in XML format are
used. The XSD in Appendix A.2 describes the structure of such files and is in-
volved in the generation of Java classes that represent a configuration. For this
purpose JaxB1, a native part of Java, is utilized. JaxB allows us to generate the

1Java Architecture for XML Binding: https://jaxb.java.net/ - 04/19/2017

55

https://jaxb.java.net/

4. Implementation

required classes and comes with a parser which is able to translate an XML con-
figuration file into object instances of these generated classes. As described in the
last chapter (cf. Section 3.2.1), each configuration file must contain the required
information about the AQL-System’s environment and the preprocessors and anal-
ysis tools used by the system. Listing 4.1 shows an exemplary configuration file.

1 <config>
2 <androidPlatforms>/path/ to / android−sdks / p lat fo rms</

androidPlatforms>
3 <maxMemory>8</maxMemory>
4 <tools>
5 <tool name=” Analys i s t o o l 1” ve r s i on=”1”>
6 <questions>IntraAppFlows , InterAppFlows</questions>
7 <priority>1</priority>
8 <instances>0</ instances>
9 <memoryPerInstance>4</memoryPerInstance>

10

11 <path>/ execut ion / environment / o f / t h i s / t o o l</path>
12 <run>/ execut ion / environment / o f / t h i s / t o o l / run . sh %MEMORY%

%APP APK%</run>
13 <result>/ execut ion / environment / o f / t h i s / t o o l/%

APP APK FILENAME% r e s u l t</ result>
14 </ tool>
15 </ tools>
16 <preprocessors>
17 <tool name=” Preproce s so r 1” v e r s i on=”1”>
18 <questions>PREPROCESS</questions>
19 . . .
20 <result>/ execut ion / environment / o f / t h i s / p r ep ro c e s s o r/%

APP APK FILENAME% preproc e s s ed . apk</ result>
21 </ tool>
22 </preprocessors>
23 </config>

Listing 4.1: Example of a Configuration file

The provided information about the system’s environment is shown in the Lines 2
and 3. On the one hand, the path to Android’s platform files is referenced. Each
of these files represents the API of a certain version of the Android operating
system. Most analysis tools require these files in order to execute their analy-
ses. On the other hand, the maximum of memory that can be occupied by the
system must be specified. The two elements tools and preprocessors can hold
arbitrary many tool-elements. Each tool-element describes one analysis tool or
preprocessor respectively. A tool is identified by the values assigned to the two
attributes name and version (see Line 5 and 17). The following subelements of
each tool-element describe in which case a tool may be executed:

• <questions>: The content of this tag tells us which AQL-Questions can
be answered with the associated tool. With ”Analysis tool 1”, for example,
intra- and inter-app flow questions can be answered (see Line 6 in List-
ing 4.1). In the context of preprocessors the keyword associated with a

56

4.1 Overview

certain preprocessor is defined here (see ”PREPROCESS” in Line 18 in
Listing 4.1).

• <priority>: If there are two or more tools available which are capable
of answering the same AQL-Questions the priority decides which tool is
executed. The tool with the highest priority is always preferred. However,
if the execution of this tool fails, the system tries another one with the next
lower priority. It is also possible to specify the same tool twice with different
settings. If, for example, the execution of a tool fails, because it ran out of
memory, another tool or the same tool with different settings, aiming to
optimize its memory consumption, may not fail.

• <instances>: This subelement tells us how many instances of the associated
tool can be executed concurrently. A value of 0 states that arbitrary many
instances may be executed at the same time.

• <memoryPerInstance>: This defines how much memory is provided to each
instance of the associated tool.

The AQL-System executes different tools in parallel to answer different parts
of an AQL-Query, if and only if the sum of all values stored in the different
<memoryPerInstance>-tags does not exceed the available memory (see <maxMe-

mory>). Furthermore, if the same tool should be executed twice, it is not allowed
to exceed the number of instances defined by the <instances> tag.

How to execute a preprocessor or an analysis tool is specified through the fol-
lowing subelements:

• <path>: This describes a path to the directory where the tool shall be
executed. In the example shown in Listing 4.1 the path is set to ”/execu-
tion/environment/of/this/tool” (see Line 11). Thereby it is possible to, for
instance, refer to .apk files stored in this location directly without providing
the complete path again.

• <run>: The run tag describes how to call a certain tool by defining the
location of a bash script, for example.

• <result>: This describes where the result can be found, once a tool finishes
successfully. (A *-symbol can be used inside this tag to reference an arbitrary
substring.)

In the last three subelements the following variables can be used:

57

4. Implementation

%APP APK%: The .apk file referenced in an AQL-Question

%APP APK FILENAME%:
The filename of the .apk file without path and
ending

%APP NAME%: The app’s name specified in its manifest
%APP PACKAGE%: The app’s package specified in its manifest

%ANDROID PLATFORMS%:
The Android platforms folder
(Specified through <androidPlatforms>)

%MEMORY%:
The memory available to an instance of a tool
(Specified through <memoryPerInstance>)

These are replaced at runtime with the corresponding values.

4.1.2 Implementation Details

During the first phase, namely the Parsing phase, the AQL-System uses a gener-
ated parser to parse the input query. To generate this parser JavaCC2 is utilized.
JavaCC is able to generate a parser on the basis of a grammar. In this case we
used the grammar described in the last chapter (see Grammar 3.1 on Page 38). By
generating this parser, we can assume a lower probability of errors in its code and
ensure that the language we specified through the grammar is understood exactly.
Furthermore, if the AQL is adapted in future this allows us to easily update the
parser.

During the Preprocessing phase, preprocessors, specified in the configuration
and referred to in the input query, are executed. They can be run concurrently if
enough memory is available. The same preprocessor might be executed multiple
times as long as the number of allowed concurrent instances is not exceeded.
Furthermore, the AQL-System executes a preprocessor only once per app and
stores the result. Whenever the same combination of app and preprocessor is
used in the same or in a different query it simply loads the result again. This
provides the advantage that we can speed up or completely skip the preprocessing
phase if we are able to reuse previously computed results.

The Analyzing phase follows upon the Preprocessing phase. During the Ana-
lyzing phase, the AQL-System first checks whether it is able to answer the query
in its initial form. If not, it tries to transform the query. The implementation
described in this chapter only implements one transformation rule which was also
used in the third part of the running example (see Section 3.3.3). Assuming that
the references x, y refer to two different apps, this transformation rule allows the
system to replace a question of the format:

Flows FROM x TO y ?

with the following one:

2Java Compiler Compiler: https://javacc.org - 04/19/2017

58

https://javacc.org

4.1 Overview

FILTER [

CONNECT [

Flows IN x ?,
Flows IN y ?,
IntentSinks IN x ?,
IntentSources IN y ?

]

]

If there is no tool available to answer a certain question and the transformation
rule cannot be applied, the AQL-System tries to load a previously computed
answer. For example, imagine two tools that can only be executed on different
operating systems: In such a case we can run one tool first and store the answer.
Later on we can run the other tool and use the previously computed answer
to respond to the complete query. The AQL-System also loads answers if it
has executed the exact same tool in order to answer the exact same question
before. This avoids the redundant execution of tools and thereby speeds up the
analysis process. If the question slightly differs the answer can either be loaded or
computed depending on the scope of the underlying analysis tool. For example,
the tool FlowDroid has to be run only once per app. Thus, if we reference different
methods of the same app in two distinct questions, these questions are different,
but the tool is executed in the exact same way. Because of that, there is no reason
to compute the answer again. It should be preferred to load the answer since
this speeds up the analysis process. Just like the preprocessors, analysis tools are
executed in parallel during this phase if and only if it does not violate memory or
number-of-instances constraints.

In the last phase, namely the Converting phase, the results computed by analysis
tools are converted into AQL-Answers. Therefore, tool-specific converters are
required. They have to read the result of an analysis tool and generate an AQL-
Answer that contains the same information. To this end, a result is parsed and
interpreted. Consequently objects that hold the thereby collected information are
instantiated. In the context of the implementation described in this chapter, these
objects are instances of generated datastructure classes. These classes are used
to represent AQL-Answers. For this purpose, the XSD used to define the syntax
of AQL-Answers (see Appendix A.1) is converted into Java classes by JaxB. This
guarantees that the generated answers are valid AQL-Answers. As a last step in
this phase the AQL-Operators are applied.

59

4. Implementation

4.2 Structure

The structure of the AQL-System is depicted in Figure 4.1. It shows a simplified
UML3 class diagram. For the sake of clarity cardinalities as well as most attributes
and methods have been omitted. The System class marked with green color plays
the most important, central role in this diagram. It has access to all other parts
and is made accessible to the user through the user interface, which is symbolized
by the ui-package in the top left corner. Note that the CLI class of the ui package
contains Java’s main(..) method. The classes marked with blue color have
been generated with JaxB or JavaCC. This highlights that numerous classes are
generated. Thereby many possible programming errors are avoided. The red
converter classes are the only classes that are tool-specific. Once a new tool is
introduced to this system, a new converter has to be implemented.

Based on the execution example shown in the UML sequence diagram in Fig-
ure 4.2, it is explained how the different classes interact with each other. On the
left hand side the different phases are marked. Next to these an actor that repre-
sents the user of the system is symbolized. By calling the main(..) method of the
CLI class he starts the Parsing phase. First, the arguments of the question are read.
Second, the query which has to be one of the arguments is forwarded to the System
class by calling the query(..) method. At this point the query is represented by
a single string. Because of that the system calls the Parser (see 3. in Figure 4.2).
The Parser creates a Question object that represents the query (q0). As depicted
in the class diagram one question can consist of several other questions. In this
regard the query q0 consists of several parts which are represented by Question

objects as well (p0, ..., pn). Once the system receives q0, it requests all refer-
ences used inside the query. For each reference that should be preprocessed, the
system selects a suitable preprocessor from the configuration and, consequently,
generates a PreprocessorTask object. In the sequence diagram only one is gener-
ated for preprocessor0. This task is used to start the preprocessor itself in a sep-
arate process. Thereby several preprocessors could be executed at the same time.
Once the preprocessor finishes his computation the associated PreprocessorTask

asynchronously calls the preprocessingFinished(..) method (see 8. in Fig-
ure 4.2). Once all PreprocessorTask have called this method, the Preprocessing
phase ends. The Analyzing phase works similar to the Preprocessing phase. For
each part of q0 a tool is selected which is executed in its own ToolTask. Once
an analysis tool finishes its computation, the answerAvailable(..) method is
called. In the following Converting phase all result files computed by the analysis
tools are converted into Answer objects. As a last step before the system returns
the final answer, it has to apply the AQL-Operators assigned in query q0 (see 14.
in Figure 4.2).

3Unified Modeling Language: http://www.omg.org/spec/UML/ - 05/22/2017

60

http://www.omg.org/spec/UML/

4.2 Structure

AQL Overview 2017/05/05 powered by Astah

ui

GUI

+ main(String args : int) : void

CLI

invokes

- applyOperators() : Answer
+ answerAvailable(result : File) : void
+ preprocessingFinished(ppApk : File) : void
+ query(query : String) : void

System

+ parse(query : String) : Question

Parser

+ selectTool(q : Question) : Tool
+ selectPreprocessor(r : Reference) : Tool

Configuration

Tool

Task

ToolTask PreprocessorTask

datastructure

+ getReferences() : List<Reference>
+ getParts() : List<Question>

- type : int

Question

Reference Answer

Intentsource Intentsink FlowPermission IntentIntentFilter

converter

FlowDroidConverter

PAndA2Converter

IC3Converter

+ convert(result : File) : Answer

<<interface>>
IConverter

uses

creates

reads

uses

references

has

creates preprocesses

uses

generates
runs

considers

consists of

important generated tool-specific

Legend

Figure 4.1: AQL-System: UML Class Diagram

61

4. Implementation

Parsing
Phase

Preprocessing
Phase

Analyzing
Phase

Converting
Phase

F
igu

re
4.2:

A
Q

L
-S

y
stem

:
U

M
L

S
eq

u
en

ce
D

iagram

62

4.3 Manual

4.3 Manual

Installation The CD-Rom attached to this thesis contains the AQL-System as an
executable .jar file as well as the Eclipse4 project used to built it. Note that Java
1.8 or newer is required in order to run and build the AQL-System. However, no
preprocessor and only one analysis tool, namely PAndA2, is shipped with the tool.
While PAndA2 can be found in the ”Tools” directory, FlowDroid5 and IC36 can
be obtained online. In the ”Tools” directory several bash and batch scripts can be
found next to PAndA2. These can be used to execute FlowDroid, IC3 and PAndA2

on Linux or FlowDroid and PAndA2 Windows. Furthermore, these scripts are
included in a exemplary configurations (see ”Examples” directory). Once all tools
that should be used are installed, the configuration file (”config.xml”) has to be
adapted. How to adapt the configuration is explained in Section 4.1.1. Thereafter
the AQL-System is ready to be used.

Usage The AQL-System can be accessed from the command-line through the
following command:

java -jar /path/to/AQLSystem.jar

Furthermore, the parameters shown in Table 4.1 may be attached. The following
command, for example, queries the system in order to ask for all permissions used
by the SIMApp:

java -jar /path/to/AQLSystem.jar -query ”Permissions IN App(’SIMApp.apk’)
?” -o ”result.xml”

The answer to this query is stored in the file ”result.xml”. It is also possible to use
the AQL-System inside another Java project. Therefore, add the AQLSystem.jar
as library and use the following three instructions to import the System class and
to invoke a query:

import de . f o e l l i x . aq l . system . System ;

f ina l System system = new System () ;
system . query (” Permiss ions IN App(’SIMApp . apk ’) ?”) ;

Furthermore, the method getAnswerReceivers() of a System class object can
be used to obtain and edit a list of objects7. Each object in the list receives all
answers computed by the associated system.

A screenshot of the AQL-System’s graphical user interface (GUI) is shown in
Figure 4.3. The GUI consists of two parts, namely the Editor to formulate AQL-

4Eclipse IDE: https://www.eclipse.org - 04/20/2017
5https://github.com/secure-software-engineering/soot-infoflow-android/wiki -

04/20/2017
6http://siis.cse.psu.edu/ic3/ - 04/20/2017
7These objects have to implement the interface IAnswerAvailable

63

https://www.eclipse.org
https://github.com/secure-software-engineering/soot-infoflow-android/wiki
http://siis.cse.psu.edu/ic3/

4. Implementation

Parameter Meaning
-help, -h, -?, -man, -manpage Outputs a very brief manual, which contains

a list of all available parameters.
-query ”X”, -q ”X” This parameter is used to assign the AQL-

Query. X refers to this query.
-config ”X”, -cfg ”X”, -c ”X” By default the config.xml file in the tool’s

directory is used as configuration. With this
parameter a different configuration file can
be chosen. X has to reference the path to
and the configuration file itself.

-output ”X”, -out ”X”, -o ”X” The answer to a query is automatically saved
in the ”answers” directory. This parameter
can be used to store it in a second file. X has
to define this file by path and filename.

-preferexecute, -pe This parameter is used to force the execution
of analysis tools even if a similar question has
been asked before.

-timeout ”X”s/m/h, -t ”X”s/m/h With this parameter the maximum execution
time of each tool can be set. If it expires the
tool’s execution is aborted. X refers to this
time in seconds (e.g. 10s), minutes or hours.

-debug ”X”, -d ”X” The output generated during the execution
of this tool can be set to different levels.
X may be set to: ”error”, ”warning”, ”nor-
mal”, ”debug”, ”detailed” (ascending preci-
sion from left to right). By default it is set
to ”normal”.

-gui If this or no parameters at all are provided
the graphical user interface is started. It al-
lows to formulate queries and display answers
in a handy way.

Table 4.1: Parameters

64

4.3 Manual

Figure 4.3: Screenshot of AQL-System’s GUI

Queries and the Viewer to view AQL-Answers. The Editor is capable of high-
lighting and auto-formatting AQL-Queries as well as asking them by clicking the
play-button at the top right corner. Once a query is asked, the bottom area ti-
tled with ”log” is used to display status messages including errors and warnings.
The progressbar at the top shows how many preprocessors and analysis tools have
to be executed until the query can be answered. The viewer is not visible in the
screenshot. It offers two possibilities to display an AQL-Answer: On the one hand,
a textual view with syntax highlighting can be used to directly view and edit an
.xml file representing an AQL-Answer. On the other hand, a graphical view shows
the flows, permissions, intent-sources and -sinks in a single graph. Thereby the
graphical view provides a better overview. An example of such a graph is drawn
in Figure 3.3 on Page 53 and was explained at the end of Section 3.3.3.

65

5 Evaluation

In the previous chapters the AQL, including a concept and an implementation of
a system using it, was described. Now this implementation is used to highlight the
advantages of asking different expert tools for their precise results. Additionally,
other benefits achievable through the AQL are pointed out. In doing so, the
following research questions (RQ) are answered:

RQ1 Can analysis tools combined through the AQL be more precise than...

a) immature tools?

b) mature tools?

In order to answer these questions we evaluate whether an analysis com-
posed of different analysis tools can be more precise than a single tool which
performs the same analysis. During this evaluation custom apps and bench-
mark apps are analyzed by the AQL-System.

RQ2 Can the power of a single analysis tool be increased by means of the AQL?
For example, preprocessors can be used along with the AQL. These may
positively influence the output of an analysis tool by adapting its input.

RQ3 Is the AQL-System capable of analyzing sets of one or more real world apps
efficiently?
To this end, it is evaluated if new knowledge about a set of apps can be
gained by reusing and combining stored AQL-Answers computed for single
apps only.

RQ4 Can the AQL improve the performance of an analysis?
Hence, it is evaluated if the execution time and/or memory consumption of
an analysis can be decreased. For instance, by reusing results of one analysis
in order to enhance another.

The next sections address each research question in detail. At the end of this
chapter the answers to all question are summarized.

5.1 RQ1a: Can analysis tools combined through the
AQL be more precise than immature tools?

To answer RQ1a we assume that immature tools are as precise as combinations of
different expert tools and show a contradiction to this assumption. Consequently,

67

5. Evaluation

analysis results computed by an immature tool are directly compared with AQL-
Answers to AQL-Queries that simulate the same analysis. More precisely, a brief
comparison of PAndA2’s intra-app taint analysis and the AQL-System, configured
with the expert tools FlowDroid and PAndA2 itself but only using its intra-app
permission usage analysis, is evaluated to show that it is highly beneficial to
use expert tools. Furthermore, two different apps are analyzed. The so-called
SimpleApp and StaticApp. An extract of the source code of both apps is shown
in Listing 5.1 and 5.2. Both apps are identical apart from one simple but effective
difference. The tainted variable secret is defined as a local variable (see Line 6 in
Listing 5.1) of the sourceSink() method of the SimpleApp. However, in context
of the StaticApp it is defined as a static class variable (see Line 2 in Listing 5.2).

The result of PAndA2’s intra-app taint analysis executed for the SimpleApp

can be seen in Figure 5.1. The result contains two flows from one permission
(READ PHONE STATE) to two other permissions (WRITE SMS, SEND SMS). PAndA2

always only considers permissions as sources and sinks. To do so, it searches for
permission-protected statements which are defined as potential sources for tainted
data or sinks that may leak information to the outside.

1 public class SimpleAppMainActivity extends Act iv i ty {
2 . . .
3 private void sourceS ink () {
4 // Source
5 TelephonyManager manager = (TelephonyManager)

getSystemServ ice (Context .TELEPHONY SERVICE) ;
6 St r ing s e c r e t = manager . getSimSerialNumber () ;
7

8 // Sink
9 SmsManager . ge tDe fau l t () . sendTextMessage (”+49111111111” , null ,

s e c r e t , null , null) ;
10 }
11 }

Listing 5.1: SimpleApp (Source Code)

1 public class StaticAppMainActivity extends Act iv i ty {
2 stat ic St r ing s e c r e t ;
3 . . .
4 private void sourceS ink () {
5 // Source
6 TelephonyManager manager = (TelephonyManager)

getSystemServ ice (Context .TELEPHONY SERVICE) ;
7 StaticAppMainActivity . s e c r e t = manager . getSimSerialNumber () ;
8

9 // Sink
10 SmsManager . ge tDe fau l t () . sendTextMessage (”+49111111111” , null ,

Stat icAppMainActivity . s e c r e t , null , null) ;
11 }
12 }

Listing 5.2: SimpleApp (Source Code)

68

5.1 RQ1a: Can analysis tools combined through the AQL be more precise than
immature tools?

Figure 5.1: Screenshot of PAndA2’s result (SimpleApp)

We can formulate the following AQL-Query to perform the same analysis:

FILTER [

UNIFY [

Flows IN App(’SimpleApp.apk’) ?,

Permissions IN App(’SimpleApp.apk’) ?

]

]

Using an AQL-System with a configuration that contains FlowDroid and PAndA2

(intra-app permission usage analysis) to respectively respond to Flows-Questions
and Permissions-Questions, the answer to this query holds the same two flows
with more details. It includes a flow from the getSimSerialNumber() to the
sendTextMessage(..) statement and informs the user which permissions are
required by these two statements.

According to this, the two results are equal. Both tools detected the security
issue, which is the leakage of the SIM card’s serial number. However, when it
comes to the StaticApp the two results differ. While the AQL-Answer still holds
the same two flows, PAndA2’s result does not contain any because PAndA2 does
not consider static variables at all. Thereby PAndA2 does not report the security
issue and misinforms the user by telling him that the app is trustworthy. This
shows that the precision of the immature tool PAndA2 is lower than the precision
of the AQL-System, which is a contradiction to our initial assumption. Hence, the
answer to RQ1a is: Yes, analysis tools combined through the AQL can be more
precise than immature tools.

In summary, this small and simple example shows that immature tools suffer
from their limitations. Thus, it definitely is beneficial to combine results com-
puted by expert tools. Note that this comparison would not be possible without
the AQL. The AQL allows us to perform the same analysis with two different
tools even if the tools set up in the AQL-Systems configuration perform different
analyses, that, for example, use different definitions of sources and sinks. In the
next section the second part of RQ1 is answered.

69

5. Evaluation

5.2 RQ1b: Can analysis tools combined through the
AQL be more precise than mature tools?

The goal of RQ1b is to find out if combinations of different expert tools can be
more precise than a single mature tool. To answer this question two differently
configured AQL-Systems are set up: One uses a combination of different expert
tools whereas the other one is only uses one mature tool. Based on the AQL-
Answers, which are computed by these two systems for a certain set of apps,
different measures that reflect the precision of each system are calculated. The
values computed for these measures are compared and interpreted in order to
answer RQ1b.

The set of apps used in this part of the evaluation belongs to the Android anal-
ysis benchmark DroidBench1. It is one of the most commonly used benchmarks
for Android app analyses. Almost any paper considering such analyses refers to
DroidBench in their evaluation chapter. DroidBench itself comprises different sets
of various apps that exploit certain Android features in common and uncommon
ways, just like real world apps and especially malicious apps might do it to hide
their behavior. Each of these apps is fully functional on an Android device. All
apps are shipped as .apk files as well as eclipse projects, that allow everyone to
look up the source code of these apps. Comments in the source code describe
what feature of Android is exploited by an app and most importantly how many
and which issues an analysis should be able to find.

In this thesis four sets of apps from the DroidBench benchmark have been
chosen, namely the complete Inter-App and Inter-Component Communication set
as well as the complete Lifecycle and Reflection set. On the one hand, each app
of any of these sets, except the Inter-App Communication set, stands for one
benchmark or test case. On the other hand, the Inter-App Communication set
consists of 3 apps, which can be brought together to built two different cases. The
SendSMS app together with the Echoer app represent one case whereas the second
case is represented by the StartActivityForResult1 app and the same Echoer

app.
In the following, we are using the AQL-System described in the previous chapter

to analyze these apps. To do so, two different configurations are used. One
configuration sets up the AQL-System to use FlowDroid and IC3. The other one
makes the AQL-System use just one tool, namely IccTA. With both setups Inter-
and Intra-App flow questions are answerable. From here on we refer to these
differently configured AQL-Systems as FD+IC3-System and IccTA-System.

We expect the results output by both systems to be equal, since IccTA internally
uses the exact same tools as the FD+IC3-System, namely FlowDroid and IC3.
However, the way multiple apps are analyzed differs. Figure 5.2 depicts, how the
FD+IC3-System works. For each app, represented by an .apk file, FlowDroid and
IC3 are executed. Then all the results generated by these two tools are combined

1https://blogs.uni-paderborn.de/sse/tools/droidbench/ - 05/12/2017

70

https://blogs.uni-paderborn.de/sse/tools/droidbench/

5.2 RQ1b: Can analysis tools combined through the AQL be more precise than
mature tools?

...}Combine
Apps

Run
IccTA

ResultCombined
.apk file

Different
.apks

... }
Run FlowDroid

and IC3

Different
.apks

Run FlowDroid
and IC3

Results

... ...

Result

Figure 5.2: Workflow of the FD+IC3-System

by applying the connect operator of the AQL. In contrast, the IccTA-System does
not rely on the connect operator. It works as visualized in Figure 5.3. In a

...}Combine
Apps

Run
IccTA

ResultCombined
.apk file

Different
.apks

... }
Run FlowDroid

and IC3

Different
.apks

Run FlowDroid
and IC3

Results

... ...

Result

Figure 5.3: Workflow of the IccTA-System

first step, a tool called ApkCombiner [LBB+15b] is used to merge multiple apps
represented by .apk files into a single .apk file representing all these apps. This
combined .apk file is then used to compute the result by executing IccTA.

Since the Inter-App Communication cases of DroidBench consider at most two
apps, we can formulate the queries used to run these benchmark cases as follows.

• FD+IC3-System:

Flows FROM App(’x’) TO App(’y’) ?

• IccTA-System:

Flows IN App(’x y’ | ’COMBINE’) ?

x and y symbolize the .apk files of the associated apps. In context of the FD+IC3-
System we simply ask for inter-app flows and let the system handle everything else.
As shown in the running example (cf. Section 3.3.3), the system transforms such a
query, tries to answer its individual parts and then applies the connect operator to
combine the answers. Thereby FlowDroid is used to determine intra-app flows and
IC3 to detect intent-sinks of x and intent-sources of y. Contrariwise, in context
of the IccTA-System, we ask for intra-app flows of a combined app. The keyword
”COMBINE” refers to the ApkCombiner set up as a preprocessor. It takes all

71

5. Evaluation

.apk files separated by ” ” and puts them together into a single .apk file, which is
then used for the analysis.

Similarly, the queries for the Inter-Component Communication set differ as well:

• FD+IC3-System:

FILTER [

CONNECT [

Flows IN App(’x’) ?,

IntentSinks IN App(’x’) ?,

IntentSources IN App(’x’) ?

]

]

• IccTA-System:

Flows IN App(’x’) ?

While the IccTA-System’s query is self-explanatory, the FD+IC3-System’s query
is not. We have to ask for intent-sinks and -sources, because FlowDroid, used to
answer the intra-app question part, does not compute flows between components.
Thus these flows are computed by connecting intent-sinks and -sources.

For any other set of DroidBench the queries are equal:

Flows IN App(’x’) ?

Formulating all DroidBench cases as AQL-Queries allows us to get one AQL-
Answer for each case. This in turn enables us to automatically compare analysis
results of different systems and tools to each other and to expected results. To
do so, we first formulate the expected results as AQL-Answers. Then, a tiny tool,
called AQL-Comparator, which has been developed for this part of the evaluation,
can be used to perform a fully automated comparison of these expected results and
the actual ones. The AQL-Comparator’s workflow is depicted in Figure 5.4. As

Build
Cases

Compare
AQL-Answers

List of Cases Result

Actual AQL-Answers

FlowDroid + IC3

IccTA

Expected AQL-Answers

List of
Sources & Sinks

Reduced
List of

Sources & Sinks

AQL-Answer
(including

Permissions)

Figure 5.4: Workflow of AQL-Comparer

input it takes multiple directories that contain expected AQL-Answers on the one
hand and actual AQL-Answers on the other hand. At first, the AQL-Comparator

72

5.2 RQ1b: Can analysis tools combined through the AQL be more precise than
mature tools?

maps actual answers to expected ones by their filenames and thereby generates a
list of cases. This list can contain two types of cases: Positive cases if the expected
answer (E ∈ A) should be a subset of the actual answer (A ∈ A) or negative cases
if the actual answer should not contain any element of the expected answer. Then
the AQL-Comparator computes a single boolean value (r) for each case which tells
us whether the actual answer matches the expected one. The formula in order to
calculate r can be described as follows:

r =



true if a positive case is considered and

E ∩ AFlows ⊆ A holds.

true if a negative case is considered and

for all f ∈ E ∩ AFlows there does not exist an f ′ ∈ A with f = f ′

false else

The results computed by the AQL-Comparator are interpreted and listed in
Table 5.1. It presents the considered case in the first column. In the second and
third column the individual results for the FD+IC3-System and the IccTA-System
are shown. On the one hand, the symbol ?© tells us that the output considering a
positive case was true whereas the ?-symbol tell us that the output of a negative
case was true. On the other hand, the symbols ? and © provide the information
that the AQL-Comparator has output false considering a negative and a positive
case respectively. If two of these symbols appear in the same cell of the table, the
associated case consists of a positive and a negative part. In other words, in these
cases one flow, representing a security leak, should be found and another one
should not be found, since, for example, the program location representing the
source cannot be reached. Note that in the following the symbols | ?©|, |?|, |?|, |©|
and sums of these (e.g. | ?© + ?|) refer to the associated number of occurrences.
To interpret these numbers, one could say the higher | ?©| and |?| are the better.
Accordingly, the lower |?| and |©| are the better.

Table 5.1 shows that contrary to our expectations the results for the FD+IC3-
and the IccTA-System differ, but only when it comes to the inter-component
cases. This is related to the different approaches the two systems follow (cf. Fig-
ure 5.2 and 5.3). More precisely, the connect operator of the AQL constructs inter-
component flows as described in the conceptual design chapter (see Section 3.1.4),
while IccTA internally seems to do even more.

The different cases show, that both approaches have their advantages and dis-
advantages. For example, the security issue in the case referenced by ”Activi-
tyCommunication2” cannot be detected with the FD+IC3-System but with the
IccTA-System. However, the IccTA-System additionally outputs a false-positive.
Thus it reports more security issues than there actually are. The case listed there-
after (”ActivityCommunication3”) shows that the FD+IC3-System is able to find
issues, which remain undetected by the IccTA-System.

73

5. Evaluation

?©: True-Positive, ?: True-Negative, ?: False-Positive, ©: False-Negative
†: Empty AQL-Answer, ×: Manually adapted

Case FD+IC3 IccTA

Inter-App Communication
SendSMS + Echoer ?©× ?©×
StartActivityForResult1 + Echoer ?©× ?©×
Inter-Component Communication
ActivityCommunication1 ?© ?©
ActivityCommunication2 © ? ?© ?
ActivityCommunication3 ?© ? © ?
ActivityCommunication4 ?© ? ?© ?
ActivityCommunication5 ?© ? ?© ?
ActivityCommunication6 © ? © ?
ActivityCommunication7 © ? © ?
ActivityCommunication8 © ? ?© ?
BroadcastTaintAndLeak1 © ?©
ComponentNotInManifest1 ? ?
EventOrdering1 © ?©
IntentSink1 © ©†
IntentSink2 © ?©
IntentSource1 ?©× ?©×
ServiceCommunication1 Broken Manifest ⇒ Omitted
SharedPreferences1 © ?©
Singletons1 ©† ©†
UnresolvableIntent1 © ©
Lifecycle
ActivityLifecycle1 ?© ?©
ActivityLifecycle2 ?© ?©
ActivityLifecycle3 ?© ?©
ActivityLifecycle4 © ©
ActivitySavedState1 ?© ?©
ApplicationLifecycle1 ?© ?©
ApplicationLifecycle2 ?© ?©
ApplicationLifecycle3 ?© ?©
AsynchronousEventOrdering1 ?© ?©
BroadcastReceiverLifecycle1 ?© ?©
BroadcastReceiverLifecycle2 ©† ©†
EventOrdering1 ?© ?©
FragmentLifecycle1 ©† ©†
FragmentLifecycle2 ©† ©†
ServiceLifecycle1 ?© ?©
ServiceLifecycle2 ?© ?©
SharedPreferenceChanged1 © ©
Reflection
Reflection1 ?© ?©
Reflection2 ©† ©†
Reflection3 ©† ©†
Reflection4 ©† ©†

Table 5.1: DroidBench Evaluation Results

74

5.2 RQ1b: Can analysis tools combined through the AQL be more precise than
mature tools?

29 30

18 17

0

5

10

15

20

25

30

35

40

45

FD + IC3 IccTA

Success Fail

Figure 5.5: Bar-chart (Absolute suc-
cessful and failed cases)

Firgure 5.5 summarizes the total number
of successful (| ?©+ ?|) and failed (|? +©|)
cases. Of a total of 47 cases the IccTA-
System was able to successfully detect 1
more issue. This number is raised to 4, if we
ignore the 3 false-positive results (see ? in
Table 5.1) by not considering the 8 negative
cases. Based on these values we can com-
pute the successrate, which represents the
ratio of successful cases to all cases:

Successrate:
| ?©+ ?|

| ?©+ ? +©+ ?|

Additionally, the common measures (Preci-
sion, Recall, F-Measure) to express the out-
come of detection-related experiments, such
as the execution of different analyses, are
defined as follows [Faw06]:

Precision: p =
| ?©|
| ?©+ ?|

Recall: r =
| ?©|

| ?©+©|

F-Measure: 2 ∗ p ∗ r
p + r

These measures can be found in several papers and can be used to compare eval-
uation results of different papers [ARF+14, LBB+15a, RAMB16]. The measures
precision and recall illustrate how trustworthy positive and negative results are.
For example, a precision of 100% tells us that all issues that have been found are
correctly identified as issues. In contrast, a recall of 100% tells us that all issues
that could be found have been found. The F-Measure describes the harmonic
mean of precision and recall. It can be interpreted as a rating for analyses. The
exact values of all four measures are presented in Figure 5.6. Since the FD+IC3-
System did not output any false-positive its precision is at its best (100%). The
IccTA-System only has a precision of almost 90%, but in favor of recall it is better
than the FD+IC3-System (83% to 72%). F-Measure and successrate of both sys-
tems are almost equal: They only differ by 2%. This shows us, that both systems
are similarly powerful. Considering RQ1b it can be concluded that the answer
should be: No, analysis tools combined through the AQL are not always more
precise than mature tools, but they are almost as precise.

In summary, it is safe to say that the competitive power of both systems is
almost equal. Additionally, we demonstrated that the AQL allows us to evaluate
experiments considering a benchmark such as DroidBench automatically.

75

5. Evaluation

FD + IC3 IccTA

Precision 1 0,89

Recall 0,72 0,83

F-Measure 0,84 0,86

Successrate 0,62 0,64

FD + IC3 IccTA

Success 29 30

Fail 18 17

1

0,89

0,72

0,83 0,84 0,86

0,62 0,64

0

0,25

0,5

0,75

1

FD + IC3 IccTA

Precision Recall F-Measure Successrate

Figure 5.6: Bar-chart (Precision, Recall, F-Measure, Successrate)

5.2.1 Annotations

In three cases both systems required a little help to deliver a successful result.
These cases are marked with a ×-symbol. Both systems successfully identified
the tainted source, the sink as well as intent-sink and -source. However, no sys-
tem was able to compute the complete tainted flow from source to sink without
slightly adapting the result. In all three cases the same problem occurred. A
startActivityForResult(..) intent-sink and an intent-source with its origin in
method onActivityResult(..) were detected in the same component. The con-
nection between these two is implicitly always available because the result, com-
puted by whatever component is targeted by the startActivityForResult(..)

statement, is returned to the onActivityResult(..) method. In all three cases
both systems also detected the tainted flow part inside the targeted compo-
nent. Nevertheless, none of the systems reported any flow between the intent-sink
(startActivityForResult(..)) and the intent-source inside the onActivity-

Result(..) method. This flow has been added manually by combining the given
answers with manually created ones that hold the missing flow part. To do so,
the connect operator of the AQL was used. This manually performed adaption
could easily be automated with help of the AQL. One could develop a tool that
connects all startActivityForResult(..) statements with all intent-sources in
the onActivityResult(..) method of the same component, if and only if a taint
flow was found in the targeted component.

One case (”ServiceCommunication1”2) could not be analyzed by any system,
because the manifest file of that app could not be parsed since it contains a
syntactical error in its XML code.

2https://github.com/secure-software-engineering/DroidBench/blob/master/

eclipse-project/InterComponentCommunication/ServiceCommunication1/

AndroidManifest.xml (Line 26) - 04/26/2017

76

https://github.com/secure-software-engineering/DroidBench/blob/master/eclipse-project/InterComponentCommunication/ServiceCommunication1/AndroidManifest.xml
https://github.com/secure-software-engineering/DroidBench/blob/master/eclipse-project/InterComponentCommunication/ServiceCommunication1/AndroidManifest.xml
https://github.com/secure-software-engineering/DroidBench/blob/master/eclipse-project/InterComponentCommunication/ServiceCommunication1/AndroidManifest.xml

5.3 RQ2: Can the power of a single analysis tool be increased by means of the
AQL?

Some of the AQL-Answers computed by both systems were empty. The associ-
ated cases are marked with a †-symbol in Table 5.1. This tells us, that the issue
has not been detected and additionally it states that the system was unable to
even find parts of the flow that represents the security issue. The majority of an-
swers considering the Reflection set of DroidBench was empty, since the reflection
could not be resolved statically. The only reflective call that could be resolved
belongs to the app and case referenced by ”Reflection1”. In the following section
it is evaluated how to tackle the other unresolved cases.

Lastly, there is one technical annotation: The same converter can be used to
convert results output by FlowDroid or IccTA, because IccTA internally uses
FlowDroid and thereby produces results of the same format. Thus, no additional
converter is needed to use the IccTA-System.

5.3 RQ2: Can the power of a single analysis tool be
increased by means of the AQL?

To answer RQ2, which asks for options to increase the power of an analysis, we
use a preprocessor that should allow us to enhance an analysis.

In the previous section among others the Reflection set of DroidBench is eval-
uated. Most of the cases could not be analyzed successfully since it can be hard
and, in some cases, impossible to resolve the reflection due to the limited pos-
sibilities of static analyses. This is one reason why the earlier introduced tool
Harvester combines static and dynamic analyses. In context of the AQL-System,
Harvester can be set up as a preprocessor, that is able to deobfuscate an app.
More precisely, to resolve the reflection calls and automatically build a so-called
enriched app without reflection.

Correspondingly, the queries to evaluate the three DroidBench apps ”Reflec-
tion2”, ”Reflection3” and ”Reflection4” can be changed as follows:

Flows IN App(’x’) ?

↓ changed to ↓
Flows IN App(’x’ | ’DEOBFUSCATE’) ?

Now, Harvester is executed in order to produce a preprocessed enriched version of
the three apps represented by x in the queries. Although Harvester successfully
detects and resolves all reflective classes and method calls inside all three apps,
it does not replace all occurrences in the preprocessed app versions. After having
consulted the developers of Harvester, it is safe to say that a successful analysis
of these three apps is currently not possible but will be in future. Harvester is
a state-of-the-art tool, which is still in development and in its current state it
is able to resolve reflection but it only replaces reflective method calls with non-
reflective ones in the enriched apps it outputs. Reflective classes, for example, are
not replaced, yet.

77

5. Evaluation

An extract of an app, namely ReflectiveApp, can be found in Listing 5.3.

1 public class Ref lect ionAppMainAct iv ity extends Act iv i ty {
2 . . .
3 private void sourceS ink () {
4 // Source
5 TelephonyManager manager = (TelephonyManager)

getSystemServ ice (Context .TELEPHONY SERVICE) ;
6 St r ing s e c r e t = ”” ;
7 try {
8 Method method = manager . g e tC la s s () . getMethod (”

getSimSerialNumber ”) ;
9 s e c r e t = (St r ing) method . invoke (manager) ;

10 } catch . . . { . . . }
11

12 // Sink
13 SmsManager . ge tDe fau l t () . sendTextMessage (”+49111111111” , null ,

s e c r e t , null , null) ;
14 }
15 }

Listing 5.3: SimpleApp (Source Code)

This app only contains one reflective method call. While the query

Flows IN App(’ReflectiveApp.apk’) ?

leads to an empty answer, the answer to the following query

Flows IN App(’ReflectiveApp.apk’ | ’DEOBFUSCATE’) ?

reveals the security issue. A flow from the getSimSerialNumber() statement
(Lines 8 and 9 in Listing 5.3) to the sendTextMessage(..) statement (Line 13 in
Listing 5.3) is found. Thus, by using Harvester as a preprocessor we enhanced the
taint analysis performed by the AQL-System and thereby increased the power of
FlowDroid. Considering RQ2 this shows us that the AQL can be used to increase
the power of an analysis tool.

On the one hand, we can conclude that the accuracy of an AQL-System depends
on the tools and preprocessors configured in its configuration. On the other hand,
tools and preprocessors are not influenced by the AQL-System. Furthermore, we
have seen that it is possible to combine static and dynamic analyses through the
AQL. To this effect the AQL is future-proof, since any kind of analysis (static or
dynamic) can be used along with an AQL-System and since the accuracy of an
AQL-System will always grow with the underlying analyses.

78

5.4 RQ3: Is the AQL-System capable of analyzing sets of one or more real world
apps efficiently?

5.4 RQ3: Is the AQL-System capable of analyzing
sets of one or more real world apps efficiently?

If the AQL-System is able to analyze sets of real world apps, is asked by RQ3.
In order to provide an answer, a set of real world apps has to be chosen. Then
an attempt can be made to analyze this set and, depending on the outcome, RQ3
can be answered.

As real world apps, we denote all apps that can be downloaded publicly from
markets such as Google’s PlayStore3. The evaluation considering a subset of these
apps deals with two different objectives. On the one hand, we want to find out
how many intra- and inter-app taint flows can be found. More precisely, how many
permission-protected sources are connected to permission-protected sinks in the
same or another app. On the other hand, we want to evaluate the performance
of the AQL-System. Therefor, we measure the execution time and show how to
reduce it by means of the AQL.

We choose a subset of 34 real world apps downloaded from Google’s PlayStore.
One of them is the most downloaded and top-rated app WhatsApp. Many more
apps that are considered during this evaluation are part of the 100 most down-
loaded apps (in Germany), too. A full list of all evaluated apps along with the
associated results can be found in Table 5.2.

To evaluate these apps we run an AQL-System configured to use FlowDroid,
IC3 and PAndA2 on a Debian4 virtual machine with 32 gigabytes of available
memory. We ask for intra-app taint flows, intents, intent-filters, intent-sinks and
-sources as well as for permissions. The inter-app taint flows are computed based
on the answers to these questions by combining them.

The previously mentioned Table 5.2 shows the number of findings for each
subject of interest as well as the time spent to compute these. The columns are
labeled with the subject of interest or ”Time” in the first row. ”Time” refers to the
execution time measured in seconds that is required in order to answer the query
considering the associated subject of interest and the app mentioned in the first
column of the table. In case of the column labeled with ”Permissions” the first
row shows two annotations: The column annotated with ”occurrences” reflects the
number of statements that require a permission in order to be executed. In the
”individual” column it is summarized how many different permissions are required
by these statements.

Some cells of the table are empty, because the associated query could not be
answered in less than 15 minutes or the tool responsible for the analysis ran out
of memory. By granting more time and by increasing the maximum of available
memory it should be possible to fill these empty cells.

The last 4 rows in the table show calculated values that summarize the findings.
In particular, the last row demonstrates the sum of all findings and approximates

3https://play.google.com/store
4https://www.debian.org/ - 05/22/2017

79

https://play.google.com/store
https://www.debian.org/

5. Evaluation

†: Exception, ×: Abort (> 900s)
App Permissions Time Flows Time Intent- Time Flows Time

o
cc

u
r-

re
n
ce

s

in
d
iv

i-
d
u
a
l

(s
)

(s
)

s fi
lt

er
s

si
n
k
s

so
u
rc

es

(s
)

a
d
a
p
te

d

(s
)

1 com.amazon.mShop.android.shopping 3179 26 206 3746 150 – – – – –× 2 105
2 com.droid27.transparentclockweather 1864 14 238 86 60 – – – – –× 0 47
3 com.espn.fantasy.lm.football 2615 20 417 – –× – – – – –× – –
4 com.estrongs.android.pop 7020 31 857 – –× – – – – –× 0 68
5 com.google.android.apps.photos 5137 32 508 3 31 – – – – –× 0 26
6 com.google.android.calculator 57 4 21 115 19 3 0 2 4 23 0 6
7 com.google.android.contacts 3687 26 135 210 20 – – – – –× 0 17
8 com.google.android.deskclock 842 14 62 – –× – – – – –× 0 29
9 com.google.android.dialer 5614 41 205 – –× – – – – –× 0 49
10 com.google.android.gm 8954 26 883 – –× – – – – –× 0 174
11 com.google.android.GoogleCamera 691 21 159 0 34 6 0 3 4 72 0 29
12 com.google.android.keep 1713 18 202 – –× – – – – –× 0 44
13 com.google.android.videos 1647 16 271 – –× – – – – –× 0 62
14 com.google.android.youtube 3596 28 625 – –× – – – – –× 0 172
15 com.google.zxing.client.android 420 12 29 0 8 24 117 7 15 25 0 9
16 com.mxtech.videoplayer.ad 2309 21 420 557 36 47 36 5 14 859 0 30
17 com.overlook.android.fing 627 12 78 93 20 – – – – –× 0 19
18 com.reddit.frontpage 2444 19 348 – –× – – – – –× 0 40
19 com.tellm.android.app 921 13 155 – –× – – – – –× 0 33
20 com.tendadigital.chwaziApp 5 4 5 0 3 2 0 1 0 7 0 3
21 com.thescore.esports 1527 20 346 92 24 1 3 1 7 77 0 23
22 com.valvesoftware.android.steam.community 772 11 163 4 17 412 134 9 28 462 0 14
23 com.whatsapp 7929 34 474 –† 6541 – – – – –× 0 86
24 com.yamaha.npcontroller 147 9 23 3 6 29 0 3 3 72 0 5
25 com.zattoo.player 1693 16 495 109 50 – – – – –× 0 41
26 com-asus-flashlight 322 9 40 21 20 65 13 12 11 165 0 13
27 com-fileexplorer-app 707 16 85 13 13 89 10 11 6 38 0 11
28 de.burgerking.kingfinder 599 9 126 88 24 318 224 8 26 244 0 25
29 de.gmx.mobile.android.mail 4470 25 350 43 35 – – – – –× 0 24
30 de.hafas.android.db 1834 17 327 – –× – – – – –× –† 6762
31 de.mcdonalds.mcdonaldsinfoapp 934 15 276 10 37 378 218 11 25 878 0 29
32 de.radio.android 1436 19 225 14 24 – – – – –× 0 23
33 de.upb.unipin 480 15 17 9 10 29 0 14 3 26 0 7
34 tv.twitch.android.app 824 11 247 88 54 – – – – –× 0 36

Arithmetic mean 2265 18 685 241 315 108 58 7 11 227 2 8061
Median 1587 17 216 32 24 29 10 7 7 72 2 8090

Σ 77016 624 23293 5304 695 1403 755 87 146 2948 0 244
Σ (approximated with median) 77016 624 23293 5688 7500 2012 965 234 293 4460 0 29

Table 5.2: Evaluation Results for the set of Real World Apps

80

5.5 RQ4: Can the AQL improve the performance of an analysis?

the cases where no result could be computed with the median value. Considering
absolute numbers, more than 5000 flows, about 1400 intents, 750 intent-filters,
100 intent-sinks and 150 intent-sources as well as more than 77,000 permission
uses are analyzed.

Since all these findings are stored as AQL-Answers these can be used to gain
more information about the whole set of real world apps. First of all, 657 inter-app
flows, that represent possible flows between two different apps of the considered
set, are found by combining all intent-sinks and -sources through the connect oper-
ator of the AQL. 54 ends of these flows are protected by permissions. Connecting
these flows with the intra-app taint flows results in overall 875 inter-app flows.
However, none of these flows in turn connects a permission-protected source with
a permission-protected sink. To this end, we can say, that this set of real world
apps seems to be trustworthy since we could not discover a malicious cooperation.
Without the AQL neither this nor any other conclusion considering inter-app anal-
yses could be made based on the information gathered in Table 5.2.

Since AQL-Answers considering single and multiple real world apps could be
computed, we can give a positive response to RQ3: Yes, the AQL-System can
analyze single real world apps as efficiently as the underlying tools. However, the
AQL also enables us to analyze sets of apps by combining the answers computed
per app. The same set of real world apps considered above is used in order to
answer RQ4 in the following.

5.5 RQ4: Can the AQL improve the performance of
an analysis?

The query used to find intra-app flows cannot be answered in all cases (cf. Ta-
ble 5.2). For example, in case of WhatsApp the analysis was aborted after more
than 1.5 hours, because it ran out of memory. Other analyses were aborted after
about 15 minutes due to time constraints. If the AQL could be used to somehow
compute results for these cases, a positive feedback considering RQ4 could be
provided. Hence, it is explained in the following how results for these cases may
be computed.

Let us assume that we are only interested in flows between sources and sinks
that are protected by permissions. However, the 5304 intra-app taint flows that
are found connect all sorts of sources and sinks.

To remove the unwanted flows that connect sources and sinks which are not
protected by permissions, we may filter the results according to the permissions
found in these apps. Another option is to only compute flows between permission-
protected sources and sinks in the first place. This may also allow us to actually
compute results for the 12 cases we could not yet compute results for.

81

5. Evaluation

To do so, we can ask for permissions in an app through the AQL. Such questions
can be answered in all considered cases (cf. Table 5.2). Then the permissions found
can be used to filter the set of sources and sinks which are considered once we ask
for flows. Since the AQL-System uses FlowDroid in order to answer flow questions
this can be done by adapting the ”SourceAndSink.txt” text file. It includes one
line per source and sink.

Build
Cases

Compare
AQL-Answers

List of Cases Result

Actual AQL-Answers

FlowDroid + IC3

IccTA

Expected AQL-Answers

List of
Sources & Sinks

Reduced
List of

Sources & Sinks

AQL-Answer
(including

Permissions)

Figure 5.7: Workflow sketch of
the AQL-Minimizer

For this purpose, a tiny tool, namely AQL-
Minimizer has been developed. It could also
be used as a preprocessor. Its idea is depicted
in Figure 5.7. It takes the original ”Source-
AndSink.txt” file and an AQL-Answer (A) as
input and creates a new file, representing the
reduced set of sources and sinks, as output.
Let the set X be the set of all original sources
and sinks:

X = {(r, b) | r ∈ R ∧ b ∈ {true, false}}

The boolean value b describes if a reference r
refers to a source (true) or a sink (false).
Then X∗, the set of all reduced sources and
sinks, can be defined as follows:

X∗ =
{(r, b) | (r, b) ∈ X ∧ ∃(r, p) ∈ A ∩ APermissions}

This set is computed by the AQL-Minimizer.
On average these sets of reduced sources and
sinks are 98.4% smaller than the original set.
Instead of 232 sources and sinks, only up to 10
are included in these sets.

Using the sets of reduced sources and sinks
gives us the results listed in the last two

columns of Table 5.2. The ”adapted” flows column shows how many flows are
found that connect permission-protected sources with permission-protected sinks.
Only in case of Amazon’s shopping app such flows can be found. Still, we can-
not answer the query considering intra-app taint flows in the ”DB Navigator”
app (see case: ”de.hafas.android.db”). However, the execution time required to
answer the queries considering all other cases that could be answered before has
been reduced by an average of about 22%. In addition, 11 more cases could be
finished in less than 15 minutes, which was not possible before. Note that this
is only appropriate, because we used the assumption that every source and sink
should be protected by a permission. Without this assumption we would lose a lot
of precision by this approach. This shows us, that we can use the AQL to speed
up and thereby improve the performance of analyses. Having RQ4 in mind, this

82

5.6 Summary

tells us that the AQL can improve the performance of an analysis.

In summary, using the AQL in the context of real world apps provides multiple
advantages: It allows us to combine precomputed results. Thereby, for instance,
the 875 inter-app flows can be computed as explained in Section 5.4. Furthermore,
in certain scenarios it can improve the performance of an analysis by greatly
reducing its memory consumption and decreasing its execution time, as shown in
this section.

5.6 Summary

The analyses of two custom apps, which have been developed for this evaluation,
and 42 apps, which belong to the benchmark DroidBench, have been described
in the first two sections of this chapter. Thereby, it has been concluded that
combinations of different analysis tools are more precise than immature tools and
almost as precise as mature tools. Consequently, both parts of RQ1 have been
answered.

During the attempt to answer RQ2 it has been shown that the AQL can be used
to increase the power of an analysis tool. In this case FlowDroid was partially en-
abled to handle apps that contain reflection by using Harvester as a preprocessor.

The successful and efficient analyses of 34 real world apps has shown that the
AQL-System can be used in realistic scenarios. Furthermore, the AQL-Answers
computed for all 34 apps could be combined to gain even more knowledge about
these apps: For example, 875 inter-app flows have been found. Thereby and by
minimizing sources and sinks in certain scenarios, a positive response to RQ3 and
RQ4 could be given.

Overall, all research questions could be answered and along with that many
advantages of the AQL could be highlighted.

83

6 Conclusion

On the one hand, the content as well as the reached goals and other achievements
of this thesis are summarized in this chapter. On the other hand, a greater, yet
unreached, goal is described that makes mature analyses in the context of Android
available to everyone, especially non-expert users. With this greater goal in mind,
it is presented how to continue the project started with this thesis.

6.1 Summary

Developing a language that allows the general formulation of analysis questions
and tasks as well as solutions and answers, represents the main goal of this thesis.
By developing the Analysis Query Language (AQL) this goal is achieved. The
AQL is formally as well as syntactically defined. For the syntactic definition a
grammar was introduced that precisely defines which queries can be formulated
and which analysis questions can be asked. Equally, an XSD was presented that
defines the structure and content of AQL-Answers. Together with the operators,
described along with the AQL, these answers can be combined. Thereby, different
analysis tools are indirectly brought together in order to create a cooperative
analysis.

The benefits of such a cooperative analysis and the advantages of the AQL in
general are presented and evaluated. To do so, a tool implementation based on the
described concept of an AQL-System is used. We show that such an AQL-System
can be more precise than immature tools and with the correct configuration it can
at least be as precise as mature tools. Plus, in some cases it can be even more
precise. However, the AQL cannot only be used to optimize precision. In certain
scenarios it can even lead to performance improvements. In particular, intra-app
analyses of real world apps can gain a speed up of more than 22%. Additionally,
inter-app analyses, that are tough or impossible to execute without the AQL, can
be performed in seconds if each involved app has been analyzed before.

Furthermore, the AQL and systems using it are not restricted to be used in a
certain scenario but the contrary is the case: They can be involved in different and
varying situations. On the one hand, it can be used, for example, to execute or
combine analyses without expert knowledge. On the other hand, experts can build
their own analyses on top of AQL-Answers or use the AQL to issue on-demand
analyses during their own analyses.

In summary, the approach explained, implemented and evaluated in the context
of this thesis can be seen as a powerful solution to improve the security of Android

85

6. Conclusion

devices and to protect the user against privacy attacks. More precisely, as a pow-
erful instrument to extract the best of one or more software analyses. This helps
to satisfactorily show the trustworthiness of a certain set of apps. Considering
the plethora of existing apps and devices and the consequently following flaws,
the end-user absolutely requires this help. Above all, the raising number of cyber
attacks shows that such processes of verifying security are more important than
ever before.

6.2 Future Work

Overall, the main goal of any program analysis is to detect real and existing issues
such as security flaws. The one who should profit most from such analyses is
the non-expert end-user. However, most analyses and their results can only be
executed and interpreted by field experts.

The AQL describes a way to execute analyses much easier by formulating an
AQL-Query. Let us assume, that we will get access to different services of a cloud
network in the future, in which each service represents one differently configured
AQL-System. Then the AQL provides different benefits:

• Results computed by any of these systems can be reused in order to quickly
respond to a query.

• To answer more complex queries it might be possible to combine existing
answers computed by different systems.

• We can automatically evaluate the accuracy of a system by using a bench-
mark such as DroidBench (cf. Section 5.2).

⇒ Parts of a query can be answered by the most precise systems in the network.

All this allows us to initialize an analysis and receive results as fast as possible
without losing precision or requiring a lot of local computational power.

For instance, imagine there exists an app that performs an inter-app taint anal-
ysis, that considers all other apps installed on the device, once we click a button.
As a consequence the different expert systems in the cloud are asked for intra-app
taint flows, intent-sources and intent-sinks. These partial results might have al-
ready been computed per app and can be replied immediately. If not the expert
systems in the cloud compute them. By means of the AQL the answers of these
systems can be combined in order to perform the inter-app taint analysis. Thereby
the end-user can find security issues very easily by pressing one button.

Google permanently performs static and dynamic analyses to improve the trust-
worthiness of apps in the PlayStore [Goo17a, Goo17b]. Similar to the scenario
described in this section, these analyses are performed by different services acces-
sible through a cloud. However, as far as known, Google only performs analyses
on single apps. Thus, if they would store their results as AQL-Answers, it might

86

6.2 Future Work

be possible to combine these in order to perform inter-app analyses and thereby
identify sets of apps that cooperate on malicious purpose.

Furthermore, the AQL itself could be improved in future. For example, the
matching algorithm of the connect operator (cf. function connect in Section 3.1.4)
may be improved in order to become more precise than other mature tools (cf. Sec-
tion 5.2). Considering the filter operator, the possibilities to filter AQL-Answers
may be extended. Even more sophisticated, the whole AQL could be adapted in
order to formulate queries that can be used to analyze apps developed for other
operating systems than Android.

87

Appendix A

XML Schema Definitions (XSDs)

A.1 AQL-Answer XSD

1 <xs:schema attr ibuteFormDefau l t=” u n q u a l i f i e d ” elementFormDefault=”
q u a l i f i e d ” xmlns :xs=” h t t p : //www. w3 . org /2001/XMLSchema”>

2 <xs : e l ement name=”hash”>
3 <xs:complexType>
4 <xs : s impleContent>
5 <x s : e x t e n s i o n base=” x s : s t r i n g ”>
6 <x s : a t t r i b u t e type=” x s : s t r i n g ” name=” type ” use=”

op t i on a l ”/>
7 </ x s : e x t e n s i o n>
8 </ xs : s impleContent>
9 </ xs:complexType>

10 </ xs : e l ement>
11 <xs : e l ement name=” f i l e ” type=” x s : s t r i n g ”/>
12 <xs : e l ement name=” hashes ”>
13 <xs:complexType>
14 <xs : s equence>
15 <xs : e l ement r e f=”hash” maxOccurs=”unbounded”

minOccurs=”0”/>
16 </ xs : s equence>
17 </ xs:complexType>
18 </ xs : e l ement>
19 <xs : e l ement name=”method” type=” x s : s t r i n g ”/>
20 <xs : e l ement name=” classname ” type=” x s : s t r i n g ”/>
21 <xs : e l ement name=”app”>
22 <xs:complexType>
23 <xs : s equence>
24 <xs : e l ement r e f=” f i l e ”/>
25 <xs : e l ement r e f=” hashes ”/>
26 </ xs : s equence>
27 </ xs:complexType>
28 </ xs : e l ement>
29 <xs : e l ement name=”name” type=” x s : s t r i n g ”/>
30 <xs : e l ement name=” value ” type=” x s : s t r i n g ”/>
31 <xs : e l ement name=” a t t r i b u t e ”>
32 <xs:complexType>
33 <xs : s equence>
34 <xs : e l ement r e f=”name”/>

89

A. XML Schema Definitions (XSDs)

35 <xs : e l ement r e f=” value ”/>
36 </ xs : s equence>
37 </ xs:complexType>
38 </ xs : e l ement>
39 <xs : e l ement name=” r e f e r e n c e ”>
40 <xs:complexType>
41 <xs : s equence>
42 <xs : e l ement r e f=” statement ” minOccurs=”0”/>
43 <xs : e l ement r e f=”method” minOccurs=”0”/>
44 <xs : e l ement r e f=” classname ” minOccurs=”0”/>
45 <xs : e l ement r e f=”app”/>
46 </ xs : s equence>
47 <x s : a t t r i b u t e type=” x s : s t r i n g ” name=” type ” use=” opt i ona l ”

/>
48 </ xs:complexType>
49 </ xs : e l ement>
50 <xs : e l ement name=” a t t r i b u t e s ”>
51 <xs:complexType>
52 <xs : s equence>
53 <xs : e l ement r e f=” a t t r i b u t e ” maxOccurs=”unbounded”

minOccurs=”0”/>
54 </ xs : s equence>
55 </ xs:complexType>
56 </ xs : e l ement>
57 <xs : e l ement name=” permis s ion ”>
58 <xs:complexType>
59 <xs : s equence>
60 <xs : e l ement r e f=”name”/>
61 <xs : e l ement r e f=” r e f e r e n c e ”/>
62 <xs : e l ement r e f=” a t t r i b u t e s ” minOccurs=”0”/>
63 </ xs : s equence>
64 </ xs:complexType>
65 </ xs : e l ement>
66 <xs : e l ement name=” type ” type=” x s : s t r i n g ”/>
67 <xs : e l ement name=”scheme” type=” x s : s t r i n g ”/>
68 <xs : e l ement name=” ssp ” type=” x s : s t r i n g ”/>
69 <xs : e l ement name=” host ” type=” x s : s t r i n g ”/>
70 <xs : e l ement name=” port ” type=” x s : s t r i n g ”/>
71 <xs : e l ement name=”path” type=” x s : s t r i n g ”/>
72 <xs : e l ement name=” ac t i on ” type=” x s : s t r i n g ”/>
73 <xs : e l ement name=” category ” type=” x s : s t r i n g ”/>
74 <xs : e l ement name=” data ”>
75 <xs:complexType>
76 <xs : s equence>
77 <xs : e l ement r e f=” type ” minOccurs=”0”/>
78 <xs : e l ement r e f=”scheme” minOccurs=”0”/>
79 <xs : e l ement r e f=” ssp ” minOccurs=”0”/>
80 <xs : e l ement r e f=” host ” minOccurs=”0”/>
81 <xs : e l ement r e f=” port ” minOccurs=”0”/>
82 <xs : e l ement r e f=”path” minOccurs=”0”/>
83 </ xs : s equence>
84 </ xs:complexType>

90

A.1 AQL-Answer XSD

85 </ xs : e l ement>
86 <xs : e l ement name=” parameter ”>
87 <xs:complexType>
88 <xs : s equence>
89 <xs : e l ement r e f=” type ”/>
90 <xs : e l ement r e f=” value ”/>
91 </ xs : s equence>
92 </ xs:complexType>
93 </ xs : e l ement>
94 <xs : e l ement name=” s t a t e m e n t f u l l ” type=” x s : s t r i n g ”/>
95 <xs : e l ement name=” sta tementgener i c ” type=” x s : s t r i n g ”/>
96 <xs : e l ement name=” parameters ”>
97 <xs:complexType>
98 <xs : s equence>
99 <xs : e l ement r e f=” parameter ” maxOccurs=”unbounded”

minOccurs=”0”/>
100 </ xs : s equence>
101 </ xs:complexType>
102 </ xs : e l ement>
103 <xs : e l ement name=” statement ”>
104 <xs:complexType>
105 <xs : s equence>
106 <xs : e l ement r e f=” s t a t e m e n t f u l l ”/>
107 <xs : e l ement r e f=” s ta tementgener i c ”/>
108 <xs : e l ement r e f=” parameters ” minOccurs=”0”/>
109 </ xs : s equence>
110 </ xs:complexType>
111 </ xs : e l ement>
112 <xs : e l ement name=” t a r g e t ”>
113 <xs:complexType>
114 <xs : s equence>
115 <xs : e l ement r e f=” ac t i on ” minOccurs=”0”/>
116 <xs : e l ement r e f=” category ” minOccurs=”0”/>
117 <xs : e l ement r e f=” data ” minOccurs=”0”/>
118 <xs : e l ement r e f=” r e f e r e n c e ” minOccurs=”0”/>
119 </ xs : s equence>
120 </ xs:complexType>
121 </ xs : e l ement>
122 <xs : e l ement name=” i n t e n t s o u r c e ”>
123 <xs:complexType>
124 <xs : s equence>
125 <xs : e l ement r e f=” t a r g e t ”/>
126 <xs : e l ement r e f=” r e f e r e n c e ”/>
127 <xs : e l ement r e f=” a t t r i b u t e s ” minOccurs=”0”/>
128 </ xs : s equence>
129 </ xs:complexType>
130 </ xs : e l ement>
131 <xs : e l ement name=” i n t e n t s i n k ”>
132 <xs:complexType>
133 <xs : s equence>
134 <xs : e l ement r e f=” t a r g e t ”/>
135 <xs : e l ement r e f=” r e f e r e n c e ”/>

91

A. XML Schema Definitions (XSDs)

136 <xs : e l ement r e f=” a t t r i b u t e s ” minOccurs=”0”/>
137 </ xs : s equence>
138 </ xs:complexType>
139 </ xs : e l ement>
140 <xs : e l ement name=” i n t e n t ”>
141 <xs:complexType>
142 <xs : s equence>
143 <xs : e l ement r e f=” r e f e r e n c e ”/>
144 <xs : e l ement r e f=” t a r g e t ”/>
145 <xs : e l ement r e f=” a t t r i b u t e s ” minOccurs=”0”/>
146 </ xs : s equence>
147 </ xs:complexType>
148 </ xs : e l ement>
149 <xs : e l ement name=” i n t e n t f i l t e r ”>
150 <xs:complexType>
151 <xs : s equence>
152 <xs : e l ement r e f=” r e f e r e n c e ”/>
153 <xs : e l ement r e f=” ac t i on ”/>
154 <xs : e l ement r e f=” category ” minOccurs=”0”/>
155 <xs : e l ement r e f=” data ” minOccurs=”0”/>
156 <xs : e l ement r e f=” a t t r i b u t e s ” minOccurs=”0”/>
157 </ xs : s equence>
158 </ xs:complexType>
159 </ xs : e l ement>
160 <xs : e l ement name=” f low ”>
161 <xs:complexType>
162 <xs : s equence>
163 <xs : e l ement r e f=” r e f e r e n c e ” maxOccurs=”unbounded”

minOccurs=”0”/>
164 <xs : e l ement r e f=” a t t r i b u t e s ” minOccurs=”0”/>
165 </ xs : s equence>
166 </ xs:complexType>
167 </ xs : e l ement>
168 <xs : e l ement name=” permi s s i ons ”>
169 <xs:complexType>
170 <xs : s equence>
171 <xs : e l ement r e f=” permis s ion ” maxOccurs=”unbounded”

minOccurs=”0”/>
172 </ xs : s equence>
173 </ xs:complexType>
174 </ xs : e l ement>
175 <xs : e l ement name=” i n t e n t s o u r c e s ”>
176 <xs:complexType>
177 <xs : s equence>
178 <xs : e l ement r e f=” i n t e n t s o u r c e ” maxOccurs=”unbounded”

minOccurs=”0”/>
179 </ xs : s equence>
180 </ xs:complexType>
181 </ xs : e l ement>
182 <xs : e l ement name=” i n t e n t s i n k s ”>
183 <xs:complexType>
184 <xs : s equence>

92

A.2 Configuration XSD

185 <xs : e l ement r e f=” i n t e n t s i n k ” maxOccurs=”unbounded”
minOccurs=”0”/>

186 </ xs : s equence>
187 </ xs:complexType>
188 </ xs : e l ement>
189 <xs : e l ement name=” i n t e n t s ”>
190 <xs:complexType>
191 <xs : s equence>
192 <xs : e l ement r e f=” i n t e n t ” maxOccurs=”unbounded”

minOccurs=”0”/>
193 </ xs : s equence>
194 </ xs:complexType>
195 </ xs : e l ement>
196 <xs : e l ement name=” i n t e n t f i l t e r s ”>
197 <xs:complexType>
198 <xs : s equence>
199 <xs : e l ement r e f=” i n t e n t f i l t e r ” maxOccurs=”unbounded”

minOccurs=”0”/>
200 </ xs : s equence>
201 </ xs:complexType>
202 </ xs : e l ement>
203 <xs : e l ement name=” f l ows ”>
204 <xs:complexType>
205 <xs : s equence>
206 <xs : e l ement r e f=” f low ” maxOccurs=”unbounded”

minOccurs=”0”/>
207 </ xs : s equence>
208 </ xs:complexType>
209 </ xs : e l ement>
210 <xs : e l ement name=”answer”>
211 <xs:complexType>
212 <xs : s equence>
213 <xs : e l ement r e f=” permi s s i ons ”/>
214 <xs : e l ement r e f=” i n t e n t s o u r c e s ”/>
215 <xs : e l ement r e f=” i n t e n t s i n k s ”/>
216 <xs : e l ement r e f=” i n t e n t s ”/>
217 <xs : e l ement r e f=” i n t e n t f i l t e r s ”/>
218 <xs : e l ement r e f=” f l ows ”/>
219 </ xs : s equence>
220 </ xs:complexType>
221 </ xs : e l ement>
222 </ xs:schema>

Listing A.1: XSD for AQL-Answers

A.2 Configuration XSD

1 <xs:schema attr ibuteFormDefau l t=” u n q u a l i f i e d ” elementFormDefault=”
q u a l i f i e d ” xmlns :xs=” h t t p : //www. w3 . org /2001/XMLSchema”>

2 <xs : e l ement name=” p r i o r i t y ” type=” x s : i n t ”/>
3 <xs : e l ement name=”path” type=” x s : s t r i n g ”/>
4 <xs : e l ement name=”run” type=” x s : s t r i n g ”/>

93

A. XML Schema Definitions (XSDs)

5 <xs : e l ement name=” r e s u l t ” type=” x s : s t r i n g ”/>
6 <xs : e l ement name=” que s t i on s ” type=” x s : s t r i n g ”/>
7 <xs : e l ement name=” i n s t a n c e s ” type=” x s : i n t ”/>
8 <xs : e l ement name=”memoryPerInstance” type=” x s : i n t ”/>
9 <xs : e l ement name=” t o o l ”>

10 <xs:complexType>
11 <xs : s equence>
12 <xs : e l ement r e f=” p r i o r i t y ”/>
13 <xs : e l ement r e f=”path”/>
14 <xs : e l ement r e f=”run”/>
15 <xs : e l ement r e f=” r e s u l t ”/>
16 <xs : e l ement r e f=” que s t i on s ”/>
17 <xs : e l ement r e f=” i n s t a n c e s ”/>
18 <xs : e l ement r e f=”memoryPerInstance”/>
19 </ xs : s equence>
20 <x s : a t t r i b u t e type=” x s : s t r i n g ” name=”name” use=” op t i o na l ”

/>
21 <x s : a t t r i b u t e type=” x s : s t r i n g ” name=” ve r s i on ” use=”

opt i on a l ”/>
22 </ xs:complexType>
23 </ xs : e l ement>
24 <xs : e l ement name=” andro idPlat forms ” type=” x s : s t r i n g ”/>
25 <xs : e l ement name=”maxMemory” type=” x s : i n t ”/>
26 <xs : e l ement name=” t o o l s ”>
27 <xs:complexType>
28 <xs : s equence>
29 <xs : e l ement r e f=” t o o l ” maxOccurs=”unbounded”

minOccurs=”0”/>
30 </ xs : s equence>
31 </ xs:complexType>
32 </ xs : e l ement>
33 <xs : e l ement name=” p r e p r o c e s s o r s ”>
34 <xs:complexType>
35 <xs : s equence>
36 <xs : e l ement r e f=” t o o l ” maxOccurs=”unbounded”

minOccurs=”0”/>
37 </ xs : s equence>
38 </ xs:complexType>
39 </ xs : e l ement>
40 <xs : e l ement name=” c o n f i g ”>
41 <xs:complexType>
42 <xs : s equence>
43 <xs : e l ement r e f=” andro idPlat forms ”/>
44 <xs : e l ement r e f=”maxMemory”/>
45 <xs : e l ement r e f=” t o o l s ”/>
46 <xs : e l ement r e f=” p r e p r o c e s s o r s ”/>
47 </ xs : s equence>
48 </ xs:complexType>
49 </ xs : e l ement>
50 </ xs:schema>

Listing A.2: XSD for Configuration Files

94

Appendix B

Digital Appendix

The directories and their content, which can be found on the attached CD-Rom,
are described in the following.

• AQL In this directory the AQL-System can be found as executable .jar file
and in form of an Eclipse project. Besides, the Eclipse projects of all tools
used during the evaluation are located here, namely the AQL-Comparator
and the AQL-Minimizer. Lastly, the syntax of the AQL is stored in this
directory in human and machine readable formats.

• Apps The .apk files of all apps used during the evaluation are included in
this directory.

• Examples Multiple configuration examples as well as an AQL-Query and
an AQL-Answer example can be found in this directory. Furthermore, it
contains the .apk files of the SIMApp and the SMSApp.

• Tools This directory contains the tool PAndA2. Additionally, bash and
batch scripts, that can be used to execute other tools, can be found in the
associated subdirectories (FlowDroid, IC3).

95

Bibliography

[ARF+14] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden,
Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau,
and Patrick McDaniel. Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps. In Pro-
ceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, pages 259–269, New
York, NY, USA, 2014. ACM.

[AYU+09] Shabtai Asaf, Fledel Yuval, Kanonov Uri, Elovici Yuval, and Dolev
Shlomi. Google android: A state-of-the-art review of security mech-
anisms. Computing Research Repository, 2009.

[BSGM15] Hamid Bagheri, Alireza Sadeghi, Joshua Garcia, and Sam Malek.
Covert: Compositional analysis of android inter-app permission leak-
age. IEEE Transactions on Software Engineering, pages 866–886,
2015.

[CFGW11] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wag-
ner. Analyzing inter-application communication in android. In Pro-
ceedings of the 9th International Conference on Mobile Systems, Ap-
plications, and Services, MobiSys ’11, pages 239–252, New York, NY,
USA, 2011. ACM.

[EGC+10] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox,
Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. Taintdroid:
An information-flow tracking system for realtime privacy monitor-
ing on smartphones. In Proceedings of the 9th USENIX Conference
on Operating Systems Design and Implementation, OSDI ’10, pages
393–407, Berkeley, CA, USA, 2010. USENIX.

[Faw06] Tom Fawcett. An introduction to roc analysis. Pattern Recognition
Letters, pages 861–874, 2006.

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The pro-
gram dependence graph and its use in optimization. ACM Transac-
tions on Programming Languages and Systems, pages 319–349, 1987.

[Gar17] Gartner. Gartner says worldwide sales of smartphones grew 9 percent
in first quarter of 2017. http://www.gartner.com/newsroom/id/

3725117, 2017, (accessed May 23, 2017).

97

http://www.gartner.com/newsroom/id/3725117
http://www.gartner.com/newsroom/id/3725117

Bibliography

[GKP+15] Michael I. Gordon, Deokhwan Kim, Jeff H. Perkins, Limei Gilham,
Nguyen Nguyen, and Martin C. Rinard. Information flow analysis of
android applications in droidsafe. In Proceedings of the 22nd Annual
Network and Distributed System Security Symposium, NDSS ’15, San
Diego, CA, USA, 2015.

[Goo17a] Google. Android security 2015 year in review. https:

//source.android.com/security/reports/Google_Android_

Security_2015_Report_Final.pdf, 2016, (accessed February 13,
2017).

[Goo17b] Google. Android security 2016 year in review. https:

//source.android.com/security/reports/Google_Android_

Security_2016_Report_Final.pdf, 2017, (accessed May 22, 2017).

[Goo17c] Google. Application fundamentals. https://developer.android.

com/guide/components/fundamentals.html, (accessed February
14, 2017).

[Goo17d] Google. Protocol buffers. https://developers.google.com/

protocol-buffers, (accessed February 14, 2017).

[JTP16] Marie-Christine Jakobs, Manuel Töws, and Felix Pauck. Panda2:
Analyzing permission use and interplay in android apps (tool pa-
per). In Proceedings of the Workshop on Formal and Model-Driven
Techniques for Developing Trustworthy Systems. School of Comput-
ing Science, University of Newcastle upon Tyne, 2016.

[KFB+14] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo
Bauer. Android taint flow analysis for app sets. In Proceedings of
the 3rd ACM SIGPLAN International Workshop on the State of the
Art in Java Program Analysis, SOAP ’14, pages 1–6, New York, NY,
USA, 2014. ACM.

[LBB+15a] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein,
Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden,
Damien Octeau, and Patrick McDaniel. Iccta: Detecting inter-
component privacy leaks in android apps. In Proceedings of the 37th
International Conference on Software Engineering - Volume 1, ICSE
’15, pages 280–291, Piscataway, NJ, USA, 2015. IEEE Press.

[LBB+15b] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, and
Yves Le Traon. Apkcombiner: Combining multiple android apps to
support inter-app analysis. In Proceedings of the 30th IFIP Interna-
tional Information Security Conference (SEC), IFIP SEC ’15, pages
513–527, 2015.

98

https://source.android.com/security/reports/Google_Android_Security_2015_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2015_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2015_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf
https://developer.android.com/guide/components/fundamentals.html
https://developer.android.com/guide/components/fundamentals.html
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers

Bibliography

[MLL05] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding
application errors and security flaws using pql: A program query
language. In Proceedings of the 20th Annual ACM SIGPLAN Con-
ference on Object-oriented Programming, Systems, Languages, and
Applications, OOPSLA ’05, pages 365–383, New York, NY, USA,
2005. ACM.

[MS13] Heiko Mantel and Henning Sudbrock. Types vs. PDGs in Information
Flow Analysis, pages 106–121. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

[NNH99] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles
of Program Analysis. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1999.

[OJD+16] Damien Octeau, Somesh Jha, Matthew Dering, Patrick McDaniel,
Alexandre Bartel, Li Li, Jacques Klein, and Yves Le Traon. Combin-
ing static analysis with probabilistic models to enable market-scale
android inter-component analysis. In Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’16, pages 469–484, New York, NY, USA, 2016.
ACM.

[OJM12] Damien Octeau, Somesh Jha, and Patrick McDaniel. Retargeting an-
droid applications to java bytecode. In Proceedings of the ACM SIG-
SOFT 20th International Symposium on the Foundations of Software
Engineering, FSE ’12, pages 6:1–6:11, New York, NY, USA, 2012.
ACM.

[OLD+15] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and
Patrick McDaniel. Composite constant propagation: Application to
android inter-component communication analysis. In Proceedings of
the 37th International Conference on Software Engineering - Volume
1, ICSE ’15, pages 77–88, Piscataway, NJ, USA, 2015. IEEE Press.

[OMJ+13] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel,
Eric Bodden, Jacques Klein, and Yves Le Traon. Effective inter-
component communication mapping in android: An essential step
towards holistic security analysis. In Proceedings of the 22nd USENIX
Security Symposium, USENIX Security ’13, pages 543–558, Washing-
ton, D.C., 2013. USENIX.

[oNSS17] Committee on National Security Systems. National information
assurance (ia) glossary. https://www.hsdl.org/?view&did=7447,
2010, (accessed February 14, 2017).

99

https://www.hsdl.org/?view&did=7447

Bibliography

[RAMB16] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bod-
den. Harvesting runtime values in android applications that feature
anti-analysis techniques. In Proceedings of the 23rd Annual Network
and Distributed System Security Symposium, NDSS ’16, San Diego,
CA, USA, 2016.

[RCT+14] Tristan Ravitch, E. Rogan Creswick, Aaron Tomb, Adam Foltzer,
Trevor Elliott, and Ledah Casburn. Multi-app security analysis
with fuse: Statically detecting android app collusion. In Proceedings
of the 4th Program Protection and Reverse Engineering Workshop,
PPREW-4, pages 4:1–4:10, New York, NY, USA, 2014. ACM.

[tF17] IDC Analyze the Future. Smartphone os market share, 2016 q3.
http://www.idc.com/promo/smartphone-market-share/os, 2016,
(accessed February 14, 2017).

[VRCG+10] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren,
Patrick Lam, and Vijay Sundaresan. Soot: A java bytecode opti-
mization framework. In Proceedings of the CASCON First Decade
High Impact Papers, CASCON ’10, pages 214–224, Riverton, NJ,
USA, 2010. IBM Corp.

100

http://www.idc.com/promo/smartphone-market-share/os

	1 Introduction
	1.1 Approach
	1.2 Thesis' Contents

	2 Fundamentals
	2.1 Android
	2.1.1 Components
	2.1.2 Permissions
	2.1.3 Inter-Component Communication
	2.1.4 Manifest
	2.1.5 Running Example (1/3): The Scenario

	2.2 Analyses
	2.2.1 Information Flow Analyses
	2.2.2 Challenges & Solutions
	2.2.3 Tools
	2.2.4 Running Example (2/3): Cooperative Analysis

	3 Conceptual Design
	3.1 Analysis Query Language (AQL)
	3.1.1 AQL-Questions
	3.1.2 AQL-Answers
	3.1.3 Attributes
	3.1.4 AQL-Operators
	3.1.5 AQL-Queries

	3.2 AQL-System
	3.2.1 Configuration
	3.2.2 Workflow

	3.3 AQL Syntax
	3.3.1 Syntax of AQL-Queries
	3.3.2 Syntax of AQL-Answers
	3.3.3 Running Example (3/3): AQL in Practice

	4 Implementation
	4.1 Overview
	4.1.1 Configuration
	4.1.2 Implementation Details

	4.2 Structure
	4.3 Manual

	5 Evaluation
	5.1 RQ1a: Can analysis tools combined through the AQL be more precise than immature tools?
	5.2 RQ1b: Can analysis tools combined through the AQL be more precise than mature tools?
	5.2.1 Annotations

	5.3 RQ2: Can the power of a single analysis tool be increased by means of the AQL?
	5.4 RQ3: Is the AQL-System capable of analyzing sets of one or more real world apps efficiently?
	5.5 RQ4: Can the AQL improve the performance of an analysis?
	5.6 Summary

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	A XML Schema Definitions (XSDs)
	A.1 AQL-Answer XSD
	A.2 Configuration XSD

	B Digital Appendix
	Bibliography

