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Abstract
In software engineering approaches, the first step of the software development
process is dedicated to the elicitation of requirements usually created by a software
engineering expert. Customers are usually supported by a requirements engineer
who compiles the customers’ vague and imprecise notions to a formal requirements
specification. We try to substitute the software engineering expert by a domain
expert capable of providing sequence diagrams exemplarily describing the behavior
of the desired software. The sequence diagrams are partitioned into two sets, one
describing desired behavior and one describing prohibited behavior. We search
for a protocol in the form of a deterministic finite automaton formalizing the
behavioral description also known as grammatical inference. Following Bongard
and Lipson [BL05], we extend the approach by Rooijen and Hamann [RH16] to an
active co-evolutionary approach using multi-objective optimization in both phases.
One evolutionary process proposes additional training examples to be labeled by
the domain expert, and the other one evolves suitable automata with respect
to the training examples. Hence, supporting the domain expert in refining the
provided examples and in providing more useful examples, we try to substitute the
human requirements engineer by an automatic requirements engineer. Considering
this approach in the context of dynamic software service markets, we propose
additional concepts of refining the inferred automata by guards known from UML
state machines and In order to benchmark the approach and compare it to [RH16]
and [BL05], we introduce a Java framework called Requirements Elicitation by
Active Learning framework. We find our approach significantly outperforming the
approach by [RH16]. Furthermore, we outperform the state-of-the-art technique
[BL05] for input alphabet sizes of more than three.
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1 Introduction
A development process for a software system starts with the specification of re-
quirements for this system. However, the customers often only have a vague and
imprecise notion of their requirements to the software system. To this end, cus-
tomers are usually supported by requirements engineers. Since the requirements
specification forms a fundamental basis for the subsequent steps in the develop-
ment process, the imprecise notions have to be refined to a more formal description
of the software system. By interviewing the customers systematically, the require-
ments engineer compiles the customer’s needs and notions to a precise and formal
requirements specification. The latter may be accompanied by formal models as
defined in the Unified Modeling Language.

This thesis deals with the vision of semi-automating the process of requirements
elicitation and substituting the human requirements engineer by an automatic
requirements engineer. To this end, we develop an interactive evolutionary algo-
rithm, formalizing examples provided by the customer and supporting the cus-
tomer to provide more useful data. More precisely, we use search-based software
engineering for generalizing exemplary models to a formal requirements specifica-
tion.

In search-based software engineering (SBSE), metaheuristic search approaches,
such as evolutionary algorithms, are applied to address problems in software en-
gineering. These problems range from requirements and organizational tasks to
operations and maintenance [HMZ12]. Involving multiple competing objectives,
these problems are usually associated with a complex problem space. By using
SBSE, adaptive solutions to these problems are obtained in an automated or semi-
automated way. For instance, search algorithms can be applied to the problem
of model transformation. Defining abstract rules for transforming an instance of
one model into an instance of another model is an exhaustive and complex task.
In [HKP05; Kes+12; Kap+12; Küh+16], SBSE is used to deduce transformation
rules from observing example model transformations.

Transforming sequence diagrams into deterministic finite automata, van Rooijen
and Hamann [RH16] proposed an approach addressing the problem of requirements
elicitation by SBSE. Directed at customers who are considered to be domain ex-
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1 Introduction

perts and who are able to specify their requirements to a software system in the
form of exemplary sequence diagrams, these sequence diagrams are generalized
to a deterministic finite automaton (DFA). The DFA represents a simplified ver-
sion of a protocol state machine, constituting a requirements specification which is
learned from observing examples. The transformation rules and dependencies lead-
ing from the sequence diagrams to the generalized protocol need not be understood
to obtain good solutions. Through the nature of the problem, such approaches are
called black-box optimizers.

In the Collaborative Research Center 901 “On-the-fly Computing”, we pursue the
vision of a dynamic software service market, in which users are offered automati-
cally assembled software services on demand [Col11]. A software service encapsu-
lates a set of operations, described by inputs and outputs, as well as preconditions
and effects in the form of first-order predicate logic [Moh16]. In order to enable au-
tomatic configuration and composition of services, a formal description of services
is a crucial requirement. Corresponding to the Service Specification Language
[Pla16], the formal description is structured in two major parts: a functional and
a non-functional description. The functional description contains a declaration of
operation interfaces by inputs, outputs, preconditions, and effects. Additionally,
a protocol in the form of a deterministic finite automaton is stated, describing
the usage of the declared operations to accomplish the task of the service. Fur-
thermore, non-functional requirements such as the price or the reputation of the
declared operations belong to the service description.

Conversely, this means in order to make use of the services of automated service
composition and configuration, a formal requirements specification for the desired
service is inevitable. Hence, a customer is required to state a formal service de-
scription of the desired service. To this end, the customer needs to have a technical
background for creating such a service description. Additionally and more impor-
tantly, knowledge of available operations is required to declare these in the service
description.

However, we hope to address this problem, providing a more user-friendly way of
specifying such service descriptions for customers who are domain experts. We
assume domain experts to be capable of expressing their requirements in the form
of sequence diagrams, which describe the interaction between the user and the
desired service in terms of examples. Within the sequence diagrams, the domain
expert is allowed to use arbitrary operation names. Applying the SBSE approach
by van Rooijen and Hamann [RH16], a protocol is generalized from the provided
examples. In a further step, the arbitrarily chosen operation names of the domain
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expert are mapped to operations that exist in the dynamic software service mar-
ket. The mapping of the operation names is still an open task and does not form
a part of this thesis. Taken together, this yields the functional description of the
desired service.

In order to generalize a protocol from the provided sequence diagrams, van Rooijen
and Hamann [RH16] reduce this problem to the problem of inferring a determin-
istic finite automaton for some language from exemplary words. Generally, this
problem is also known as grammatical inference. The Evidence-Driven State Merg-
ing (EDSM) algorithm is one of the most well-known and popular algorithms to
address the problem of grammatical inference [LPP98]. Deterministically, EDSM
builds a prefix tree for the obtained training data as an initial DFA and merges
states depending on how much evidence the training data contains concerning this
decision. However, Lucas and Reynolds [LR03; LR05] have shown that evolution-
ary approaches lead to promising results and even outperform EDSM for target
models of less than 32 states.

Unfortunately, the amount of data that is needed to obtain good results is too
extensive, since the domain expert is required to provide this amount of examples
in the form of sequence diagrams. Moreover, customers are usually supported
by requirements engineers in the elicitation of their requirements. As already
mentioned before, requirements elicitation is an iterative process involving a sys-
tematic refinement from imprecise and abstract notions to explicit functional and
non-functional requirements. Therefore, the customer needs to be supported by
a type of automatic requirements engineer, which asks the customer for feedback
and supports the customer in providing more useful examples.

Empowering a learning algorithm to choose training examples autonomously, in
active learning approaches, the algorithm is given access to an oracle for labeling
data points in order to form new training examples. In this way, the training data
can be augmented strategically. For instance, Bongard and Lipson [BL05] com-
bine active learning and an evolutionary algorithm for grammatical inference to
an interactive approach, where queries to the oracle are chosen according to how
much disagreement they produce among already evolved models. In experiments
the authors showed their active approach to outperform other approaches, provid-
ing the same total amount of training data according to a uniform distribution.
In particular, compared to the other approaches, the active approach by [BL05]
needs less training examples to obtain a solution.

In the course of this thesis, we combine the approach of [RH16] and [BL05] to an
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1 Introduction

active evolutionary learning approach for requirements elicitation. Considering the
domain expert as an oracle, we hope to reduce the number of training examples,
which need to be provided by the domain expert. Furthermore, by delegating
the choice of which training examples are provided to the algorithm, the domain
expert is supported by the algorithm in refining the already provided examples. In
this way, the algorithm takes over the roles of an automatic requirements engineer.

1.1 Structure of Work
In the remainder of this chapter, we briefly introduce a running example which is
used for illustrating definitions and concepts in the discourse of this thesis. Chap-
ter 2 is dedicated to the fundamental basics regarding models, dynamic software
service markets, evolutionary algorithms, and active learning. Related work is out-
lined in Chapter 3 on automated requirements engineering and learning determin-
istic finite automata from exemplary words. The core of this thesis is subsequently
given in Chapter 4, where we present approaches for interactively learning require-
ments specifications from examples. Chapter 5 is subject to the implementation
part of this thesis. In Chapter 6 we experimentally evaluate the approaches pre-
sented in Chapter 4, including a comparison between the state-of-the-art approach
and our approach. Finally, this thesis is concluded by Chapter 7 with a summary
of this thesis and an outlook.

1.2 Running Example: Shop Management Service
Throughout this thesis, we use a running example that we use to illustrate the
concepts and approaches we discuss. For this purpose, we consider the case that
a domain expert wants to specify the requirements for a shop management system.

The service we want to describe initially shows a landing page that can be refreshed
infinitely often. To enable more features such as showing an overview panel for
the shop administrator, a login is required. On a successful login, the shop ad-
ministration panel is shown. We also demand that the administration panel is
only accessible after the login. The domain expert may exemplarily model these
requirements by sequence diagrams as depicted in Figure 1.1a and 1.1a.

A deterministic finite automaton representing a possible outcome of the require-
ments elicitation process is shown in 1.2. The automaton defines a protocol for
applying operations according to the above-stated requirements.
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1.2 Running Example: Shop Management Service

(a) Example sequence diagram for desired
behavior

(b) Example sequence diagram for prohib-
ited behavior

Figure 1.1: Example: Sequence diagrams exemplarily modeling the behavior of a
shop management system

Figure 1.2: Example: protocol for the shop management service

In the course of this thesis, we extend the example above introducing an alternative
path. Depending on the type of the logged in user, either an administration panel
or a customer panel is shown. The extended deterministic finite automaton is
depicted in 1.3.

Figure 1.3: Example: extended protocol for the shop management service
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2 Preliminaries
A software engineering process starts with the requirements elicitation phase, in
which requirements for the software are formalized. The Unified Modeling Lan-
guage (UML) is a standardized collection of such formalisms. Therefore, in Sec-
tion 2.1, a brief description of the UML and two of its formalisms are provided,
i.a. an enhanced implementation of deterministic finite automata is described.
These cannot only be used for specifying the behavior of entire software systems,
but also software services as building blocks for software systems. For instance, in
the on-the-fly market (OTF market), these are used to describe the semantics of
software services as well as to specify requests for services. The central concepts
of the OTF market are explained in Section 2.2.

In order to facilitate the request specification for users without involving a re-
quirements engineer, the user is only asked to describe exemplary behavior. For
generalizing these examples to a formal description of a service, this task is re-
duced to the problem of grammatical inference, which is presented in Section 2.3.
Section 2.4 provides an overview of evolutionary algorithms, which can be applied
to solve problems of grammatical inference. Extending evolutionary algorithms
to interactive algorithms by using concepts of the field of active learning, which
is outlined in Section 2.5, the algorithm is given the opportunity to refine the
generalization of the examples iteratively, while at the same time the algorithm
supports the user in providing more useful data.

2.1 Unified Modeling Language
The Unified Modeling Language (UML) is a standard for modeling software, which
is maintained by the Object Management Group (OMG). In the UML standard
(see [Obj15]), two groups of models are defined: one for describing the behavior
and one for modeling the structure of software. Due to the explicit and clearly
defined semantics, models of the UML can be used to find a consensus between the
notions of the client and the contractor. Usually, the requirements specification,
which forms the contractual basis for engaging a software provider, is accompanied
by such models. On top of that, the models represent a blueprint of the desired
software for the software developer.
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2 Preliminaries

In the following, we consider two examples of model types for describing the be-
havior of software, standardized in the UML specification. Section 2.1.1 deals with
state machines, which can be used for modeling the behavior of software systems
in terms of states and interactions resulting in a change of state. In Section 2.1.2,
we consider another model type, which can be used to exemplify sequences of in-
teraction between the user, the software system, external software systems, as well
as entities within these software systems.

2.1.1 State Machines
A state machine (SM), also known as statechart, is dedicated to model behavior
of a software component in terms of states and transitions, leading from one state
to another. Based on the concepts of statecharts by Harel [Har87], UML state
machines extend the formalism of deterministic finite automata by introducing
new concepts as hierarchical states and additional annotations for transitions.

For instance, the usage of a transition may be refined by annotating it with a
so-called guard. A guard is a boolean expression, which is required to evaluate
to true before the transition is allowed to be used. Therefore, by the usage of
guards, it is possible to refine the semantics of transitions and states.

Figure 2.1: Example statechart with a hierarchical state, guards, and actions

In Figure 2.1, an example for a statechart is shown, modeling an extended version
of our running example. The example statechart shows transitions which are
labeled with so-called actions. These actions may represent operation calls or other
events. In our scenario, we use operation calls, of which the /login() operation
call leads to a hierarchical state encapsulating two further states. The transitions
to the sub-states are refined by guards [isAdmin] and [isCustomer].
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2.1 Unified Modeling Language

2.1.2 Sequence Diagrams

Sequence diagrams model the interaction between the user and the software sys-
tem, as well as between different entities of the software system. A sequence
diagram consists of several vertical lines, so-called lifelines, each corresponding to
one object, which is either a user or an instance of some class of the software sys-
tem. Arrows which are drawn between those lifelines model messages, which are
sent from the object that the arrows starts. The end of the arrow marks the re-
cipient of that message. Messages are also referred to as events or operation calls.
In order to model that a certain operation call or event is sent, the corresponding
arrow is annotated with the name of the operation or event.

Moreover, the lifelines also denote the flow of time such that the arrangement of
arrows also denotes their temporal order. The temporal order is interpreted from
top to bottom. Therefore, an event or operation call occurs later iff its arrow is
below the arrow of another event or operation call.

Figure 2.2: Example of a simplified sequence diagram

Sequence diagrams allow for more complex structures like loops and conditions
involving different entities. However, in the course of this thesis, we only consider
a simplified version of sequence diagrams as defined in [RH16]. This simplified
version limits the number of involved objects to two, viz. the user and the software
system. An example for a simplified sequence diagram is depicted in Figure 2.2,
showing two lifelines. One lifeline belongs to the user, and the other lifeline belongs
to the desired service. As it is illustrated, messages in the form of operation calls
are sent from the user to the desired service.

9



2 Preliminaries

2.2 On-The-Fly Computing

On-The-Fly Computing is an on-going research project at the University of Pader-
born accomplished by the Collaborative Research Center 901 (CRC 901). Within
the CRC 901, methods and technologies are investigated for dynamic software
service markets, enabling participants of this market to request services, which
are made available by so-called providers [Col11]. These dynamic software service
markets are referred to as On-The-Fly Computing markets (OTF markets). Par-
ticipants of the OTF market can be summarized in two major groups: end-users,
which are referred to as customers, and providers. The various roles are outlined
in Section 2.2.1.

The vision of the OTF market is to establish worldwide markets, where customers
are provided individual services on demand, automatically composed of base ser-
vices. Meaning, if a requested service as such is not available in the OTF market,
providers compose the requested service out of other available services in order to
fulfill the requirements of the request.

As an example consider the following scenario taken from [Pla+16]: A customer
wants to ask for a service, computing a bus route from place A to place B. As
an input the customer provides the GPS coordinates for the start location and
the destination. The customer sends a request for a service to the OTF market,
which calculates a bus route between two GPS coordinates. However, within the
OTF market, there exists no service matching these particular requirements. In-
stead, there exists a service getStation that, given a GPS coordinate as an input,
outputs the closest bus station and another service getBusRoute, calculating a
bus route between two bus stations. Out of these two services, a service can be
composed, obviously fulfilling the requirements of the customer. By applying the
getStation twice, once for place A and another time for place B, we obtain the
input data needed for the application of the getBusRoute service. In this way,
although there exists no service in the OTF market that fulfills the requirements
on its own, a service can be composed, using other services as building blocks.

In order to automate the process of service composition, the semantics of services
have to be formalized to be comprehensible by machines. Hence, a formal descrip-
tion of services and requests is needed. In Section 2.2.2, this formal description of
services and requests is outlined.
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2.2 On-The-Fly Computing

2.2.1 Roles
Within the OTF market, market participants may take over various roles. Gener-
ally, we can summarize the roles in two major groups: customers and providers.

The role of the provider is divided into two roles, which collaborate in order to pro-
vide the customer with individual services: on-the-fly providers (OTF providers)
and service providers. While the OTF provider is responsible for answering re-
quests of the user and configures services from base services, the base services are
provided by the service providers. Therefore, the problem of composing services
out of base services is distributed on different roles. While the OTF provider is
responsible for configuring the blueprint for the requested service and requests the
building blocks from the service provider, the service provider, in turn, is respon-
sible for matching the requests for building blocks of OTF providers to its base
services. In collaboration, the OTF provider and the service provider supply the
user with the desired services on demand.

As service configuration is performed on demand, this has to be initiated by a re-
quest on behalf of a customer. The way this request is stated depends on the type
of customer. In general, we distinguish between customers with a technical back-
ground, domain experts, and end users. While users with technical background
bring the ability to state requests in the formalisms directly in the so-called Ser-
vice Specification Language (SSL), domain experts and end users need a more
user-friendly way of specifying services. The SSL is explained in the subsequent
Section 2.2.2.

Other than specifying a service in terms of an SSL description, a specification in
terms of a natural-language description provided by the end user represents one
possibility of a user-friendly specification. This natural-language description is
processed in order to extract the desired features and to formalize these require-
ments.

In contrast to that, we assume the domain expert to have the ability to model the
behavior of the desired service in the form of exemplary models. Providing two sets
of exemplary sequence diagrams, on the one hand, the user models desired behavior
and prohibited behavior, on the other hand. Within the sequence diagrams, the
domain expert may use arbitrary operation names. The formalized requirements
specification is synthesized in two steps. First, a protocol for the desired service
is generalized from the examples. The arbitrary operation names used in the
sequence diagrams are mapped to actually existing operations and services in the
OTF market, in a second step.
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2.2.2 Requests and Services
In order to enable automated service composition and processing of requests by
customers, it is inevitable to formally specify interfaces and semantics for ser-
vices as well as for requests. For describing services and requests, the Service
Specification Language is used, as defined in [Pla16; Pla+16]. The Service Speci-
fication Language (SSL), which extends the Palladio Component Model [BKR09],
divides the functional description of a service respectively request in two parts:
(1) a definition of operations by interface specifications and (2) a deterministic
finite automaton describing the order in which the specified operations are used.
Furthermore, non-functional requirements, such as for instance the price or the
reputation, of a service can be defined (3). An example is shown in Figure 2.3

Figure 2.3: Example requirements specification described with SSL

The first part (1) of the functional specification contains a declaration of the op-
erations that are used within the second part, i.e. the protocol. Traditionally, a
signature of an operation is specified by the name of the operation, its input pa-
rameters, and the returned values respectively its output parameters. In addition,
the semantics of the operation have to be specified by precondition and effect.
While the precondition determines, which state is required to hold for enabling an
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operation call, the effect describes, as the name already suggests, the effect of an
application of the operation. The description of an operation by input parameters,
output parameters, preconditions, and effects is referred to as IOPE description.

In the second part (2), a protocol in the form of a deterministic finite automaton
describes in which order the declared operations are intended to be used. For that,
the transitions of the automaton are labeled with the operation names.

Finally, the third part (3) is dedicated to the description of non-function properties.
These include for instance the price for the desired service or a particular repu-
tation in the market. Moreover, properties concerning technical non-functional
requirement, such as throughput, the average response time, or execution time
can be stated in this part of the requirements specification.

2.3 Grammatical Inference
Grammatical Inference refers to the process of learning formal languages from ex-
emplary data. Usually, the inferred grammar is represented by production rules,
finite state machines, or simply by deterministic finite automata. Grammatical
Inference can be applied to a variety of problems such as natural language pro-
cessing [DFG11], inductive logical programming [Fer+00], or sequential data min-
ing [PS04].

In the case of learning a deterministic finite automaton (DFA), the learning algo-
rithm is provided with example words of some language L. The aim of the machine
learning process is to find an automaton which accepts the same language. Usu-
ally, the alphabet is known to the learner, while the remaining parameters have
to be inferred from the training examples. Therefore, the task of the learner is to
find an appropriate set of states, a set of accepting states and a transition function.

Deterministic as well as heuristic approaches exist for learning DFAs. The prob-
ably most popular deterministic grammatical inference algorithm is the so-called
Evidence-Driven State Merging (EDSM) algorithm [LPP98]. It was shown in [LR03]
that evolutionary approaches outperform EDSM for DFAs, having less than 32
states. There are even methods of training an artificial neural network (ANN)
with the example data and extracting the DFA from that ANN after the training
process [Gil+92]. In this thesis, we apply evolutionary algorithms to the prob-
lem of grammatical inference. Therefore, the main idea and basic concepts of
evolutionary algorithms are presented in the subsequent Section 2.4.
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2.4 Evolutionary Algorithms
In 1858, Charles Darwin published a theory towards evolution of species by natural
selection that is based on four pillars: population, diversity, heredity and selection.
A population is a group of several individuals with different characteristics and di-
versity refers to these differences among the individuals. The characteristics have
their roots in the genes, which are also transmitted over generations by heredity.
Selection refers to reducing the reproduction rate of certain individuals due to
characteristics, which do not fit the environmental conditions. As a consequence,
other individuals comparatively produce more offspring ("Survival of the fittest")
[Dar].

Evolutionary algorithms (EAs) are learning or optimization algorithms that are
inspired by the concepts of natural evolution [YG12]. Hereby, an individual repre-
sents a solution to a problem, and it can be specified in the form of some genetic
representation. For instance, such a genetic representation might be a set of real
values (x1, . . . , xn) as parameters of some function f : Rn → R, where the value of
f has to be minimized.

Similar to natural evolution, the individuals in EAs are exposed to different selec-
tion mechanisms, and solution candidates are varied or recombined to obtain new
solution candidates. In order to search for an optimal solution, the steps of evalu-
ation, selection, and variation are repeated. These steps can be summarized in a
basic evolutionary algorithm, which is presented in Section 2.4.1. Within this con-
text, co-evolution refers to the parallel evolution of species that do not interbreed
but may affect each other concerning for instance the selection. Section 2.4.2 is
dedicated to explaining the concept of co-evolution, its abilities, and its limitations.

In real world applications, the fitness of an individual may be composed of different
fitness functions, so that there are multiple objectives to be optimized. Due to
maintaining multiple solutions at once, evolutionary algorithms prove a popular
approach for solving multi-objective optimization problems. These so-called multi-
objective evolutionary algorithms (MOEA) are presented in Section 2.4.3, and an
exemplary instance of MOEA called NSGA-II is introduced in Section 2.4.4.

2.4.1 Basic Evolutionary Algorithm
Typically, evolutionary algorithms are oriented towards a certain pattern, which is
illustrated in Figure 2.4. The overall process can be divided into four sub-routines:
initialization of the population, fitness scoring, selection, and variation.
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Figure 2.4: Basic evolutionary algorithm pattern

In the first step, a population is initialized with random individuals distributed
according to some probability distribution. Typically, the distribution is a uni-
form distribution. After the population is initialized, the so-called fitness value is
evaluated for each individual in the step fitness scoring. The fitness value is the
outcome of some fitness function that has to be defined in advance. In general, the
fitness function determines how well an individual performs as a candidate solution
to the problem. In the example case of finding global optima of a function, this
would simply be the function value for the parameters encoded by the individual.

Once the fitness value is computed, individuals are selected for producing offspring.
There are several different approaches on how to select individuals. As an example,
a simple selection operator draws two individuals from the population and chooses
the fitter individual. This kind of selection is known as tournament selection since
two or more individuals compete against each other and the one with better fitness
is considered the winner of the tournament.

In the variation step, selected individuals are used for reproduction, i.e. solution
candidates are duplicated and modified in order to obtain new solution candidates.
One possibility of altering individuals is referred to as mutation. A mutation op-
erator makes with a certain probability a minimal change to the genome of an
individual, e.g. a single bit of a genome in the form of a bit string is flipped.

Another way of modifying individuals is to recombine two individuals, e.g. by a so-
called single-point crossover. As sketched in Figure 2.5a, a single-point crossover
takes two individuals and chooses a random index to cut the genes. By switching
the cut-off pieces, two new individuals are obtained which represent combinations
of the parent individuals and may inherit the properties of the parents. Analo-
gously, a two-point crossover is defined as cutting the gene in 3 parts and switching
the center part (see Figure 2.5b). However, recombination techniques require the
interpretation of genotypes to be decomposable, i.e. parts of the genotype repre-
sent sub-solutions, in order to work properly.
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(a) Single-point crossover (b) Two-point crossover

Figure 2.5: Crossover as recombination methods to produce offspring

By integrating the new individuals into the current population results in a new
generation of the population. There are different strategies on how the offspring
is integrated, e.g. replacing the whole population or keep the k best individuals of
the previous generation and fill up the population with offspring.

The routines for fitness scoring, selection and variation are repeated until a termi-
nation condition holds. A termination condition may be, for instance, a certain
threshold on the fitness value or a certain number of generations. While the num-
ber of generations is guaranteed to terminate eventually, a threshold on the fitness
value might not be reached. Therefore, the choice concerning the termination con-
dition depends on the application.

Altogether, evolutionary algorithms refer to a class of heuristic optimization ap-
proaches, which are inspired by natural evolution according to Charles Darwin.
Taking into account the four pillars of evolution population, diversity, heredity
and selection, evolutionary algorithms can be used to address complex problems.
The concept of different species can be adopted, as well. Evolving multiple species
in parallel is referred to as co-evolution and is presented in the subsequent section.

2.4.2 Co-evolution
The parallel evolution of different species that may affect each other but without
interbreeding is known as co-evolution. In nature, there are many examples of co-
evolution like predator and prey, host and parasite, or host and symbiont. Species
living in a co-evolutionary context are exposed to a permanent competition, such
that the development of the one species has a direct impact on the fitness of an-
other species.

For instance, in the case of predator and prey, if the predator chases its prey and
succeeds, this leads to a selection of prey individuals with better abilities in escap-
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ing from the predator. Hence, these individuals produce more offspring, so hunting
becomes more difficult for the predator. As a consequence, faster or smarter preda-
tors are selected for producing more offspring. The process of affecting the other
species to improve its fitness is called “arms race”.

In the context of evolutionary algorithms, co-evolution can be considered as two
separate evolutionary processes running in parallel. However, the fitness scoring
within these processes depends on the other evolutionary processes. Apart from
that, evolution is performed as described in the previous sections.

2.4.3 Multi-Objective Evolutionary Algorithms
In the field of multiple objective decision making (cf. [HM79]), multi-objective
optimization refers to the mathematical optimization problem involving multiple
objective functions. The involved objective functions are subject to be optimized
simultaneously. If it is not possible for two objective functions to obtain an opti-
mal value at the same time, the two objective functions are called conflicting. In
the presence of conflicting objectives, trade-offs have to be made.

Multi-objective evolutionary algorithms (MOEA) are a special instance of evolu-
tionary algorithms, which are, usually, based on the principles of Pareto optimality.
Instead of a single fitness value, individuals are assigned a fitness vector, where
each entry of this vector corresponds to one fitness function. While fitness scoring
simply iterates over the fitness functions for successively assigning the fitness val-
ues, selection becomes more complex.

In multi-objective optimization, usually, all the objective functions have the same
weight. This means that, in the case of two fitness vectors (0, 1) and (1, 0), none of
these can be found as better or worse. On the contrary, another fitness vector (1, 1)
is considered to be better than the other two. In particular, (0, 1) and (1, 0) are
called dominated solutions, which are dominated by (1, 1). Formally, dominated
solutions can be defined as follows.

Let C be a set of solutions and let f1, . . . , fn be objective functions, where fi :
C → [0, 1] for all 1 ≤ i ≤ n. A solution c ∈ C is called dominated if there exists
another solution c′ ∈ C, such that ∀i ∈ {1, . . . , n} : fi(c) ≤ fi(c′). Otherwise, it is
called non-dominated.

In the presence of multiple non-dominated solutions, these solutions form a non-
dominated front as shown in Figure 2.6. A non-dominated front is defined as the
set of all non-dominated solutions. If we take into account the entire search space
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Figure 2.6: Candidate solutions arranged on a Pareto front

as the set C, the front of non-dominated solutions is called Pareto front. Further-
more, elements of the Pareto front are called Pareto optimal. Formally, Pareto
optimal is defined as that there exists no other solution which is better in at least
one objective without decreasing the value of another objective.

MOEAs based on the principle of Pareto optimality use the domination relation
for the selection of individuals. Usually, a secondary selection operator needs to be
taken into account since two individuals of the same front are incomparable. The
following section deals with an exemplary instance of multi-objective evolutionary
algorithms, which is called NSGA-II.

2.4.4 NSGA-II Algorithm
The NSGA-II initially presented in [Deb+02] is a special instance of an elitist
multi-objective evolutionary algorithm based on the principle of Pareto optimal-
ity. NSGA-II is standardly instantiated involving a chained selection operator,
i.e. if the first selection operator does not yield a conclusive result, a secondary
selection operator is applied. Primarily, it is compared, whether one solution dom-
inates the other one. If this is not the case, secondarily, the so-called crowding
distance operator is applied.

The crowding distance takes into account, how different the considered individual
from other individuals is. The crowding distance is defined as the space around
the considered individual when drawing a hyperrectangle around this individual.
The direct neighbors of the considered individual are used as reference points. A
two-dimensional example for the crowding distance of two points A and B is shown
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in Figure 2.7.

Figure 2.7: Example for crowding distance

In the figure, the black-colored points belong to the same non-dominated front.
The closest neighbors are respectively taken as reference points for drawing a
rectangular enclosing the point A respectively B. While this rectangular is colored
white for A, the rectangular belonging to B is colored gray. Obviously, the size of
the area of B is larger than the area of A, i.e. B has a greater crowding distance.
When comparing two individuals, individuals with greater crowding distance are
preferred since for individuals with smaller crowding distance there are still more
similar solutions within the population. Moreover, the crowding distance operator
proves beneficial for maintaining a more diverse population.

2.5 Active Learning
Active learning is a sub-field of machine learning, more specifically, semi-supervised
learning, where the learning algorithm is given access to an oracle, which is able
to label data points. The key hypothesis is that an active learning algorithm can
achieve better performance with fewer training examples if it is allowed to choose
the training data it learns from [Set12].

During the learning process, the learning algorithm maintains a set of considered
data points, which can be divided into three sets. First, a set of data points for
which the label is already known, second, a set of data points for which the label
is unknown, and third, a set of data points that is chosen to be sent to the oracle
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in order to obtain labels for these data points.

The oracle is responsible for providing the labels of data points to the active learn-
ing algorithm. In an interactive scenario, the role of the oracle may be played by
a human. Alternatively, the oracle might also be a database or another program.

Most likely, the biggest challenge in the field of active learning is to find an optimal
strategy for choosing data points to be labeled by the oracle. One of these strategies
is called query-by-committee. This strategy maintains a so-called committee of
models, which are trained on the currently labeled data points but ideally represent
different hypotheses. The most informative query is considered to be the data point
for which the committee disagrees the most. The main idea behind this strategy
is to minimize the version space, i.e. to minimize the number of hypotheses which
are consistent with the set of labeled data points.
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Applying evolutionary algorithms to the problem of grammatical inference became
really interesting through the introduction of the so-called Smart State Labeling
algorithm by Lucas and Reynolds [LR03; LR05]. This approach, which is dis-
cussed in Section 3.1, allows evolving deterministic finite automata using only the
transition matrix as a genome. Based on this algorithm, Bongard and Lipson
[BL05] introduced an interactive co-evolutionary approach, reducing the amount
of required training data by applying active learning techniques. Section 3.2 gives
an overview of this approach.

Other than that, in Section 3.3, we outline an approach synthesizing statecharts
from sequence diagrams. In Section 3.4, we discuss an approach by van Rooijen
and Hamann [RH16], reformulating the problem of the synthesis of deterministic
finite automata from sequence diagrams as a grammatical inference problem.

3.1 Evolving Automata Using Smart State Labeling
Lucas and Reynolds [LR03; LR05] introduced a new approach in the field of gram-
matical inference referred to as Smart State Labeling (SSL) algorithm. Since for
the alphabet and the number of states fixed values are assumed and q0 can be
fixed w.l.o.g., it remains to evolve δ and F . Hence, the search space complexity is
|Q||Σ|·|Q| for searching δ : Q× Σ→ Q and 2|Q| for F , as for every state a boolean
value is needed, determining whether a state belongs to F . This yields an overall
search space complexity of |Q||Σ|·|Q|2|Q|.

In order to reduce the search space complexity, Lucas and Reynolds [LR05] pro-
pose the SSL algorithm for calculating F from the training examples, such that the
evolved automata have an optimal labeling with respect to the training examples.
To this end, the algorithm counts for each state how many training examples of
each label end in the respective state. The state is added to F if at least half of
the training examples which end in this state are labeled accepting. In this way,
the search space complexity for evolving automata is reduced by the factor 2|Q|.
Therefore, the resulting search space complexity is |Q||Σ|·|Q|.
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Experiments showed that a simple evolutionary algorithm, using the SSL algo-
rithm, outperforms the deterministic, former state-of-the-art algorithm Evidence-
Driven State Merging for target automata with less than 32 states.

3.2 Active Co-Evolutionary Learning
Traditional approaches, applying evolutionary algorithms to the problem of gram-
matical inference, need a large number of training examples in order to infer the
target language. As outlined in Section 2.5, in active learning, the algorithm is
given access to an oracle, labeling new data points. In this way, the algorithm is
allowed to strategically augment the training data, requesting data points needed
in order to increase the quality of the solutions.

Bongard and Lipson [BL05] combine active learning, the SSL algorithm (cf. Sec-
tion 3.1), and two evolutionary algorithms to an active co-evolutionary learning
approach for deterministic finite automata referred to as Estimation-Exploration
Algorithm (EEA). The EEA alternates between evolving deterministic finite au-
tomata (DFAs) with respect to the training examples and evolving words which
produce disagreement among a set of DFAs. Disagreement of a word is measured
by counting how many DFAs accept respectively reject this word. The disagree-
ment is considered to be maximal if one half of the DFAs accepts and the other
half rejects the word. The word with the maximum disagreement is chosen as a
query to the labeling oracle.

In [BL05], experiments showed that EEA outperforms its passive equivalent, i.e.
queries to the oracle are chosen uniformly at random, and other passive approaches
for less than 32 states. Furthermore, the results show that EEA needs less training
examples than passive approaches to reach a certain test set accuracy.

3.3 Synthesis of Statecharts from Sequence
Diagrams

Statecharts are useful artifacts for the specification and formalization of require-
ments. Especially in model-drive software development and systems engineering,
statecharts represent an indispensable model class [SLV14; BGS05] enabling code
generation.

However, the task of specifying and refining statecharts is a laborious task. There-
fore, Harel, Kugler, and Pnueli [HKP05] present an approach for the synthesis of
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statecharts from examples of so-called Live Sequence Diagrams (LSDs). LSDs refer
to an extension of standard message sequence diagrams (MSDs) or UML sequence
diagrams, allowing for new expressions such as quantifiers.

The synthesis approach, first, encodes the LSDs as a transition system. In a second
step model checking techniques are applied to this transition system in order to
verify the soundness of the specified behavior. Lastly, for each of the objects
evolved in the LSDs, a statechart is generated. However, the overall approach is
time-consuming even though it is correct with respect to the provided LSDs. The
requirements specified in the form of LSDs have to be precise and complete for
synthesizing the statechart. Therefore, the task of thinking through the whole
software system is already performed when creating the LSDs.

3.4 Requirements Specification-By-Example Using
Multi-Objective Optimization

Van Rooijen and Hamann present an approach of inferring deterministic finite
automata from a simple version of sequence diagrams in [RH16]. The number
of involved objects in the simple version of sequence diagrams is limited to two,
viz. an actor and the system. Therefore, sequence diagrams can be represented by
sequences of operation calls. Taking an evolutionary multi-objective optimization
(based on the principles of Pareto optimality) approach for grammatical inference,
the authors interpret the sequences of operations as words over an alphabet, con-
sisting of operation names as input symbols. These words are either labeled by
the user as desired or prohibited behavior.

Based on the provided examples, a protocol represented by a deterministic finite
automaton is inferred, optimizing the models with respect to the examples subject
to different objectives. The authors propose to maximize the accuracy on positive
examples, the accuracy on negative examples, and the number of sink states as
well as minimize the proportion of states which is needed for processing all the
training examples. A sink state refers to a state of which all outgoing transitions
are self-loops. The result of this approach yields a Pareto front of deterministic
finite automata, which are returned to the user.
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The automated service composition algorithms within an OTF market involving
users, service providers, and OTF providers, are based on formal descriptions for
both services and requests. These formal descriptions, e.g. in the form of predicate
logic, require expert knowledge of the demanded formalisms as well as an under-
standing of the services themselves. In order to also enable non-expert users, such
as domain experts and even naive users, to state requests for the OTF market a
more intuitive way of creating requests is mandatory.

In [RH16], van Rooijen and Hamann proposed a requirements specification-by-
example approach (cf. Section 3.4). Requiring the user to provide sets of simplified
sequence diagram representing examples of desired and prohibited interactions be-
tween the user and the desired service, a formal requirements specification in the
form of a deterministic finite automaton is generalized from these examples. Using
this concept and this way of interpreting the problem as a basis, in Section 4.1
we extend this approach by asking the user (since the user is the only one who is
able to reveal more information about the desired service) for feedback following
Bongard and Lipson [BL05].

However, the user can only provide a strongly limited number of such exemplary
sequence diagrams in order to describe the interaction with the desired service.
Usually, thousands of examples are necessary in order to obtain solutions of good
quality. Furthermore, the simplified version of sequence diagrams is restricting
the complexity of the inferred models. With a view to remain practicable for
naive users as well, it is more favorable to request the required data from another
source of knowledge. Alternatively, other than the user, the OTF market contains
detailed information about the semantics of the services which are about to be used
as building blocks for the desired service, which is described by the user. Therefore,
we consider two concepts in Section 4.2 on how to use some information, which
is available within the OTF market or which can be learned by observing the
communication between participants of the OTF market.
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4.1 Interactive Coevolutionary Requirements
Specification-by-Example

Initially, a user, who wants to query the OTF market for a desired service, may
provide an exemplary description of that service in the form of simplified UML
sequence diagrams. The simplified version of a sequence diagram corresponds to
standard UML sequence diagrams (see [Obj15]) but restricts the number of in-
volved objects to two objects: the user and the desired service [RH16].

The user provides two sets of simplified sequence diagrams. One set describes in
terms of examples desired behavior and the other one prohibited behavior. This
way, the user is able to describe the behavior, which is expected to be implemented
by the desired service on the one hand, and on the other hand, other behavior can
be excluded explicitly. Within the sequence diagrams, the user may use arbitrary
operation names in order to describe the behavior of the service. Operation names
used in the sequence diagrams are mapped to existing operation names in a later
step. This way, the user does not need any knowledge about operations and ser-
vices that are available within the OTF market. However, the mapping of those
arbitrary operation names to actually existing services is out of the scope of this
thesis.

The provided sequence diagrams can be understood as exemplary snippets of a pro-
tocol describing the interaction between the user and the desired service. Hence,
the behavior of the service is also implicitly described. One possible way of rep-
resenting such a protocol is a deterministic finite automaton, which is defined in
the next Section 4.1.1.

In Section 4.1.1, we first define the genetic representation of deterministic finite
automata. The following Section 4.1.2 is dedicated to presenting the requirements
specification-by-example approach by van Rooijen and Hamann [RH16] in all de-
tails. As a contribution of this thesis, this approach is extended in Section 4.1.5
to an interactive co-evolutionary approach by following the approach by Bongard
and Lipson [BL05], which is recalled in Section 4.1.4 and adapted to deal with non-
binary alphabets as well. In these approaches, words for automata are evolved in
a parallel evolutionary process, which requires a genetic representation for words.
Therefore, Section 4.1.3 is dedicated to the definition of the genetic representation
of words. Finally, we give an overview of the presented approaches in Section 4.1.6.
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4.1.1 Genetic Representation of DFAs
A deterministic finite automaton (DFA) over an alphabet Σ can be defined by a
5-tuple A = (Σ, Q, δ, q0, F ), where Q is a finite set of states, q0 ∈ Q the initial
state, F ⊆ Q a set of accepting states and δ : Q × Σ → Q a transition function.
A word w = a1a2 . . . an of length n is a sequence of n input symbols ai ∈ Σ. If for
such a word w there exists a sequence of states q0q1 . . . qn such that δ(qi−1, ai) = qi

and qn ∈ F , then w is accepted by A. Otherwise, the word is rejected. The set
of all words that are accepted by A form the language of A denoted as L(A), i.e.
L(A) = {w ∈ Σ∗|w is accepted by A}.

If the transition function δ is a total function, then A is called a complete de-
terministic finite automaton. In the following, we consider only complete DFAs,
since they can be simply represented by a |Q| × |Σ| matrix over Q as explained
below. This does not constrain the presented approaches as every DFA can be
extended to a complete DFA still accepting the same language. The size of a
DFA is defined as its number of states reachable from the initial state q0. A
state q is reachable if there exists a sequence of input symbols a1 . . . ak such that
δ(δ(. . . δ(q0, a1) . . . , ak−1), ak) = q for some k ∈ N.

Since simplified sequence diagrams, as provided by the user, involve only interac-
tions between the user and the desired service, the sequence diagrams can also be
represented by a sequence of operation names. Considering the operation names
as symbols ai of an alphabet Σ, a sequence of operation names forms a word
w = a1a2 . . . an, for ai ∈ Σ. We extract the alphabet Σ from all the distinct op-
eration names occurring in the sequences of operation names. Additionally, the
user classifies the sequences of operations as desired or prohibited behavior. This
classification is translated to accepted respectively rejected labels. Hence, the user
describes a language L by examples, accepted by some DFA. A tuple x = (w, l)
where w is a word and l its correct label is called a training example. Altogether
the training examples form a set referred to as training data S.

In order to define the genetic representation of a DFA A = (Σ, Q, δ, q0, F ), we split
this representation in two parts (Σ, Q, δ, q0) and (F ). Without loss of generality,
we assume Q to be of the form {0, . . . , |Q|− 1}, Σ of the form {0, . . . , |Σ|− 1} and
q0 is always the state 0. By this means we can represent the first part (Σ, Q, δ, q0)
by a |Q| × |Σ| matrix T over Q. As shown in Equation (4.1), the matrix coordi-
nates of T range from 0 to |Q| − 1 and from 0 to |Σ| − 1, such that all the states
and input symbols are implicitly represented by row and column numbers. Each
entry Ti,j is assigned the state returned by δ(i, j) and therefore contains the state
reached when A is in the state i reading the input symbol j.
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T =



0 1 . . . |Σ| − 1
0 δ(0, 0) δ(0, 1) . . . δ(0, |Σ| − 1)
1 δ(1, 0) δ(1, 1) ...
... ... . . . ...
|Q| − 1 δ(|Q| − 1, 0) . . . . . . δ(|Q| − 1, |Σ| − 1)

 (4.1)

The second part, F , is calculated from the first part and the provided training
examples, as initially proposed by Lucas and Reynolds [LR05]. Instead of repre-
senting F intuitively by an array of size |Q| setting the i-th value to 1 iff qi is
an accepting state, we only consider DFAs which have an optimal labeling with
respect to the set of training examples. With the so-called Smart State Labeling
(SSL) algorithm F is calculated as follows. In order to decide whether a state q
belongs to F , the set of all training examples xi = (wi, li) ending in q (i.e., when
A reads wi, in the end, A is in state q) are considered. If the number of input
examples labeled with accept is greater or equal to the number of input examples
with a reject label, q is considered to be an accepting state, and thus, it is added
to F . Otherwise, q is considered to be a rejecting state.

In [LR05; LR03] it was shown, that approaches using the SSL algorithm outper-
form other approaches evolving both a matrix T and the set of accepting states
F . Using the SSL algorithm has two major advantages. First, as already men-
tioned above, we want to consider only those DFAs having an optimal labeling
with respect to the training examples, as this maximizes the number of correct
classification of training examples. Second, the implicit representation reduces the
search space complexity by a factor of 2|Q|.

As a result, a DFA can be completely represented by the matrix T as defined
above. Concatenating the rows of T to a sequence of integers, standard recom-
bination techniques such as single-point crossover and mutation can be applied
straightforward. Therefore, T is used as a genome in the evolutionary approaches
presented below. Furthermore, individuals representing a DFA are subsequently
referred to as candidate models.

4.1.2 Grammatical Inference by Multi-Objective Optimization
Conventionally, applied to the problem of grammatical inference, heuristic ap-
proaches use only the accuracy of a candidate model regarding the training data S
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as an objective [LR05; LR03; Gom06]. The accuracy of an automaton A regarding
a set of training examples can be expressed as

fall(A) = |{(w, l) ∈ S | A(w) = l}|
|S|

, (4.2)

where A(w) denotes the label output by A when reading w. However, these ap-
proaches require thousands of training examples. In our setting, where the user is
required to provide this amount of training examples, this is impracticable. Fur-
thermore, it has to be expected that users are expected to make mistakes labeling
the training examples or even provide contradictory training data. Meaning some
words might appear twice, once labeled with accept and another time with reject.

Addressing these problems, Van Rooijen and Hamann [RH16] propose a heuristic
approach using multi-objective optimization in order to present a diverse set of
solutions to the user. Instead of measuring the fitness of all training examples
within one fitness function, as in Equation 4.2, the overall accuracy is split up
into fitness functions measuring the accuracy for each label (accept and reject).
Hence, the authors consider one fitness function for training examples labeled
with accept and another one for training examples labeled with reject as defined
in Equations (4.3) and (4.4).

fpos = |{(w, l) ∈ S | A(w) = l ∧ l = accept}|
|{(w, l) ∈ S | l = accept}| (4.3)

fneg = |{(w, l) ∈ S | A(w) = l ∧ l = reject}|
|{(w, l) ∈ S | l = reject}| (4.4)

In the case of one training example provided twice by the user, once as desired
behavior and another time as prohibited behavior, the solution could possibly con-
tain one candidate model accepting the example and one candidate model rejecting
it. Hence, the decision regarding the correct classification of the training example
might be delayed to the user.

Additionally, structural aspects of the candidate models are considered in [RH16].
In order to evaluate the generalization performance, the proportion of states needed
to process all the training examples is minimized. This objective is referred to as
relevant part and is defined as follows.

frel(A) =

∣∣∣⋃(w,l)∈S{qi | qi is visited by A reading w}
∣∣∣

|Q|
(4.5)
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The authors argue, that the fewer states are needed for processing all the train-
ing examples, the better the generalization performance of a candidate model is.
Moreover, this objective does not constrain the size of the DFA such that candi-
date models do not become too specialized.

Another structural objective is introduced, which is counting and maximizing the
number of sink states, i.e. states of which all outgoing transitions are self-loops.
This is intended to guide the algorithm to better discriminate between desired and
prohibited behavior. Formally, this objective can be defined as in Equation 4.6.

fsink(A) = |{q ∈ Q | ∀a ∈ Σ : δ(q, a) = q}|
|Q|

(4.6)

The approach was implemented as an instance of the multi-objective optimization
algorithm NSGA-II, which was originally introduced in [Deb+02]. In order to deal
with the multiple objectives, NSGA-II is based on the concept of Pareto optimality
and sorts individuals by calculating Pareto fronts recursively on the respectively
remaining individuals. If there are two individuals belonging to the same Pareto
front, these individuals are compared using the so-called crowding distance, as
proposed in [Deb+02]. Candidate models with a larger crowding distance, i.e. of
which less individuals with fitness values close to the considered candidate model
exist in the population, are preferred. Selection is performed by a tournament of
two individuals comparing first the membership of the Pareto front and secondar-
ily the crowding distance.

As already mentioned above, due to the representation of T as a sequence of
integers, standard recombination techniques can be applied straightforwardly. As
genetic operators mutation and a single-point crossover are applied. Within the
implementation, for both operators, the sequences of integers are converted to a
binary string in the first place. With probability

pM = 1
|Q| × |Σ| (4.7)

one bit is flipped in the binary string representation of each entry in T . This en-
sures one change in the matrix T on average. Additionally, a single-point crossover
is applied to the binary string representation of T with probability 1.

In our setting, with the aim of inferring a protocol from provided sequence dia-
grams, the usage of multi-objective optimization has several advantages over the
traditional approaches. First, because of the sparse data, there are many models
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with high fitness with respect to the accuracy on the set of training examples S.
Appropriately chosen objectives allow for a more sophisticated and a more robust
heuristic. Instead of only a single solution, the user is shown a set of solutions
such that the user can set preferences to objectives which might be more impor-
tant than other ones. Finally, multiple objectives can have a positive impact on
the search itself preserving a more diverse population and enabling local search in
different locations of the fitness landscape.

Nevertheless, the quality of the inferred models highly depends on the usefulness
of the provided training examples. Without automation of requirements elicita-
tion, the user would collaborate with a requirements engineer in order to define
requirements and refine these in an iterative process. In order to support the user,
the algorithm needs to interact with the user, making suggestions, recommenda-
tions and asking for feedback. The multi-objective approach by van Rooijen and
Hamann [RH16] still needs too much training data that is already required at the
very beginning of the requirements elicitation process. On the one hand providing
the amount of data needed for evolving well-performing candidate models would
possibly demotivate and fatigue the user, on the other hand, the user is required to
run the iterative process on his own in advance. Therefore, the amount of required
training data has to be further diminished and the algorithm should interact with
the user. The interaction with the user should support the user in providing more
useful training examples and refine the initially provided training examples itera-
tively. In this way, the algorithm takes over the role of an "automatic requirements
engineer".

In [BL05], Bongard and Lipson combine active learning techniques with a heuristic
approach for grammatical inference. The algorithm is given access to a labeling
oracle, which knows the target model and answers the algorithm’s queries whether
a word is accepted or rejected by the target model. For that, alternating candi-
date models and words are evolved. The evolved words are used for querying the
oracle to label the respective words according to the target model. This way, the
algorithm has the opportunity to strategically augment the training data with the
help of a heuristic.

Experiments showed that this active co-evolutionary learning approach for gram-
matical inference outperforms passive approaches, i.e. approaches which obtain
randomly drawn training data. In particular, considerably less training data is
needed for achieving the same quality of candidate models compared to passive
approaches. We transfer this approach to our context, where the user takes over
the role of the oracle since only he is able to reveal more information about the de-
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sired service. In addition, we adapt the approach in order to deal with non-binary
alphabets. Using this approach, the user is supported by providing training ex-
amples, which the algorithm considers to be useful. For enabling the evolution
of words as queries to the user/oracle, we need a genetic representation of words.
The genetic representation is presented in the subsequent Section 4.1.3.

4.1.3 Genetic Representation of Words
Evolving words requires a definition for the genetic representation of words. As a
recall, a word w = a1a2 . . . an is a sequence of symbols ai from an alphabet Σ. We
assume for Σ to be of the form Σ = {0, 1, . . . , |Σ|−1}. Thus, a word is represented
by a sequence of integers ranging from 0 to |Σ| − 1.

Due to technical reasons (concerning the implementation), we restrict the maxi-
mum length of a word by `max. We define the genome for evolving words to be a
tuple t = (`, w), where 0 ≤ ` ≤ `max denotes the length of the word and w ∈ Σ`max

is a word of length `max. The variable ` determines to which extent the symbols
in w are considered at all. More precisely, this means only the first ` symbols
of w are considered. The remaining symbols are ignored. In the following, we
refer to an individual representing a word as candidate test. Note that restricting
the maximum length of words also constrains the search space complexity for the
evolution of candidate tests to |Σ|`max .

4.1.4 Estimation-Exploration Algorithm
The mentioned approach by Bongard and Lipson [BL05] called Estimation-Exploration
Algorithm (EEA) is an active co-evolutionary learning algorithm for grammatical
inference. As depicted in Figure 4.1, the algorithm operates in two phases: (A) an
estimation phase for evolving candidate models, and (B) an exploration phase, in
which candidate tests are evolved. In the following, we first present the original
approach before we transfer it to the OTF context.

Initially, the algorithm obtains a set of training examples, i.e. a set of labeled
words over a binary alphabet, and randomly initializes a population of p can-
didate models. In phase (A), the estimation phase, two distinct populations of
candidate models are evolved with no interbreeding between these populations for
g generations. Separating the two subpopulations maintains more diversity among
the entire population. The overall accuracy on the training examples

fall(A) = |{(w, l) ∈ S | A(w) = l}|
|S|

(4.8)
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is used as a primary fitness measure. If candidate models have the same fitness
for fall, then the candidate model with the smaller relevant part

frel(A) =

∣∣∣⋃(w,l)∈S{qi | qi is visited by A reading w}
∣∣∣

|Q|
(4.9)

is preferred over the larger one.

After that, in phase (B) candidate tests are evolved for g generations using a set of
candidate models measuring the disagreement concerning how to label a respective
candidate test. The disagreement is expressed as

gdis(t, C) = 1− 2

∣∣∣∣∣∣0.5−
∑|C|

j=1 label(C(j), t)
|C|

∣∣∣∣∣∣ , (4.10)

where t is a candidate test, C a set of candidate models, and label: Model×Test→
{0, 1} is a function returning 1 if the candidate model accepts the candidate test
and 0 otherwise [BL05].

Figure 4.1: Estimation-Exploration Algorithm schematic process. (A) Estimation
Phase: evolution of candidate models (B) Exploration Phase: evolving
candidate tests as a query to the oracle.

The concept of giving the learning algorithm access to an oracle in order to get
labels for additional data points originates from the field of active learning. Using
a so-called committee of candidate models for measuring the disagreement on a
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query is known as the query-by-committee strategy.

In the EEA, the committee consists of the best individuals of each subpopulation
from the preceded estimation phase. Since the population is split into halves, the
size of this committee is 2. Hence, the disagreement for a candidate test is either
0 or 1. After evolving the candidate tests for g generations, the best individual
is taken as a query to the oracle. When the oracle returns the true label of the
requested candidate test, the new training example is added to S, and the popula-
tion of candidate models is re-initialized. Re-initialization seeds the subpopulation
with the corresponding best individual from the last generation and fills up the
remaining population with randomly generated candidate models.

In both phases, each generation selects 0.75 · p many pairs of individuals and
compares their fitness. The worse individual of a pair is overwritten with a copy of
the better one, and the copy is then mutated. The mutation for candidate models
chooses uniformly at random one entry Ti,j of T and changes its value to another
state again uniformly at random. Since the transition matrix T has size 2 · |Q| the
mutation rate is denoted as

pM = 1
2 · |Q| (4.11)

For candidate tests, mutation is a little different. Since a candidate test is a tuple
t = (`, w) with probability 0.5 either ` or w is mutated. If ` is chosen to be mu-
tated, a new value ` is drawn uniformly at random. Otherwise, one symbol in w
is mutated uniformly at random.

Bongard and Lipson [BL05] introduce the EEA operating on binary alphabets only.
In order to transfer the approach to the OTF context, we extend the alphabet
to a non-binary since supporting only two different operation names would be
infeasible. We assume the alphabet to be of the form {0, . . . , |Σ| − 1}. Keeping
the definition of mutation by Bongard and Lipson [BL05] changing one entry of
the transition matrix at a time, the mutation rate can be expressed by

1
|Q| · |Σ| . (4.12)

Furthermore, we substitute the provider of the initial training examples and the
labeling oracle by the user. Analog to [RH16], we expect the user to provide
simplified sequence diagrams which we interpret as words over an alphabet of op-
eration names. For presenting the queries to the user, the candidate tests have to
be retranslated to sequence diagrams.
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In the case of grammatical inference, Bongard and Lipson [BL05] showed in ex-
periments that co-evolution proves beneficial in order to improve the quality of
candidate models by augmenting the training data with the right training exam-
ples. Over time candidate models become more sophisticated, such that candidate
tests with high disagreement become harder to find. In Section 4.1.5, we com-
bine the multi-objective optimization approach from Section 4.1.2 with this active
co-evolutionary learning approach.

4.1.5 Interactive Co-Evolutionary Multi-Objective Optimization
Analog to [BL05], we extend the multi-objective optimization approach presented
in Section 4.1.2 to an active co-evolutionary learning algorithm using multi-objective
optimization for both evolving candidate models and candidate tests. Since we can
expect the user to provide only very few training examples, we need a more sophis-
ticated heuristic in order to distinguish more easily between superior and inferior
candidate models.

Just like in the previous section, we split the population for candidate models into
halves. In each subpopulation, we apply NSGA-II using the selection methods and
genetic operators as specified in Section 4.1.2. Since NSGA-II is based on the con-
cept of Pareto optimality, it returns a Pareto front as a result. After new training
examples are obtained by the oracle/user, the subpopulations of candidate models
are initialized with the corresponding Pareto front.

As another fitness measure, we define a function counting the number of reachable
states from the initial state. In order to stress the generalization behavior, we
want to minimize the number of reachable states and define the fitness function as

freach(A) = 1− |{q ∈ Q \ {q0} | q is reachable from q0}|
|Q| − 1 , (4.13)

where A is DFA and Q its set of states. Note, that this fitness function has no di-
rect correlation with the training data obtained from the user. Hence, this fitness
function might perform worse than frel (cf. Equation (4.5)) as a heuristic. Nev-
ertheless, in frel we assume a better generalization performance if fewer states are
used in order to process the training examples. Some states of a candidate model
might never be visited for processing the training examples. This means that we
have no knowledge about the behavior. By using freach, we cut off these obsolete
states and focus more on the part of the automaton learned from the training data.

For the evolution of candidate tests, we again apply NSGA-II. We use the dis-
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agreement as specified in Equation (4.10) as one objective for assessing the fitness
of a candidate. The Pareto fronts of all subpopulations form the committee for
calculating the disagreement values. Since the population is split into halves, it is
ensured that the committee consists of at least two candidate models. However,
the more different fitness functions are used, the more candidate models possibly
belong to the committee. Therefore, in contrast to the approach by Bongard and
Lipson [BL05] presented in Section 4.1.4, disagreement values different from 0 or
1 are possible. On top of this, we introduce another objective, minimizing the
length of such a candidate test. The idea behind this objective is to postpone
consequential errors that occur due to mistaken transitions close to the beginning.
The fitness function for minimizing the length of a candidate test t = (`, w) is
given in Equation (4.14).

glen(t) = 1− `

`max
(4.14)

Except for the probability of applying mutation to a gene, the genetic operators
for candidate tests function in an equal manner as explained in Section 4.1.2. The
genome of a candidate test t = (`, w) consists of `max + 1 integers (`max symbols
from Σ and the number of considered symbols `). A mutation rate of

pM = 1
`max + 1 (4.15)

is used to ensure one change in the genome of a selected individual on average. Due
to implementation details for the genetic encoding of candidate tests in NSGA-II,
we use a lower permutation rate for the length variable than in the EEA, but the
permutation rate for w is approximately the same.

Altogether, this extends the approach presented in Section 4.1.2 following the
concepts by Bongard and Lipson [BL05] to an interactive co-evolutionary algorithm
which is strictly based on multi-objective optimization. We fully leverage the
advantages of multi-objective optimization and present the whole Pareto front of
evolved candidate models to the user. Due to the very small amount of data,
the usage of multiple objectives provides a benefit for differentiating the quality
of candidate models in a more sophisticated way. In the following, the strictly
multi-objective optimization approach presented here is referred to as Estimation-
Exploration Multi-Objective Optimization (eeMOO) algorithm, the initial multi-
objective optimization approach presented in Section 4.1.2 is referred to as passive
multi-objective optimization (pMOO) algorithm.
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4.1.6 Overview of Approaches
Table 4.1 summarizes the fitness functions used in the different approaches pre-
sented in the previous sections. The multi-objective optimization approach by
van Rooijen and Hamann [RH16] (cf. Section 4.1.2) is denoted as pMOO. The
Estimation-Exploration Algorithm, originally introduced by Bongard and Lipson
[BL05] (cf. 4.1.4), in its slightly adapted version in order to deal with non-binary
alphabets, is referred to as EEA. Finally, the approach introduced in Section 4.1.5
is instantiated with two different sets of fitness functions. While the first version is
instantiated with the same objectives as pMOO and is identified by eeMOO, the
second version uses only the overall accuracy on the training data (cf. fall in Equa-
tion (4.2)) and the reachable states fitness function (cf. freach in Equation (4.13))
for the evolution of candidate models.

Table 4.1: Overview of the different approaches and their fitness functions.
pMOO EEA eeMOO eeMOO2

Model
Fitness

fpos-fneg-frel-fsink fall||frel fpos-fneg-frel-fsink fall-freach

Test
Fitness

/ gdis gdis-glen gdis-glen

Legend: A dash denotes that the fitness functions are evaluated independently
from each other and, thus, have the same precedence. The double-pipe operator
stands for a chained application of the fitness functions, i.e. if the first values are
equal, then the next fitness function is taken into account. If no fitness function
is used at all, this cell is marked by an oblique stroke (/).

As the table shows, pMOO is the only passive algorithm, meaning that the algo-
rithm only processes an initially provided set of training examples. Hence, there
is also no evolution of candidate tests and thus no objective for candidate tests’
fitness. While EEA principally is a single objective approach using the relevant
part fitness function only as a tie-break rule, eeMOO and eeMOO2 represent strict
multi-objective approaches.

4.2 Integration Into OTF Markets
In our scenario, semi-automated requirements elicitation is done within the OTF
market, when specifying the requirements for the desired service. This process of
requirements elicitation involves at least two roles, viz. the user describing the
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desired service and some OTF provider generalizing a formal model from the pro-
vided examples and supporting the user to provide relevant data.

Using one of the interactive approaches presented above implies communication
between the user and the OTF provider. In particular, for each oracle query to
the user and the respective response, a distinct message is sent. This constitutes
not only high traffic overhead querying only for single words, but it also increases
the overall time of the process. Addressing this problem by bundling multiple
queries into a single message might lead to less effective training data augmenta-
tion. Since a committee of evolved candidate models partly assesses the fitness
values of candidate tests, these estimations are highly dependent on the quality
of the candidate models. Vice versa, the quality of the candidate models depends
on the training data which is extended by selected candidate tests. Therefore, it
is intuitively expected for five candidate tests to ask for feedback query-by-query,
while intermediately evolving new committees of candidate models, leads to a bet-
ter performance increase than querying a bundle of five candidate tests assessed
with the very first committee of candidate models. This might be due to select
candidate tests that are too similar or the label of one candidate test implying
another one.

To avoid bundling too similar candidate tests, we want to bundle preferably diverse
queries. But, due to unknown stochastic dependencies among different words, di-
versity is rather hard to define. In Section 4.2.1 two concepts are presented which
are intended to make differences of candidate tests measurable.

So far, we only devoted attention to the user as a source of information consid-
ering the desired service, but the OTF market has knowledge about semantics
at its disposal. The user provides sequence diagrams using arbitrary operation
names. Mapping these operation names to actually existing services makes formal
descriptions of the services used available. This description covers semantics of
these services. In Section 4.2.2, we consider a concept on how to use the knowl-
edge within the OTF market to also introduce more complex modeling structures
for candidate models.

4.2.1 Bundling Queries
Sending a single message for each oracle query which is again responded to via
another message produces large amounts of overhead regarding network traffic.
Furthermore, the overall response time (regarding the time from initiating the re-
quirements elicitation process to the final presentation of solutions after a certain
number of feedback requests) suffers from the transfer times which are needed to
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deliver messages between the user and the algorithm. Therefore, it is useful to
reduce the number of messages while keeping the number of requested candidate
tests the same.

Candidate models of the committee for assessing the fitness of candidate tests be-
come more sophisticated with every additional training example. Thus, it has to
be expected for performance to drop regarding the quality of finally returned can-
didate models for bundling queries because of too similar queries bundled within
one message. Hence, we aim for preferably different candidate tests. To measure
the diversity within a bundle of queries we define the following fitness functions:

Transition Matrix Coverage

When a DFA A reads a word w = a1a2 . . . an, the transition function determines
the transitions to follow. In Section 4.1.1 we represent this transition function by
a matrix T . While reading w, certain entries of T are read to determine target
states qi = Tqi−1,ai

for i ∈ {1, . . . , n}.

In order to reward the algorithm exploring more different structures, we count the
number of different matrix entries of T used while processing a set of candidate
tests M with a committee of candidate models C. As a fitness function this can
be expressed by

hcov(M,C) =
∑

A∈C |
⋃

t=(`,w)∈M{Tx,y | Tx,y is used for processing A(w)}|
|C| × |Q| × |Σ| , (4.16)

where M denotes a set of candidate tests, C a set of DFAs A with a matrix T
of dimension |Q| × |Σ| as genetic representation and Tx,y the entry in row x and
column y of T . Note that the maximum value of 1 is not always achievable, since
there might be states for which no path exists starting from the initial state q0
ending in those states.

Maximizing the hcov objective guides the algorithm to explore more within the
matrices of the committee’s candidate models. If the sum of disagreement

hsetDis(M,C) =
∑
t∈M

gdis(t, C) (4.17)

is maximized simultaneously, we obtain sets of candidate tests which the commit-
tee of candidate model disagrees on while preferably using a large share of the
matrices T , and therefore of different parts of the DFA.
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Using hcov, we ensure exploring sub-structures of DFAs to be rewarded. However, it
is still possible to obtain sets of candidate tests which might consist of very similar
up to multiple times the same candidate test with maximum coverage proportion.
Therefore, in addition to the matrix coverage, we consider the different fractions
of candidate models within the committee voting for disagreement.

Fraction Patterns

When assessing the fitness of some candidate test t, a committee of candidate mod-
els C votes on the label for t and the disagreement among the candidate models
is measured. Hence, the committee of candidate models can be sub-divided into
two fractions. First, one fraction F1 ⊆ C voting on accept for t and, second, one
fraction F0 ⊆ C voting with reject. Enumerating the candidate models from 1 to
|C|, we can define a bit vector V = (v1, v2, . . . , v|C|) ∈ {0, 1}|C|, where vi := 1 if
the i-th candidate model is in F1 and vi := 0 if the i-th candidate model is in F0.

By using the Hamming distance as a diversity measure, we can calculate the av-
erage Hamming distance of the bit vectors as a fitness function

gfrac(M,C) =
∑|M |−1

i=1
∑|M |

j=i+1 ∆(ti, tj, C)
(∑|M |i=1 |M | − i)

=
2∑|M |−1

i=1
∑|M |

j=i+1 ∆(ti, tj, C)
|M |2 − |M |

, (4.18)

where M is a set of candidate tests, C a set of candidate models and ∆ a function
computing for both candidate tests ti, tj the respective fraction pattern vectors
and returning the Hamming distance of these two vectors.

By gfrac we track the fractions voting for the disagreement and reward for different
constellations of those fractions, i.e. that the F1 respectively F0 fractions consist
of different candidate models for different candidate tests. Implicitly, we consider
candidate tests as more diverse if the labels of the states, where they end in the
candidate models, are different.

4.2.2 On-the-fly Supply
Currently, the user is required to mention each operation name relevant for the
behavior description of the desired service at least once in the initial training ex-
amples. Furthermore, the presented approaches consider the user to be the only
one who is able to reveal more information about the desired service. The training
examples provided by the user involve operation names which are arbitrarily cho-
sen by the user. At this stage, these identifiers might contain semantic information
about the behavior of this operation, but this semantics are not understood by the
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algorithms nor employed to advantage. The current vision of the OTF market
contains another step after generalizing the formal model from the provided train-
ing examples for mapping the arbitrary operation names to services that actually
exist in the OTF market.

Indeed, the step of mapping the operation names contained in the training exam-
ples to real services reveals information about the semantics of these services. This
information is provided in the form of the Inputs-Outputs-Preconditions-Effects
(IOPE) description as explained in Section 2.2.2. Taking this information as a ba-
sis, for instance, we are able to recommend services which are frequently combined
with an already used service and thereby augment the alphabet as described in
Section 4.2.2.1. Furthermore, the details about the semantics of the services may
be used for introducing more complex model structures such as branching struc-
tures. In Section 4.2.2.2, the idea of how to introduce branching structures to
inferred models is described in more detail. Due to the scope of this thesis, we
consider only a conceptual sketch of the ideas. Concrete approaches might be
covered in future work.

4.2.2.1 Augmenting the Alphabet

For the current approaches, the user is required to mention each operation name
at least once within the initial set of training examples. Especially, if the user has
only a vague notion of what the service is meant to behave like, this requirement
is rather impracticable. In a scenario involving only the user and the algorithm,
the algorithm strongly relies upon the data the user provides. Fortunately, in our
scenario, the algorithm is located in an OTF market consisting of different partic-
ipants such as service providers and OTF providers.

Service providers and OTF providers might offer an oracle interface providing rec-
ommendations about which operations are often used in combination with a given
set of operations. These recommendations may be learned by observing requested
and successfully executed service compositions. Another way might be to consider
only the similarity of some operations based on the preconditions and effects of
operations. For clarification, we consider the running example of describing a shop
management service again.

The user wants to request a service that is able to show an admin panel and a
customer panel. However, the user provides sequence diagrams using the operation
names showLandingPage, login, and showAdminPanel. Hence, the corresponding
alphabet extracted from the provided sequence diagrams consists only of these
three operation names.
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Figure 4.2: Example extended shop management service

A candidate model inferred from the training examples might look like the au-
tomaton in Figure 4.3 (for convenience transitions of the complete DFA lead-
ing to rejecting states are omitted). This candidate model is already very sim-
ilar to the model the user has in mind but, obviously, a transition labeled with
showCustomerPanel is missing. Moreover, since the algorithm is not aware of any
operation name showCustomerPanel, no additional training examples involving
this operation name are requested from the user.

Figure 4.3: Running example model representing the shop management system as
DFA

Giving the algorithm access to some recommendation system as an oracle enables
the algorithm to identify related operations and forward these recommendations
to the user. As shown in Figure 4.4, the user provides a set of sequence diagrams
from which the distinct operation names are extracted by the algorithm in order to
form an alphabet as usual. The extracted operation names are handed to the black
box “Operation Mapper” which maps the operation names to actually existing
operations and queries the second black box “Recommendation System” on these
operations for other, recommended operations. The recommendations are returned
to the algorithm via the “Operation Mapper”, where the recommended operation
names are mapped to an operation name corresponding to the naming strategy of
the user. Subsequently, the algorithm may propose the obtained recommendations
to the user. Finally, the user has to be asked for feedback on the recommended
operation names.
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Figure 4.4: Recommendation of operation names for augmenting the alphabet

In terms of “how” to ask for feedback, there are at least two possible solutions:
First, the algorithm generates a word containing the recommended operation, and
the user is shown the corresponding sequence diagram in order to classify this as
desired or prohibited behavior, as usual. If the user indeed classifies this example
as prohibited the interpretation of this classification is ambiguous. On the one
hand, this could mean that the user might not want to use the recommended op-
eration at all. On the other hand, the user might want to accept the recommended
operation, but the presented sequence diagrams simply describe no desired behav-
ior.

Second, the user is asked whether the recommended operation name should be
part of the behavior description of the desired service. If so, the user is asked to
give an example for desired behavior. Otherwise, the user declines the operation.
As a result, the algorithm is able to decide whether to add the name of the rec-
ommended operation to the alphabet or not.

In the case of the running example, the recommendation system might propose an
operation showing a customer panel, which might be a desired feature for a shop
management service. Hence, the algorithm may propose some operation name
showCustomerPanel to the user. In the case of the shop management service, the
user may decide that the proposed operation is needed to describe the desired ser-
vice and the user provides a training example including the new operation name.
After further recommendations, the desired service is finally described by the DFA
is depicted in Figure 4.5.

To conclude, considering the OTF market and its possibilities of learning from
service composition behaviors enables the requirements elicitation algorithm to
propose unmentioned, possibly interesting operation names to the user. On the
one hand, these recommendations support the user to refine vague notions of the
desired service into a more precise concept. Furthermore, the user is not required
to mention all the relevant operation names in the initial set of training examples.
From a technical perspective, the recommendation oracle provides the opportunity
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Figure 4.5: Refined shop management system extended by showCustomerPanel
operation

to augment the alphabet, while the user is considered as an oracle for augmenting
the training data.

4.2.2.2 Branching Structures

Another way of using the information provided by the OTF market is to use the
previously described “Operation Mapper” in order to gather more detailed infor-
mation about the operation names used in the training examples. Within the OTF
market, the behavior of services is described via an Input-Output-Precondition-
Effect (IOPE) description. In particular, within a service description, the opera-
tions are declared by an IOPE description. By mapping the user’s operation names
to actually existing operation names, more information about the used operation
names and thus about the behavior of the desired service as a whole is revealed.

The formal model for the desired service shown in Figure 4.5 describes a simple
shop management service, providing different panels. From the plain operation
names, it is difficult to see coherences between the operation names. Mapping the
operation names Login, showAdminPanel and showCustomerPanel to actually ex-
isting operations provides more information. Let in Figures 4.6a, 4.6b and 4.6c be
the corresponding IOPE descriptions for these operation names.

The login operation takes two input parameters username and password of type
String and outputs one Session object and one Role object. After apply-
ing the operation, the effect sessionRole(·, ·) holds. The outputs of login
are required as input parameters by the two operations showAdminPanel and
showCustomerPanel, and the effect of login is used as a precondition. Addition-
ally, the two operations require a predicate isInRole. This predicate ensures the
logged in user to have the correct role for accessing the respective panel. However,
assuming the predicate to be evaluated given the Role object and the respective
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(a) Service taking a username and a password as input parameters and returning a
Session object together with a Role object

(b) Service requiring a logged in user, and
that the respective user havin the role
"admin"

(c) Service requiring a logged in user, and
that the respective user has the role
"customer"

Figure 4.6: Example IOPE descriptions of the services login, showAdminPanel,
and showCustomerPanel

constant “admin” or “customer”, the isInRole predicate is interpreted equivalent
to a guard in a DFA. We refer to this kind of predicate as interpreted predicate in
the following.

Tracing the interpreted predicate back into the model description (by some ap-
propriate mapping), we can use the interpreted predicate for further restrictions
in the model by refining it with guards. Guards are conditions required to hold
for enabling a transition to be used. As a user in the role of a customer may not
be able to show the administration panel, the DFA modeling the shop manage-
ment service should also restrict the access to the admin panel for user with an
appropriate role. Vice versa, the admin is not a customer and therefore should
have no access to the customer panel. By introducing guards for the interpreted
predicate isInRole, it is possible to model these constraints, and we obtain the
model depicted in Figure 4.7. To support this refinement, the formalism defined
as Service Specification Language (cf. Section 2.2.2) has to be adapted.

To sum up, by mapping the arbitrarily chosen operation names provided by the
user to operations actually existing in the OTF market, additional information
about the semantics of these operations is provided. As outlined above, this in-
formation can be used to introduce elements of statecharts (cf. Section 2.1.1) for
more complex model structures such as branching structures with guards.

45



4 Approach

Figure 4.7: Example model refining the shop management system using guards

In general, the OTF market provides abundant information about semantics, which
is not considered within the current approaches. The concepts presented above
outline a way of how to make use of this information. However, the presented
concepts make assumptions on the existence of two black boxes, namely “Rec-
ommendation System” and “Operation Mapper”. A learner observing executed
service compositions might be one possible way of implementing such a recom-
mendation system. Another possibility is to provide recommendations according
to the descriptions of available services and encapsulated operations. However, the
“Operation Mapper” is a highly non-trivial task to implement since the “Operation
Mapper” is only provided a set of operation names that are chosen arbitrarily by
the user. The conception and realization of both black boxes is beyond the scope
of this thesis and, thus, left for future work.
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Framework

This chapter addresses the implementation of a framework for performing require-
ments engineering, using active learning techniques. To this end, we abstract the
semi-automated requirements process itself and the objects involved in that pro-
cess to form the Requirements Elicitation by Active Learning (REAL) framework.
The primary goal of this framework is to enable the comparison of different semi-
automated requirement elicitation algorithms. Besides, due to an event-based
architecture, classes within the framework are highly decoupled, and therefore
they can be easily exchanged by other implementations. Furthermore, the frame-
work provides a central registry keeping track of registered objects. Extending the
framework with further implementations only requires the developer to register
these implementations at the central registry. After the registration, the regis-
tered implementations are ready to be used.

From the approaches and concepts presented in the previous chapter, we can ab-
stract three roles in total. First, the role of the user, who wants to request a
desired service from the OTF market and provides examples of desired and pro-
hibited behavior for this service. Second, the requirements elicitation algorithm,
which generalizes a formal model describing the desired service from the examples
provided by the user. Third, a recommendation system providing supplementary
information to the requirements elicitation algorithm.

Additionally, further entities and listeners need to be included for benchmarking,
e.g. generating problem instances and performing post-evaluation of the returned
solutions. Section 5.1 gives details concerning the responsibilities and capabilities
of the roles, entities, listeners and their standard implementations.

The interaction between these objects is carried out according to a fixed protocol.
This protocol is documented in Section 5.2, and the interaction between roles and
entities is described.
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5.1 Roles, Entities, and Listeners
Within the REAL framework, we distinguish clearly between objects relevant to a
real world application and those only needed for benchmarking or logging purposes.
In this way, the framework can also be integrated into real world applications and
already existing toolchains, such as SeSAME1.

According to the three different roles involved in the requirements elicitation pro-
cess, which we identified as users, requirements elicitation algorithm, and a rec-
ommendation system, we design corresponding classes in the framework. While
the user is abstracted to an oracle able to reveal more information about the tar-
get model, the requirements elicitation algorithm is abstracted to an automatic
requirements engineer (ARE). Finally, the supplier typifies the recommendation
system, which provides any kind of information available in the OTF market. In or-
der to enable benchmarking different implementations for the three roles, we need
additional entities within the framework for controlling the execution of different
experiments (control), generating problem instances (generator) and for running
a post-evaluation comparing the solution of the ARE with the target model (val-
idator).

Figure 5.1: Roles and entities within the REAL framework. Arrows denote com-
munication between the instances, where the direction of the arrow
describes the direction of the sent messages

In Figure 5.1 the interaction between the roles and entities is illustrated. While
the interaction relevant for the requirements elicitation process is depicted by solid
arrows, the interaction that is only needed for benchmarking purposes is denoted
by dashed arrows. The direction of the arrows corresponds to the direction of the
communication, i.e. a leaving arrow from oracle to ARE indicates that the oracle
sends events to the ARE. Furthermore, while the roles are highlighted by colored

1https://sfb901.uni-paderborn.de/sfb-901/projects/tools-demonstration-systems/sesame.html
- Accessed: 2017-02-23
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boxes, benchmark entities are shown in gray boxes.

The main idea of the interaction between the roles and entities is that the control
initiates a benchmarking process and provides the parameters of the benchmark
setting to the relevant objects. Initially, the oracle requests a new problem in-
stance from the generator, which is also handed to the validator for performing
post-evaluation. This is followed by the requirements elicitation process which is
carried out by the roles oracle, ARE and supplier. During the requirements elici-
tation process, the validator is provided with current population data in order to
perform a post-evaluation.

In the following, we consider the responsibilities and capabilities of the roles and
entities in more detail. Section 5.1.1 gives more insights into the oracle itself. How
the oracle makes use of the generator is explained in Section 5.1.2. Subsequently,
we elaborate the role of the ARE in Section 5.1.3. Section 5.1.4 deals with the
entity validator, which obtains data from the requirements elicitation process in
order to perform a post-evaluation. In Section 5.1.6, we consider the control en-
tity. Finally, Section 5.1.7 gives details about listeners who can subscribe to the
framework in order to observe all the communication between roles and entities.

5.1.1 Oracle
The oracle represents the role of the user within the REAL framework. Hence, the
oracle is responsible for initiating the requirements elicitation process. This is done
by sending a message to the ARE providing an initial set of training data and a
number of states (|Q|). Here, the number of states might be even only an estimate,
such as a maximum number of necessary states to represent this model. Further-
more, the oracle is responsible for answering oracle queries received from the ARE.

While performing a benchmark, the oracle simulates the behavior of the user. In
a real scenario, the user has a target model in mind for which the user provides
examples in order to manifest these notions as a formal model. This is a little
different in the case of benchmarking. The target model has to be made explicit in
order to enable the oracle to answer the oracle queries automatically. Therefore,
the oracle is given access to the generator entity in order to generate an explicit
target model, which can then be used for answering the oracle queries.

Since in a real application it might also happen that the user makes mistakes clas-
sifying sequence diagrams, the REAL framework provides the pHonestOracle as
a standard implementation. The pHonestOracle is configured via a parameter p,
which determines the probability of classifying a word correctly. Initial training
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data is sampled uniformly at random from the set of all words with a given maxi-
mum length `max. The initial training data, as well as subsequent oracle queries,
are classified correctly with a probability of p, i.e. if for instance p = 0.5, on
average, only half of the words are labeled correctly.

5.1.2 Generator
The generator belongs to the entities of the REAL framework, which are only
used in a benchmark scenario. It is responsible for generating a target model ,and
therefore, for providing an explicit target model to the oracle. Furthermore, the
target model is also provided to the validator for post-evaluation.

In order to request a generated target model, the generator can be used in two
different ways: First, the generator is provided a number of states and an alphabet
which has to be used for labeling transitions. Second, instead of an alphabet, the
generator is only given the size of the alphabet, such that p.r.n. semantics for the
symbols of a self-generated alphabet can be taken into account. In the latter case,
the oracle and the validator are also provided the generated alphabet.

As a standard implementation, we use a simple random generator, which is pro-
vided an alphabet and a number of states. Outgoing transitions for each state
are drawn uniformly at random, such that there is no semantics covered in the
generated target models. In Section 6.1.2, the generation routine is described in
more detail.

5.1.3 Automatic Requirements Engineer
The role of the automatic requirements engineer (ARE) is responsible for gener-
alizing the training examples obtained initially from the oracle to a deterministic
finite automaton. Interacting with the oracle and supplier via messages, the ARE
is able to gather more information about the target model and its semantics. Fur-
thermore, for monitoring the requirements elicitation process intermediate as well
as the final results are sent to the validator. Finally, after a fixed number of oracle
queries, the ARE returns its solutions to the oracle respectively the user.

A general version of an active ARE is standardly implemented, summarizing the
common process for ARE’s as sketched in Figure 5.2. Each requirements elicitation
process starts with obtaining initial training data, followed by evolving candidate
models for g generations. Then, for r many allowed oracle queries, candidate tests
and candidate models are evolved in an alternating order. After the evolution of
candidate tests, the best individual is sent to the oracle. On receiving the label
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for the requested candidate test and augmenting the training data with this new
training example, candidate models are evolved again. Finally, the resulting can-
didate models are presented to the oracle as the solution.

Figure 5.2: Sketch of common process for ARE’s

Since the overall structure is the same for the approaches presented in the previous
chapter, we use a general active ARE with different algorithm setups for evolv-
ing candidate models respectively candidate tests. An algorithm setup consists
of parameters for the population, an evolutionary algorithm and a set of fitness
functions. The general ARE obtains one set of algorithm setups for the evolution
of candidate models and one set for the evolution of candidate tests. This way,
we are able to split up the populations, combining different algorithms to hybrid
evolutionary algorithms.

In contrast to active ARE’s, passive ARE’s are required to pass a set of algorithm
setups for the evolution of candidate models only. Unless otherwise stated, an
instance of the general version of a passive ARE replaces the step of evolving can-
didate tests by drawing a word uniformly at random from the set of all words with
a given maximum length.

The algorithms listed in Table 4.1 (EEA, eeMOO, eeMOO2, pMOO) are pre-
configured and available per default.

5.1.4 Validator
The validator is another entity of the framework, which is solely involved in the
benchmark processes. Within a benchmark process, the validator is responsible
for performing a post-evaluation of candidate models, i.e. determining to which
extent the language of the evolved candidate models coincides with the language
of the target model. To this end, the validator is provided the target model gen-
erated by the generator.

In order to perform the post-evaluation, the generator uses a set of unseen words
(test set), i.e. words which are neither part of the initial training data nor are
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requested in any oracle query by the ARE. By calculating the proportion of words
labeled the same by the target model and the candidate model, the validator deter-
mines a performance value for the respective candidate model. The performance
value is considered to be an indicator of the quality of the candidate model, i.e.
how well the candidate model fits the language of the target model.

Within the REAL framework, two different validators are available, which only
differ in the way the test examples are created. The ExplorationValidator
performs a breadth-first-search traversing the target model adding all visited paths
of unseen words to the test set until the test set has a certain size. Hence, the test
set is created in a deterministic way. In contrast to that, the SampleValidator
draws words uniformly at random from the set of all words with a given maximum
length and adds these words to the test set if they are not used in the training
data or oracle queries.

5.1.5 Supplier
The role of the supplier is a representative role for all kinds of knowledge sources
located in the OTF market. In particular, meaning the supplier represents an
interface to the OTF market for the ARE. As proposed in Section 4.2.2 the sup-
plier is provided to the ARE in terms of an oracle. In this way, the ARE is able to
access information contained in the OTF market via a simple event-based interface.

Since the concepts presented in Section 4.2.2 are still immature and rely on black
boxes, which are located in the OTF market, a supplier instance is out of the scope
of this thesis. Before realizing a supplier instance, these black boxes have to be
implemented. Hence, the REAL framework provides no instance for a supplier,
yet.

5.1.6 Control
The control entity is responsible for initiating the benchmark process. There-
fore, the control is provided some benchmark task. The benchmark task contains
information about which roles and entities are supposed to be involved in the
benchmark process and further parameters, concerning the parameterization of
the involved algorithms. After the setup of the involved algorithms, the oracle is
signaled to start the requirements elicitation process.

In the REAL framework, two different implementations of control entities are pro-
vided as standard implementations. First, the ChunkControl is given a set of
tasks (chunk) containing all the information relevant for defining an experiment,
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i.e. which algorithms are evolved, which parameterization is used for these algo-
rithms and what data is post-evaluated. One by one, the tasks contained in the
given chunk are issued to the roles of the framework and executed. Second, for
running the ArrayControl, lists of parameters (e.g. size of the population, size of
the alphabet, etc.) are stated in a properties file. From these lists of parameters
the cross product is taken, each element of that cross product defining a single task.
Subsequently, these tasks are bundled and executed using the ChunkControl.

5.1.7 External Listeners
In order to observe the requirements elicitation process and to extract data, which
is exchanged between the roles and entities, external listeners can be registered
to the REAL framework. As the name already indicates, external listeners ob-
tain read-access only. Therefore, listeners are not able to participate actively
in the requirements elicitation process. The listener entity can be used for log-
ging events sent during a benchmark process, serializing post-evaluation data,
etc. For instance, in order to observe the evolutionary runs, the best and aver-
age fitness of the population may be serialized generation by generation with the
BestAvgStatsSerializer.

5.2 Benchmark Protocol
Before starting a benchmark, a set of tasks has to be defined as input for the
control entity. A task contains various information about the experiment setup,
such as which implementations of roles and entities are involved in the processing,
parameters describing the problem instance (alphabet size, the number of states),
and parameters for the setup of the algorithms.

As shown in Figure 5.3, the control entity iterates over the set of tasks defined
in advance and activates the instances listed in the task description and deploys
the setup parameterization to the particular algorithms. Subsequently, the oracle
is instructed about the task and in particular about the properties of the target
model. This information is forwarded to the generator entity, which returns a
target model. The generated target model is also provided to the validator entity,
enabling post-evaluation by comparing candidate models to the target model.

After the target model is returned to the oracle, an initial set of training examples
(training data) is created by the oracle and provided to the ARE. Simultaneously,
this initiates the requirements elicitation process between the oracle and the ARE.
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Figure 5.3: Protocol run for benchmarking algorithms

Within the task, it is also specified how many queries the ARE is allowed to send
to the oracle. On receiving the initial training data, the ARE alternates between
evolving candidate models and candidate tests. After evolving candidate tests,
the ARE sends an oracle query for the best individual in the population of candi-
date tests. The oracle returns a label for the queried candidate test and the new
training example obtained this way is added to the training data. This sequence
is repeated until the ARE queried for as many candidate tests as it is specified in
the task description. Finally, the ARE again evolves candidate models for the last
time and returns the solutions to the oracle as a result of the overall requirements
elicitation process.
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Furthermore, after each generation, the candidate models are provided to the val-
idator. The validator, being in possession of the target model, compares all the
candidate models against the target model. In this way, the validator provides in-
formation about the progress of the requirements elicitation process. Furthermore,
the validator provides the calculated information to listeners, e.g. for statistical
observation of the process. Note that the information calculated by the validator
is not provided to the ARE at all, so the ARE does not get to know the target
model except the training data obtained from the oracle.

On receiving the solutions returned by the ARE, the oracle notifies the control,
that the execution of the current task is finished. The whole procedure is repeated
until all specified tasks are executed.
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6 Evaluation
This chapter deals with the benchmark and comparison of the requirements elic-
itation approaches presented in Chapter 4. To this end, the implementation of
the REAL framework is used as introduced in Chapter 4. In Section 6.1, we state
the setup for the evaluation. Results of the evaluation comparing pMOO by van
Rooijen and Hamann [RH16] and eeMOO and eeMOO2 as designed in the course
of this thesis are presented in Section 6.2. The comparison of the state-of-the-
art algorithm EEA by Bongard and Lipson [BL05] with eeMOO2 is presented in
Section 6.3.

6.1 Evaluation Setup
The configuration of the different algorithms and the setup of the remaining frame-
work depends on many different variables. For the following evaluation, some
of these variables are fixed to certain values, which are listed in Section 6.1.1.
Traditional approaches for grammatical inference consider binary alphabets only.
Therefore, Section 6.1.2 deals with an algorithm for generating problem instances
with arbitrary alphabet sizes. In Section 6.1.3 the evaluation process is described.
Finally, in Section 6.1.4 a self-developed management tool is presented, which
was used to distribute the load for conducting the experiments over a distributed,
heterogeneous cluster of workers.

6.1.1 Fixed Parameters
The first question regarding an evaluation task concerns the roles involved. In the
following evaluations we use an oracle which labels all words correctly, and the
Random Uniform Generator for generating target models (for details cf. 6.1.2).
For post-evaluating candidate models evolved by the learner, we use the explo-
ration validator.

Due to the very small set of training examples, preliminary experiments revealed
that learners tend to evolve too specialized candidate models. Therefore, we set
the number of generations to a value of 5 in order to avoid overfitting. The number
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Parameter Value
Oracle PHonestOracle, p=1
Validator Exploration Validator
Generator Random Uniform Generator
Number of generations 5
Size of population 100
Maximum word length 20
Amount of initial training data 10
Number of oracle queries 100/1200
Evaluation cycle after each generation
Evaluation target whole population
Test set size 30,000

Table 6.1: Overview of fixed parameters for the evaluation

of individuals is fixed to 100, which results in 50 individuals per subpopulation us-
ing EEA, eeMOO or eeMOO2. All the populations are post-evaluated completely
after each generation, using a test set of 30,000 unseen words in order to limit the
evaluation time for a single generation to approximately 1 second. The maximum
length of words (`max) is limited to 20. The learners are given an initial set of 10
training examples and are allowed to query for 100 resp. 1200 labels to augment
the initial training data. An overview of the fixed parameters is given in Table 6.1.

6.1.2 Problem Generation
Traditionally, algorithms for grammatical inference are evaluated for problem in-
stances with binary alphabet only. Emerged from scientific challenges, various
generators for producing target models over binary alphabets exist [SCZ04; LP98].
However, the performance on larger alphabets is a crucial aspect of the usage in
OTF markets, since a binary alphabet would restrict the number of used services
to 2. Therefore, we construct a simple generation algorithm for problem instances
with arbitrary alphabet size as shown in Listing 6.1.

The algorithm in Listing 6.1 obtains as an input a number of states (|Q|) and the
size of the alphabet (|Σ|). In line 2, Q is initialized with Q := {0, . . . , |Q|− 1} and
Σ is set to {0, . . . , |Σ| − 1}, qo is set to 0. After the initialization, the transition
function δ is constructed by drawing uniformly at random target states q′ from Q
for all combinations of states q ∈ Q and input symbols a ∈ Σ, i.e. if the DFA is
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Listing 6.1: Random Uniform Generator
1 On input (|Q|, |Σ|) :
2 Q := {0, . . . , |Q| − 1} , Σ := {0, . . . , |Σ| − 1} , q0 := 0
3 ∀q ∈ Q∀a ∈ Σ : q′

$← Q , δ(q, a) := q′

4 ∀q ∈ Q : b
$← {0, 1}

5 i f b = 1 then
6 F := F ∪ {q}
7 end i f
8 i f ∀q ∈ Q : ∃n ∈ N ∃w = a0a1 . . . an ∈ Σn such that q = δ(δ(. . . δ(q0, a0) . . . , an−1), an)

then
9 return (Σ, Q, δ, q0, F )
10 else
11 go back to step 2 .
12 end i f

in state q and reads the input symbol a, then the next state is q′. By generating
transitions for all combinations of q and a, the constructed δ is a total function.
In lines 5 to 7, the set of accepting states F is constructed by flipping a coin for
each state. Hence, each state is added to F with probability 0.5. Next, in line 8
it is checked whether each state q ∈ Q is reachable from the initial state. If every
state is reachable, the constructed automaton is returned. Otherwise, we start all
over again with the construction of the transition function δ.

Figure 6.1: Target model spaces

Note that the generation routine does not ensure that there is no other model
which has fewer states and accepts the same language as the generated model.
In the worst case, it is possible that the generated model can be represented by
an automaton with a single state. In order to make trivial solutions or solutions
with fewer states less likely, the validation step in line 8 ensures that at least all
states are reachable, and therefore also possibly used for labeling words. Figure 6.1
displays the spaces from which the target models are drawn in the generation al-
gorithm presented above. If for example |Q| is set to 3, it is also possible that the
resulting automaton can be minimized to an automaton with 2 or even only 1 state.

59



6 Evaluation

Hence, |Q| denotes an upper bound on the maximum number of states necessary
to accept the language of the target model. However, in our scenario, in which the
user has a model in mind, the user might give only an estimate of the complex-
ity of the target model instead of a definite number of states that would be needed.

The REAL framework presented in Chapter 5 provides an implementation of the
algorithm for generating target models as described above. The instance of that
generator is identified by the Random Uniform Generator.

6.1.3 Evaluation Process

The evaluation process covers two steps in total. In a first step, the generator
routine produces a fixed number of samples of target models together with an
initial set of training examples for each data point in the analysis space (as defined
in the following). Second, the algorithms pMOO, EEA, eeMOO, and eeMOO2 are
given access to a labeling oracle and the initial training data. Then, the different
algorithms are applied to the same problem instances. We briefly describe the
analysis space, the observation space, the hardware used for conduction of the
experiments, and the software used to distribute the experiments dynamically to
a heterogeneous cluster of computational resources.

The Analysis Space

As input for the generator, we use the maximum number of states (|Q|) required
to represent the target model and the size of the alphabet (|Σ|). For |Q| we defined
a range from 3 to 12 and for |Σ| from 3 to 10. In one case the learner is allowed to
send 100 queries to the oracle, and in the other case, the number of allowed queries
is set to 1200. While the experiments allowing for 100 queries were sampled 50
times, the scenarios allowing for 1200 queries were sampled only 20 times due to
the computational costs of the post-evaluation.

In total, 19,360 experiments were conducted. The problem setup for the experi-
ments allowing for 100 queries is defined by the set {3, . . . , 12} × {3, . . . , 10}. We
applied the algorithms pMOO, EEA, eeMOO, and eeMOO2 to each of the in-
duced 80 points of evaluation for 100 queries. In the case of 1200 allowed queries
the problem setup is the set {4, . . . , 9} × {3, . . . , 9}. Altogether, this sums up to
80 · 4 · 50 + 42 · 4 · 20 = 19, 360 experiments. An overview of the experiments is
given in Table 6.2.
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Algorithm |Q| |Σ| Queries Samples
EEA, eeMOO, eeMOO2, pMOO 3,...,12 3,...,10 100 50
EEA, eeMOO, eeMOO2, pMOO 4,...,9 3,...,9 1200 20

Table 6.2: Overview of conducted experiments

The Observation Space
The data measured when conducting an experiment can be categorized by whether
the data is actually available to the learner or not. More precisely, we track the
fitness values calculated by the learner, and on top of that, we measure fitness
values calculated by the validator doing a post-evaluation of the candidates.

However, in order to compare the different approaches, we consider the accuracy
of the evolved candidate models on a set of unseen test examples. In the following,
the performance denotes the accuracy of the best individual with respect to the
test set.

Furthermore, we use the Mann-Whitney U test, also known as Rank-Sum Test,
in order to determine, whether differences in performance between the algorithms
are significant [MW47]. The Rank-Sum Test is a non-parametric statistical test,
which is used to test whether two distributions of random samples belong to the
same universe. In order to find significant differences in performance, we apply
the Rank-Sum Test to the performance values of the sampled best individuals of
the last generation returned by two algorithms. To this end, we assess whether
the distributions induced by the algorithms coincide. As a result of the Rank-Sum
Test, we obtain a p-value. If the p-value is smaller than 0.05, significant differences
are observed between the two algorithms.

Experiment Execution
Calculations for the results presented here were performed on resources provided by
the IRB University Paderborn1 and resources by Contabo2. Since the experiments
have no time dependency and can be reproduced on arbitrary computer systems
because of seeded randomization, different nodes were involved in the evaluation
process. In total, up to 634 logical CPU cores (40× 4, 6× 6, 51× 8, 3× 10) and
1,29TB main memory were used to process the experiments.

1https://cs.uni-paderborn.de/en/irb/ - Accessed 2017-02-08
2https://contabo.de/ - Accessed 2017-02-08
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For automating the distribution of the experiments to this number of heterogeneous
nodes, a software-based cluster management tool was developed, which is described
in the following.

6.1.4 Software-Based Experiment Conduction Cluster
Following the blackboard architecture style, as illustrated in Figure 6.2a, a software-
based dynamic cluster management tool was designed and implemented, enabling
automated and distributed experiment conduction. According to the blackboard
architecture style, a central instance, i.e. the blackboard, maintains the knowledge,
for instance, the blackboard might be a database. Experts or, from a technical
perspective, processes fetch tasks from the blackboard, solve these and write the
results back to the blackboard.

In our scenario, the blackboard is implemented by a central server maintaining
a database containing records specifying experiments and records containing the
measured results when conducting the experiments. Each of the 100 nodes takes
over the role of the expert fetching experiments from the central server, conducting
these experiments using the REAL framework and sends reports of measured prop-
erties to the central server, which stores the data in a database. The architecture
of the scenario is illustrated in Figure A.1f. Moreover, the central server provides
a graphical user interface (GUI) in order to enable users to specify experiments
and to visualize the measured data.

(a) Schema of Blackboard Architecture
(see [GS94])

(b) Software-based Cluster Management
Tool Architecture Sketch

Figure 6.2: Blackboard architecture pattern implemented in software-based dy-
namic cluster management tool

In order to increase the throughput and avoid too much network traffic overhead,
tasks are bundled in chunks of for instance 10 tasks. For fetching the chunks
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from the central server, a client is deployed and run at each of the 100 nodes.
The client software is responsible for fetching new chunks from the central server,
run the REAL framework using the ChunkControl locally. Periodically, the client
software sends a heartbeat to the central server, such that the central server no-
tices when a node goes off-line. When the execution of the tasks contained in the
fetched chunk is finished, the client reports the measured data to the central server.

In a further step, we average the measured data belonging to samples of the same
experiment setup. The averaged data can be visualized in the GUI of the central
server. By recording how many samples already have been used for averaging the
collected data, additional samples can be retrospectively added if we desired to
increase the sample size. Also, each measured data point is stored in a separate
record which allows for an individual sample size.

6.2 Passive VS Active Multi-Objective Optimization
We start the evaluation by analyzing the effect of introducing active learning tech-
niques (eeMOO, eeMOO2) to the passive requirements specification approach by
van Rooijen and Hamann [RH16] (pMOO) (cf. Section 4.1.6). To this end, we
carry out a first evaluation of the pMOO applying the algorithm to different set-
tings. In order to ensure equal conditions and the same amount of computation
time for the evolutionary runs, pMOO is provided additional training examples
that are drawn uniformly at random from the set {w ∈ Σn | 0 ≤ n ≤ `max}.
Hence, all the training data pMOO obtains, is drawn uniformly at random. We,
thus, compare the effect of strategically augmenting the training data to randomly
chosen additional training data.

The training data could be provided to pMOO directly from the very beginning,
but for that, a different parameterization (number of generations, population size)
would be necessary in order to remain fair with respect to computational resources.
However, due to problems as for example overfitting, fairness among different
parameterizations cannot be defined trivially. Therefore, we proceed as afore-
mentioned by randomly choosing additional training examples.

In Section 6.2.1, the results for the comparison of pMOO and eeMOO are pre-
sented. Subsequently, pMOO is compared to the second active multi-objective
optimization approach eeMOO2 in Section 6.2.2. Finally, we discuss the results
in Section 6.2.3 and draw a conclusion. While for the comparison between pMOO
and eeMOO we will notice no advantage of eeMOO over pMOO, we will see that
choosing different objectives as in eeMOO2 leads to a significant improvement.
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For both comparisons, we summarize the evaluation results in the form of two
heat maps showing the difference in performance after 100 queries and after 1,200
queries. In addition, we choose six exemplary settings, lying on the diagonal of the
analysis space (i.e. |Q| = |Σ|), in order to give an impression of how an increasing
number of states and size of alphabet affects the performance of the presented
approaches.

6.2.1 Results for pMOO VS eeMOO
To compare the quality of the returned candidate models, in Figures 6.3a to 6.3f
the development of the test set performance for evolutionary runs allowing for
1,200 oracle queries is shown. While the performance of pMOO is represented by
a cyan-colored line, the performance of eeMOO is depicted in orange.

Furthermore, since we are mainly interested in whether the performance can be
improved by applying the active learning techniques, the remaining settings are
summarized in two heat maps. The first heat map in Figure 6.3g shows a profile of
the difference in performance taken after 100 queries. In Figures 6.3a to 6.3f, a red
vertical line denotes the point in time that this snapshot is taken. The other heat
map in Figure 6.3h shows the performance difference after the full evolutionary
runs, i.e. after 1,200 queries.

The performance difference (PD) is calculated by subtracting the test set perfor-
mance of pMOO from the test set performance of eeMOO. Thus, a positive PD
denotes that the solutions returned by eeMOO classify more examples of the test
set correctly than the ones returned by pMOO.

As it can be seen in Figures 6.3a and 6.3b for smaller target models, the perfor-
mance of candidate models by eeMOO increases faster than for pMOO, in the first
place, but pMOO catches up in performance after 1,500-2,000 generations. Espe-
cially noticeable is that eeMOO seems to lose good solutions frequently, while
the performance of pMOO is nearly monotonically increasing. In the case of
|Q| = 4, |Σ| = 4, pMOO even passes eeMOO and reaches a performance of 1.
Considering the setting |Q| = 5, |Σ| = 5, the two algorithms perform about equal.
The rather strong oscillations for both indicate that the good solutions are out
of scope using the combination of objectives. In the remaining graphs shown in
Figures 6.3d to 6.3f a small tendency for eeMOO over pMOO can be recognized.
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(a) |Q| = 4, |Σ| = 4 (p ≈ 0.0033)
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(b) |Q| = 5, |Σ| = 5 (p ≈ 0.741)
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(c) |Q| = 6, |Σ| = 6 (p ≈ 0.7584)
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(d) |Q| = 7, |Σ| = 7 (p ≈ 0.0922)
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(e) |Q| = 8, |Σ| = 8 (p ≈ 0.1572)
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(f) |Q| = 9, |Σ| = 9 (p ≈ 0.0375)

(g) Heat map over performance difference
(PD) eeMOO−pMOO, 100 queries

(h) Heat map over performance difference
(PD) eeMOO−pMOO, 1200 queries

Figure 6.3: Results for the comparison of pMOO and eeMOO
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The heat maps in Figures 6.3g and 6.3h summarize the results of all settings. Af-
ter 100 queries as well as after 1,200, apart from some exceptions, no significant
improvements of eeMOO over pMOO can be observed. In some settings as for for
instance |Q| = 6, |Σ| = 5 after 1,200 queries, the performance difference is nega-
tive, i.e. the performance of pMOO is greater than the performance of eeMOO.

Summing up, eeMOO shows no advantage over pMOO, although eeMOO strate-
gically chooses queries to the oracle by evolving candidate tests applying active
learning techniques. Instead, in some settings, the results of the evaluation even
indicate that choosing queries uniformly at random even leads to a better per-
formance. Especially, in the settings with 1,200 allowed queries, the performance
difference becomes negative in about half of the settings. Except for a few settings,
the performance of the two algorithms is competitive only.

6.2.2 Results for pMOO VS eeMOO2
In the following, we consider the second version of the strictly co-evolutionary
multi-objective optimization approach (eeMOO2). Unlike eeMOO, eeMOO2 uses
only the two objectives fall (cf. Equation 4.2 in Section 4.1.2) and freach (cf. Equa-
tion 4.13 in Section 4.13) for assessing the fitness of a candidate model, where only
fall directly relates to the training data. The results of the comparison between
pMOO and eeMOO2 are presented in Figures 6.4a to 6.4h.

In the setting of |Q| = 4 and |Σ| = 4, we observe a faster saturation at a perfor-
mance value of 1 for eeMOO2. Meaning eeMOO2 needs less additional training
data than pMOO. For the remaining and more complex settings, the graphs indi-
cate significant improvements by eeMOO2 over pMOO.

As it can be seen in the heat map in Figure 6.4g, after 100 queries, both algorithms
perform about equal for smaller problems, e.g. |Q| = 3, |Σ| = 3 or |Q| = 3, |Σ| = 4,
which is denoted by the blue colored cells. Next, to the two blue cells, the neigh-
bors turn green and red. While the green cells indicate only a small advantage
of eeMOO2 over pMOO, the red cells denote performance improvements of 0.05
up to 0.1. Beyond the red area, on the upper right-hand side of the heat map,
the settings are more complex, and therefore more training data is needed to find
candidate models of good quality. The profile shown in Figure 6.3g represents an
early point in time at which there is no actual difference between the two algo-
rithms.
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(a) |Q| = 4, |Σ| = 4 (p = 1)
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(b) |Q| = 5, |Σ| = 5 (p < 10−4)
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(c) |Q| = 6, |Σ| = 6 (p < 10−10)
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(d) |Q| = 7, |Σ| = 7 (p < 10−7)
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(e) |Q| = 8, |Σ| = 8 (p < 10−8)
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(f) |Q| = 9, |Σ| = 9 (p < 10−9)

(g) Heat map over performance difference
eeMOO2−pMOO, 100 queries

(h) Heat map over performance difference
eeMOO2−pMOO, 1200 queries

Figure 6.4: Results for the comparison of pMOO and eeMOO2
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For instance, this can be seen in Figures 6.4e and 6.4f. In these scenarios, pMOO
and eeMOO2 perform about equally for a certain timespan up to approx. 1,500
generations. For longer evolutionary runs, the difference increases over time so
that after 1,200 queries, the difference reaches about ≈ 0.18 for the setting |Q| =
8, |Σ| = 8 and ≈ 0.21 for the other setting.

In Figure 6.4h, the profile of this development can be seen as well. While in the
bottom left corner of the heat map, the two algorithms both reach a performance
of 1 for less complex scenarios with 1,200 allowed queries, for more complex tasks
the difference between eeMOO2 and pMOO increases significantly.

6.2.3 Discussion of Passive VS Active Multi-Objective
Optimization

With the first comparison of eeMOO and pMOO, we cannot recognize any note-
worthy improvements. For more complex settings. the experiments indicate a
small improvement of eeMOO over pMOO. However, the observed effect is still
not noteworthy. One of the reasons might be, that the objectives for the evolution
of candidate models lead to an inappropriate combination of candidate models in
the committee. Most likely, the objective counting the number of sink states is
the cause for that, since there always exist individuals consisting of one state only
having self-loops for all input symbols. Depending on whether this state is labeled
accepting or rejecting, the objective fpos respectively fneg takes on the maximum
fitness of 1 as well. Obviously, the labeling of the state only depends on the pro-
portion of positive and negative training examples. Additionally, such a candidate
model has an optimal value for the frel objective, since only one state is used for
processing all the training data. Hence, each Pareto front returned by NSGA-II,
which is optimal with respect to the training data containing one such candidate
model. This strongly restricts the shape of the remaining Pareto front. In the case
of training data, where all training examples are labeled the same, this candidate
model dominates all other solutions.

Since the overall population is split into halves, each of the subpopulations is possi-
bly dominated by such a candidate model. In the course of an evolutionary run, we
observed in the experiments that this kind of candidate model is found very often.
Hence, the committee usually contains two of these candidate models. Therefore,
the disagreement of the committee is strongly biased by this type of candidate
model. All in all, this leads to a worse candidate test selection. Furthermore, the
diversity of the candidate models in the set of solutions returned to the user is de-
creased. Therefore, fsink, as introduced in [RH16], turns out to be disadvantageous
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for the evolution of candidate models as well as for the evolution of candidate tests.

Considering the comparison of eeMOO2 and pMOO, eeMOO2 shows significant
improvements. Unlike in the case of eeMOO, the committees evolved by eeMOO2
prove beneficial for the assessment of candidate tests. Hence, the chosen queries
for augmenting the training data enhance the quality of the training data signif-
icantly. Since eeMOO2 does not make use of the fsink objective, eeMOO2 does
not intendedly evolve such trivial candidate models as described above leading to
a less useful committee of candidate models. Especially, eeMOO2 shows a steeper
learning curve which implies less training examples needed than in pMOO in or-
der to obtain the same performance value for the best candidate models. Specific
values concerning the question of how many queries are needed in order to obtain
a candidate model with a performance of at least 0.95 are listed in Table 6.3.
Moreover, this implies that less information needs to be provided by the user.

6.3 Single Objective VS Multi-Objective
We conclude the evaluation chapter by comparing the Estimation-Exploration Al-
gorithm (EEA) by Bongard and Lipson [BL05] to eeMOO2. The EEA is, to
the best of our knowledge, the current state-of-the-art technique in heuristic ap-
proaches for grammatical inference. In Section 4.1.4 we made minor modifications
in order to enable the algorithm to deal with non-binary alphabets as well. The re-
sults presented in the following compare this slightly modified version to eeMOO2.

In [WRH17], we already compared EEA to a similar version of eeMOO2, which
is referred to as MOOA. Substituting freach (cf. Equation 4.13 in Section 4.1.5)
by frel (cf. Equation 4.5 in Section 4.1.2), we started our evaluation for binary
alphabets. While for target models of binary alphabets and less than 32 states
EEA performed better than MOOA, we observed that MOOA deals better with
the 32 states setting. Furthermore, we noted that MOOA outperforms EEA for
more complex settings where |Σ| > 3 and for larger |Q|.

The performance data acquired in the course of this evaluation is presented in
detail for some exemplary settings in Figures 6.5a to 6.5f, where the number of
states equals the size of the alphabet. A summary of the performance for all the
evaluated settings after 100 queries and 1,200 queries is given in the form of heat
maps in Figures 6.5g and 6.5h.
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(a) |Q| = 4, |Σ| = 4 (p = 1)

0 2,000 4,000 6,000
0.5

0.6

0.7

0.8

0.9

1

Generations

P
e
r
fo

r
m

a
n
c
e

(b) |Q| = 5, |Σ| = 5 (p ≈ 0.4802)
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(c) |Q| = 6, |Σ| = 6 (p ≈ 0.2137)
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(d) |Q| = 7, |Σ| = 7 (p ≈ 0.0190)
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(e) |Q| = 8, |Σ| = 8 (p < 10−8)
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(f) |Q| = 9, |Σ| = 9 (p < 10−9)

(g) Heat map over performance difference
eeMOO2 − EEA, 100 queries

(h) Heat map over performance difference
eeMOO2 − EEA, 1,200 queries

Figure 6.5: Results for the comparison of EEA and eeMOO2 in different setups
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For the problem instances of |Q| = 4, |Σ| = 4 and |Q| = 5, |Σ| = 5|, we observe
a competitive performance of the two algorithms as already found in the previous
comparisons. This result is expected since less complex models also need less train-
ing examples and therefore these models can be inferred faster. However, eeMOO2
shows a steeper increase in performance, i.e. it also needs less training examples
than EEA in order to reach some fixed performance value. As the number of states
and the size of the alphabet increases the difference between the two algorithms
becomes more and more visible.

In Figure 6.5c, eeMOO2 first expands its lead over EEA until EEA gets closer
again around 4,000 generations. Nevertheless, EEA is not able to catch up com-
pletely, so that at the end of the run a small difference in performance still remains.

Figures 6.5d, 6.5e and 6.5f show, how eeMOO2 outperforms EEA in these more
complex settings. While the graph representing the performance value of eeMOO2
gives a more purposive impression, the oscillations in the graph of EEA indicate
that EEA loses good solutions repeatedly. This implies that EEA is not aware
of these good solutions and drops these when the population is re-initialized after
training data augmentation.

The heat map showing the profile for all the evaluated settings after 100 queries
in Figure 6.5g confirms the observations for the exemplary settings. In the lower
left corner, the blue cells denote that the two algorithms perform about equally
for a number of states of 3 or 4 and |Q| + |Σ| ≤ 9. For the other settings where
|Q|+ |Σ| < 15, a red coloration indicates a performance increase of 0.05 up to 0.1.

In more complex settings, i.e. scenarios in which |Q| + |Σ| ≥ 15, the difference
between the performance of eeMOO2 and EEA becomes insignificant. This can
be seen for instance in Figures 6.5e and 6.5f, where the red vertical line highlights
the point, where 100 queries were used to augment the training data. In these
examples, the amount of training data at this point is not sufficient for revealing
a real difference between the two algorithms. But, as it can be seen in the further
course of the evolutionary run allowing for 1,200 queries, eeMOO2 clearly out-
performs EEA. Therefore, we would expect the green cells to turn red for longer
evolutionary runs.

Considering the heat map in Figure 6.5h, we can confirm the hypothesis that the
performance increases for longer evolutionary runs in the more complex settings.
For the settings where |Q| + |Σ| < 15, EEA catches up so that the performance
difference ranges from close to 0 up to 0.1. In the remaining settings, we observe
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a bigger difference of up to 0.2. Mostly, eeMOO2 shows a steeper learning curve,
implying that less training examples are needed.

In summary, eeMOO2 needs less training data than EEA in order to evolve can-
didate models of the same performance. Since the optimization for multiple ob-
jectives needs special treatment e.g. for selection regarding the concepts of Pareto
optimality, we use another evolutionary algorithm for the evolution of candidate
models and candidate tests. Hence, we do not only compare the usage of single
objectives to multiple objectives but different algorithms at the same time. This
might lead to the suspicion that the steeper learning curve could be due to im-
plementation details of the algorithms. Actually, in preliminary experiments, the
advantage was shown to be originating from using multiple objectives. For that,
the exploration phase evolving candidate tests in EEA was extended to use glen
as a tie-breaker when two candidate tests in the population obtain the same dis-
agreement value. Meaning if two candidate tests obtain the same disagreement
value, the shorter candidate test is preferred over the longer one. On average, the
extended version of EEA performed competitively to eeMOO2. However, eeMOO2
naturally allows for an easier extension when adding further objectives. Therefore,
with eeMOO2 we chose a strict multi-objective approach over the extension of the
EEA.

6.4 Overview and Conclusion
The comparison between EEA, eeMOO, eeMOO2 and pMOO shows, the perfor-
mance of the algorithms highly to depend on the amount of training data and the
heuristic used to explore the search space. Especially, in the case of eeMOO, we
can recognize the importance of choosing the right heuristic. When performing
multi-objective optimization, it is necessary to use either pair-wise independent
objectives or competing objectives, i.e. objectives which cannot be fully satisfied
at the same time, in order to maintain a diverse committee of candidate models.

In order to give a conclusive overview of the evaluated algorithms, in Table 6.3,
it is listed how many queries are needed by the algorithms for learning the target
model allowing an error of 0.05. Therefore, the table lists the number of queries
which are needed for achieving a performance of at least 0.95 for all settings evalu-
ated for 1,200 allowed queries. In brackets below, the final performance rounded to
two decimal places is noted, i.e. the performance reached after 1,200 oracle queries.
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|Q| |Σ| EEA eeMOO2 pMOO eeMOO
4 3 33 (1) 44 (1) 73 (1) 32 (1)

4 93 (1) 74 (1) 218 (1) 184 (0.95)
5 98 (0.99) 85 (1) 225 (1) 137 (0.97)
6 303 (0.99) 129 (1) 244 (0.99) 200 (0.97)
7 214 (1) 164 (1) 947 (0.96) 433 (0.97)
8 311 (0.99) 183 (1) 646 (0.97) 312 (0.97)
9 361 (0.99) 224 (1) >1200 (0.92) 1007 (0.94)

5 3 105 (1) 113 (1) 238 (0.98) >1200 (0.95)
4 262 (0.98) 187 (1) 898 (0.95) >1200 (0.92)
5 300 (1) 230 (0.99) >1200 (0.9) >1200 (0.9)
6 366 (0.98) 313 (1) >1200 (0.91) >1200 (0.89)
7 590 (0.99) 328 (1) >1200 (0.89) >1200 (0.87)
8 966 (0.97) 367 (1) >1200 (0.85) >1200 (0.85)
9 836 (0.96) 459 (1) >1200 (0.86) >1200 (0.93)

6 3 149 (0.98) 169 (1) 905 (0.95) >1200 (0.91)
4 352 (1) 338 (1) >1200 (0.91) >1200 (0.89)
5 652 (0.99) 398 (0.98) >1200 (0.91) >1200 (0.87)
6 729 (0.97) 533 (1) >1200 (0.81) >1200 (0.8)
7 1135 (0.95) 489 (0.99) >1200 (0.81) >1200 (0.85)
8 >1200 (0.89) 709 (0.99) >1200 (0.76) >1200 (0.85)
9 >1200 (0.92) 771 (0.99) >1200 (0.78) >1200 (0.92)

7 3 238 (1) 305 (1) >1200 (0.9) >1200 (0.87)
4 631 (0.99) 444 (0.99) >1200 (0.85) >1200 (0.85)
5 733 (1) 577 (1) >1200 (0.81) >1200 (0.82)
6 1076 (0.96) 770 (0.97) >1200 (0.78) >1200 (0.81)
7 >1200 (0.86) 991 (0.97) >1200 (0.77) >1200 (0.81)
8 >1200 (0.81) 909 (0.97) >1200 (0.75) >1200 (0.83)
9 >1200 (0.81) 996 (0.96) >1200 (0.76) >1200 (0.84)

8 3 388 (1) 604 (0.97) >1200 (0.85) >1200 (0.82)
4 1069 (0.96) 603 (0.99) >1200 (0.79) >1200 (0.77)
5 >1200 (0.89) 988 (0.96) >1200 (0.76) >1200 (0.75)
6 >1200 (0.83) 1170 (0.95) >1200 (0.73) >1200 (0.76)
7 >1200 (0.72) >1200 (0.92) >1200 (0.71) >1200 (0.74)
8 >1200 (0.75) >1200 (0.93) >1200 (0.75) >1200 (0.78)
9 >1200 (0.72) >1200 (0.9) >1200 (0.7) >1200 (0.75)

9 3 778 (0.98) 657 (0.98) >1200 (0.8) >1200 (0.77)
4 1171 (0.95) 1094 (0.95) >1200 (0.76) >1200 (0.76)
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|Q| |Σ| EEA eeMOO2 pMOO eeMOO
9 5 >1200 (0.82) >1200 (0.93) >1200 (0.71) >1200 (0.71)

6 >1200 (0.79) >1200 (0.93) >1200 (0.73) >1200 (0.76)
7 >1200 (0.72) >1200 (0.92) >1200 (0.72) >1200 (0.74)
8 >1200 (0.7) >1200 (0.91) >1200 (0.7) >1200 (0.74)
9 >1200 (0.67) >1200 (0.87) >1200 (0.66) >1200 (0.71)

Table 6.3: Overview of how many queries are needed to reach a performance of at
least 0.95. The final performance values are disclosed in brackets. >1200
means that the algorithm does not reach a performance of at least 0.95
in this setting. (Performance values are rounded to two decimal places)

As it can be seen in Table 6.3, eeMOO2 clearly outperforms pMOO. On the one
hand, this is due to using different objectives, and on the other hand, this is due
to strategically augmenting the training data by evolved candidate tests. While
pMOO reaches a performance of at least 0.95 only in 9 out of the 42 settings,
eeMOO2 does not reach a performance of 0.95 in 8 settings. Moreover, in the 9
settings for which pMOO reaches a performance of at least 0.95, eeMOO2 needs
only a fraction of the oracle queries compared to pMOO.

Except for settings in which |Σ| = 3, the table furthermore illustrates the advan-
tage of eeMOO2 over EEA for more complex settings. Compared to eeMOO2,
EEA does not reach a performance of at least 0.95 for 7 other settings. Consulting
the table, it can be recognized that the advantage of eeMOO2 over EEA increases
for an increasing number of states and size of the alphabet. This is indicated
by reaching an accuracy of 0.95 earlier and a higher value for the performance
value in settings, where an accuracy of 0.95 is not reached. By showing significant
improvements in these settings, eeMOO2 outperforms the current state-of-the-art
algorithm for grammatical inference. In particular, eeMOO2 needs less training
data in order to reach the same performance value as EEA.

However, for our setting, the performance of the algorithms is still insufficient and
the amount of training data, which needs to be provided by the user, is still infea-
sible. Even if the user only has to classify sequence diagrams either as desired or
prohibited behavior instead of creating these diagrams on his own, the sheer num-
ber of queries would fatigue, demotivate or simply overtax the user. Nonetheless,
optimizing for multiple objectives in order to get a more sophisticated view for
the assessment of candidate models is a step in the right direction. It is inevitable
to reduce further the amount of training data, which needs to be provided by the
user in some way or other.
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6.4 Overview and Conclusion

One possible solution might be to use the domain knowledge inherent in the OTF
market and to learn from observing requirements specifications in order to reduce
the amount of training data, which needs to be provided by the user. In Section 4.2,
we already proposed some concepts to address the problem concerning how to
integrate this knowledge into the automated requirements engineering process.
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7 Conclusion
This final chapter is devoted to conclusions, insights, remaining work and visions.
In Section 7.1 we recap the interactive multi-objective optimization approach for
learning requirements specifications from examples. The results of the evaluation
in Chapter 6 led to relevant insights summarized in Section 7.2.

7.1 Summary
In the context of OTF markets, we extended the requirements specification-by-
example approach by van Rooijen and Hamann [RH16] to an automatic require-
ments engineer. This was done by transferring the concepts of Bongard and Lipson
[BL05] to an interactive co-evolutionary approach strictly using multi-objective
optimization for evolving both candidate models and candidate tests. A special
challenge in this context is sparse data. In contrast to traditional approaches for
grammatical inference, we can only request a few training examples, since all these
training examples have to be provided by the user. Using multiple objectives helps
the algorithm to discriminate superior and inferior candidate models better. This,
in turn, helps to generate more useful queries and request the right examples from
the user. Furthermore, the user is supported in providing more relevant training
examples, so that the algorithm takes over the role of a requirements engineer.
In this way, the algorithm also supports the user in refining imprecise or vague
notions of the desired service to a precise formal requirements specification.

However, the automatic requirements engineer currently only uses the data pro-
vided by the user. Therefore, we proposed new concepts on how to relieve the
user and make use of the knowledge, concerning the semantics of operations and
services available in the OTF market. Another concept for extending the formal-
ism to describe protocols of services was proposed. By abstracting predicates used
to describe operation interfaces in the OTF market to guards, it is possible to
introduce more complex structures such as branching structures to the protocol
generalized from the user’s training examples.

For the comparison and benchmarking of different requirements elicitation algo-
rithms, the REAL framework was introduced. Due to its architecture and clear
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distinction between roles, which are involved in the actual requirements elicita-
tion process, and entities, which are solely needed for benchmarking purposes, the
framework can be integrated into other application and can be used as a standalone
in order to test and benchmark different algorithms. Furthermore, since the roles
and entities are highly decoupled, the framework is easily extensible and adaptable.

Exceeding the objectives of this thesis, we integrated the framework into a client-
server application in order to distribute the load of conducting the evaluation
experiments on up to 100 nodes. For the distribution, a central server was dedi-
cated to assigning chunks to the nodes and stored the results of the experiments
in a database. This enabled us to base the evaluation on a number of experiments,
which would have taken 286 days of computation on a single computer.

7.2 Insights
The evaluation showed that in the scenario of very few training examples, multi-
ple objectives can guide the algorithm to discriminate better between candidate
models and candidate tests of higher or lower quality. Being more aware of how
good candidate models are, the active learning process inferring the target model
is accelerated. However, objectives need to be carefully chosen as demonstrated
by the example of the objective maximizing the number of sink states (fsink).

Furthermore, by extending the requirements specification-by-example approach by
van Rooijen and Hamann [RH16] to an active learning approach, we could improve
the performance of the requirements elicitation algorithm significantly. In partic-
ular, the active learning approach helps to ask the user the right questions and,
thereby, reduces the number of training examples needed for inferring the target
model. Although allowing an error of 5% for the test set performance, the number
of training examples, which would have to be provided by the user, is still infeasi-
ble and would fatigue and demotivate the user.

Incidentally, the evaluation comparing our interactive multi-objective optimiza-
tion approach to the state-of-the-art technique proposed by Bongard and Lipson
[BL05] yielded gratifying results. In settings with bigger alphabets our approach,
especially for bigger automata, outperforms the state-of-the-art approach ([BL05])
clearly. However, the experiment setup had a limitation, since we did not only eval-
uate the effect of using multiple objectives compared to a single objective but also
compared two different evolutionary algorithms at the same time. Therefore, we
cannot ascribe the significant improvements to the usage of multiple objectives
alone. Nevertheless, these improvements are important in our setting, since we
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can only require a limited amount of data from the user. Hence, there is a clear
advantage of our approach over the approach by Bongard and Lipson [BL05].

For all approaches, we observed oscillations in several settings. Especially, for more
complex problem instances at the beginning, the algorithms lose better performing
models repeatedly, since the algorithms are not aware of the real performance. We
also observed that the usage of multiple objectives reduces this effect.

7.3 Future Work
The most relevant task for future work is to decrease further the amount of train-
ing data required to be provided by the user. To this end, more sophisticated
heuristics are necessary, and additional knowledge has to be acquired from other
knowledge sources. Finding additional objectives for assessing the fitness of can-
didate models and candidate tests, in order to let the algorithm be more aware
of the quality of candidates, is one way of addressing this problem. For instance,
objectives optimizing for common structures within protocols such as branches,
loops, prefix or suffix might be a useful extension.

Moreover, in Section 4.2.2, we introduced two concepts of how to use knowledge
about the services available in the OTF market to augment the alphabet and to
introduce branching structures in the protocols. Due to the immaturity of these
concepts, further work of research is needed to implement these concepts. Espe-
cially, the black boxes “Operation Mapper” and “Recommendation System” need
to be designed and implemented.

In Section 4.2.1 heuristics for bundling multiple queries with the aim to decrease
network traffic and to reduce the waiting time for both user and algorithm were
proposed. It has to be evaluated whether bundling has a negative impact on
the number of training examples needed in total. However, as outlined in Sec-
tion 4.2.1, we would expect that more training examples are needed compared to
sending queries individually.

Another future task is to improve the generation routine to generate more realistic
target models. The generation routine used in the evaluation chapter simply draws
destination states uniformly at random for all transitions. Hence, the generated
target models have no specific structure and semantics of operation names, i.e.
symbols of the alphabet, are not taken into account. In order to involve suppliers
into the benchmark, the target model generation could be combined with a service
repository generator, as proposed in [Moh16].
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Appendix A

Software-Based Experiment
Conduction Cluster
In Figures A.1a to A.1h screenshots give an impression of the software-based ex-
periment conduction cluster (SBECC) used to distribute the load of conducting
all the experiments to up to 100 nodes.

System requirements
SBECC needs at least a single core CPU with 1GHz and 2GB RAM. Furthermore,
the following software is required to be installed before:

• Apache 2.4 with mod_rewrite

• PHP 7

• MySQL 5.7

In order to get SBECC running as expected the configuration files of php and
mysql have to be adapted. It is recommended to increase script running times for
php, allowed file sizes, and the allowed memory sizes.

Setup
Copy the file from the SBECCServer.zip to the document root of the server and
load a MySQL dump into the database. Update the ./config.php file with the
correct credentials for accessing the MySQL database.

Notes
The more active nodes work on chunks and possibly send experiment results to
the central server, the more resources should be allocated for the central server.
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Appendix A Software-Based Experiment Conduction Cluster

(a) SBECC dashboard (b) SBECC chunk configuration

(c) SBECC list of worker clients (d) SBECC list of all chunks

(e) SBECC general settings (f) SBECC chunk details

(g) SBECC user settings (h) SBECC results presentation

Figure A.1: Graphical User Interface of the Software-Based Experiment Conduc-
tion Cluster (SBECC) server
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CD Contents
• PDF of this thesis

• Implementation of the REAL framework

• Implementation of a Java client for distributed evaluation

• Implementation of a PHP server for defining and assigning evaluation tasks
to clients

• Initial MySQL dump

• MySQL dump containing all the measured data of the evaluated experiments

• Executable JARs of CRCREALExecutor and CrcREALWorkerClient

• Supplementary results material: Box plots over the samples for each setting
and algorithm after 100 queries

The software, which was implemented as part of this thesis, can be divided in
two major parts: a server in PHP for the administration of distributed experiment
conduction and a Java implementation of the framework including a client in order
to pull tasks from the PHP server. The Java implementation is separated into the
following projects:

CrcREALFramework contains the framework as presented in Chapter 4

CrcREALUtils contains utility classes required by the framework, executor and
client

CrcREALExecutor contains a standalone instantiation of the framework, which
can be executed via the command line

CrcREALWorkerClient contains a simple client, which pulls chunks from a server
which is specified by a URL
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CrcREALWebInterpolator contains a simple client, which pulls chunks from a
server which is specified by a URL

Concerning the Software-Based Experiment Conduction Cluster, two dumps for
the database are provided: one dump containing all the calculated experiment re-
sults presented in Chapter 6 and another dump without any data. In the latter, a
standard user is already registered with the username crcreal and the password
crcreal. Worker clients have to be registered before they can pull chunks from
the central server and send back evaluation results to the central server.

Furthermore, the Java projects require additional projects from the CRC901-B-
Tools repository. These projects are located at the following URLs:

• https://svn-serv.cs.upb.de/CRC901-B-Tools/trunk/projects/configmate/
gs-core-modded/

• https://svn-serv.cs.upb.de/CRC901-B-Tools/trunk/projects/
sequenceDiagramEditor/MOEAFramework/

(Accessed 2017-03-17)

Executing Worker Client
The CrcREALWorkerClient.jar is executed and started directly by the following
command:

java -jar CrcREALWorkerClient.jar run

The CrcREALWorkerClient implements a simple CLI that can be used with the
following commands.

run Start a worker thread pulling chunks from the central server and sending back
the results of the experiment

stop [-f] Stops the worker thread after the currently processed chunk is finished.
Adding the parameter -f forces the worker thread to terminate directly.

exit stops the worker thread after the currently processed chunk is finished and
quits the worker client completely.
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