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Abstract. In this paper we present our system for acoustic scene anal-
ysis and ambient communication. The acoustic scene analysis delivers
information about the user’s location which is utilized in ambient com-
munication such that audio-visual data are captured and rendered by the
most appropriate I/O-device, which allows the user to move freely from
one room to another during a teleconversation. The system employs a
steerable camera, controlled jointly by acoustic speaker localization and
face detection. The ambient communication system is implemented on
top of a context management system which maintains context informa-
tion provided by context sources and consumed by applications.

1 Introduction

Ambient communication as a future trend of ambient telephony [1] formulates
the vision of a user-oriented, service based infrastructure for audio and video
communication [2]. Thus, it follows the paradigm of Ambient Intelligence (AmI)
that claims the key elements of an “intelligent” system to be embedded, context-
aware, personalized, adaptive and anticipatory [3]. Hence it overcomes the lim-
itations of a hardware-oriented telephony application or device by hiding the
hardware from the user in the walls and at the same time retaining and extend-
ing its original functionality.

The aforementioned elements of AmI can only be realized if a sufficient
amount of reliable context information is available. This constraint asks for two
tasks to be solved by an intelligent system. First of all sensors, devices and ap-
plications have to be integrated in a network, utilizing a common middleware
for communication and interaction. Second, the inherent knowledge of the in-
formation sources has to be prepared such that machines can understand and
process it. A widely accepted approach for this task is the use of an ontology,
which in principle constitutes a joint knowledge base by definition of terms and
their relationships.

Regarding ambient communication scenarios the acoustic signals recorded
by the microphones are interesting context sources as they provide information
about users and events. Obviously localization and identification by audio signals
assumes that the user is speaking, however during a communication this should



be fulfilled. Our acoustic scene analysis localizes and identifies active speakers
and thus generates information about: “Who speaks, When and Where?”. This
context information is used by a camera to focus the active speaker and it is also
provided to other applications.

In the next section we briefly describe the usage scenario and the used hard-
ware. Section 3 gives an overview about the system building blocks for audio and
video processing. After presenting the middleware in section 4, section 5 explains
our system for ambient communication, and we finish with some conclusions.

2 Usage scenario

We envisage a networked home environment as the typical environment where
ambient telephony is to be used. It is characterised by a multiplicity of hardware
components stemming from the domains consumer electronics, household appli-
ances, personal computing and telecommunication, all more or less connected via
networks. Especially, if we focus on the audio-visual equipment, we find a large
variety of hardware configuration to be installed in the home. This may range
from single or no microphones per room to rooms equipped with distributed
microphone arrays, loudspeakers and cameras.
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Fig. 1. Ambient communication setup

Our further explanations are based on a room with a high level of equip-
ment as depicted in Fig. 1. For audio signal processing three microphone ar-
rays, namely one T-shaped and two linear arrays, are used. The T-shaped one is
mounted at the wall between a display and a pan-tilt-zoom camera. It is assumed
that the user looks in the direction of the camera, and thus in the direction of
the array, while having an audio-visual communication with a distant person.
Together with the two other arrays the speaker can be located which is intern
used to focus the camera on the user.



3 System overview

The system for audio-visual data processing is divided in two parts working in
parallel, which are synchronized and connected via a shared memory (SHM) ap-
proach, see Fig. 2. In the video subsystem the webcam stream is processed on a
frame-by-frame basis, where the frame rate may vary because of changing net-
work quality. The audio subsystem works at a constant sampling rate of 16 kHz

and a block length of 10 ms. Information gathered by one of the subsystems is
stored in the shared memory and used by the other until it is overwritten.
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Fig. 2. Speaker localization and camera control

3.1 Video subsystem

The frames of the video stream are converted from RGB to HSV to ease the skin
color segmentation and in parallel retrieve the grey scale version (V component)
of the frames. We perform a histogram look-up to find the regions of skin color,
which simultaneously reduces the computational demand and the false alarm
rates of the face detector by constraining the areas of the frame to be examined
for faces. We employ a face detector that is optimized to find faces at a size of
19× 19 pixels. Thus we have to scale down the original frame to subframes with
different resolutions to find faces at larger sizes. Here we employ the WinScale
algorithm from [5]. Each subframe is processed with a local structure transfor-
mation (LST) as proposed in [6] and subsequently scanned for faces by a 4-stage
detection cascade as suggested by Viola and Jones in [7].

The face detection method tends to detect a face multiple times in marginally
varying positions and sizes, thus a Leader-Follower clustering is employed to



merge the results. According to the information from the face detection we cut
out the parts of the greyscale picture at the face positions and scale them to a size
of 60 × 60 pixels. Further the well-known Fisherfaces approach [8] is applied to
identify the persons. In a first step we use a principal component analysis (PCA)
matrix that was determined on training data to reduce the feature vector size
from 3600 to 200. In the second step we further reduce the dimension to the
number of trained users minus one, by applying a LDA matrix from a linear
discriminant analysis (LDA) that was also estimated on the training data. A
single Gaussian is estimated for each user to model him in a probabilistically
manner. Consecutive observations of faces in the same look direction are tracked
by interpreting the posterior likelihoods of the last timestep as a priori likelihoods
of the current timestep. The current posteriors are stored in the shared memory.

3.2 Audio subsystem

The audio subsystem uses the spatially distributed microphones for localization
and identification of speakers (cf. Fig. 2). First of all we use a beamformer for
speech enhancement to reduce the detrimental effects of reverberation and noise.
We employed a filter-sum beamformer (FSB) [9] which performs a principal
component analysis on each microphone array signal and thus blindly adapts to
the strongest sound source. The correlation of the FSB filter coefficients enables
an estimation of the Direction-of-Arrival (DoA) for each array and jointly a
localization of the user, if multiple distributed arrays are available. In our setup
the DoA information of each array is transformed in corresponding azimuth
angles [α1, α2, α3] while the T-shaped array is also able to provide a tilt angle
estimate β (cf. Fig. 1). Next we calculate the intersection points [s13, s23, s12]
of the direction estimates and retrieve the speaker position estimate as their
centroid.

Speaker identification requires a segmentation of the audio stream in homo-
geneous parts. Since the applications in mind asks for online data processing
with short latencies, multi-stage batch procedures or iterative methods as nor-
mally proposed for speaker diarization [10] are not applicable. Our approach
uses a Hidden Markov Model (HMM) where each state corresponds to a certain
user. A partial traceback is implemented to enable joint speaker segmentation,
identification and localization at low latency [11]. In contrast to other meth-
ods, e.g. [12], we estimate a time variant transition matrix from speaker change
hypotheses. Information about possible speaker changes are retrieved from the
variance of the speaker localization and the variance of the Bayesian Information
Criterion (BIC) [13].

We use the ETSI advanced feature extraction front-end [14] on the beam-
former output signal to to obtain a 39-dimensional feature vector. The vector is
extended to 42 dimensions by adding a voicedness feature and its first and second
order derivatives. The speaker scoring calculates the likelihoods from the feature
vectors, based on the Gaussian mixture models (GMM) of the users. Further we
interpret the posteriors of the face identification as a priori knowledge for the
speaker diarization. It follows that the product of the GMM likelihoods and the



posteriors of the face identification are the state observation probabilities of the
HMM. The partial traceback of the speaker diarization module estimates the
single best state sequence given the acoustical and visual observations and then
hands over the information to the context source. This context source can be
used by any application or device via its webservice interface.

3.3 Camera control

We employed a pan-tilt-zoom camera for visual communication and also for
identifying users. The camera orientation and depth view is controlled by incor-
porating visual as well as acoustical position information. Localized users that
are not within the camera view are automatically focused so that the currently
active speaker gets into the camera view after just a short delay.

4 Middleware and context management

The middleware represents the backbone of a networked home environment. Its
ability to provide context information and to integrate different services is of ut-
most importance to realize a perceived level of “intelligence”. Our system builds
upon the open source middleware that was developed during the Amigo project
[15]. It uses webservice technologies from the semantic web and comes along
with basic services for context management, aggregation and distribution [16].
In Fig. 3 the architecture of the Amigo context management system is depicted.
The context broker (CB) is the central unit for registering and searching context
sources, whereas context sources are defined as any element that delivers a kind
of information that may be interesting for the system.
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Fig. 3. Amigo context management system

Applications or services search via the context broker for suitable context
sources and contact them by their standardized webservice interfaces. Either a



direct request for information is forwarded to the context source or the appli-
cation registers at the context source for notifications in case of new context
information. In both cases a SPARQL query is formulated [17] and the answer
is given in RDF/XML description format [18].

A key context information is the user’s location, which is handled by the
Amigo middleware within the location management service (LMS). This service
continuously searches for context sources providing location information, e.g. the
acoustic speaker diarization or a RFID positioning system. All context informa-
tion is aggregated by the LMS and delivered as new contextual information to
other applications.

5 Webservice audio interface

The webservice based audio interface connects the audio processing part for com-
munication with the context-aware applications using the Amigo middleware.
We coined this assembly of building blocks Seamless Audio Interface (SAInt) to
outline one of the key features of the system. SAInt realizes a follow-me func-
tionality for audio communications such that the user can freely change rooms
while the communication follows him seamlessly.
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Fig. 4. SAInT: Seamless audio interface

In Fig. 4 the building blocks of SAInt are depicted. The audio processing
and streaming block receives the acoustical signals from the sound capturing
hardware and first of all performs an echo cancellation and noise suppression for



signal enhancement. The streaming itself is initiated, controlled and terminated
by the applications or by contextual information. Therefore the signal processing
block is asynchronously connected via an interprocess communication (IPC) with
the SAInt middleware service.

SAInt obtains information about user locations directly from the LMS and
offers a webservice interface for applications. In parallel SAInt acts as a context
source, publishing information about the rooms equipped with audio hardware,
about ongoing connections and about users available for communication. Thus
applications can get an overview about the hardware and the users in range of
it by registering to all SAInt services in the connected home.

An application asks for an audio or audio-visual connection by instructing
the SAInt service to connect two persons. SAInt uses the LMS to look up the
location of the persons and sets up the connection. If a person moves from one
room to another, the change of context information triggers a redirect of the
audio streaming, while the application using SAInt does not have to take care
about it. Thus a communication is internally bound to a user and follows him
on his way through the house.

The audio streams are compressed with an 16 kHz Speex wideband audio
coder and the video data is compressed with the Theora coder, both including
a packet-loss concealment. We use the real-time transport protocol (RTP) for
interchanging the audio and video data between two SAInt instances. Exter-
nal connections to other houses are initiated via a central server that is called
ambient communication server (ACS). It enables firewall and network address
translation (NAT) traversal as well as session initialization and handovers.

6 Discussion

In this paper we have presented our system for ambient communication and
acoustic scene analysis. Both tasks are closely related, as they are based on
the same acoustical signals. We have shown how context information about the
user’s location is obtained from analyzing the data captured by microphone
arrays and a steerable camera. This location information is intern utilized to
control the camera and to select the most appropriate I/O-device while the user
is moving freely in the home doing a teleconversation with a remote partner.
We have further described an open middleware which connects context sources
to context consumers and which thus enables services to take context-aware
decisions.
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