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Abstract

In this paper, we present libDirectional, a MATLAB library for directional statistics
and directional estimation. It supports a variety of commonly used distributions on the
unit circle, such as the von Mises, wrapped normal, and wrapped Cauchy distributions.
Furthermore, various distributions on higher-dimensional manifolds such as the unit hy-
persphere and the hypertorus are available. Based on these distributions, several recursive
filtering algorithms in libDirectional allow estimation on these manifolds. The functional-
ity is implemented in a clear, well-documented, and object-oriented structure that is both
easy to use and easy to extend.

Keywords: recursive filtering, phase estimation, orientation estimation, circle, hypertorus,
hypersphere.

1. Introduction

Directional statistics is a subfield of statistics that deals with quantities defined on manifolds
such as the unit circle or the unit hypersphere. Originally mostly developed with geoscientific
applications in mind (Mardia 1981; Bingham 1974; Gaile and Burt 1980), directional statistics
has gained widespread interest in various areas during the past decades, for example in biology
(Batschelet 1981; Mardia, Taylor, and Subramaniam 2007), robotics (Glover and Kaelbling
2014; Feiten, Lang, and Hirche 2013; Markovic, Chaumette, and Petrovic 2014), machine
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learning (Banerjee, Dhillon, Ghosh, and Sra 2005; Gopal and Yang 2014; Diethe, Twomey,
and Flach 2015), aerospace (Horwood and Poore 2014; Darling and DeMars 2015; Kurz and
Hanebeck 2017), and signal processing (Traa and Smaragdis 2013; Azmani, Reboul, Choquel,
and Benjelloun 2009; Drude, Chinaev, Vu, and Haeb-Umbach 2014). A good introduction to
the topic can, for example, be found in the book by Mardia and Jupp (1999).
There are a number of software packages that implement methods stemming from directional
statistics (see Section 2). While some of these packages provide good implementations of
certain algorithms, most of them are limited to few or just a single probability distribution.
Also, usually only a single type of manifold is considered. Moreover, most software packages
do not include the ability to perform recursive filtering. To remedy these deficiencies, we
present a new software package called libDirectional.
libDirectional is a library written in MATLAB (The MathWorks Inc. 2017), a very popular
programming language in the engineering community. A few functions are written in C or
C++ for performance reasons but they can still be conveniently called from MATLAB. The
design of the library follows an object-oriented approach, which makes it user-friendly and
easily extensible. As the code is thoroughly documented, the library is simple to use, modify,
and extend.
We designed libDirectional with several goals in mind. It is intended to allow the user to easily
and quickly experiment with different directional probability densities and filters. Thus, we
think it is a valuable tool not only for learning but also for teaching directional statistics.
Furthermore, libDirectional allows rapid prototyping of directional algorithms for a variety
of applications. Finally, one of the important goals of the library is to facilitate an easy
comparison of different algorithms, for example the quantitative evaluation of a variety of
filters.
While it is almost impossible to ensure that any non-trivial software is completely free of bugs,
we put a strong emphasis on correctness in the development of libDirectional. In particular,
we implemented a large number of unit tests that can be used to automatically test most of
the implemented features and serve as additional usage examples. Aside from the unit tests,
we include a lot of assertions (Hoare 2003) in the code to reduce the risk of problems, for
example inadvertently calling certain functions with invalid parameters such as a vector of
incorrect dimension or a covariance matrix lacking symmetry or positive definiteness. Even
though these assertions introduce some overhead, we decided that early detection of errors
and ease of use are more important than speed for libDirectional. In case the code is used in
a real-time environment where speed is critical, it is still possible to remove certain checks to
reduce this overhead.

2. Related work
Over the course of the past two decades, a number of software packages for directional statis-
tics have been developed and published. In this section, we give an overview of the most
significant packages.
A lot of the software developed for directional statistics only considers the circular case. An
early example is CIRCSTAT, a collection of Stata (StataCorp 2017) programs for circular
statistics developed by Cox (1998). Later, the well-known book on circular statistics by
Jammalamadaka and Sengupta (2001) was released that includes a floppy disk containing
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CircStats, a library written in S-PLUS (Insightful Corp. 2003) by Ulric Lund. The package
CircStats was later ported to R. An enhanced version of this package was subsequently pub-
lished under the name circular (Lund and Agostinelli 2018). This package is discussed in
more detail in the book by Pewsey, Neuhäuser, and Ruxton (2013). Other R packages such
as isocir (Barragán, Fernández, Rueda, and Peddada 2013), a package for isotonic inference
for circular data, and NPCirc (Oliveira, Crujeiras, and Rodríguez-Casal 2014), a package
implementing nonparametric circular regression, were built on top of circular. It should be
noted that NPCirc also includes the ability to perform circular-circular regression (on the
torus) and circular-linear regression (on the cylinder). There are also some packages for other
programming languages. A MATLAB toolbox called CircStat (not to be confused with the
aforementioned packages CIRCSTAT and CircStats) was published by Berens (2009). As
MATLAB is very popular in the engineering community, we have chosen this language for lib-
Directional as well. There have also been articles with associated code for circular statistics in
C++ (Krogan 2011) and Fortran (Allinger 2013). Furthermore, there is a closed-source com-
mercial software called Oriana for circular statistics by Kovach Computing Services (2011).
While there is quite a lot of software available for the circular case, there are only few packages
that deal with hyperspherical data. An early example is SPAK (Leong and Carlile 1998), a
package written in MATLAB that deals with Kent distributions (Kent 1982) and offers quite
limited functionality. A fairly comprehensive library for the Bingham distribution named
libBingham was published by Glover (2013). It is written in both MATLAB and C, and can
be used from either language. An R package called movMF that deals with mixtures of von
Mises-Fisher distributions was later published by Hornik and Grün (2014).
Some software for handling orientations has also been published. The Bingham-based library
libBingham mentioned above is capable of handling rotations using a quaternion represen-
tation. Moreover, there is an R package called orientlib by Murdoch (2003) and another R
package called rotations by Stanfill, Hofmann, and Genschel (2014).
Although the software listed above is very useful for a variety of problems and has successfully
been used by many scientists, there are some deficiencies that we seek to address in libDi-
rectional. Most state-of-the-art software packages are limited to just a single manifold (most
frequently the circle) and in some cases to just one particular probability distribution. While
this may be fine for scientists only interested in a particular manifold or a particular distri-
bution, in many applications, data on multiple different manifolds is to be considered and
more than one probability distribution is of interest. Therefore, we implemented a number
of common distributions defined on several manifolds in a unified manner in libDirectional.
The second issue with most existing software is that only very few packages (e.g., libBing-
ham) contain the functionality necessary for recursive estimation. As there is a significant
demand for recursive filtering in many applications, e.g., in robotics, autonomous vehicles,
aeronautics, etc., we provide several recursive filtering algorithms in libDirectional.

3. Probability distributions

In this section, we introduce the probability distributions implemented in libDirectional.
These distributions can be classified according to the manifold on which they are defined.
First, we consider distributions on the unit circle, then probability distributions on the torus,
the unit hypersphere, and circular-linear spaces.
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3.1. Circle

In the following, we give an overview of the distributions defined on the unit circle that are
implemented in libDirectional. In general, we parameterize the unit circle as the half-open
interval [0, 2π) while keeping the topology of the unit circle in mind.
There are several common techniques for deriving circular probability distributions. A widely
used method is called wrapping. We start with a real random variable x ∼ f(·) distributed
according to some probability distribution f(·) on R. Now, we consider x mod 2π, which has
the wrapped density

fwrapped(t) =
∞∑

k=−∞
f(t+ 2πk) . (1)

This concept has been applied to a number of common distributions, resulting in the wrapped
normal (WN), wrapped Cauchy (WC), wrapped exponential (WE), and wrapped Laplace
(WL) distributions (Jammalamadaka and Kozubowski 2004; Mardia and Jupp 1999, Sec-
tion 3.5.7). In some cases, the infinite sum in (1) can be simplified to a closed-form expression
(e.g., for the wrapped Cauchy distribution). If a simplification is not possible, it is usually
sufficient to consider a small finite number of terms of the series, see Kurz, Gilitschenski, and
Hanebeck (2014c).
Another common concept consists in restricting a linear distribution on R2 to the unit circle.
For example, restricting a two-dimensional Gaussian distribution N (x;µ,C) with

‖µ‖ = 1 and C = κ ·
[
1 0
0 1

]

to the unit circle, i.e., ‖x‖ = 1, yields an (unnormalized) von Mises (VM) distribution (von
Mises 1918). The von Mises distribution has been further generalized by Gatto and Jam-
malamadaka (2007).
Of course, it is also possible to define distributions directly on the unit circle. For example,
the circular uniform distribution and distributions based on Fourier series (Willsky 1974)
belong to this category. Since nontrivial conditions have to be ensured for a Fourier series to
be nonnegative (Fernández-Durán 2007), we also implemented the option to approximate the
square root of the probability density function (PDF) as a Fourier series. By approximating
the square root, the PDF values obtained by squaring are always nonnegative and therefore
valid according to Pfaff, Kurz, and Hanebeck (2015, 2016b). The square root form is used by
default but its complexity is hidden from the user. The class ‘FourierDistribution’ only
requires one additional parameter, the number of coefficients, and can be used like any other
distribution in libDirectional. Furthermore, we provide a class named ‘CircularMixture’,
which allows considering mixtures of arbitrary circular distributions, for example von Mises
mixtures such as used by Markovic and Petrovic (2012). To represent distributions with a
non-standard density (e.g., marginal or conditional densities of certain higher-dimensional
distributions), we also offer the class ‘CustomCircularDistribution’.
Aside from the continuous circular distributions, we also consider a discrete circular distri-
bution, which can be thought of as a set of weighted samples. In line with the concept of a
Dirac mixture on Rn (Hanebeck, Huber, and Klumpp 2009), we refer to this distribution as
a wrapped Dirac mixture (WD) distribution. For n samples β1, . . . , βn ∈ [0, 2π) with weights
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Class name Comment
‘CircularMixture’ Mixture of arbitrary circular distributions
‘CircularUniformDistribution’ See Jammalamadaka and Sengupta (2001, Section 2.2.1)
‘CustomCircularDistribution’ Distribution with user-specified PDF
‘FourierDistribution’ See Willsky (1974), Pfaff et al. (2015)
‘GvMDistribution’ Generalized von Mises, see Gatto and Jammalamadaka

(2007)
‘PWCDistribution’ Piecewise constant (a step function), see Kurz, Pfaff, and

Hanebeck (2016d)
‘VMDistribution’ von Mises, see von Mises (1918)
‘WCDistribution’ Wrapped Cauchy, see Jammalamadaka and Sengupta

(2001)
‘WDDistribution’ Wrapped Dirac mixture, see Kurz, Gilitschenski, and

Hanebeck (2013)
‘WEDistribution’ Wrapped exponential, see Jammalamadaka and

Kozubowski (2004)
‘WLDistribution’ Wrapped Laplace, see Jammalamadaka and Kozubowski

(2004)
‘WNDistribution’ Wrapped normal, see Schmidt (1917)

Table 1: Probability distributions on the circle.

γ1, . . . , γn > 0, where
∑n

j=1 γj = 1, we write the wrapped Dirac mixture as

WD(x;β1, . . . , βn, γ1, . . . , γn) =
∞∑

k=−∞

n∑
j=1

γjδ(x+ 2πk − βj) =
n∑

j=1
γjδ(x− βj) ,

where x ∈ [0, 2π) and δ(·) is the Dirac delta function. Note that this distribution does not
have a well-defined probability density function. It is also worth mentioning that this function
does not include any wrapping terms because every Dirac component only has “probability
mass” at a single point (Kurz 2015, Section 2.2.3 D).
All circular distributions implemented in libDirectional (see Table 1) are derived from an ab-
stract base class called ‘AbstractCircularDistribution’. This base class includes a number
of functions that are applicable to all circular distributions and that are independent of the
details of the particular distribution. This makes it easy to add implementations of new circu-
lar distributions, as a lot of functionality is automatically available once the PDF is defined.
In particular, we offer multiple plotting functions to generate different types of visualizations.

Example 1 (Plotting probability density functions) For example, we can generate a
two-dimensional plot of the PDF of a wrapped normal distribution with parameters µ = 2 and
σ = 1.3 simply by typing the following two commands.

wn = WNDistribution(2, 1.3);
wn.plot();

If we also set the labels and axis using the following code, we obtain the plot depicted in
Figure 1a.
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(a) Two-dimensional plot of wrapped normal dis-
tribution.
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(b) Three-dimensional plot of a von Mises distri-
bution.

Figure 1: Visualizations of probability density functions on the unit circle.

setupAxisCircular('x');
xlabel('x'); ylabel('f(x)');

Similarly, we can create plots of other distributions. A three-dimensional plot of the PDF
of a von Mises distribution with parameters µ = 6 and κ = 0.5 can be generated using the
following code.

vm = VMDistribution(6, 0.5);
vm.plot3d('color', 'red');
hold on; vm.plotCircle('color', 'black'); hold off;
xlabel('cos(x)'); ylabel('sin(x)'); zlabel('f(x)');

The resulting plot is depicted in Figure 1b. The call to plot3d visualizes the density itself,
whereas the call to plotCircle creates a circle in the cos(x)-sin(x)-plane.

Also, the abstract base class contains a number of numerical methods to calculate the entropy,
trigonometric moments, integrals of the PDF, etc. For most numerical methods (designated
by the suffix Numerical), there are counterparts without this suffix that can be overridden
by child classes to provide an analytical implementation. If the child class does not provide
an analytical version of the algorithm, the numerical method is used as a fallback.

Example 2 (Numerical and analytical calculation) Let us consider the wrapped nor-
mal distribution defined in Example 1 again. Suppose we want to calculate the first trigono-
metric moment of this distribution, i.e., E(exp(ix)), where E(·) is the expected value. For this
purpose, we simply call the corresponding function:

wn.trigonometricMoment(1)

ans =
-0.1788 + 0.3906i
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In the case of the wrapped normal distribution, trigonometricMoment is a function inside the
class ‘WNDistribution’ that implements an analytic calculation of the trigonometric moment.
If no analytic solution was implemented, the function trigonometricMoment in the base
class ‘AbstractCircularDistribution’ would have automatically fallen back to an algorithm
based on numerical integration. Even though an analytical solution is available for the wrapped
normal distribution, we can still call the numerical algorithm as follows.

wn.trigonometricMomentNumerical(1)

ans =
-0.1788 + 0.3906i

This can, for example, be used to compare the numerical and analytical results in order to
validate the correctness of the analytical implementation. In this case, both results match up
to the displayed number of digits, but in certain cases, analytical and numerical solutions may
differ more significantly. Also, the numerical computation is typically slower, in some cases
by several orders of magnitude.

A variety of methods are implemented for some or all circular distributions, for example the
probability density function, the cumulative distribution function, the circular mean and vari-
ance, trigonometric moments, entropy, stochastic sampling, parameter estimation, conversions
using trigonometric moment-matching, etc. These methods are within the code thoroughly
documented, so we do not go into detail about them here.
Furthermore, we offer convolution and multiplication operations of circular probability densi-
ties for some distributions. These operations are required for the circular filtering algorithms
discussed in Section 4. For example, we implement the approximations for the von Mises dis-
tribution discussed in Azmani et al. (2009), and the approximations for the WN distribution
discussed in Kurz, Gilitschenski, and Hanebeck (2016a) and Traa and Smaragdis (2013).
One feature, however, deserves a more thorough discussion as many readers may not be fa-
miliar with it. In libDirectional, we have implemented several algorithms for deterministic
sampling, a concept where samples are drawn from a distribution deterministically rather
than stochastically. These samples are then represented using a (wrapped) Dirac mixture.
The advantage of deterministic approaches is that the samples can be placed at represen-
tative positions to achieve a good representation of the true density with very few samples.
This can, for example, be achieved by performing moment matching. Algorithms of this type
have previously been used in Gaussian filters such as the unscented Kalman filter (UKF)
by Julier and Uhlmann (2004) or the smart sampling Kalman filter (S2KF) by Steinbring,
Pander, and Hanebeck (2016). We have proposed deterministic sampling schemes based on
approximation of the first trigonometric moment and the first two trigonometric moments
in Kurz, Gilitschenski, and Hanebeck (2014b). Furthermore, we have proposed approxima-
tions using quantization (Gilitschenski, Kurz, Hanebeck, and Siegwart 2016a), superposition
of moment-based samples, and a binary tree approximation (Kurz, Gilitschenski, Siegwart,
and Hanebeck 2016c). These methods are implemented in libDirectional and their use is
demonstrated in the following example.

Example 3 (Deterministic sampling) Once again, we consider the wrapped normal dis-
tribution defined in Example 1. Suppose we want to approximate this distribution using a
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wrapped Dirac mixture with three components, i.e., with three samples on the unit circle. Ac-
cording to Kurz et al. (2014b), the approximation can preserve the first trigonometric moment.
We can easily achieve this using the following command.

wd3 = wn.toDirac3()

wd3 =
WDDistribution with properties:

dim: 1
d: [0.5740 2 3.4260]
w: [0.3333 0.3333 0.3333]

The row vectors d and w correspond to the positions and weights of the Dirac components,
respectively. It can be seen that the resulting wrapped Dirac mixture is evenly weighted. We
can verify that the first moment is indeed preserved, similar to Example 2.

mwd = wd3.trigonometricMoment(1), mwn = wn.trigonometricMoment(1)

mwd =
-0.1788 + 0.3906i

mwn =
-0.1788 + 0.3906i

An approximation with five components based on the first two trigonometric moments is also
possible.

wd5 = wn.toDirac5()

wd5 =
WDDistribution with properties:

dim: 1
d: [0.1113 3.8887 1.3156 2.6844 2]
w: [0.1855 0.1855 0.1855 0.1855 0.2581]

In this case, the mixture components are not evenly weighted. We can plot the resulting
approximations using the following statements.

wn.plot(); hold on; wd3.plot('--'); wd5.plot(); hold off;
setupAxisCircular('x');
xlabel('x'); ylabel('f(x)'); legend('wn', 'wd3', 'wd5');

The result is depicted in Figure 2.

3.2. Torus and hypertorus

Another interesting manifold is the torus as it can be used to represent two (possibly corre-
lated) angular quantities. We parameterize the torus as [0, 2π)2, i.e., the Cartesian product
of two circles.
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Figure 2: Example for deterministic sampling. The wrapped normal distribution is approxi-
mated with either three or five samples. Note that the height of the Dirac delta components
is used to represent their weight.

On the torus, we consider several different distributions, the bivariate wrapped normal dis-
tribution, two versions of the bivariate von Mises distribution, the bivariate wrapped Dirac
mixture, and a distribution based on a two-dimensional Fourier series (see Table 2). As their
names suggest, these distributions constitute bivariate generalizations of the wrapped normal
distribution, the von Mises distribution, the wrapped Dirac mixture, and the Fourier distri-
bution, respectively. In the case of the wrapped normal distribution, the generalization to a
higher number of dimensions is straightforward (Johnson and Wehrly 1977, Example 7.3). A
bivariate wrapped normal distribution arises when a random variable distributed according to
a bivariate normal distribution is wrapped in both dimensions. The bivariate wrapped Dirac
distribution is obtained analogously. For the bivariate Fourier distribution, a two-dimensional
Fourier series is used to approximate the density, or the square root thereof. The bivariate
von Mises distribution is more tricky as there are several different, non-equivalent definitions,
some of which are discussed in Mardia et al. (2007). In libDirectional, we chose to implement
the sine version as well as the matrix version of the bivariate von Mises. The sine version
has the advantage that it has been more thoroughly investigated than its alternatives and
a number of its properties are known, e.g., a series representation for its normalization con-
stant (Singh, Hnizdo, and Demchuk 2002). On the other hand, the matrix version has the
significant advantage that it is closed under multiplication (Kurz and Hanebeck 2015b).
The overall design of toroidal distributions in libDirectional is similar to the circular distri-
butions discussed above. Once again, there is an abstract base class from which all toroidal
distributions inherit. Its name is ‘AbstractToroidalDistribution’ and it implements a
number of methods that are independent of the particular toroidal distribution. These meth-
ods can be overridden by the child classes if analytical solutions are available.
One of the key problems when dealing with toroidal distributions is the question of how to
quantify correlation. Over the past decades, a number of different correlation coefficients have
been proposed, and we have decided to implement several of them in libDirectional, namely
the correlation coefficients by Johnson and Wehrly (1977), Jupp and Mardia (1980), and
Jammalamadaka and Sarma (1988). More generally, for a toroidal random vector [x1, x2]>,
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Class name Comment
‘CustomToroidalDistribution’ Allows any user-specified PDF
‘ToroidalMixture’ Mixture of arbitrary toroidal distributions
‘ToroidalFourierDistribution’ Bivariate Fourier distribution (Pfaff, Kurz, and

Hanebeck 2016a)
‘ToroidalUniformDistribution’ Uniform distribution on the torus
‘ToroidalVMMatrixDistribution’ Bivariate VM, matrix version (Kurz and Hanebeck

2015b)
‘ToroidalVMSineDistribution’ Bivariate VM, sine version (Singh et al. 2002)
‘ToroidalWDDistribution’ Bivariate wrapped Dirac mixture (Kurz, Gilitschen-

ski, Dolgov, and Hanebeck 2014a)
‘ToroidalWNDistribution’ Bivariate WN (Kurz et al. 2014a; Kurz and

Hanebeck 2015a)

Table 2: Probability distributions on the torus.

it is of interest to consider

µ̃ = E




cos(x1)
sin(x1)
cos(x2)
sin(x2)


 , C̃ = E





cos(x1)
sin(x1)
cos(x2)
sin(x2)

− µ̃

 ·



cos(x1)
sin(x1)
cos(x2)
sin(x2)

− µ̃


>
 , (2)

which we have implemented under the name mean4D and covariance4D, respectively. These
values can, for example, be used to determine the circular mean in each dimension as well as
certain circular-circular correlation coefficients.

Example 4 (Bivariate wrapped normal) First, we instantiate a bivariate wrapped nor-
mal distribution using the following statement.

twn = ToroidalWNDistribution([1;3], [1, -0.8; -0.8, 0.9])

twn =
ToroidalWNDistribution with properties:

dim: 2
mu: [2x1 double]
C: [2x2 double]

We can visualize the density of this distribution as a function [0, 2π)2 → R+ using the plot
method.

twn.plot();
setupAxisCircular('x', 'y');
shading interp; camlight; lighting phong;
xlabel('x_1'); ylabel('x_2'); zlabel('f(x_1, x_2)');

The resulting plot after adjusting some MATLAB plotting settings is shown in Figure 3a.
Alternatively, we can create a visualization on the surface of a torus using the plotTorus
method:
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(a) Visualization in the x1-x2-plane. Both x1 and
x2 are 2π-periodic. (b) Visualization on the torus.

Figure 3: Density of a bivariate wrapped normal distribution on the torus shown using two
different visualizations.

twn.plotTorus();
axis equal; shading interp; camlight; lighting phong;

This yields the plot depicted in Figure 3b. Furthermore, we can investigate the different
correlation coefficients for this distribution using the following code.

r1 = twn.circularCorrelationJammalamadaka(),
r2 = twn.circularCorrelationJohnson(),
r3 = twn.circularCorrelationJupp()

r1 =
-0.8086

r2 =
-0.8086

r3 =
-1.0667

As you can see, the first correlation coefficient (Jammalamadaka and Sarma 1988) and the
second correlation coefficient (Johnson and Wehrly 1977) are identical up to the displayed
number of digits in this example. However, this does not hold in general. The value of the
coefficient by Jupp and Mardia (1980) is quite different, and is not even restricted to the
interval [−1, 1].
It can be shown that for a bivariate wrapped normal distribution, the marginals are wrapped
normal. They can be obtained using the following function calls.

wn1 = twn.marginalizeTo1D(1), wn2 = twn.marginalizeTo1D(2)

wn1 =
WNDistribution with properties:

mu: 1
sigma: 1
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Class name Comment
‘CustomHypertoroidalDistribution’ Allows any user-specified PDF
‘HypertoroidalFourierDistribution’ Multivariate Fourier distribution (Pfaff et al.

2016a)
‘HypertoroidalMixture’ Mixture of arbitrary hypertoroidal distributions
‘HypertoroidalUniformDistribution’ Uniform distribution on the hypertorus
‘HypertoroidalVMSineDistribution’ Multivariate VM, sine version (Mardia, Hughes,

Taylor, and Singh 2008)
‘HypertoroidalWDDistribution’ Multivariate wrapped Dirac mixture (Kurz 2015)
‘HypertoroidalWNDistribution’ Multivariate WN (Kurz 2015)

Table 3: Probability distributions on the hypertorus.

dim: 1
wn2 =

WNDistribution with properties:
mu: 3

sigma: 0.9487
dim: 1

As can be seen, the marginals are returned as objects of the class ‘WNDistribution’, i.e., a
circular distribution that can be used as discussed in Section 3.1. Thus, this example illustrates
one of the benefits of having implemented distributions on multiple different manifolds within
a single library.

Beyond toroidal distributions, we also offer some hypertoroidal distributions, i.e., distributions
on the n-torus [0, 2π)n. An overview of the supported distributions is given in Table 3, all of
which are generalizations of the corresponding toroidal distributions.
All hypertoroidal distributions use ‘AbstractHypertoroidalDistribution’ as their base
class. Because the circle and the torus are special cases of the hypertorus for n = 1 and
n = 2, respectively, circular and toroidal distributions also inherit (indirectly) from this class.
In this way, a lot of code can be shared among many distributions even though they are
defined on different manifolds.

3.3. Real hypersphere

In this section, we consider probability distributions defined on the unit hypersphere Sn−1 =
{x ∈ Rn : ‖x‖ = 1}, i.e., we parameterize the unit hypersphere as a set of unit vectors in Rn

for some n ∈ N. Note that this also encompasses the unit circle if n = 2, but uses a differ-
ent parameterization (the set of two-dimensional unit vectors rather than a one-dimensional
interval of length 2π) compared with the section above.
On the hypersphere, we consider several different distributions as well. The first distribution
is the von Mises-Fisher distribution proposed by Fisher (1953), a generalization of the circular
von Mises distribution to the unit hypersphere. It is parameterized by a unit vector µ defining
the mode of the distribution as well as a concentration parameter κ influencing its dispersion.
The von Mises-Fisher distribution is unimodal and radially symmetric around µ. The Watson
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Class name Comment
‘BinghamDistribution’ See Bingham (1964), Bingham (1974)
‘HypersphericalDiracDistribution’ Discrete distribution on the real hypersphere
‘HypersphericalUniform’ Uniform distribution on the real hypersphere
‘VMFDistribution’ von Mises-Fisher distribution (Fisher 1953)
‘WatsonDistribution’ See Watson (1965)
‘BayesianComplexWatsonMixtureModel’ Complex Watson mixture with prior
‘ComplexAngularCentralGaussian’ See Kent (1997)
‘ComplexBinghamDistribution’ See Kent (1994)
‘ComplexWatsonDistribution’ See Mardia and Dryden (1999)
‘ComplexWatsonMixtureModel’ Mixture of complex Watson distributions

Table 4: Probability distributions on the hypersphere.

distribution (Watson 1965) is closely related and has the same set of parameters, but it is
antipodally symmetric (i.e., f(x) = f(−x)), and thus is bimodal with modes at ±µ. However,
it is still radially symmetric around the axis of µ. In order to represent anisotropic noise,
the Watson distribution can be generalized to obtain the Bingham distribution as defined
by Bingham (1974). The Bingham distribution is usually parameterized by an orthogonal
matrix M that defines the location of the mean and the orientation of the principal axes of
the uncertainty, as well as a diagonal matrix Z responsible for representing the uncertainties
along the different axes. Furthermore, we can enforce that the diagonal entries of Z are sorted
in ascending order and that the last diagonal entry is zero (Kurz, Gilitschenski, Julier, and
Hanebeck 2014f) without changing the expressiveness of the distribution. Thus, we use this
parameterization within libDirectional1.
The architecture for hyperspherical probability distributions is similar to that of the previously
discussed manifolds. There is a base class called ‘AbstractHypersphericalDistribution’,
which provides generic features independent of the particular distribution such as plotting and
numerical integration. The individual distributions inherit from this class and can provide
methods for the PDF, the normalization constant, stochastic sampling, parameter estimation,
etc. As the normalization constant for the Bingham distribution is given by a hypergeometric
function of matrix argument, it is quite expensive to evaluate. We have implemented sev-
eral possible methods including the saddlepoint approximation by Kume and Wood (2005).
Further discussion about the different methods for computing the normalization constant can
be found in Gilitschenski, Kurz, Julier, and Hanebeck (2014b). Similar to the deterministic
sampling schemes on the circle (see Example 3), we also provide a deterministic sampling
scheme for the Bingham distribution, which is presented in Gilitschenski, Kurz, Julier, and
Hanebeck (2016b), and a deterministic sampling scheme for the von Mises-Fisher distribution
proposed in Kurz, Gilitschenski, and Hanebeck (2016b).

3.4. Complex hypersphere

This section introduces three distributions and related statistical models defined on the com-
plex hypersphere CSn−1 = {z ∈ Cn : ‖z‖ = 1}. The complex Bingham distribution is defined

1It should be noted that some authors use slightly different parameterizations, e.g., Glover and Kaelbling
(2014).
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by its probability density function

p(z; B) = 1
cB(B) exp(zHBz), z ∈ CSn−1,

with Hermitian transpose zH := z̄>, where z is conditioned on zHz = 1, cB(B) is an appropri-
ate normalization term and B is the complex positive semi-definite parameter matrix. The
complex Bingham distribution has complex symmetry, namely, it is invariant under scalar ro-
tation, i.e., p(z) = p(z exp(iϕ)). Similar to the real Bingham distribution, its deviation around
the mean is governed by the difference between the eigenvalues of B. Again, the parameter
matrices B and B + kI define the same distribution (Kent 1994). A maximum likelihood fit
according to Kent (1994) is implemented in ComplexBinghamDistribution.fit().
In contrast to the real case, the complex Bingham normalization constant cB(B) can be
written in terms of elementary functions

cB(B) = 2πn
n∑

k=1
ak expλk , a−1

k =
∏
k 6=l

(λk − λl) , (3)

where λk are the eigenvalues of the parameter matrix B. A symbolic implementation is used
to generate code for the normalization constant ComplexBinghamDistribution.logNorm()
and other moments of the complex Bingham distribution.
Counterintuitively, the complex Bingham distribution is a special case of the real Bingham
distribution of higher dimension. The corresponding real Bingham parameter matrix can be
calculated by replacing each entry Bkl = αkl exp(iϕkl) with blocks B̃kl

B̃kl = αkl

(
cos(ϕkl) − sin(ϕkl)
sin(ϕkl) cos(ϕkl)

)
.

This relationship is useful to test implementations of the complex distributions against their
real counterparts and is implemented in ComplexBinghamDistribution.toReal(). Never-
theless, the algorithms for the complex case can be implemented more efficiently without
relying on the real counterpart.
The complex Watson distribution is a special case of the complex Bingham distribution. It
is defined by its PDF (Mardia and Dryden 1999)

p(z;κ,w) = 1
cW(κ) exp(κ|zHw|2), z ∈ CSn−1 ,

where w ∈ CSn−1 is a complex vector with unit norm and κ governs the concentration around
the mean direction. The complex Watson normalization constant cW(κ) can be written in
terms of elementary functions (Mardia and Dryden 1999). An implementation of the nor-
malization constant is provided in ComplexWatsonDistribution.logNorm() and derivatives
thereof are used for maximum likelihood estimates in ComplexWatsonDistribution.fit().
Different sampling algorithms for the complex Bingham distribution are known (Kent, Con-
stable, and Er 2004). Here, a sampling process based on sampling from truncated exponential
distributions has been implemented in ComplexBinghamDistribution.sample(). The sam-
pling process can be used to create samples for a complex Watson distribution and for complex
Watson mixture models.
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Figure 4: Samples from a complex Watson mixture model in the complex shape domain.

Early applications of the complex Watson and complex Bingham distributions are statisti-
cal modeling of two-dimensional landmarks (Kendall 1984). A fairly recent application is to
describe phase and level differences in multi-channel recordings (Vu and Haeb-Umbach 2010;
Drude et al. 2014). Different speaker positions cause different phase and level differences
such that an EM algorithm for clustering can be employed. An EM algorithm for a com-
plex Watson mixture model is implemented in ComplexWatsonMixtureModel.fit() (Vu and
Haeb-Umbach 2010). An extension to the EM algorithm incorporates prior knowledge about
the mode direction and the mixture weights of each mixture component. The corresponding
variational EM algorithm is given by BayesianComplexWatsonMixtureModel.fit() (Drude
et al. 2014).
Figure 4 shows some samples of a complex Watson mixture model in the complex shape do-
main (Kent 1994). Although PDFs on complex hyperspheres cannot be visualized easily, plots
in the shape domain allow visually inspecting similarities between shapes. The unnormalized
mode vectors of the underlying complex Watson distributions are

w1 =
[
1 i −1 −i

]>
and w2 =

[
1 + 0.1i −1 + 0.1i −1− 0.1i 1− 0.1i

]>
,

respectively.
Kent suggested the complex angular central Gaussian model as an alternative to the complex
Bingham distribution. Its probability density function is given by

p(z,Σ) = Γ(D)
2πD

|Σ|−1
(
zHΣ−1z

)−D
, z ∈ CSn−1 ,

where Γ(·) refers to the gamma function (Kent 1997). The library provides the probabil-
ity density function as well as a sampling algorithm. Additionally, parameter estimation
is provided in ComplexAngularCentralGaussian.fit(). Natural extensions are a complex
angular central Gaussian mixture model (Ito, Araki, and Nakatani 2016a) and a complex
Bingham mixture model (Ito, Araki, and Nakatani 2016b), both of which found great appli-
cations in speech enhancement. We plan to add the corresponding code to libDirectional as
future work.
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3.5. SE(2)
Finally, we consider the manifold of rigid body motions in two dimensions called SE(2). A
rigid body motion can be seen as a rotation together with a translation. The rotation is an
element of the group of two-dimensional rotations SO(2) – which can be parameterized as the
unit circle – and the translation is a vector in R2. In libDirectional, we consider two different
continuous distributions on SE(2). As they use different parameterizations of SE(2), the
distributions do not share a common base class.

Partially wrapped normal distribution on SE(2)
The first distribution is called the partially wrapped normal distribution (PWN) presented
in Kurz, Gilitschenski, and Hanebeck (2014e) that was further discussed in Kurz (2015, Sec-
tion 2.3.3)2. This distribution is defined on [0, 2π) × R2 and is obtained from a normal
distribution on R3 where the first component is wrapped. Then, the first component can be
used to represent the angle of the rotation, whereas the second and third components are
used to represent the translation. In analogy to the WD distribution on the circle and the
bivariate WD distribution on the torus, we also define a partially wrapped Dirac mixture
(PWD) distribution. Similar to the toroidal expectation values given in (2), it is of interest
to consider the moments

µ̃ = E




cos(x1)
sin(x1)
x2
x3


 , C̃ = E





cos(x1)
sin(x1)
x2
x3

− µ̃

 ·



cos(x1)
sin(x1)
x2
x3

− µ̃


>
 , (4)

where [x1, x2, x3]> is a partially wrapped random variable. Note that although both con-
sider a four-dimensional augmented random vector, (2) and (4) differ by their treatment
of the last two dimensions. The values defined in (4) are available using the methods
mean4D and covariance4D. Moreover, we provide the ability to obtain the marginals of a
‘SE2PWNDistribution’ as a ‘WNDistribution’ and as a ‘GaussianDistribution’, respec-
tively.

Modified Bingham distribution
The second distribution on SE(2) is related to the Bingham distribution in the sense that it
also arises by restricting a Gaussian random vector (Gilitschenski, Kurz, Julier, and Hanebeck
2014a). This is motivated by the fact that a multiplicative subgroup of dual quaternions can
be used for representing elements of SE(2), which is reminiscent of the approach by Matsuda,
Kaji, and Ochiai (2014). Similar to the Bingham case, our distribution needs to be antipodally
symmetric in order to account for the fact that unit dual quaternions are a double cover of
SE(2). The distribution is characterized by its PDF

f(x) = 1
N(C) exp

(
x>C x

)
, x ∈ S1 × R2 ,

where N(C) denotes the normalization constant. This corresponds to the density of a four-
dimensional Gaussian where the first two entries of x are interpreted as one vector that

2Roy, Parui, and Roy (2014) refer to this distribution as semi-wrapped Gaussian. In Lo and Willsky (1975,
Equation 78), the term (n, m)-folded normal is used.
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is restricted to unit length. This probability distribution is implemented within the class
‘SE2BinghamDistribution’.
Not every choice of C ∈ R4×4 is admissible for this distribution. In order to improve our
understanding of the structure of the underlying distribution, we rewrite C as

C =
[
C1 C>2
C2 C3

]

and we can then rewrite the PDF as

f(xs,xt) = N(C)−1 · exp
(
x>s T1xs + (xt −T2xs)>C3(xt −T2xs)

)
,

where xs ∈ S1, xt ∈ R2 and T1 = C1 −C>2 C−1
3 C2, T2 = −C−1

3 C2 with C1, C2, C3 ∈ R2×2.
From this representation, it follows that C1 needs to be symmetric (but not necessarily
positive or negative definite), C2 may be arbitrary, and C3 has to be symmetric negative
definite.
An ‘SE2BinghamDistribution’ object can be constructed using either of the two constructors
SE2BinghamDistribution(C) or SE2BinghamDistribution(C1,C2,C3). Besides that, we
have implemented a method for obtaining the covariance matrix using Monte Carlo integration
(computeCovarianceMCMC), a computation of the normalization constant (computeNC), the
mode of the density (mode), a parameter estimation procedure (fit), and deterministic as
well as random sampling procedures (sampleDeterministic and sample).

4. Filters
Based on the probability distributions introduced in the previous section, it is possible to de-
rive recursive filtering algorithms to perform recursive Bayesian estimation. In the following,
we introduce a number of filters that are implemented in libDirectional.

4.1. Circle

Several filters for the unit circle are available in libDirectional. These include both filters
based on circular statistics and traditional filters originally intended for linear domains that
have been modified for use on the unit circle and that can be employed for comparison. In
the following, we distinguish the circular filters based on the type of density they use.

WN-assumed filter

First of all, we have implemented several WN-assumed filtering algorithms in the class
‘WNFilter’, i.e., filters approximating the true distribution with a WN distribution after
each prediction and filtering step. This class allows predicting with a noisy identity system
model, with a nonlinear measurement model in conjunction with additive noise (Kurz et al.
2013), and with a nonlinear measurement model in conjunction with non-additive noise. As
far as the measurement model is concerned, the class can handle noisy identity measurements
and nonlinear measurements given by a likelihood (Kurz, Gilitschenski, and Hanebeck 2014d)
with several methods. A more thorough discussion of these scenarios can be found in Kurz
et al. (2016a).
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VM-assumed filter

Analogously, we can assume a von Mises distribution instead of a wrapped normal distri-
bution. This alternative is implemented in ‘VMFilter’. Similar to before, we also distin-
guish between different types of system and measurement models as discussed in Kurz et al.
(2016a). It should be noted that for identity system and identity measurement models, the
filter proposed by Azmani et al. (2009) arises as a special case. Finally, we also implement
a measurement update based on nonlinear measurement functions (rather than measurement
likelihoods) proposed in Gilitschenski, Kurz, and Hanebeck (2015b).

Fourier filters

The Fourier identity filter and the Fourier square root filter, as explained in Pfaff et al. (2015,
2016a), use a truncated Fourier series to approximate the density or the square root of the
density. While this filter is very universal and only makes few assumptions about the noise
distributions, nonlinear measurement models require knowledge of the likelihood and for non-
linear system models, the transition density is required. Unless an identity system model with
additive noise is used for the prediction step, the transition density needs to be given as one
of the toroidal distributions (Pfaff et al. 2016b) depending on the current state and the state
at the next time step. The Fourier filters are particularly powerful as we implemented the
ability to approximate other distributions using the Fourier series representation described in
Section 3.1. Thus, prediction and filter steps can easily be performed in an approximate fash-
ion for arbitrary densities. For this filter, the user only needs to specify at least one additional
parameter at the time of initialization. The integer n (also called noOfCoefficients) must
be given to determine the number of Fourier coefficients. The optional string input argument
transformation can be provided to specify if the Fourier identity filter or the Fourier square
root filter should be used. If no second argument is given, the square root filter is used by
default. Higher values of n result in better approximations for distributions that are more
peaked but also yield a moderately higher run time as the filter has an asymptotic complexity
of O(n logn) for the update step and for the prediction step with an identity model with
additive noise. If a prediction step using the transition density is required, the run time
complexity increases to O(n2 logn).

Gaussian-assumed filters

In order to assess the performance of filters based on directional statistics in comparison with
filters making a Gaussian assumption, we included modified versions of the unscented Kalman
filter (UKF; Julier and Uhlmann 2004) based on the implementation of Steinbring (2015). For
this purpose, we consider two different possibilities how the filter can be modified as discussed
in Kurz et al. (2016a) and Kurz (2015, Section 3.1). First, we can define the filter on a (local)
chart of the manifold, e.g., the open interval (0, 2π) and try to detect and fix issues when the
boundary of the chart is reached by reparameterizing if necessary. In this case, the resulting
filter has a scalar state. This type of filter is implemented in the class ‘CircularUKF’. Second,
it is also possible to consider a filter on the space in which the manifold is embedded and
to introduce a constraint enforcing that the state always resides on the manifold. In this
case, the resulting filter has a two-dimensional state vector, which is constrained to be of unit
length. This type of filter is implemented in the class ‘ConstrainedUKF’.
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Particle filter

A commonly used filter that avoids the Gaussian assumption is the particle filter (Arulam-
palam, Maskell, Gordon, and Clapp 2002). As this filter does not really depend on the underly-
ing manifold as long as the system function and the measurement likelihood properly consider
the periodicity, it is easy to adapt the particle filter to the circle. Hence, we have implemented
a particle filter with sequential importance resampling (SIR) in ‘CircularParticleFilter’.
The particle filter is a Markov chain Monte Carlo method, and thus, relies on random sam-
pling, so it constitutes a nondeterministic method.

Discrete filter

We also consider a Dirac-based discrete filter based on an evenly spaced grid on the cir-
cle (Kurz et al. 2016d), which was previously used by Pfaff et al. (2015). Similar approaches
have been applied to practical problems, e.g., localization of a robot (Burgard, Fox, Hennig,
and Schmidt 1996). The discrete filter closely resembles the particle filter, but it uses equally
spaced particles with fixed positions. Consequently, prediction and measurement update only
affect the weights of the particles but not their location. The discrete filter is deterministic
and can closely approximate the exact Bayesian filter provided a sufficient number of grid
points is used.

Piecewise constant filter

In addition to the Dirac-based discrete filter discussed above, we also offer a filter based
on piecewise constant distributions (Kurz et al. 2016d) that is similar to a Wonham filter
(Wonham 1964). This filter subdivides the interval [0, 2π) into a predefined number of smaller
intervals of equal size and assumes a uniform distribution within each interval. The filter
requires a system matrix that contains the transitions probabilities from each interval into
any other interval, which can be precomputed using numerical methods. For the measurement
update, it is possible to use a likelihood function or to discretize the measurement space and
use a precomputed measurement matrix containing the conditional probabilities of obtaining
each discrete measurement given the state is in a certain interval.

Example 5 (Nonlinear circular filtering) Let us consider a system with a circular state
xk ∈ [0, 2π) and system dynamics

xk+1 = a(xk) + wk ,

ak(xk) = (xk + 0.5 · cos2(xk)) mod 2π ,

where wk ∼ WN (x; 0, 0.4) is WN-distributed additive noise. If we assume that the current
state is distributed according to xk ∼ WN (x; 2, 0.5), we can perform the prediction step with
the WN-assumed filter using the following commands.

filter = WNFilter();
filter.setState(WNDistribution(2, 0.5));
a = @(x) mod(x + 0.5 * cos(x)^2, 2 * pi);
filter.predictNonlinear(a, WNDistribution(0, 0.4));
filter.getEstimate()
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Figure 5: Results of the nonlinear circular filtering example. We show the result obtained
with the WN-assumed filter in comparison with the true result.

ans =
WNDistribution with properties:

mu: 2.1289
sigma: 0.7377

dim: 1

It can be seen that the predicted density is returned as a wrapped normal distribution (see
Figure 5a). Now we consider the measurement model

ẑk = hk(xk) + vk ,

with

hk : [0, 2π)→ R, hk(xk) = sin(xk) ,

where vk ∼ N (x; 0, 0.7) is normally distributed additive noise. In this case, we have a circular
state, but a real-valued measurement. However, a circular measurement (or a measurement
on a completely different manifold) would be possible as well. If we obtain a measurement,
say ẑ = 0.3, we can perform the measurement update as follows.

h = @(x) sin(x);
measurementNoise = GaussianDistribution(0, 0.7);
likelihood = LikelihoodFactory.additiveNoiseLikelihood(h, measurementNoise);
filter.updateNonlinearProgressive(likelihood, 0.3)
filter.getEstimate()

ans =
WNDistribution with properties:

mu: 2.1481
sigma: 0.7427

dim: 1

Once again, we obtain the result as a wrapped normal distribution (see Figure 5b).
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4.2. Torus and hypertorus

Circular filtering can be generalized to hypertoroidal filtering, just as circular distributions can
be generalized to hypertoroidal distributions. As toroidal and hypertoroidal filtering is not a
well-researched field, only a few filters are available. In libDirectional, we provide a filter called
‘ToroidalWNFilter’, which is based on the toroidal wrapped normal distribution proposed
in Kurz et al. (2014a) along with extensions for nonlinear system and measurement equations
given in Kurz, Pfaff, and Hanebeck (2017). Furthermore, there is a modified version of the
unscented Kalman filter (Julier and Uhlmann 2004) called ‘ToroidalUKF’, which can be seen
as a two-dimensional generalization of the ‘CircularUKF’ discussed above. We also provide
toroidal and hypertoroidal generalizations of the particle filter in ‘ToroidalParticleFilter’
and ‘HypertoroidalParticleFilter’, respectively. The class ‘HypertoroidalFourierFilter’
offers a generalization of the Fourier filters used in the circular case. The implementation of
additional hypertoroidal filters is planned as future work.

4.3. Hypersphere

In libDirectional, we have also included several filters for estimation on the unit hypersphere.
A nonlinear filter based on the von Mises-Fisher distribution (Kurz et al. 2016b) is available
in the class ‘VMFFilter’, which inherits from the base class for hyperspherical filters called
‘AbstractHypersphericalFilter’. The class ‘VMFFilter’ includes the filters by Chiuso and
Picci (1998) and Markovic et al. (2014) as a special case. A hyperspherical particle filter and
a hyperspherical version of the UKF are also available.
We have also implemented filters assuming antipodal symmetry, i.e., we assume that the
points −x and x have the same probability density. This type of filter can be used for
axial estimation problems, e.g., when the axis of rotation of an object is to be estimated
and the direction of the axis is irrelevant. Furthermore, antipodal symmetry appears in unit
quaternions, which can be used for estimation on SO(3).
All hyperspherical filters with antipodal symmetry are derived from the abstract base class
‘AbstractAxialFilter’. The name refers to the estimation of an axis, e.g., a rotation axis.
We provide the Bingham filter described in Kurz et al. (2014f), a special case of which was also
considered by Glover and Kaelbling (2013). Furthermore, the Bingham filter contains the un-
scented extension proposed in Gilitschenski et al. (2016b). For comparison, libDirectional also
includes an axial version of the Kalman filter (Kalman 1960) in the class ‘AxialKalmanFilter’.
This Kalman filter uses a Gaussian distribution to approximate one of the two modes of the
bimodal Bingham distribution (on one of the hemispheres).

4.4. SE(2)

We also implemented two different filters for estimation of planar rigid-body motions based on
a subgroup of the unit dual quaternions that can be represented as four-dimensional vectors
where the first two entries are restricted to unit length (when jointly considered as a two-
dimensional vector) as proposed by Gilitschenski et al. (2014a). One of the filters is based on
the modified Bingham distribution (in ‘SE2BinghamFilter)’ and is similar to the structure of
the Bingham filter (Gilitschenski, Kurz, and Hanebeck 2015a). The other filter is a UKF that
is implemented (in ‘SE2UKF’) in the same way as the hyperspherical UKF. The only difference
is that ‘SE2UKF’ ensures the resulting estimate to be a unit dual quaternion.
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5. Installation and dependencies
In this section, we provide a brief explanation of the installation procedure as well as the
external libraries libDirectional depends on.

5.1. Installation

The most recent version of libDirectional can always be obtained from https://github.com/
libDirectional. In order to install the library, the entire lib-folder including all subdirec-
tories has to be added to MATLAB’s search path. This can be achieved using the startup.m
script. We officially support MATLAB 2014a and later, but most functionality should be
available in older versions as well. libDirectional is platform-independent and runs on the
Windows, Linux, and Mac versions of MATLAB.
A number of functions of the library have been implemented in C++ for performance reasons.
These functions can be directly called from MATLAB using the mex-file mechanism. In order
to compile the corresponding source code, we provide the compileAll.m script, which com-
piles all files that are necessary for libDirectional, including the external dependencies (see
Section 5.2). The compilation procedure requires a current compiler supported by MATLAB
such as Microsoft Visual C++ 2013 or later3, gcc 4.7, or Xcode.

5.2. Externals

To avoid reinventing the wheel, libDirectional relies on a few libraries written by other authors
(see Table 5). We include all of these dependencies in the folder externals to make it easy
for the user to run our library. Inclusion of the externals is permitted by their respective
licenses and our library libDirectional itself is licensed under the GPL v3 license.
Eigen (Guennebaud, Jacob, and others 2010) is a C++ library for efficient matrix algorithms,
which we use for some of our C++ implementations. In order to obtain high efficiency, we
also use fmath (Shigeo 2009) to calculate exponential functions and logarithms using vector
instructions from the SSE/AVX instruction set.
For the calculation of the normalization constant of the Bingham distribution, we offer several
algorithms, one of which is implemented in the mhg library provided by Koev and Edelman
(2006). Furthermore, we use the complex error function required for the multiplication of
wrapped normal densities (Kurz et al. 2016a), which is implemented in the Faddeeva package
by Johnson (2012). We also use a modified version of the script circVMcdf by Shai Revzen,
which provides an implementation of the cumulative distribution function of a von Mises
distribution as described in Hill (1977). Moreover, we include some code from libBingham by
Glover (2013), but this library is not in the external-folder as only small parts are used and
these are directly integrated into the code of libDirectional.
Finally, we rely on some functions of the Nonlinear Filtering Toolbox for MATLAB by Stein-
bring (2015). In particular, we use the UKF implementation as well as the deterministic
sampling feature for Gaussians from this library. We provide a subset of the Nonlinear Fil-
tering Toolbox within libDirectional that contains all required functions.

3There is a bug in the original version of Microsoft Visual C++ 2013 that prevents compilation. Installing
Microsoft Visual Studio 2013 Update 4 resolves this issue.

https://github.com/libDirectional
https://github.com/libDirectional
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Name Author License
circVMcdf Revzen (2006) GPL v3
Eigen Guennebaud et al. (2010) MPL 2
Faddeeva Johnson (2012) MIT
fmath Shigeo (2009) BSD (3-Clause)
libBingham Glover (2013) BSD (3-Clause)
mhg Koev and Edelman (2006) GPL v2 or later
Nonlinear Filtering Toolbox Steinbring (2015) GPL v3

Table 5: Dependencies of libDirectional.

6. Conclusion
In this paper, we have presented libDirectional, a MATLAB library for directional statistics
and directional estimation. As we have shown, this library implements a variety of direc-
tional distributions on a number of different manifolds such as the circle, the hypertorus,
and the hypersphere. Most distributions offer not only the probability density function but
also algorithms for common associated problems such as visualization, parameter estimation,
entropy calculation, stochastic sampling, etc. All of these methods are implemented in a
clean, object-oriented design that allows the use of analytical solutions whenever possible and
provides a transparent fallback to numerical solutions if analytical solutions are unavailable.
Based on these distributions, a number of different recursive filters are implemented in libDi-
rectional that can be used for estimation of random variables located on the aforementioned
manifolds. These filters not only include many methods based on directional statistics, but
also some standard approaches that were modified for the directional setting and that can be
used for comparison in order to evaluate the benefits and drawbacks of directional approaches.
We hope that the publication of libDirectional will make directional statistics and estimation
algorithms based thereon available to a wider audience. As the library was designed to be
quick to learn and easy to understand, more researches will be able to experiment with these
types of methods, to apply them to various problems, and to improve upon them.

Acknowledgments
We would like to thank Jannik Steinbring for his helpful advice during the development of
libDirectional as well as for providing prerelease versions of the Nonlinear Estimation Toolbox
Steinbring (2015).

References

Allinger A (2013). “Circular Values Math and Statistics with
Fortran.” URL http://www.codeproject.com/Articles/695494/
Circular-Values-Math-and-Statistics-with-FORTRAN.

Arulampalam MS, Maskell S, Gordon N, Clapp T (2002). “A Tutorial on Particle Filters

http://www.codeproject.com/Articles/695494/Circular-Values-Math-and-Statistics-with-FORTRAN
http://www.codeproject.com/Articles/695494/Circular-Values-Math-and-Statistics-with-FORTRAN


24 Directional Statistics and Filtering Using libDirectional

for Online Nonlinear/Non-Gaussian Bayesian Tracking.” IEEE Transactions on Signal
Processing, 50(2), 174–188. doi:10.1109/78.978374.

Azmani M, Reboul S, Choquel JB, Benjelloun M (2009). “A Recursive Fusion Filter for
Angular Data.” In IEEE International Conference on Robotics and Biomimetics (ROBIO
2009), pp. 882–887. doi:10.1109/robio.2009.5420492.

Banerjee A, Dhillon IS, Ghosh J, Sra S (2005). “Clustering on the Unit Hypersphere Using
von Mises-Fisher Distributions.” Journal of Machine Learning Research, 6, 1345–1382.

Barragán S, Fernández M, Rueda C, Peddada S (2013). “isocir: An R Package for Constrained
Inference Using Isotonic Regression for Circular Data, with an Application to Cell Biology.”
Journal of Statistical Software, 54(4), 1–17. doi:10.18637/jss.v054.i04.

Batschelet E (1981). Circular Statistics in Biology. Mathematics in Biology. Academic Press,
London.

Berens P (2009). “CircStat: A MATLAB Toolbox for Circular Statistics.” Journal of Statistical
Software, 31(10), 1–21. doi:10.18637/jss.v031.i10.

Bingham C (1964). Distributions on the Sphere and on the Projective Plane. Ph.D. thesis,
Yale University.

Bingham C (1974). “An Antipodally Symmetric Distribution on the Sphere.” The Annals of
Statistics, 2(6), 1201–1225.

Burgard W, Fox D, Hennig D, Schmidt T (1996). “Estimating the Absolute Position of a
Mobile Robot Using Position Probability Grids.” In Proceedings of the National Conference
on Artificial Intelligence, pp. 896–901.

Chiuso A, Picci G (1998). “Visual Tracking of Points as Estimation on the Unit Sphere.” In
The Confluence of Vision and Control, volume 237, pp. 90–105. Springer-Verlag.

Cox N (1998). “CIRCSTAT: Stata Modules to Calculate Circular Statistics.” URL http:
//EconPapers.repec.org/RePEc:boc:bocode:s362501.

Darling JE, DeMars KJ (2015). “Rigid Body Attitude Uncertainty Propagation Using
the Gauss-Bingham Distribution.” In 25th AAS/AIAA Space Flight Mechanics Meeting.
Williamsburg.

Diethe T, Twomey N, Flach P (2015). “Bayesian Modelling of the Temporal Aspects of Smart
Home Activity with Circular Statistics.” In Machine Learning and Knowledge Discovery in
Databases, pp. 279–294. Springer-Verlag, Porto.

Drude L, Chinaev A, Vu DHT, Haeb-Umbach R (2014). “Source Counting in Speech Mixtures
Using a Variational EM Approach for Complex Watson Mixture Models.” In 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6834–
6838. Florence. doi:10.1109/icassp.2014.6854924.

Feiten W, Lang M, Hirche S (2013). “Rigid Motion Estimation Using Mixtures of Projected
Gaussians.” In Proceedings of the 16th International Conference on Information Fusion
(Fusion 2013). Istanbul.

https://doi.org/10.1109/78.978374
https://doi.org/10.1109/robio.2009.5420492
https://doi.org/10.18637/jss.v054.i04
https://doi.org/10.18637/jss.v031.i10
http://EconPapers.repec.org/RePEc:boc:bocode:s362501
http://EconPapers.repec.org/RePEc:boc:bocode:s362501
https://doi.org/10.1109/icassp.2014.6854924


Journal of Statistical Software 25

Fernández-Durán JJ (2007). “Models for Circular-Linear and Circular-Circular Data Con-
structed from Circular Distributions Based on Nonnegative Trigonometric Sums.” Biomet-
rics, 63(2), 579–585. doi:10.1111/j.1541-0420.2006.00716.x.

Fisher R (1953). “Dispersion on a Sphere.” Proceedings of the Royal Society A – Mathematical,
Physical and Engineering Sciences, 217(1130), 295–305. doi:10.1098/rspa.1953.0064.

Gaile GL, Burt JE (1980). Directional Statistics. Number 25 in Concepts and Techniques in
Modern Geography. Geo Abstracts, University of East Anglia.

Gatto R, Jammalamadaka SR (2007). “The Generalized von Mises Distribution.” Statistical
Methodology, 4(3), 341–353. doi:10.1016/j.stamet.2006.11.003.

Gilitschenski I, Kurz G, Hanebeck UD (2015a). “A Stochastic Filter for Planar Rigid-Body
Motions.” In Proceedings of the 2015 IEEE International Conference on Multisensor Fusion
and Integration for Intelligent Systems (MFI 2015). San Diego.

Gilitschenski I, Kurz G, Hanebeck UD (2015b). “Non-Identity Measurement Models for Orien-
tation Estimation Based on Directional Statistics.” In Proceedings of the 18th International
Conference on Information Fusion (Fusion 2015). Washington, DC.

Gilitschenski I, Kurz G, Hanebeck UD, Siegwart R (2016a). “Optimal Quantization of Circular
Distributions.” In Proceedings of the 19th International Conference on Information Fusion
(Fusion 2016). Heidelberg.

Gilitschenski I, Kurz G, Julier SJ, Hanebeck UD (2014a). “A New Probability Distribution
for Simultaneous Representation of Uncertain Position and Orientation.” In Proceedings of
the 17th International Conference on Information Fusion (Fusion 2014). Salamanca.

Gilitschenski I, Kurz G, Julier SJ, Hanebeck UD (2014b). “Efficient Bingham Filtering Based
on Saddlepoint Approximations.” In Proceedings of the 2014 IEEE International Conference
on Multisensor Fusion and Information Integration (MFI 2014). Beijing.

Gilitschenski I, Kurz G, Julier SJ, Hanebeck UD (2016b). “Unscented Orientation Estimation
Based on the Bingham Distribution.” IEEE Transactions on Automatic Control, 61(1),
172–177. doi:10.1109/tac.2015.2423831.

Glover J (2013). “libbingham Bingham Statistics Library.” http://code.google.com/p/
bingham/.

Glover J, Kaelbling LP (2013). “Tracking 3-D Rotations with the Quaternion Bingham Filter.”
Technical report, MIT.

Glover J, Kaelbling LP (2014). “Tracking the Spin on a Ping Pong Ball with the Quaternion
Bingham Filter.” In Proceedings of the 2014 IEEE Conference on Robotics and Automation
(ICRA 2014). Hong Kong.

Gopal S, Yang Y (2014). “Von Mises-Fisher Clustering Models.” In Proceedings of the 31st
International Conference on Machine Learning, pp. 154–162. Beijing.

Guennebaud G, Jacob B, others (2010). “Eigen V3.” http://eigen.tuxfamily.org.

https://doi.org/10.1111/j.1541-0420.2006.00716.x
https://doi.org/10.1098/rspa.1953.0064
https://doi.org/10.1016/j.stamet.2006.11.003
https://doi.org/10.1109/tac.2015.2423831
http://code.google.com/p/bingham/
http://code.google.com/p/bingham/
http://eigen.tuxfamily.org


26 Directional Statistics and Filtering Using libDirectional

Hanebeck UD, Huber MF, Klumpp V (2009). “Dirac Mixture Approximation of Multivariate
Gaussian Densities.” In Proceedings of the 2009 IEEE Conference on Decision and Control
(CDC 2009). Shanghai.

Hill GW (1977). “Incomplete Bessel Funcion I0: The von Mises Distribution.” ACM Trans-
actions on Mathematical Software, 3(3), 279–284. doi:10.1145/355744.355753.

Hoare CAR (2003). “Assertions: A Personal Perspective.” IEEE Annals of the History of
Computing, 25(2), 14–25. doi:10.1109/mahc.2003.1203056.

Hornik K, Grün B (2014). “movMF: An R Package for Fitting Mixtures of von Mises-Fisher
Distributions.” Journal of Statistical Software, 58(10), 1–31. doi:10.18637/jss.v058.i10.

Horwood JT, Poore AB (2014). “Gauss von Mises Distribution for Improved Uncertainty Re-
alism in Space Situational Awareness.” SIAM/ASA Journal on Uncertainty Quantification,
2(1), 276–304. doi:10.1137/130917296.

Insightful Corp (2003). S-PLUS Version 6.2. Seattle. URL http://www.insightful.com/.

Ito N, Araki S, Nakatani T (2016a). “Complex Angular Central Gaussian Mixture Model for
Directional Statistics in Mask-Based Microphone Array Signal Processing.” In 2016 24th
European Signal Processing Conference (EUSIPCO). IEEE. doi:10.1109/eusipco.2016.
7760429.

Ito N, Araki S, Nakatani T (2016b). “Modeling Audio Directional Statistics Using a Complex
Bingham Mixture Model for Blind Source Extraction from Diffuse Noise.” In 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.
doi:10.1109/icassp.2016.7471718.

Jammalamadaka SR, Kozubowski TJ (2004). “New Families of Wrapped Distributions for
Modeling Skew Circular Data.” Communications in Statistics – Theory and Methods, 33(9),
2059–2074. doi:10.1081/sta-200026570.

Jammalamadaka SR, Sarma YR (1988). “A Correlation Coefficient for Angular Variables.”
In K Matusita (ed.), Statistical Theory and Data Analysis II, pp. 349–364. North Holland,
Amsterdam.

Jammalamadaka SR, Sengupta A (2001). Topics in Circular Statistics. World Scientific.

Johnson RA, Wehrly T (1977). “Measures and Models for Angular Correlation and Angular-
Linear Correlation.” Journal of the Royal Statistical Society B, 39(2), 222–229. doi:
10.1111/j.2517-6161.1977.tb01619.x.

Johnson SG (2012). “Faddeeva Package.” http://ab-initio.mit.edu/wiki/index.php/
Faddeeva_Package.

Julier SJ, Uhlmann JK (2004). “Unscented Filtering and Nonlinear Estimation.” Proceedings
of the IEEE, 92(3), 401–422. doi:10.1109/jproc.2003.823141.

Jupp PE, Mardia KV (1980). “A General Correlation Coefficient for Directional Data and
Related Regression Problems.” Biometrika, 67(1), 163–173. doi:10.2307/2335329.

https://doi.org/10.1145/355744.355753
https://doi.org/10.1109/mahc.2003.1203056
https://doi.org/10.18637/jss.v058.i10
https://doi.org/10.1137/130917296
http://www.insightful.com/
https://doi.org/10.1109/eusipco.2016.7760429
https://doi.org/10.1109/eusipco.2016.7760429
https://doi.org/10.1109/icassp.2016.7471718
https://doi.org/10.1081/sta-200026570
https://doi.org/10.1111/j.2517-6161.1977.tb01619.x
https://doi.org/10.1111/j.2517-6161.1977.tb01619.x
http://ab-initio.mit.edu/wiki/index.php/Faddeeva_Package
http://ab-initio.mit.edu/wiki/index.php/Faddeeva_Package
https://doi.org/10.1109/jproc.2003.823141
https://doi.org/10.2307/2335329


Journal of Statistical Software 27

Kalman RE (1960). “A New Approach to Linear Filtering and Prediction Problems.” Transac-
tions of the ASME Journal of Basic Engineering, 82(1), 35–45. doi:10.1115/1.3662552.

Kendall DG (1984). “Shape Manifolds, Procrustean Metrics, and Complex Projective Spaces.”
Bulletin of the London Mathematical Society, 16(2), 81–121. doi:10.1112/blms/16.2.81.

Kent JT (1982). “The Fisher-Bingham Distribution on the Sphere.” Journal of the Royal
Statistical Society B, 44(1), 71–80. doi:10.1111/j.2517-6161.1982.tb01189.x.

Kent JT (1994). “The Complex Bingham Distribution and Shape Analysis.” Journal of the
Royal Statistical Society B, 56(2), 285–299. doi:10.1111/j.2517-6161.1994.tb01978.x.

Kent JT (1997). “Data Analysis for Shapes and Images.” Journal of Statistical Planning and
Inference, 57(2), 181–193. doi:10.1016/s0378-3758(96)00043-2.

Kent JT, Constable PDL, Er F (2004). “Simulation for the Complex Bingham Distribution.”
Statistics and Computing, 14(1), 53–57. doi:10.1023/b:stco.0000009414.14099.03.

Koev P, Edelman A (2006). “The Efficient Evaluation of the Hypergeometric Function
of a Matrix Argument.” Mathematics of Computation, 75, 833–846. doi:10.1090/
s0025-5718-06-01824-2.

Kovach Computing Services (2011). “Oriana.” URL http://www.kovcomp.co.uk/oriana/
index.html.

Krogan L (2011). “Circular Values Math and Statistics with
C++11.” URL http://www.codeproject.com/Articles/190833/
Circular-Values-Math-and-Statistics-with-Cplusplus.

Kume A, Wood ATA (2005). “Saddlepoint Approximations for the Bingham and Fisher-
Bingham Normalising Constants.” Biometrika, 92(2), 465–476.

Kurz G (2015). Directional Estimation for Robotic Beating Heart Surgery. Ph.D. thesis, Karl-
sruhe Institute of Technology, Intelligent Sensor-Actuator-Systems Laboratory, Karlsruhe,
Germany.

Kurz G, Gilitschenski I, Dolgov M, Hanebeck UD (2014a). “Bivariate Angular Estimation
under Consideration of Dependencies Using Directional Statistics.” In Proceedings of the
53rd IEEE Conference on Decision and Control (CDC 2014). Los Angeles.

Kurz G, Gilitschenski I, Hanebeck UD (2013). “Recursive Nonlinear Filtering for Angu-
lar Data Based on Circular Distributions.” In Proceedings of the 2013 American Control
Conference (ACC 2013). Washington, DC.

Kurz G, Gilitschenski I, Hanebeck UD (2014b). “Deterministic Approximation of Circular
Densities with Symmetric Dirac Mixtures Based on Two Circular Moments.” In Proceedings
of the 17th International Conference on Information Fusion (Fusion 2014). Salamanca.

Kurz G, Gilitschenski I, Hanebeck UD (2014c). “Efficient Evaluation of the Probability
Density Function of a Wrapped Normal Distribution.” In Proceedings of the IEEE ISIF
Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF 2014). Bonn.

https://doi.org/10.1115/1.3662552
https://doi.org/10.1112/blms/16.2.81
https://doi.org/10.1111/j.2517-6161.1982.tb01189.x
https://doi.org/10.1111/j.2517-6161.1994.tb01978.x
https://doi.org/10.1016/s0378-3758(96)00043-2
https://doi.org/10.1023/b:stco.0000009414.14099.03
https://doi.org/10.1090/s0025-5718-06-01824-2
https://doi.org/10.1090/s0025-5718-06-01824-2
http://www.kovcomp.co.uk/oriana/index.html
http://www.kovcomp.co.uk/oriana/index.html
http://www.codeproject.com/Articles/190833/Circular-Values-Math-and-Statistics-with-Cplusplus
http://www.codeproject.com/Articles/190833/Circular-Values-Math-and-Statistics-with-Cplusplus


28 Directional Statistics and Filtering Using libDirectional

Kurz G, Gilitschenski I, Hanebeck UD (2014d). “Nonlinear Measurement Update for Esti-
mation of Angular Systems Based on Circular Distributions.” In Proceedings of the 2014
American Control Conference (ACC 2014). Portland.

Kurz G, Gilitschenski I, Hanebeck UD (2014e). “The Partially Wrapped Normal Distribu-
tion for SE(2) Estimation.” In Proceedings of the 2014 IEEE International Conference on
Multisensor Fusion and Information Integration (MFI 2014). Beijing.

Kurz G, Gilitschenski I, Hanebeck UD (2016a). “Recursive Bayesian Filtering in Circular
State Spaces.” IEEE Aerospace and Electronic Systems Magazine, 31(3), 70–87. doi:
10.1109/maes.2016.150083.

Kurz G, Gilitschenski I, Hanebeck UD (2016b). “Unscented von Mises-Fisher Filtering.” IEEE
Signal Processing Letters, 23(4), 463–467. doi:10.1109/lsp.2016.2529854.

Kurz G, Gilitschenski I, Julier S, Hanebeck UD (2014f). “Recursive Bingham Filter for Di-
rectional Estimation Involving 180 Degree Symmetry.” Journal of Advances in Information
Fusion, 9(2), 90–105.

Kurz G, Gilitschenski I, Siegwart RY, Hanebeck UD (2016c). “Methods for Deterministic
Approximation of Circular Densities.” Journal of Advances in Information Fusion, 11(2),
138–156.

Kurz G, Hanebeck UD (2015a). “Parameter Estimation for the Bivariate Wrapped Normal
Distribution.” In Proceedings of the 54th IEEE Conference on Decision and Control (CDC
2015). Osaka.

Kurz G, Hanebeck UD (2015b). “Toroidal Information Fusion Based on the Bivariate von
Mises Distribution.” In Proceedings of the 2015 IEEE International Conference on Multi-
sensor Fusion and Integration for Intelligent Systems (MFI 2015). San Diego.

Kurz G, Hanebeck UD (2017). “Deterministic Sampling on the Torus for Bivariate Circular
Estimation.” IEEE Transactions on Aerospace and Electronic Systems, 53(1), 530–534.
doi:10.1109/taes.2017.2650079.

Kurz G, Pfaff F, Hanebeck UD (2016d). “Discrete Recursive Bayesian Filtering on Inter-
vals and the Unit Circle.” In Proceedings of the 2016 IEEE International Conference on
Multisensor Fusion and Integration for Intelligent Systems (MFI 2016). Baden-Baden.

Kurz G, Pfaff F, Hanebeck UD (2017). “Nonlinear Toroidal Filtering Based on Bivariate
Wrapped Normal Distributions (to Appear).” In Proceedings of the 20th International
Conference on Information Fusion (Fusion 2017). Xi’an.

Leong P, Carlile S (1998). “Methods for Spherical Data Analysis and Visualization.” Journal
of Neuroscience Methods, 80(2), 191–200. doi:10.1016/s0165-0270(97)00201-x.

Lo J, Willsky AS (1975). “Estimation for Rotational Processes with One Degree of Freedom
– Part I: Introduction and Continuous-Time Processes.” IEEE Transactions on Automatic
Control, 20(1), 10–21. doi:10.1109/tac.1975.1100829.

https://doi.org/10.1109/maes.2016.150083
https://doi.org/10.1109/maes.2016.150083
https://doi.org/10.1109/lsp.2016.2529854
https://doi.org/10.1109/taes.2017.2650079
https://doi.org/10.1016/s0165-0270(97)00201-x
https://doi.org/10.1109/tac.1975.1100829


Journal of Statistical Software 29

Lund U, Agostinelli C (2018). CircStats: Circular Statistics, from “Topics in Circular Statis-
tics” (2001). R package version 0.2-6, URL https://CRAN.R-project.org/package=
CircStats.

Mardia KV (1981). “Directional Statistics in Geosciences.” Communications in Statistics –
Theory and Methods, 10(15), 1523–1543. doi:10.1080/03610928108828131.

Mardia KV, Dryden IL (1999). “The Complex Watson Distribution and Shape Analysis.”
Journal of the Royal Statistical Society B, 61(4), 913–926. doi:10.1111/1467-9868.
00210.

Mardia KV, Hughes G, Taylor CC, Singh H (2008). “A Multivariate von Mises Distribution
with Applications to Bioinformatics.” Canadian Journal of Statistics, 36(1), 99–109. doi:
10.1002/cjs.5550360110.

Mardia KV, Jupp PE (1999). Directional Statistics. 1st edition. John Wiley & Sons, Baffins
Lane, Chichester, West Sussex, England. doi:10.1002/9780470316979.

Mardia KV, Taylor CC, Subramaniam GK (2007). “Protein Bioinformatics and Mixtures of
Bivariate von Mises Distributions for Angular Data.” Biometrics, 63(2), 505–512. doi:
10.1111/j.1541-0420.2006.00682.x.

Markovic I, Chaumette F, Petrovic I (2014). “Moving Object Detection, Tracking and Fol-
lowing Using an Omnidirectional Camera on a Mobile Robot.” In Proceedings of the 2014
IEEE International Conference on Robotics and Automation (ICRA 2014). Hong-Kong.

Markovic I, Petrovic I (2012). “Bearing-Only Tracking with a Mixture of von Mises Distri-
butions.” In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2012), pp. 707–712. doi:10.1109/iros.2012.6385600.

Matsuda G, Kaji S, Ochiai H (2014). “Anti-Commutative Dual Complex Numbers and 2D
Rigid Transformation.” In Mathematical Progress in Expressive Image Synthesis I, pp.
131–138. Springer-Verlag.

Murdoch D (2003). “Orientlib: An R Package for Orientation Data.” Journal of Statistical
Software, 8(19), 1–11. doi:10.18637/jss.v008.i19.

Oliveira M, Crujeiras RM, Rodríguez-Casal A (2014). “NPCirc: An R Package for Non-
parametric Circular Methods.” Journal of Statistical Software, 61(9). doi:10.18637/jss.
v061.i09.

Pewsey A, Neuhäuser M, Ruxton GD (2013). Circular Statistics in R. Oxford University
Press, Oxford.

Pfaff F, Kurz G, Hanebeck UD (2015). “Multimodal Circular Filtering Using Fourier Series.”
In Proceedings of the 18th International Conference on Information Fusion (Fusion 2015).
Washington, DC.

Pfaff F, Kurz G, Hanebeck UD (2016a). “Multivariate Angular Filtering Using Fourier Series.”
Journal of Advances in Information Fusion, 11(2), 206–226.

https://CRAN.R-project.org/package=CircStats
https://CRAN.R-project.org/package=CircStats
https://doi.org/10.1080/03610928108828131
https://doi.org/10.1111/1467-9868.00210
https://doi.org/10.1111/1467-9868.00210
https://doi.org/10.1002/cjs.5550360110
https://doi.org/10.1002/cjs.5550360110
https://doi.org/10.1002/9780470316979
https://doi.org/10.1111/j.1541-0420.2006.00682.x
https://doi.org/10.1111/j.1541-0420.2006.00682.x
https://doi.org/10.1109/iros.2012.6385600
https://doi.org/10.18637/jss.v008.i19
https://doi.org/10.18637/jss.v061.i09
https://doi.org/10.18637/jss.v061.i09


30 Directional Statistics and Filtering Using libDirectional

Pfaff F, Kurz G, Hanebeck UD (2016b). “Nonlinear Prediction for Circular Filtering Using
Fourier Series.” In Proceedings of the 19th International Conference on Information Fusion
(Fusion 2016). Heidelberg.

Revzen S (2006). circVMcdf: Cumulative von-Mises Distribution. MATLAB code.

Roy A, Parui SK, Roy U (2014). “SWGMM: A Semi-Wrapped Gaussian Mixture Model for
Clustering of Circular-Linear Data.” Pattern Analysis and Applications, 18(3), 631–645.
doi:10.1007/s10044-014-0418-2.

Schmidt W (1917). “Statistische Methoden beim Gefügestudium krystalliner Schiefer.”
Sitzungsberichte Akademie der Wissenschaften in Wien, 126, 515–539.

Shigeo M (2009). “Fast Approximate Float Function fmath.” URL https://github.com/
herumi/fmath.

Singh H, Hnizdo V, Demchuk E (2002). “Probabilistic Model for Two Dependent Circular
Variables.” Biometrika, 89(3), 719–723.

Stanfill B, Hofmann H, Genschel U (2014). “rotations: An R Package for SO(3) Data.” The
R Journal, 6(1), 68–78. doi:10.32614/rj-2014-007.

StataCorp (2017). STATA Statistical Software: Release 15. StataCorp LLC, College Station.
URL http://www.stata.com/.

Steinbring J (2015). “Nonlinear Estimation Toolbox.” URL https://bitbucket.org/
nonlinearestimation/toolbox.

Steinbring J, Pander M, Hanebeck UD (2016). “The Smart Sampling Kalman Filter with
Symmetric Samples.” Journal of Advances in Information Fusion, 11(1), 71–90.

The MathWorks Inc (2017). MATLAB – The Language of Technical Computing, Version
R2017b. Natick, Massachusetts. URL http://www.mathworks.com/products/matlab/.

Traa J, Smaragdis P (2013). “A Wrapped Kalman Filter for Azimuthal Speaker Tracking.”
IEEE Signal Processing Letters, 20(12), 1257–1260. doi:10.1109/lsp.2013.2287125.

von Mises R (1918). “Über die ‘Ganzzahligkeit’ der Atomgewichte und verwandte Fragen.”
Physikalische Zeitschrift, XIX, 490–500.

Vu DHT, Haeb-Umbach R (2010). “Blind Speech Separation Employing Directional Statis-
tics in an Expectation Maximization Framework.” In Proceedings of the 2010 IEEE In-
ternational Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 241–244.
doi:10.1109/icassp.2010.5495994.

Watson GS (1965). “Equatorial Distributions on a Sphere.” Biometrika, 52(1–2), 193–201.

Willsky AS (1974). “Fourier Series and Estimation on the Circle with Applications to Syn-
chronous Communication – Part I: Analysis.” IEEE Transactions on Information Theory,
20(5), 577–583. doi:10.1109/tit.1974.1055280.

https://doi.org/10.1007/s10044-014-0418-2
https://github.com/herumi/fmath
https://github.com/herumi/fmath
https://doi.org/10.32614/rj-2014-007
http://www.stata.com/
https://bitbucket.org/nonlinearestimation/toolbox
https://bitbucket.org/nonlinearestimation/toolbox
http://www.mathworks.com/products/matlab/
https://doi.org/10.1109/lsp.2013.2287125
https://doi.org/10.1109/icassp.2010.5495994
https://doi.org/10.1109/tit.1974.1055280


Journal of Statistical Software 31

Wonham WM (1964). “Some Applications of Stochastic Differential Equations to Optimal
Nonlinear Filtering.” Journal of the Society for Industrial and Applied Mathematics A:
Control, 2(3), 347–369. doi:10.1137/0302028.

Affiliation:
Gerhard Kurz, Florian Pfaff, Uwe D. Hanebeck
Chair for Intelligent Sensor-Actuator-Systems (ISAS)
Institute for Anthropomatics and Robotics
Karlsruhe Institute of Technology (KIT)
Adenauerring 2
76131 Karlsruhe, Germany
E-mail: kurz.gerhard@gmail.com, florian.pfaff@kit.edu, uwe.hanebeck@ieee.org

Igor Gilitschenski
Computer Science and Artificial Intelligence Lab
Massachusetts Institute of Technology
32 Vassar Street
Cambridge, MA 02139, United States of America
E-mail: igilitschenski@mit.edu

Lukas Drude, Reinhold Haeb-Umbach
Department of Communications Engineering
University of Paderborn
Warburger Str. 100
33098 Paderborn, Germany
E-mail: drude@nt.uni-paderborn.de, haeb@nt.uni-paderborn.de

Roland Y. Siegwart
Autonomous Systems Lab
ETH Zürich
Leonhardstrasse 21
8092 Zürich, Switzerland
E-mail: rsiegwart@ethz.ch

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

May 2019, Volume 89, Issue 4 Submitted: 2016-01-08
doi:10.18637/jss.v089.i04 Accepted: 2017-10-23

https://doi.org/10.1137/0302028
mailto:kurz.gerhard@gmail.com
mailto:florian.pfaff@kit.edu
mailto:uwe.hanebeck@ieee.org
mailto:igilitschenski@mit.edu
mailto:drude@nt.uni-paderborn.de
mailto:haeb@nt.uni-paderborn.de
mailto:rsiegwart@ethz.ch
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v089.i04

	Introduction
	Related work
	Probability distributions
	Circle
	Torus and hypertorus
	Real hypersphere
	Complex hypersphere
	SE(2)
	Partially wrapped normal distribution on SE(2)
	Modified Bingham distribution


	Filters
	Circle
	WN-assumed filter
	VM-assumed filter
	Fourier filters
	Gaussian-assumed filters
	Particle filter
	Discrete filter
	Piecewise constant filter

	Torus and hypertorus
	Hypersphere
	SE(2)

	Installation and dependencies
	Installation
	Externals

	Conclusion

