
A Rapid Prototyping for Wireless Virtual Network Embedding using MARVELO

Haitham Afifi, Sebastian Eikenberg, Alexander Makejkin, Arnold Müller,
Rafael Schellenberg, Lars Gansel, Kai Hannemann, and Holger Karl

Paderborn University (haitham.afifi@upb.de)

Abstract—One of the major challenges in implementing wire-
less virtualization is the resource discovery. This is particularly
important for the embedding-algorithms that are used to
distribute the tasks to nodes.

MARVELO is a prototype framework for executing dif-
ferent distributed algorithms on the top of a wireless (802.11)
ad-hoc network. The aim of MARVELO is to select the nodes
for running the algorithms and to define the routing between
the nodes. Hence, it also supports monitoring functionalities to
collect information about the available resources and to assist
in profiling the algorithms.

The objective of this demo is to show how MAVRLEO
distributes tasks in an ad-hoc network, based on a feedback
from our monitoring tool. Additionally, we explain the work-
flow, composition and execution of the framework.

1. Introduction

Nowadays, there exist many applications that rely on
wireless infrastructure. Some application types read data
(e.g., from sensors) and process them directly inside the net-
work. When it comes to implementation, such applications
are often structured as individual functions that are chained
together.

Examples for such functions are load balancers for
networking applications or filtering for signal processing.
Instead of relying on various physical networks for each ap-
plication, different applications can share the same network
to run these functions, virtualizing the network.

Network virtualization replaces the need for dedicated
hardware with virtual functions running on top of a generic
hardware, thus, enabling different applications to coexist on
the same hardware.

A typical use case would be for functions of the same
application that need to be interconnected to exchange data.
In this context, we need to answer two important questions:
on which node will the virtual functions be running and
which route will be taken between the nodes. This process
is commonly called Virtual Network Embedding (VNE).

When it comes to wireless VNE, only few frameworks
were implemented for IoT or Mobile networks [1]. Never-
theless, they assumed that wireless link conditions are fixed
as in wired networks, and ignored the changes in wireless
links due to interference. Moreover, some existing work
limits the application of virtual functions to virtual network

���������	���
��
�

�����
���
�

����������
�

(a) Tiers

����������

���

������	��


����������

���	��

�������

���	��

�������

������	��
�

����	������

��������	�������

�	������


(b) Architecture

Figure 1: Representation of MARVELO’s Tiers

functions [2], rather than taking a more general approach,
also embracing application-level functions.

We are the first to implement a framework for a wire-
less VNE in Wireless Sensor Networks (WSN). It supports
executing generic virtual functions (let it be networking or
other) that can be written in any programming language
(e.g., Python, C, JAVA, etc.) in an executable form. Ad-
ditionally, we jointly consider the wireless interference and
computational resources during the allocation process. In our
implementation, we use Raspberry Pis as our wireless nodes,
and we show distributed processes running on multiple
nodes.

2. MARVELO Framework

In this section we describe the implementation of the
Multicast-Aware Routing for Virtual network Embedding
with loopy Overlays (MARVELO) framework. The detailed
mathematical formulation for resource allocation can be
found in [3]; we focus here on the framework architecture
and implementation. MARVELO has also been used to show
the importance of distributing algorithms [4], but without
explaining MARVELO’s work-flow.

There are two main roles in the framework; Controller
node and Worker Node. A controller is responsible for
allocating functions to the wireless nodes and controlling
the routing decisions. Additionally, it has an overview of
the network performance as well as the virtual functions.

Worker nodes receive commands from the controller to
start running the functions. The output from these functions
is then forwarded according to the forwarding tables re-
ceived from the controller. In other words, the controller



is an intelligent entity (brain) that is giving orders to the
worker nodes (muscles) for processing and forwarding.

For internal communication between different roles,
MARVELO’s architecture is represented by three tiers: In-
frastructure, Manager, and Monitoring tier (Figure 1).

2.1. Manager tier

The manager tier is responsible for taking the allocation
and routing decisions for the infrastructure tier.

Inputs to this tier are divided into two categories. First
the workers’ status, which is given as the available resources
for each worker and the wireless channel status. Second, the
required processing resources by the functions (e.g., CPU
and memory utilization).

Next, data is processed to find the optimal allocation for
the nodes using the algorithms proposed in [3]. The output
from the algorithms is written in an XML file to be used by
the

2.2. Infrastructure tier

This tier is responsible for distributing the functions to
the worker nodes. The decisions are taken by the controller
node (in the manager tier) and written in an XML format,
which expresses routing decisions as well. The XML file
can also be edited manually to specify a custom allocation
and routing. Next, the controller node sends to each worker
which functions shall be executed and specify the routes
(i.e., inputs to read data and outputs to send data).

To exchange data between the functions, we use the
netcat tool, allowing us to support streaming data if
needed. The netcat instances are auto-generated by the
controller and shared automatically with the workers.

We use a parser for the command-line arguments to
specify the input and output netcat instances for each
function. Additional parameters (i.e, logging files and con-
figuration) can optionally be added as arguments.

2.3. Monitoring tier

There exists many tools for monitoring the system util-
ities and processes running on the Raspberry Pi’s. But
existing network-monitoring tools cannot provide sufficient
information about the wireless channel behaviour, due to the
limitation by the Broadcom chip installed on the Raspberry
Pi, which does not enable promiscuous mode, which is
used to scan the devices in the network. Although there
exists other workarounds [5], they do not support ad-hoc
and promiscuous simultaneously.

This tier provides an API that is used to monitor both the
processing (e.g., CPU and memory utilization) and wireless
(e.g., interference and channel scanning) parameters on the
Raspberry Pis.

It relies on three main modules. First, CommonMonitor
module is responsible for monitoring the overall process
and system utilities. Accordingly, it delivers information

about the available resources per each node in the network.
Second, ProcessMonitor similarly monitors the processes on
the node, but only for specified process. Consequently, this
tool is used for profiling the selected applications to estimate
the required resources for each one. Third, NetworkMoni-
tor is used to collect the received wireless signal strength
from the source and other interfering nodes. It relies on
NEXMON [6], a firmware patch to enable the promiscuous
mode on the Broadcom chips of Raspberry Pis.

On the one hand, the common and process monitor-
ing modules can collect information only from the clients
running the framework. On the other hand, the networking
information (e.g., mac addresses and received signals) can
be collected from all nodes, even if they are not running the
framework. This allows us to have information about the
wireless network as reliable as possible.

The monitoring tier is supported also with a notification
system that can: 1) send alerts if a node or a running process
are shut down. 2) report new incoming nodes as well as their
available resources. Other types of alerts (e.g., temperature
or over-utilization) can also be added.

3. Demo Description

In this demo we show how to use the MARVELO
framework to profile processes and collect information about
the available resources in the network. Then, we give this
information to MARVELO’s controller in order to select
the nodes for processing and define the routes between
the nodes. Next, the controller will distribute the functions
among the workers and start exchanging information. The
running application will be in the context of acoustic sensor
networks. Additionally, we demonstrate other features of
MARVELO such as collecting the logs from the clients after
finishing the process and sending notifications.

Acknowledgment

This work was supported by Deutsche Forschungsge-
meinschaft (DFG) under contract no. KA2325/4-1 within
the framework of the Research Unit FOR2457 “Acoustic
Sensor Networks”.

References
[1] N. Bizanis and F. A. Kuipers. SDN and virtualization solutions for the internet

of things: A survey. IEEE Access, 4:5591–5606, 2016. ISSN 2169-3536. doi:
10.1109/ACCESS.2016.2607786.

[2] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo. SDN-WISE: Design,
prototyping and experimentation of a stateful sdn solution for wireless sensor
networks. In 2015 IEEE Conference on Computer Communications (INFOCOM),
pages 513–521, April 2015.

[3] Haitham Afifi and Holger Karl. An approximation algorithm for power allocation
in wireless virtual network embedding. In 2019 IEEE Wireless Communications
and Networking Conference (WCNC) (IEEE WCNC 2019), Marrakech, Morocco,
2019. (submitted).

[4] Afifi H, Schmalenstroeer J, Ullmann J, Haeb-Umbach R, and Karl H. Marvelo–a
framework for signal processing in wireless acoustic sensor networks. 13th ITG
conference on Speech Communication, October 2018.

[5] Vivek Ramachandran and Cameron Buchanan. Kali Linux: Wireless Penetra-
tion Testing Beginner’s Guide. Packt Publishing, 2015. ISBN 1783280417,
9781783280414.

[6] Matthias Schulz, Daniel Wegemer, and Matthias Hollick. Nexmon: The c-based
firmware patching framework, 2017. URL https://nexmon.org.


