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Abstract

We propose a novel personal reputation system for cross-platform
reputation. We observe that, in certain usage scenarios, e.g. crowd
work, the rater anonymity property typically imposed on reputation
systems is not necessary. Instead, we propose a relaxed notion of rater
anonymity that is more applicable in the crowd work scenario. This
allows us to construct a secure personal reputation system from simple
cryptographic primitives.

1 Introduction

Crowd workers, who perform tasks of variable complexity in a range of fields,
e.g. design things, develop software, visit places in their area to take pho-
tographs, or generally serve as a distributed workforce for solving simple
tasks, often operate on multiple platforms when selling their services to re-
questers, who seek solutions to their tasks. Platforms serve the purpose
of bringing crowd workers and requesters together, typically focussing on
a particular type of task, i.e. there are platforms for designers, text cre-
ators, software developers, etc. These platforms organize their work force,
handle workers’ payments, and enable requesters to contact specific work-
ers if necessary — this feature would be of particular interest for platforms
specializing in creative tasks.

Typically, platforms operate reputation systems to gather and provide
information on requester satisfaction, e.g. satisfaction with the solutions a
crowd worker provided. Such information is then displayed to other potential
requesters under the assumption that the potential customer or requester
would be satisfied with buying from a particular crowd worker if previous
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requesters were satisfied [10]. Therefore, it is important for crowd workers
to build and maintain a good reputation.

However, since reputation systems are presently operated by platforms,
there is a legitimate threat of vendor lock-in, i.e. crowd workers cannot
reasonably switch platforms without losing all of their reputation. On the
other hand, crowd workers often operate on multiple platforms in order
to compensate for low numbers of offered tasks on individual platforms.
Workers operating on multiple platforms can be expected to have lower
reputation scores than their counterparts only operating on a single platform
— not because of lower total requester satisfaction, but because the scores
are split and stored separately across platforms.

We propose a personal reputation system that enables crowd workers to
maintain their reputation scores themselves, and without tying these scores
to specific platforms. Thus, personal reputation systems mitigate vendor
lock-in and negate the disadvantage of reputations scores distributed among
various platforms.

Related work. Reputation systems, in general, have been studied exten-
sively [1, 2, 3, 4, 8, 9, 12], and in multiple disciplines. These systems are often
restricted to single platforms or systems (such as peer-to-peer systems), but
cross-platform reputation has also been considered.

As an example, Grinshpoun et al. [7] propose CCR, a model for cross-
community reputation. Essentially, CCR allows online forums and similar
communities to import reputation scores from other communities and to
provide other communities with such scores. CCR mainly focuses on how to
translate reputation scores, e.g. from a three-star scale to a five-star scale,
while also considering differences in communities. As an example, consider
a discussion forum on vehicle engines. In such a community, reputation
may represent expertise in the topic discussed. The forum may allow new
registrants to import reputation scores from an automobile discussion forum,
but even if both communities use the same scale for their reputation scores,
the engine discussion forum may not adopt the other community’s scores
on a one-to-one basis, because the automobile forum covers different topics,
and an expert in automobiles is not necessarily an expert in engines. Hence,
CCR weights reputation during translation.

While CCR considers the cross-community/platform aspect of our work,
reputation scores are still stored at some platform; our personal reputation
system goes as step further and the rated subjects store their reputation
scores. However, concepts of CCR are applicable to our system when it
comes to the interpretation of reputation, as the reputation has been ob-
tained via different platforms.

Pingel et al. [14] implement a cross-platform reputation system for on-
line forums. Their system is claimed to achieve several notions of secu-
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rity, anonymity, etc. The system assumes a centralized, but not necessarily
trusted, service collecting reputation information from and distributing it
to multiple communities. Since the reputation service is not trusted, and to
grant users control over their data, users are to store their reputation scores
themselves.

A drawback of Pingel et al.’s solution is the use of a centralized service
to aggregate reputation scores; in contrast, our personal reputation system
does not rely on centralized infrastructure.

As we see from the previous examples, reputation can be managed and
stored in different ways, e.g. by centralized servers for individual or mul-
tiple communities or by the rated entities. Dennis et al. [5] discuss some
(de-)centralized approaches to reputation storage and management in peer-
to-peer networks, and then present decentralized storage of reputation via
distributed ledgers, i.e. blockchain. While Dennis et al. consider the draw-
backs of their approach in terms of limited throughput, they fail to men-
tion the significant ecological impact of their proposal, particularly if imple-
mented using proof-of-work blockchains.

While we use technologies similar to blockchains, we put away with proof-
of-work and other consensus mechanisms. Still, our personal reputation
system features some of the drawbacks of blockchains, e.g. in bandwidth
consumption.

Impact of usage scenarios on anonymity guarantees for raters.
Reputation systems in the cryptographic literature typically provide rater
anonymity unconditionally or at least as long as raters behave honestly. This
level of rater anonymity is important, because it has been shown that raters
are more honest in their feedback if they are anonymous, i.e. they do not
have to fear backlashes from ratees.

However, in the crowd work scenario, and focussing particularly on cre-
ative tasks such as text creation, rated solutions are one of a kind products,
tailored towards a single and specific requester/customer. Due to product
specifics, the creator of the product can be assumed to know the requester,
who is a future rater of the product’s creator. Then, due to details of prod-
ucts mentioned in reviews, ratees are potentially able to connect a review
they receive to one of their creations, and thus the rater. A ratee may also
be able to use temporal closeness of a provided solution and a received rat-
ing to link a rating to a rater. On the other hand, in order for the ratee to
improve their future work based on criticism expressed in reviews, the ratee
should know what product the review refers to. In turn the ratee knows the
rater. Both views imply that, in the crowd work scenario, it is unlikely and
undesirable for raters to remain anonymous towards the rated entity.

On a related note, a rater generally cannot be anonymous towards a plat-
form that has mediated between the rater and the ratee: the platform must
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know the rater and the ratee in order to pay the ratee for her solution and
bill the rater in return. The platform can use details from observed solutions
and reviews to link raters and reviews in the same manner ratees can. As
a consequence, for our personal reputation system, we relax the notion of
rater anonymity typically imposed on reputation systems. Instead, we aim
for rater anonymity towards the general public, so, given a rating, the rater
remains anonymous towards every party not involved in the transaction.

Our contribution. Our personal reputation system combines concepts
from previous work, such as decentralized storage of reputation and some
technologies also used in blockchains with novel approaches to security. Our
personal reputation system provides rater anonymity towards the general
public, i.e. everyone except the rater, ratee and the platform. Adopting this
weakened, yet sensible, notion of anonymity, we construct our personal rep-
utation system from simple building blocks. Particularly, our construction
uses hash functions, signatures, and commitment schemes.

Paper organization. In Section 2, we present the formal definition of
personal reputation systems, as well as the building blocks used in our con-
struction of a personal reputation system. We present our personal reputa-
tion system in Section 3. Finally, in Section 4, we discuss our design choices
of our model of personal reputation systems, as well as our construction,
and its limitations.

2 Preliminaries and building blocks

In this section, we first present our definition and security notions of personal
reputation systems. We then proceed to present the building blocks used in
our construction of a personal reputation system.

2.1 Personal reputation systems

On a formal level, a personal reputation system is a collection of algorithms
and interactive protocols between the various entities involved, particularly
platforms, raters, and ratees. In our example scenario from the introduction,
crowd workers would take on the roles of ratees, while requesters would serve
as raters.

After the system and some parties have been initialized, the raters can
receive platform–transaction references (PTRs). A PTR is issued by a plat-
form to a rater, and certifies that the rater has bought a service from some
ratee. Eventually, the ratee hands out a rating token to the rater. Using
the PTR and the rating token, the rater can then submit her review. After-
wards, everyone can verify that the ratee has received a given rating, and

4



that the rating originates from a rater who has bought a product or service
from the ratee via a given platform.

Definition 1. Formally, a personal reputation system consists of four
probabilistic algorithms (GlobalSetup,RateeSetup,PlatformSetup,Verify) and
three protocols (IssuePTR, IssueRT,Rate), and features five types of parties:
a parameter generator, ratees, platforms, raters, and verifiers. An entity
may play the roles of multiple types of parties.

GlobalSetup is executed by a parameter generator which takes in security
parameter 1Λ and outputs public parameters pp.

RateeSetup is executed by a ratee who takes pp as input and outputs a
private key usk and corresponding verification key uvk.

PlatformSetup is executed by a platform which takes in pp and outputs a
private key psk and corresponding verification key pvk.

IssuePTR is executed between a rater and a platform who take pp as input;
the rater additionally takes in the platform’s verification key pvk; the
platform additionally takes in her secret key psk, a helper string tid,1

and a ratee’s verification key uvk. The rater outputs a PTR ptr.

IssueRT is executed between a rater and a ratee who take pp as input; the
rater additionally takes in the ratee’s verification key uvk and her PTR
ptr; the ratee additionally takes in her secret key usk. The rater out-
puts a rating token rt.

Rate is executed between a rater and a ratee who take in pp; the rater ad-
ditionally takes in the ratee’s verification key uvk, her rating token rt,
and her (unprocessed) rating review; the ratee additionally takes in her
secret key usk. Both parties output the (processed) rating r.

Verify is executed by a verifier who takes in pp, a ratee’s and platform’s
verification keys uvk and pvk, respectively, and a (processed) rating r;
the verifier outputs valid or invalid.

For every security parameter Λ, helper string tid, and unprocessed rating
review, we require
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pp ← GlobalSetup(1Λ),

(usk , uvk)← RateeSetup(pp),

(psk , pvk)← PlatformSetup(pp),

(ptr |⊥)← IssuePTR(pp, pvk |pp, psk , tid , uvk),

(rt |⊥)← IssueRT(pp, uvk , ptr |pp, usk),

(r |r)← Rate(pp, uvk , rt , review |pp, usk) :

Verify(pp, uvk , pvk , r) = valid


≥ 1− negl(Λ),

1tid could be a transaction or billing number.
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where the probability is over the random choices of the algorithms.

We stress that the non-global setups are independent of each other, so
ratees can work with multiple platforms, and platforms can work with multi-
ple ratees. We also point out that, although we have no enrollment operation
for raters, raters establish a permanent identity with platforms. After all,
platforms will naturally want to send invoices to raters for services provided
by the platforms. However, these identities are not directly part of our sys-
tem, but influence our system in the form of the helper strings tid used in
PTR generation. PTRs are tied to a single transaction. Given a rating,
a platform should be able to identify the rater that has created the rating
using a rating token generated from the PTR. Then, the platform should
be able to identify tid based on the PTR.

For typical reputation systems, a couple of security properties have been
proposed. Although there is no agreement in the literature on the exact
formulation of these security notions, some security concepts show up time
and again. Those notions are:

• binding of ratings to transactions,

• prevention of self-rating,

• linking of multiple ratings by the same rater for the same transaction,

• authenticity and integrity protection for ratings,

• rater anonymity, and

• traceability of misbehaving raters.

See [3] for a discussion and definition of these notions in the context of rep-
utation systems. As a side note, it has recently been found that linkablility
and traceability do not necessarily imply that two linked ratings can be
traced to the same rater [11], but this does not pose a problem in the recent
formulation of reputation systems in the universal composability framework
[2], and it also does not pose a problem in our particular construction.

Our security notions for personal reputation systems are very similar
to the ones proposed for reputation systems. Therefore, and we discuss
our construction with respect to these notions on an intuitive level; this is
feasible due to the simplicity of our construction. However, we formalize the
notions of authenticity and integrity protection, i.e. rating unforgeability,
and rater anonymity, specifically towards the general public.

The notion of rating unforgeability requires ratees to be unable to change
ratings or to compute ratings themselves, without involvement of another
party. The notion is defined relative to security experiment Expforge shown
in Figure 1.
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Expforge
A (Λ):

Setup: set P←∅, R=∅, computes params←
GlobalSetup(1Λ), and give params to A.

Query: A adaptively queries oracles
• OPCr()→pvk for creating new platforms.
• ORCr()→idR for creating new raters.
• OPTR(pvk ,idR,uvk)→tid for issuing PTRs

to raters.
• ORT(idR)→{0,1} for issuing rating tokens

to raters.
• ORate(idR, review) → {0, 1} for making

raters rate a ratee.
Responses: Upon query
• OPCr():

– (psk ,pvk)←PlatformSetup(params)
– P←P∪{(psk ,pvk)}
– give pvk to A.

• ORCr():
– idR←|R|, R←R∪{(idR,∅)}
– give idR to A.

• OPTR(pvk ,idR,uvk):
– check ∃(s,pvk)∈P for some s
– check ∃(idR,X)∈R for some X
– if checks succeed:

∗ tid←${0,1}Λ
∗ (ptr|⊥) ← IssuePTR(params,
pvk|params,s,tid,uvk) playing the
rater and the platform
∗ if the protocol did not abort: Y ←
X∪{(tid,(uvk ,pvk ,ptr),⊥,0,⊥)}
∗ else: Y ←X∪{(tid,⊥,invalid,0,⊥)}
∗ R←(R\{(idR,X)})∪{(idR,Y )}
∗ give tid to A

– otherwise: give ⊥ to A
• ORT(idR,tid):

– check ∃(idR,X)∈R and (tid,(u,v,p),⊥,
0,⊥)∈X for some u, v, and p

– if checks succeed:
∗ rt← IssueRT(params,u,p) playing

the rater while A plays the ratee
∗ if the protocol did not abort: Y ←

(X\{(tid,(u,v,p),⊥,0,⊥)})∪{(tid,
(u,v,,p),rt,0,⊥)}
∗ else: Y ← (X \{(tid,(u,v,p),,⊥,0,
⊥)})∪{(tid,(u,,v,p),invalid,0,⊥)}
∗ R←(R\{(idR,X)})∪{(idR,Y )}
∗ give 1 to A

– otherwise: give 0 to A
• ORate(idR,tid,review):

– check ∃(idR,X)∈R and (tid,(u,v,p),r′,
0,⊥)∈X for some u, v, and p

– check r′ 6= invalid
– if checks succeed:

∗ r←Rate(params,u,r′,review) play-
ing the rater whileA plays the ratee
∗ Y ← (X \{(tid,(u,v,p),r′,0,⊥)})∪
{(tid,(u,v,p),r′,1,r)}
∗ R←(R\{(idR,X)})∪{(idR,Y )}
∗ give 1 to A

– otherwise: give 0 to A
Output: Eventually, A outputs a tuple (uvk∗,
r∗). If for any (psk ,pvk)∈ P Verify(params,
uvk , pvk , r) = valid, and for all tuples
(idR,X)∈R and all (tid,(uvk ,pvk ,p),·,·,r)∈R
we have r 6= r∗, then experiment outputs 1.
Otherwise, the experiment outputs 0.

Figure 1: The rating forgery experiment for personal reputation systems
played with adversary A

The experiment keeps track of honest platforms and raters via sets P and
R, respectively. Set P contains the honest platforms’ secret and verification
keys. Set R contains for each honest rater an identifier, and over time,
also transaction identifiers, PTRs and rating tokens issued to the respective
rater, as well as the rater’s submitted rating. The goal is for the adversary
to come up with a rating that Verify declares valid under a given ratee’s
verification key and any of the honest platforms’ verification keys, while the
rating has not been submitted by any of the honest raters.

In experiment Expforge , all ratees, as well as malicious raters and plat-
forms, are played by the adversary. The adversary can set up new honest
platforms and raters by calling the relevant oracles. Other oracles can be
called for making honest platforms issue PTRs to honest raters and to make
honest raters request rating tokens from ratees or make them submit re-
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views. In the experiment, honest platforms and raters do not interact with
corrupt raters and platforms, respectively.

Definition 2. A personal reputation system is secure against rating forgery
if for all probabilistic polynomial time adversaries A we have Pr[Expforge

A (Λ)
= 1] ≤ negl(Λ), where the probability is taken over the random choices of
the adversary and the experiment.

We now turn toward the notion of rater anonymity. Based on our crowd
work scenario, as described in the previous section, full rater anonymity is
neither feasible nor desirable. Instead we settle for the weakened notion of
rater anonymity towards the general public. The notion requires the general
public to not learn who submitted a particular rating to a ratee, but the
ratee and the platform that mediated the transaction between the rater
and the ratee may learn the rater’s identity. Rater anonymity towards the
general public is still necessary as to protect trade secrets of the rater, the
platform, and the ratee. These considerations leads us to adopt the notion
of rater anonymity towards the general public as the anonymity notion of
choice for our personal reputation system. The notion of rater anonymity
towards the general public is formalized with respect to indistinguishability
experiment Expanon as shown in Figure 2.

In the experiment, as before, sets P and R are used to track honest
platforms and raters played by the experiment. Additionally, the experiment
plays an honest ratee identified by verification key uvk∗. In contrast to
the unforgeability experiment, in the anonymity experiment honest entities
can interact with corrupt entities. This is reflected in the various variants
of oracles used for different constellations of honest and dishonest entities
interacting. Particularly, oracles for issuing PTRs, for issuing rating tokens
and for submitting reviews exist in multiple variants. Variant C denotes the
variants featuring honest raters, but says nothing about the honesty of ratees
and platforms. Variant H denotes the variants featuring an honest non-
rater, i.e. ratee or platform. Finally, Variant D, only present in the oracle
for issuing PTRs, features both, honest platforms and honest raters. The
oracle variants not only differ in the honesty of parties, but, as a consequence,
also in their input and output behavior.

Definition 3. A personal reputation system provides rater anonymity to-
wards the general public if for all probabilistic polynomial time adversaries
A we have |Pr[Expanon

A (Λ) = 1] − 1/2| ≤ negl(Λ), where the probability is
taken over the random choices of the adversary and the experiment.

2.2 Building blocks

We now present the building blocks that we use in our construction of a
personal reputation system: commitment schemes, signature schemes and
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Expanon
A (Λ):

Setup: set P ← ∅, R = ∅, computes
params ← GlobalSetup(1Λ), (usk∗, uvk∗) ←
RateeSetup(params), and give params and
uvk∗ to A.

Query I: A adaptively queries oracles
• OPCr()→pvk for creating new platforms.
• ORCr()→idR for creating new raters.
• OPTR:C(pvk ,uvk), OPTR:D(pvk ,idR,uvk)→
tid and OPTR:H(pvk ,idR,tid)→ {0,1} for
issuing PTRs; Variant C: corrupt rater,
honest platform; Variant D: honest rater
and platform; Variant H: honest rater.
• ORT:C() and ORT:H(idR, tid) → {0,1} for

issuing rating tokens; Variant C: corrupt
rater, honest ratee; Variant H: honest rater.
• ORate:C() and ORate:H(idR, tid, review) →
{0,1} for making raters rate a ratee; Variant
C: corrupt rater, honest ratee; Variant H:
honest rater.

Responses: Upon query
• OPCr():

– (psk ,pvk)←PlatformSetup(params)
– P←P∪{(psk ,pvk)}
– return pvk

• ORCr():
– idR←|R|, R←R∪{(idR,∅)}
– return idR

• OPTR:C(pvk ,uvk):
– tid←${0,1}Λ
– ⊥ ← IssuePTR(params, s, tid, uvk)

playing the platform; A plays the rater
• OPTR:D(pvk ,idR,uvk):

– if ∃(s,pvk)∈ P for some s and ∃(idR,
X)∈R for some X:
∗ tid←${0,1}Λ
∗ (ptr|⊥) ← IssuePTR(params,
pvk|params,s,tid,uvk) playing the
platform and the rater
∗ if the protocol did not abort: Y ←
X∪{(tid,(uvk ,pvk ,ptr),⊥,0,⊥)}
∗ else: Y ←X∪{(tid,⊥,invalid,0,⊥)}
∗ R←(R\{(idR,X)})∪{(idR,Y )}
∗ return tid

– otherwise: return ⊥
• OPTR:H(pvk ,idR,tid,uvk):

– if ∃(idR, X) ∈ R for some X and
∀(t,·,·,·,·)∈X :t 6=tid:
∗ ptr← IssuePTR(params,pvk) play-

ing the rater; A plays the platform
∗ if the protocol did not abort: Y ←
X∪{(tid,(uvk ,pvk ,ptr),⊥,0,⊥)}

∗ else: Y ←X∪{(tid,⊥,invalid,0,⊥)}
∗ R←(R\{(idR,X)})∪{(idR,Y )}
∗ return 1

– otherwise: return 0
• ORT:C():

– ⊥← IssueRT(params,usk∗) playing the
ratee while A plays the rater

• ORT:H(idR,tid):
– if ∃(idR,X) ∈R and (tid,(u,v,p),⊥,0,
⊥)∈X for some u, v, and p:
∗ rt← IssueRT(params,u,p) playing

the rater; if u = uvk∗, the experi-
ment also plays the ratee on input
(params,usk∗), otherwise A plays
the ratee
∗ if the protocol did not abort: Y ←

(X\{(tid,(u,v,p),⊥,0,⊥)})∪{(tid,
(u,v,,p),rt,0,⊥)}
∗ else: Y ← (X \{(tid,(u,v,p),,⊥,0,
⊥)})∪{(tid,(u,,v,p),invalid,0,⊥)}
∗ R←(R\{(idR,X)})∪{(idR,Y }
∗ return 1

– otherwise: return 0
• ORate:C():

– r←Rate(params,usk∗) playing the ratee
• ORate:H(idR,tid,review):

– if ∃(idR,X) ∈R and (tid,(u,v,p),r′,0,
⊥)∈X for some u, v and p, and check
r′ 6= invalid:
∗ r ← Rate(params, u, r′, review)

playing the rater; if u=uvk∗, the
experiment also plays the ratee on
input (params,usk∗), otherwise A
plays the ratee
∗ Y ← (X \{(tid,(u,v,p),r′,0,⊥)})∪
{(tid,(u,v,p),r′,1,r)}
∗ R←(R\{(idR,X)})∪{(idR,Y )}
∗ return 1

– otherwise: return 0
Challenge: Eventually, A outputs a

two rater identifiers id0, id1 such that
(id0,X),(id1,Y )∈R for some X,Y , platform
verification key pvk such that (psk ,pvk)∈P for
some psk , and unprocessed rating review . Pick
b←$ {0,1}, perform actions of oracle queries
tid ← OPTR:D(pvk , idb,uvk

∗), ORT:H(idb, tid)
and s←ORate:H(idb,tid,review). If s=0, the
experiment outputs −1 and aborts.

Query II: Same as Query I.
Output: Eventually, A outputs a bit b′. The

experiment outputs 1 if b=b′ and 0 otherwise.

Figure 2: The rater anonymity experiment played with adversary A
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hash functions. In addition to these building blocks, we briefly introduce
their security notions.

A commitment scheme can be likened to a sealed envelope. It allows
a person to commit to a value without publishing the value, and later on
publish the value and convince others that the published value is the value
the person originally committed to; c.f. Ch. 5.6.5 of [13]. Commitment
schemes are binding, i.e. the value committed to cannot be changed, and
hiding, i.e. the value remains unknown to everyone except the person who
has committed to the value.

A signature scheme is the cryptographer’s equivalent to a handwritten
signature. The signature is supposed to identify the signer in a way that
the signer cannot feasible deny to have created the signature. In order to
prevent adversaries from simply copying signatures, the signature must also
consider the message that is being signed, as to make clear that the signer
indeed intended to sign the given message; c.f. Ch. 12 of [13]. Signatures
must be existentially unforgeable under adaptively chosen message attacks,
i.e. it is hard to compute a signature under a message without knowledge
of the signer’s secret key, even if many signatures for other messages under
the signer’s secret key are known.

A family of hash functions is a keyed function used to compute short
fingerprints or digests (hashes) of long messages; c.f. Ch. 5 of [13]. These
functions are collision resistant, i.e. it is hard to find two distinct messages
that result in the same digest.

3 Construction

In this section, we first review the hash chain principle that we use to con-
struct a personal reputation system. From hash chains and the building
blocks presented in the previous section, we then construct our personal
reputation system.

3.1 Hash chain principle

Our personal reputation system makes use of the hash chain principle. We
use two types of hash chain entries, namely self-signed certificates and data
blocks. Hash chain entries are tied together (“chained”) using a hash func-
tion.

Self-signed certificates can only occur as the initial entry of a hash chain.
They are 2-tuples that consist of a signature verification key and a signature
on the key. We call a self-signed certificate valid if the signature is a valid
signature on the verification key under the verification key.

Data blocks are 3-tuples consisting of data, a hash, and a signature.
Data blocks cannot occur at the start of a hash chain. The hash contained
in a data block is a hash of another hash chain entry, called the predecessor;
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hence, the hash establishes a successor/predecessor relation between hash
chain entries, and thus, the chain.

If the hash is generated using a collision resistant hash function family,
for any given set of hash chain entries, the successor and predecessor relations
partially order the set with overwhelming probability, where the probability
is over the random choice of the hash function from its family.

Considering a partially ordered set of hash chain entries, we call a data
block valid if (1) the block’s signature is a valid signature on the block’s data
and predecessor hash, and (2) the signature verification key that makes the
data block’s signature valid also makes the data block’s predecessor valid.
We call a set of hash chain entries valid, if it is totally ordered by the
predecessor relation, and every element from the set is valid. It is easy to
see that a valid set of hash chain entries contains exactly one self-signed
certificate.

In summary, a hash chain scheme consists of four probabilistic polyno-
mial time algorithms Setup, Initialize, Append, and VerifyChain. Setup is a
parameter generation algorithm that chooses a concrete hash function and
publishes its choice. Initialize sets up a new instance of the hash chain by
establishing its initial block. Append adds a new block to an existing hash
chain. VerifyChain verifies an existing chain as described above.

The successor and predecessor relations on hash chain entries give rise to
the notions of minimal and maximal blocks for a set of hash chain entries:
the minimal block is the only block from the set that does not have a prede-
cessor in the set, whereas the maximum block is the only block from the set
that does not have a successor block in the set; we denote the minimal and
maximal blocks of a set E of hash chain entries as minE and maxE, re-
spectively. Hence, for valid hash chains, the minimal block is the self-signed
certificate, and the maximal block is the block most recently appended to
the chain. For practical purposes, we assume the set of hash chain entries to
be stored as an ordered set (ordered according to the predecessor relation),
so we do not need to sort entries in our algorithms.

We now construct a concrete hash chain scheme from a signature scheme
Σ = (KeyGen, Sign,Verify), and a collision resistant hash function family H =
(KeyGen,Eval). Our hash chains work as follows.

Setup(1Λ): let hfk ← H.KeyGen(1Λ) and output hfk .

Initialize(hfk): let (sk , vk)← Σ.KeyGen(hfk), let σ ← Σ.Sign(sk ,H.Eval(hfk ,
vk)), and output (sk , E = {(vk , σ)}) as the hash chains secret key and
first block, i.e. self-signed certificate.

Append(hfk , sk , data, E): let e ← maxE be the latest hash chain entry,
compute h ← H.Eval(hfk , 〈e, data〉), compute σ ← Σ.Sign(sk , h), and
output E = E ∪ {(data, h, σ)} as the (extended) hash chain.
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VerifyChain(hfk , E): let c ← minE be the oldest hash chain entry, and
parse c as (v, s). If parsing fails or Σ.Verify(v,H.Eval(hfk , v), s) 6= valid,
output invalid. Otherwise, for all e ∈ E\{c} in ascending order (accord-
ing to the successor relation), parse e as (d, h, s), let e′ ∈ E be e’s pre-
decessor and check that H.Eval(hfk , 〈e′, d〉) = h and Σ.Verify(v, h, s) =
valid. If either check fails for any e ∈ E \{c}, output invalid; otherwise
output valid.

Our construction of a personal reputation system uses the hash chain
principle in a gray box manner, i.e. we rely on the primitive as described
above, but use the keys computed during setup and initialization in other
contexts, too. For example the hash function key is used for hash function
evaluations not related to the hash chain. Similarly, the signing key sk may
be used to sign messages unrelated to the hash chain.

We also do not have any particular security notions for hash chains that
we rely on when proving our construction secure. It should be noted though,
that hash chains are fork consistent and append-only authenticated data
structures if they are built from a collision resistant hash function family
[6].

3.2 Our personal reputation system

As described before, our personal reputation system is to enable the dis-
tributed storage of ratings, independent of platforms. As a means for ratees
to maintain a reasonable degree of control over their data (e.g. in compli-
ance with data privacy laws), we have ratees store the ratings they receive.
However, we employ the hash chain principle and the other primitives pre-
sented in the previous section in order to prevent ratees from tampering
with the ratings. Particularly, if ratees try to reject unfavorable reviews or
delete old ratings, this can be detected.

In our personal reputation system, every ratee operates her individual
hash chain. We call a ratee’s hash chain her “E-Set,” and every E-Set is
complemented by an “R-Set”. The E-Set is used to register events, such as
the issuance of a rating token to a rater, or the receipt of a rating from a
rater. In order to prevent a ratee from rejecting an unfavorable rating, a
rater first commits to her review and sends the commitment to the ratee.
The rater sends the actual rating, including a decommit value only after she
has received confirmation that the commitment has been appended to the
ratee’s E-Set. The rating is then stored in an R-Set entry that corresponds
to the commitment’s E-Set entry.

The previously mentioned platform–transaction references (PTRs) that
platforms hand out to raters are certificates on a one-time identity estab-
lished by a rater with the platform. The PTR certifies that the rater has
bought a service from a rater. The platform that was involved in the trans-
action is also mentioned in the certificate, and the PTR is tied to the specific
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transaction. We use the term “one-time” loosely, because the same identity
is used for multiple publicly observable interactions between a rater and a
ratee, i.e. issuance of a rating token and submission of a review, but the
identity is one-time in the sense that all these interactions are tied to a single
transaction on the platform, i.e. if a rater happens to buy a service from
the same ratee twice, the rater would use different identities. Although then
the ratee may know that she interacted with the same rater multiple times,
the general public does not learn this fact.

A rating token in our system is a certificate on a rater’s one-time identity
issued by a ratee, together with the ratee’s PTR. Rating tokens are issued
in order to publicly register a transaction and the rater’s transaction-specific
one-time identity in the ratee’s E-Set.

We now present our personal reputation system. Let CS = (Setup,
Commit,Verify) be a commitment scheme, and let HC be the hash chain
constructed as in Section 3.1 that uses a collision resistant hash function
family H = (Setup,Eval) and a signature scheme Σ = (KeyGen,Sign,Verify).
Our personal reputation system is as described below.

GlobalSetup(1Λ): compute cpp ← CS.Setup(1Λ), hfk ← HC.Setup(1Λ), and
publish pp = (cpp, hfk).

RateeSetup(pp): let (usk ,E -Setuvk ) ← HC.Initialize(hfk) (i.e. the ratee’s
signing key and her self-signed certificate for verification key uvk that
corresponds to usk), let R-Setuvk ← ∅, publish (E -Setuvk ,R-Setuvk ),
and privately output usk .

PlatformSetup(pp): compute (psk , pvk) ← Σ.KeyGen(1Λ), publish pvk , and
privately output psk .

IssuePTR(pp, pvk |pp, psk , tid , uvk): The rater first computes (rsk , rvk) ←
Σ.KeyGen(1Λ), and then sends her one-time identity rvk to the plat-
form.

The platform fetches the self-signed certificate e0 ← min E -Setuvk of
ratee uvk ’s hash chain, computes signature t← Σ.Sign(psk ,H.Eval(hfk ,
〈tid , e0, rvk〉), and sends ptr ′ = (pvk , uvk , rvk , tid , t) to the rater.

The rater privately outputs ptr = (rsk , ptr ′).

IssueRT(pp, uvk , ptr |pp, usk): The rater sends rvk to the ratee.

The ratee sends crt ← Σ.Sign(usk ,H.Eval(hfk , rvk)) to the rater.

The rater computes rt ← (rsk , ptr ′, crt), and engages in an execution
of protocol Rate with the ratee: the rater’s input is (pp, uvk , pvk , rt ,
⊥), i.e. an empty review; the ratee’s input is (pp, usk). Finally, the
rater outputs rt .
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Rate(pp, uvk , rt , review)(pp, usk): The rater verifies ratee uvk ’s hash chain
E -Setuvk via HC.VerifyChain and aborts the protocol if verification
fails. Otherwise, the rater identifies the hash chain’s most recent block
e ← max E -Setuvk , computes (c, d) ← CS.Commit(cpp, review), com-
putes data ← (rvk , ptr ′, crt , c) (where crt and ptr ′ are from rt and
ptr , respectively), computes h← H.Eval(hfk , 〈e, data〉), computes σ ←
Σ.Sign(rsk , h), and sends (data, h, σ) to the ratee.

The ratee uses data ′ ← (rvk , crt , ptr ′, c, h, σ) to obtain a new (publicly
observable) E-Set entry viaHC.Append(hfk , usk , data ′,E -Setuvk ). The
ratee sends her signature from the new E-Set entry to the rater.

The rater computes r = (ptr ′, d, review), privately outputs r , and
sends r to the ratee.

The ratee (re-)publishes R-Setuvk ← R-Setuvk ∪ {r}, and privately
outputs r .

Verify(pp, uvk , pvk , r): Fetch the self-signed certificate e0 ← min E -Setuvk
of ratee uvk ’s hash chain, verify E -Setuvk via HC.VerifyChain, check
r ∈ R-Setuvk , check Σ.Verify(pvk ,H.Eval(hfk , 〈tid , e0, rvk〉), t) (where
tid , rvk , and t are from ptr ′ from r), check that arguments uvk and pvk
match components uvk and pvk from r ’s ptr ′, and check that at most
two entries ((rvk , crt , p, c, h, σ), h′, σ′) ∈ E -Setuvk satisfy p = ptr ′.
If either check fails, output invalid. Otherwise, let ((rvk , crt , p, c, h,
σ), h′, σ′) with p = ptr ′ be maximal in E -Setuvk with respect to the
successor relation. Check Σ.Verify(uvk ,H.Eval(hfk , rvk), crt) = valid,
check h = H.Eval(hfk , 〈rvk , crt , ptr ′, c〉), check Σ.Verify(rvk , h, σ) =
valid, and check CS.Verify(cpp, (review , d), c) = valid. If either check
fails, output invalid; otherwise output valid.

Of course, parties do not trust each other, and thus do not trust the
data sent by other parties. Therefore, all received data is recomputed and
signatures are verified at the receiving end of communication. We have
omitted such checks and computations to not clutter our presentation.

Efficiency. Unfortunately, the simplicity of the primitives used in our con-
struction necessitates the whole hash chain to be requested, transmitted, and
verified whenever someone wants to rate a ratee or verify a rating. Thus,
both computation and bandwidth usage of these operations linearly depends
on the number of previously issued rating tokens and the number of ratings.
The inefficiency is caused by the need to verify ratees’ hash chains (E -Sets)
as part of these operations.

Mitigating efficiency bottlenecks. It stands to reason that replacing
the hash chain in our construction by a more efficient authenticated data
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structure, particularly one that is fork consistent, append-only, and has con-
cise proofs, may make our construction more efficient. However, we expect
that exchanging hash chains for a more efficient data structure does not
provide significant new insights. We also expect that changes to our con-
struction due to incorporating a different data structure would be relatively
minor and would not affect our construction’s security.

Security. We now consider the security of our personal reputation system.
To that end, we first discuss our construction’s security against rating forgery
in a formal manner. Afterwards, we discuss our system’s other security
properties.

Theorem 4. If HC is instantiated using a collision resistant hash func-
tion family H and a signature scheme Σ that is existentially unforgeable un-
der adaptively chosen message attacks, and CS is a computationally binding
commitment scheme, then our personal reputation system is secure against
rating forgery.

Proof. We remind the reader about the hash-then-sign principle. That is,
hashing a message with a collision resistant hash function and then singing
the hash using a signature scheme that is existentially unforgeable under
adaptively chosen message attacks (euf-cma secure) results in an euf-cma
secure signature. A similar result holds for combining a binding commit-
ment scheme and an euf-cma secure signature scheme in a commit-then-sign
fashion, resulting in an euf-cma secure signature. This can be proven by
adapting the proof for the hash-then-sign case, exchanging collision resis-
tance for the binding property.

We now prove that every adversary that breaks our personal reputation
system’s security against rating forgery must break the security of at least
one of the underlying primitives. To that end, we split the set of success-
ful adversaries (adversaries that make experiment Expforge output 1 with
non-negligible probability) into two categories, depending on what part of
our reputation system is successfully attacked. Type A adversaries forge
signatures under a platform’s signature verification key. Type B adversaries
forge signatures under a rater’s signature verification key.

However, we first have to argue that every successful attack falls into
one of these categories. For that, we observe that a successful adversary
outputs a tuple (uvk∗, r∗), such that, for one of the honest platforms set up
over the course of the experiment, the platform’s signature verification key
satisfies Verify(pp, uvk∗, pvk , r∗) = valid. Reviewing the rating verification
algorithm of our scheme, we find that only two of the components considered
by Verify are not under control of the adversary, namely, the tuple ptr ′ =
(pvk , rvk , tid , t), and the tuple rgs = (crt , p, c, h, σ), where p = ptr ′, ptr ′

is part of r∗, and r∗ ∈ R-Setuvk . All other components are controlled
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by the adversary, particularly the ratees’ E -Setuvk and R-Setuvk and their
properties, as well as the signatures σ′ contained in hash chain entries.

The public part of the PTR, ptr ′, is, among other things, a certificate
on a rater’s signature verification key rvk , which is used in the verification
of signature σ. The certificate property of ptr ′ is verified under verification
key pvk . From the fact that rating verification evaluates to valid under an
honest platform’s verification key and the fact that in experiment Expforge

honest platforms only hand out PTRs to honest raters, we know that a
successful adversary must have come up with an honest platform’s PTR for
a rater controlled by the adversary (type A adversary), or relies on a PTR
given to an honest rater, but changes/replaces that rater’s review (type B
adversary).

In either case, the adversary has to forge a signature that is created in
accordance with the provably secure commit-then-sign and hash-then-sign
principles, using primitives that are assumed secure.

Impracticability of rating removal. It is noteworthy that our notion
of personal reputation systems, and particularly, our scheme, allow for the
removal of ratings. In order to remove ratings, a ratee has to de-publish the
ratings’ R-Setuvk entries.

However, everyone can estimate whether a given ratee deletes ratings by
comparing the cardinalities of the ratee’s R-Setuvk and E -Setuvk . These car-
dinalities should be roughly the same (allowing for transmission errors and
connection time outs for ongoing rating procedures, etc.). Large discrepan-
cies should raise alarms. In order to avoid discrepancies in set cardinalities,
the E -Setuvk entry that corresponds to the deleted R-Setuvk entry needs to
be deleted as well. However, deleting an entry from E -Setuvk comes with a
host of problems on its own.

Deleting a single old entry from E -Setuvk , i.e. any block other than the
most recent one, can be detected by everyone, because the deletion of the
single entry results in the new E -Setuvk not being totally ordered, so every
attempt at verifying the hash chain E -Setuvk will fail. The most recent entry
from E -Setuvk may be deleted, but the deletion can be detected by the rater
that created the corresponding rating, and the rater can even prove that
fact via the signature from the deleted hash chain block: receipt of that
signature is a condition for the rater to submit her rating to the ratee. Of
course, E -Setuvk can also be truncated, i.e. all of the most recent entries
are deleted, in which case the previous detection and proof method apply
to each of the deleted blocks individually, and thus increase the probability
of detection.

If a rater detects that one of her ratings has been deleted, she can take
appropriate action outside the scope of our scheme. Potential actions in-
clude reporting the ratee who has deleted the rating to the platform that
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participated in creating the PTR used in the rating process, as well as suing
the ratee.

Of course, in order for raters to detect rating deletion, they have to per-
form their checks repeatedly. This requirement of having raters occasionally
check for rating deletion may seem to put an unnecessary burden on raters,
especially in comparison to currently deployed reputation systems. How-
ever, the time intervals in between two checks can increase over time. For
example, intervals could be doubled after each successful check. This is be-
cause we can expect new ratings to be added to an E -Setuvk . At the same
time, assuming a rational ratee, the benefit of removing one old rating may
be offset by the cost of removing all of the old rating’s successors (and thus
the increased probability of rating deletion).

Note that the above discussion on rating removal is independent of our
use of hash chains and applies to replacements as well, because a malicious
ratee may simply roll back her E -Setuvk to an earlier state. However, as
long as the authenticated data structure used to instantiate E -Setuvk is fork
consistent and append-only, the above detection method will apply.

Further security properties. Now that we have discussed our scheme’s
protection of rating authenticity and integrity, and the threat of rating re-
moval, we have a look at the other security notions for (personal) reputation
systems listed in Section 2.1, and argue on an intuitive level that our per-
sonal reputation system satisfies these notions.

Regarding identity management, we see that all major parties, i.e. raters,
ratees, and platforms, involved in our personal reputation system have cer-
tified identities, multiple of them in the case of raters. Platform and ratee
identities are established by their respective public signature verification
keys that may or may not be certified by a certification authority as part of
a public key infrastructure; however, such a structure is beyond the scope of
our system. Raters’ one-time identities are certified by platforms and ratees
via their respective signatures in PTRs and rating tokens, as well as their
agreement on these identities, i.e. raters’ signature verification keys. In ad-
dition, as mentioned before, raters’ permanent identities are established by
platforms (e.g. for billing purposes) and tied to raters’ one-time identities
via the helper strings tid which are contained in the publicly observable
parts of PTRs, i.e. component ptr ′.

Regarding rater anonymity, we note that our construction withholds
rater’s permanent identities from the public. This can be seen immedi-
ately from the fact that there is no public establishment of permanent rater
identities in our construction. Instead one-time identities are established,
one identity per transaction. Assuming the helper strings tid contained in
PTRs, and particularly their public component ptr ′ contained in ratings, do
not provide any information on raters’ permanent identities to the public,
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the one-time identities of raters are unlinkable by the public in an informa-
tion theoretic sense, both among each other and to the raters’ permanent
identities.

Thus, in the Expanon experiment, no adversary can do better than guess-
ing what rater has performed the challenge rating. This establishes the
following theorem.

Theorem 5. If helper strings tid contain no information on rater’s per-
manent identities, our construction achieves rater anonymity towards the
general public.

Although the public is unable to link a rating to a rater’s permanent
identity, the same one-time identity is used for multiple interactions between
raters and other parties involved in the same transaction. This is because
one-time identities and transactions are tied together by PTRs, and the same
PTR is used for all interactions that are part of the respective transaction.
Thus, PTRs allow for linking multiple ratings for the same transaction.
Due to the aforementioned necessity of platforms establishing a permanent
identity of raters, even though outside the scope of our reputation system,
misbehaving raters can be traced. Furthermore, all ratings for a transaction
can be traced to the same permanent identity.

Prevention of self-rating is a consequence from our use of PTRs. Partic-
ularly, ratees cannot forge PTRs or copy a PTR from another transaction,
because this would require forging either raters’ or platforms’ signatures.
However, ratees can legitimately obtain a PTR by buying a product or ser-
vice from themselves (via an honest platform), or by setting up a dishonest
platform themselves. In reputation systems that do not require raters, ra-
tees, and platforms to be disjoint sets and do not enforce the use of a single
(permanent) identity for all roles, such attacks are always possible. Our
personal reputation system is an example of such a system.

However, in many practical scenarios, platforms require payment for
their services; typically a percentage of per-transaction payments. Thus,
ratees buying from themselves via an honest platform involves costs to the
ratee. If the costs to the ratee are higher than the benefits from a rating,
self-rating via honest platforms can be mitigated, at least as far as rational
ratees are concerned.

On the other hand, since our personal reputation system explicitly al-
lows ratees to work with multiple platforms, and platforms will have different
types of reviews, e.g. 5-star scale or free text reviews, there is a need for rep-
utation evaluation functions that help with interpreting ratees’ reputation.
Such reputation evaluation functions not only consider the actual review for
a transaction, but also what platform has brokered that transaction. Plat-
forms that nobody has ever heard of, e.g. platforms set up by dishonest
ratees, will have effectively no influence when evaluating reputation. Thus,
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by using appropriate reputation evaluation functions, the benefits of mali-
ciously set up platforms can be minimized, preventing rational ratees from
obtaining PTRs from dishonest platforms.

In this context, CCR [7], c.f. related work, comes in. CCR considers such
things as the confidence in reputation from different communities/platforms
and weighs them accordingly. It should also be noted that reputation eval-
uation functions are an active research topic in economics.

4 Discussion

From theory’s point of view, one can ask whether the primitives we use in
our construction of a personal reputation system are necessary, or whether
weaker building blocks suffice. For example, the signature scheme may be
replaced by a one-time signature scheme. This is applicable to raters’ sig-
natures, because each rater creates exactly two signatures (and could have
two one-time keys certified by the platform and the ratee as part of the PTR
and the rating token). In practice, however, one-time signature schemes are
often less efficient than signature schemes.

Additionally, applying one-time signatures does not allow the system
to recover from concurrent rating, i.e. if two raters rate the same ratee at
the same time, and thus use the same hash chain block as a basis for their
computation, only one of the ratings can occur in the hash chain, while
the other one has to be discarded. Otherwise, a fork of the hash chain
occurs or rating verification will eventually fail (particularly, verification of
the rater’s signature inside a hash chain entry will fail). Hence, in order to
recover from concurrent rating, one of the raters has to perform the rating
process a second time, but based on the hash chain entry generated from the
other rater’s rating. While this is feasible with signature schemes, one-time
signature schemes do not allow this (or rather: do not give any security
guarantees in this situation).

From both, a theoretical and a practical point of view, one may criticise
that our security model only considers security in the presence of malicious
or rational ratees, but does not consider attacks by malicious platforms or
raters, as well as collusion attacks. See [5] for discussions of some attacks of
these types.

From a practical point of view, it is questionable whether platforms may
actually be willing to participate in a personal reputation system, because
personal reputation systems prevent vendor lock-in. After all, vendor lock-
in may be a desirable feature from the vendor’s perspective. However, our
construction aims at minimizing the platform’s involvement in the system.

A point of criticism with our system is that ratees have to be online
constantly to accept new ratings or serve requests for their hash chains
(E-Sets) and rating sets (R-Sets). We expect that specialized services will
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emerge to take on the roles of ratees.
Despite the potential benefits of such services, our reputation system

provides the option for ratees to operate their own instance of the system,
and thus, as long as ratees hold a copy of the singing key used for their hash
chain, our proposal prevents vendor lock-in with respect to the service. The
option for ratees to run their own instance of the reputation system also has
the strong potential to prevent the formation of a single point of attack.

Services would also be helpful in normalizing reviews made on different
scales, i.e. services that provide reputation evaluation functions mentioned
at the end of the previous section. This type of service could re-use concepts
from CCR [7], c.f. related work.
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