
Fakultät für Elektrotechnik, Informatik und Mathematik
Arbeitsgruppe Codes und Kryptographie

Implementation and Comparison of
Elliptic Curve Algorithms in Java

Master’s Thesis
in Partial Fulfillment of the Requirements for the

Degree of
Master of Science

by
Swante Scholz

submitted to:
Prof. Dr. Johannes Blömer

and
Jun. Prof. Dr. Sevag Gharibian

Paderborn, August 1, 2019





Declaration
(Translation from German)

I hereby declare that I prepared this thesis entirely on my own and have not used outside
sources without declaration in the text. Any concepts or quotations applicable to these
sources are clearly attributed to them. This thesis has not been submitted in the same
or substantially similar version, not even in part, to any other authority for grading and
has not been published elsewhere.

Original Declaration Text in German:

Erklärung
Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als
der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähn-
licher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil
einer Prüfungsleistung angenommen worden ist. Alle Ausführungen, die wörtlich oder
sinngemäß übernommen worden sind, sind als solche gekennzeichnet.

City, Date Signature

iii





Contents
Abstract 1

1 Introduction 3

2 Fundamentals 5
2.1 Finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Extension fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Discrete logarithm problem . . . . . . . . . . . . . . . . . . . . . 6

2.2 Elliptic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 General point addition . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Point doubling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.5 Corner cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.6 Scalar multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.7 Group order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.8 Barreto-Naehrig curves . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.9 Application example: elliptic curve Diffie–Hellman key exchange . 10

2.3 Bilinear pairings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Applications of pairings . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Reduced Tate pairing . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Optimization ideas 17
3.1 Projective and Jacobian coordinates . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Projective addition . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Projective doubling . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.4 Jacobian addition . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.5 Jacobian doubling . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.6 Mixed additions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.7 Comparison of costs . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Windowed exponentiation . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 2w-ary exponentiation . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Basic sliding window exponentiation . . . . . . . . . . . . . . . . 24
3.2.3 Signed-digit methods . . . . . . . . . . . . . . . . . . . . . . . . . 25

v



Contents

3.2.4 Comparison of costs . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Multiexponentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Basic idea: merging the squarings . . . . . . . . . . . . . . . . . . 28
3.3.2 Simultaneous methods . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Interleaved methods . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Ate pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Implementation-specific optimizations . . . . . . . . . . . . . . . . . . . . 31

4 Implementation 33
4.1 General architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Elliptic curve point operations . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Exponentiations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Single exponentiation . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Multiexponentiation . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Ate pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 Simplified implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6.1 Unit tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.6.2 Performance tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 Smartphone implementation . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Evaluation 43
5.1 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Basic field operations evaluations . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Affine vs Jacobian vs projective coordinates . . . . . . . . . . . . . . . . 44
5.4 Comparison of single exponentiation techniques . . . . . . . . . . . . . . 44
5.5 Comparison of multiexponentiation techniques . . . . . . . . . . . . . . . 46
5.6 Performance gains via implementation-specific optimizations . . . . . . . 49
5.7 Tate vs Ate pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.8 Performances on a smartphone . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Conclusion & future work 53

vi



Acronyms
CDHP computational Diffie-Hellman problem. 11

DDHP decisional Diffie-Hellman problem. 11, 12

DLP discrete logarithm problem. 6

ECC elliptic curve cryptography. 3, 5

ECDLP elliptic curve discrete logarithm problem. 6, 11

IBE identity-based encryption. 13, 14

JIT just-in-time. 40

NAF non-adjacent form. 26

SAS sequential aggregate signature. 14

TTP trusted third tarty. 13, 14

wNAF width-w non-adjacent form. 26, 27

vii





Notation

N the natural numbers, including 0: N := {0, 1, . . . }
A[i] the element of an array/list with index i; indices start at 0.

A[i...j] the subarray of A from index i to index j (inclusive); if either
index is outside of A’s range, a smaller subarray containing only
the elements of A whose indices are within [i...j] will be returned

log x the binary logarithm of x
p a (usually large) prime
q a prime power: q = pk, k ∈ N>0

F placeholder for an arbitrary (not necessarily finite) field
G placeholder for an arbitrary group
0G neutral element of additive group G

1G neutral element of multiplicative group G

Fq finite field with exactly q = pk elements; if q is prime (k = 1),
Fq = {0, 1, ..., q − 1}

F∗q multiplicative group Fq \ {0}
E the equation defining an elliptic curve in the short Weierstrass

form:
E : y2 = x3 + ax+ b

E(F) set of points with coordinates from field F lying on an elliptic curve
E, including ∞

∞ neutral element of elliptic curve E(F), the point at infinity
#E(F) number of points on curve over field F, including ∞

r a large prime dividing #E(F), thus also the size of a subgroup of
E(F)

P +Q general addition of two points on an elliptic curve E
P + P = 2P doubling of a point P on an elliptic curve E

ix



Acronyms

kP P + P + P + ... (k times), the kth scalar multiple of elliptic curve
point P

G a designated point on E(Fpk), the generator ; G generates the cyclic
elliptic curve subgroup that is used for ECC

EG(Fpk) the cyclic elliptic curve subgroup of E(Fpk), generated by the gen-
erator G ∈ E(Fpk): EG(Fpk) = {eG : e ∈ {1 . . . nG}} ⊆ E

nG smallest positive integer such that nGG =∞ for a generator G ∈
E(Fpk); thus, nG is also the size of the subgroup generated by G;
if G was specifically chosen to generate a subgroup of given size r,
we have nG = r

h cofactor of curve E with generator G: h = #E(Fpk)/nG ∈ N

k the exponent of the prime power q = pk; in the context of groups,
k is thus also the embedding degree of Fpk : the smallest integer s.t.
nG | pk − 1

t the trace of Frobenius: t = #E(Fq)− q − 1
char(Fpk) = p the characteristic of Fpk , defined as

min
{
n ∈ N : n · a = 0 ∀ a ∈ Fpk

}

E(Fpk)[r] the r−torsion subgroup of curve E(Fpk):

E(Fpk)[r] := {P ∈ E : rP =∞}

(x, y) affine coordinates, equivalent to (x, y, 1) in projective and Jacobian
coordinates

(X, Y, Z) projective or Jacobian coordinates; if Z = 0, (X,Y,Z) represents
∞, otherwise it’s equivalent to affine point (X/Z, Y/Z) (in the
projective case) or (X/Z2, Y/Z3) (in the Jacobian case)

e bilinear pairing function which maps from the source groups G1
and G2 to the target group GT

πp(Q) Frobenius endomorphism of (affine) elliptic curve point Q:
πp(Q) = πp((Qx, Qy)) := (Qp

x, Q
p
y)

x



Abstract
Cryptography has a huge impact on our everyday lives: Private messaging, online bank-
ing, E-commerce, etc.; none of this would work securely without proper cryptographic
protocols. But with rising computational power of potential attackers, the key lengths
required to keep popular encryption schemes like RSA secure have become inconveniently
large.
This has given rise to interest in alternative protocols that require shorter keys for

the same level of security. Elliptic curve cryptography (ECC) is one way to implement
such protocols. Together with appropriately defined bilinear maps (called pairings), the
advancement of ECC led to new achievements like identity-based cryptography.
There are many subtopics related to ECC (point addition, scalar multiplication, and

pairings, among other things), with numerous possible ways to approach them each and
it is often not clear when to use which technique, and how to efficiently implement it in
Java.
Over the course of our work on this thesis, we looked at all these topics, implemented

the algorithms in Java, and evaluated their relative performance on laptops and Android-
smartphones.

1





1 Introduction
Elliptic curve cryptography (ECC) is based on operations on points on a two-dimensional
curve defined by the Weierstrass equation

y2 = x3 + ax+ b

over a finite field Fpk .
Subexponential algorithms exist for solving the discrete logarithm problem in finite

fields, requiring RSA protocols to use large keys in order to remain secure. Meanwhile, no
subexponential algorithms have been found for the equivalent problem for elliptic curves,
making them attractive in particular for environments where memory or bandwidth is
limited, for example on smart cards (see [9, p. xxx]).
The main goal of this master thesis is to give an overview of various important algo-

rithms that can be used for ECC, show how to implement them efficiently in Java, and
evaluate which ones are best suited for given tasks and environments. We are primarily
focusing on the practical aspects of implementing these algorithms, rather than dwelling
on the theoretical aspects and providing rigorous proofs. For a more detailed analysis
of the mathematical subtleties of the subject matter, please refer to [9], [12], and [4].
All code written over the course of our work on this thesis built upon upb.crypto.math,

the open source elliptic curve library of the University of Paderborn (https://github.
com/upbcuk/upb.crypto.math/), adapting and extending it at appropriate places in
order to accommodate the new algorithms and techniques presented here.
The remainder of this thesis is structured as follows: In Chapter 2, we present the

mathematical foundations of ECC – finite fields, elliptic curves, and bilinear pairings.
All operations mentioned in that chapter are already part of the upb.crypto.math li-
brary. In Chapter 3, we extend on the previously described operations, showing how
they can be more efficiently computed using more advanced techniques, for example by
using projective or Jacobian coordinates instead of affine ones, or by replacing the simple
double-and-add method for scalar multiplication with faster, windowed methods. Chap-
ter 4 then continues with outlining how these optimization ideas have been implemented
in Java and integrated in the upb.crypto.math library. In Chapter 5, we show results
of running performance tests for all new algorithms in comparison to the existing ones,
both on a laptop and on an Android smartphone, with various combinations of parame-
ters. Chapter 6 contains some final thoughts on how meaningful the improvements were
overall and which areas could be further researched in future work.

3

https://github.com/upbcuk/upb.crypto.math/
https://github.com/upbcuk/upb.crypto.math/




2 Fundamentals
In this chapter we will describe fundamental structures and operations required for ECC.
All operations mentioned in this chapter were already part of the upb.crypto.math
library at the start of this project.
In Section 2.1 we will summarize relevant characteristics of finite fields. Section 2.2

continues with the definition of elliptic curves and their properties. Finally, in Section
2.3 we will explain the details of bilinear pairings in general, and the Tate pairing in
particular.

2.1 Finite fields
Finite fields are the basic underlying building blocks used for elliptic curves. Thus,
understanding their basic properties is crucial in understanding ECC.

2.1.1 Definition
A field is a triple (K,+, · ) such that

• (K, + ) is an abelian group with neutral element denoted by 0

• (K∗, · ) is also an abelian group, with its neutral element denoted by 1

• Distributivity holds: a · (b+ c) = a · b+ a · c

If a field is of finite order q, it is called a finite field.
The only finite fields that exist are of order q = pk with p prime and k ∈ N≥1 (cf.

[12, p. 26]). Finite fields of prime order are called prime fields. Finite fields with order
q = pk, with k > 1 are called extension fields.
Any two finite fields of the same order q are isomorphic to each other (cf. [9, p. 31]).

A finite field of prime power order is therefore essentially unique and denoted by Fq.

2.1.2 Extension fields
While an element x of a prime field Fp can simply be represented by an integer i ∈
{0, ..., p− 1}, it is not immediately obvious how to represent an element of an extension
field Fpk . As outlined in [9, p. 34], one possibility is to use polynomials of degree k with
all the coefficients being from Fp. Addition, subtraction and multiplication are performed
modulo an irreducible polynomial m(X) (also of degree k), while division/inversion can
be implemented using a variation of the extended GCD algorithm.

5



2 Fundamentals

It should be noted that a trivial multiplication implementation on the polynomials will
incur a runtime cost that is quadratic in k. Thus it is desirable to work with lower-degree
polynomials if possible in order to optimize runtime performance.

2.1.3 Discrete logarithm problem
For a (multiplicative) group G and a randomly chosen integer x ∈ [1, |G| − 1], given
α ∈ G and y = αx ∈ G, the task of computing x is referred to as the discrete logarithm
problem (DLP). Many popular encryption schemes like RSA (see [23]) depend (among
other things) on the assumption that the DLP is difficult. However, subexponential
algorithms for solving the DLP in finite fields Fpk have been found (e.g. index calcu-
lus algorithms like [1]), leading to inconveniently large key sizes in order to achieve a
sufficient degree of security.
For other groups though, no subexponential algorithms for the DLP are known,

which makes them very attractive to be used in cryptographic schemes. The proba-
bly most notable of those groups, elliptic curves, are presented in the next section. In an
(additively-written) elliptic curve group G, the so-called elliptic curve discrete logarithm
problem (ECDLP) can be formulated as: Given only the elliptic curve points P ∈ G
and Q = kP ∈ G for a randomly chosen integer k, find k. The ECDLP is commonly
assumed to be intractable [12, pp. 153-154].

2.2 Elliptic curves
Elliptic curves are algebraic structures well suited for cryptographic purposes, allowing
for encryption with a high level of security, even when using a key size that is significantly
lower than those used in other encryption schemes.

2.2.1 Definition
Given elements a, b of a field F (usually Fq), an elliptic curve E(F) (in the Weierstrass
short form) is defined as the set of all points P = (x, y) ∈ F2 satisfying the Weierstrass
equation (cf. [4, p. 31])

E : y2 = x3 + ax+ b (2.1)

with the discriminant ∆ := −16(4a3 + 27b2) 6= 0, a special identity point ∞ (sometimes
referred to as "point at infinity"), and an addition operation

+ : (E(F))2 → E(F), (P,Q) 7→ P +Q

which is defined in the following subsections. If the field F used for the elliptic curve is
clear from context, we will just write E instead of E(F).
In addition to a and b, another parameter used for specifying elliptic curves over finite

fields is the generator G ∈ E(F). Rather than looking at the complete group E(F), we

6



2.2 Elliptic curves

often just look at the subgroup EG "generated" by G:

EG := {eG : e ∈ {1 . . . nG}} ⊆ E(F)

where nG is the order of G (i.e. the smallest e ∈ Z≥1 such that eG =∞). This way, any
point P ∈ EG can be uniquely represented by an integer α ∈ {1 . . . nG} with P = αG.
If E(F) has prime order n = #E(F) (as is the case with the Barreto-Naehrig curves

described in Section 2.2.8), every point P ∈ E(F) has order n and thus the subgroup
EP generated by P is equal to E(F) (cf. [10]).

2.2.2 Inverse
The inverse −P of point P = (x, y) ∈ E(F) is given by (x,−y). Compared to inversions
in finite fields, computing the inverse of elliptic curve points is trivial, which can be
utilized by certain algorithms that work with inverses in order to minimize the number
of operations (like the one described in Section 3.2.3).

2.2.3 General point addition
If P 6= Q, we can think of the addition operation in the following way: Draw a straight
line through P and Q. This line will intersect E in exactly one other, third point: −R.
Mirroring this point across the x-axis gives the result R = P + Q. Translating this
procedure into equation gives:

P +Q = (x1, y1) + (x2, y2) = (x3, y3) = (s2 − x1 − x2, s(x1 − x3)− y1) (2.2)

with s = y1−y2
x1−x2

being the "slope" of the line through P and Q.
Figure 2.1 shows how addition would look like on elliptic curves over Q. While this

visualization doesn’t work well when using Fq, the equation above works just the same
in both cases, no matter what underlying field is used. Counting the number of field op-
erations required to compute P +Q via Equation 2.2, we get: one division for computing
s (which is equivalent to a field inversion, followed by a multiplication), one squaring,
one general multiplication, and six subtractions.

2.2.4 Point doubling
If P = Q, it is not clear how the line as described in the previous section should be
drawn. Instead, as depicted in Figure 2.2, the tangent slope at that point is used,
which is computed as s = 3x2+a

2y . Otherwise, the procedure is very similar to the general
addition formula 2.2:

P + P = 2P = 2 · (x, y) = (x3, y3) = (s2 − 2x, s(x− x3)− y) (2.3)

Thus, the used field operations consist of: one division (i.e. a field inversion, followed
by a multiplication), two squarings, one general multiplication, two multiplications by

7



2 Fundamentals

Figure 2.1: General point addition over Q

Figure 2.2: Point doubling over Q

8



2.2 Elliptic curves

2, one multiplication by 3, and four additions/subtractions.

2.2.5 Corner cases
Addition with the neutral element ∞ leaves a point P ∈ E(F) unchanged:

P +∞ =∞+ P = P

∞ is its own inverse:
−∞ =∞

For any point P = (x, y) ∈ E(F) we have:

P + (−P ) = (x, y) + (x,−y) =∞

I.e.: All vertical lines intersect E at −∞ =∞.

2.2.6 Scalar multiplication
In order to compute the scalar multiple

tP =
t addends︷ ︸︸ ︷

P + P + · · ·+ P

you could simply perform all additions separately, which would require t − 1 additions
in total (one of which being a doubling operation).
A common optimization is based on the well-known square-and-multiply method for

fast exponentiation of elements from multiplicative groups (cf. [9, p.181]). Replacing
squarings with doublings and multiplications with general additions, we get a "double-
and-add" algorithm for computing tP :

Listing 2.1: Computing tP using the basic "double-and-add" technique
1 doubleAndAdd (P, t = (tL−1tL−2...t0)2):
2 R ← P
3 for i from L-2 downto 0:
4 R ← 2 · R # d o u b l i n g o p e r a t i o n
5 if ti = 1:
6 R ← R + P # g e n e r a l a d d i t i o n
7 return R

Since we have one doubling per loop iteration and one general addition per 1 in the
binary representation of t, we have just O(log t) group operations in total, a significant
improvement to the trivial approach. This can be seen in the following example: With
t = 19 = (10011)2, the "double-and-add" algorithm would compute

19P = 2(2(2(2P )) + P ) + P

9



2 Fundamentals

which requires just four doublings and two general additions, rather than 18 additions.

2.2.7 Group order
The order of an elliptic curve group E(Fq) is given by

n := #E(Fq) = q + 1− t

with t ∈ Z being the so-called trace of Frobenius. According to Hasse’s theorem (cf. [4,
pp. 34-35]) we have

|t| ≤ 2√q. (2.4)

Since |t| is thus significantly smaller than q, we could say there are "roughly" q points
on an elliptic curve over Fq.

2.2.8 Barreto-Naehrig curves
A specific class of elliptic curves that have some useful properties are Barreto-Naehrig
curves (or BN-curves for short), where the trace of Frobenius t, the group order n and
the characteristic p are parameterized as

t(s) = 6s2 + 1
n(s) = 36s4 − 36s3 + 18s2 − 6s+ 1
p(s) = 36s4 − 36s3 + 24s2 − 6s+ 1

with s chosen such that n(s) and p(s) are primes (see [3]). Then, a suitable value for b
is computed, such that the elliptic curve E(Fp) : y2 = x3 + b conforms to the chosen t,
n, and p (cf. [3]).
BN-curves have the advantage that their embedding degree k = 12 is larger than that

of previous approaches, which is desirable in order to thwart index-calculus attacks (cf.
[10]). The parameterized nature of BN-curves also allows for efficient transmission of it
(you only need to send s), as well as for some optimizations during the computation of
pairings. Lastly, since n is prime, we have E(Fp) = EP for all P ∈ E(Fp), i.e. all points
in E(Fp) are viable generators (of prime order n) and are in the cyclic subgroup. This
makes various ECC algorithms significantly easier as we don’t need to check if a given
point from E(Fp) is also part of the desired cyclic subgroup.

2.2.9 Application example: elliptic curve Diffie–Hellman key
exchange

In this section we will see how the aforementioned operations on elliptic curve points can
be utilized for exchanging secret keys: The elliptic curve Diffie-Hellman key exchange is
very similar to the "normal" Diffie-Hellman key exchange over finite fields, and can be
described as follows (cf. [18]):

10



2.3 Bilinear pairings

We assume Alice and Bob want to agree on a secret key, having only an insecure
connection between them available. They have already agreed on a elliptic curve over a
prime field Fp that is defined by the following domain parameters:

• a prime number p, the order of the underlying prime field Fp

• the parameters a and b of the elliptic curve (in the short Weierstrass form)

• the generator G ∈ E(Fp) that can "generate" all elements of the elliptic curve
subgroup

• the order nG of the elliptic curve subgroup generated by G

Now, Alice generates her private key α uniformly at random from the range [1, nG−1]
and computes her public key A = αG. Similarly, Bob computes his key pair (β,B),
with B = βG. After exchanging their public keys A and B via the insecure channel,
Alice can compute αB = αβG =: K = (Kx, Ky), while Bob can compute βA = βαG =
αβG = K = (Kx, Ky) and they can use the value Kx (which was never transmitted via
the insecure channel) to derive a symmetric key.

Computational/Decisional Diffie-Hellman Problem

After a successful elliptic curve Diffie-Hellman key exchange between Alice and Bob, a
potential eavesdropper Eve could now know the values G,αG, βG, and might want to
try to determine the secret key K based only on this information. This is called the
computational Diffie-Hellman problem (CDHP), and is assumed to not be efficiently
solvable as long as the order n of the elliptic curve is sufficiently large (cf. [12, p. 171]).
Fortunately, as described in Section 2.2.7, elliptic curves over large finite fields also have
a similarly large order. It should be noted, however, that as the CDHP can easily be
reduced to the ECDLP by first computing α as the discrete logarithm of A = αG and
then evaluating K = αB = αβG. Thus the CDHP is at most as difficult as the ECDLP,
which has not (yet) been proven to be truly intractable.
If you already have a candidate solution C and you only want to check if C is indeed

equal to K = αβG, this is called the decisional Diffie-Hellman problem (DDHP) and
can be solved efficiently with bilinear pairings which are described in the next section.

2.3 Bilinear pairings
Bilinear pairings are functions that map two elements from source groups (usually elliptic
curve groups) to a "simpler" target group (usually F∗pk). Originally, these pairings were
used to attack the DDHP, but since then numerous other applications for them have
been found.
After a quick review of the definition of bilinear pairings (Section 2.3.1), we will sum-

marize some of those useful applications in Section 2.3.2, and then conclude in Section
2.3.3 with the one type of pairing that is currently implemented in the upb.crypto.math
library: the Tate-pairing.

11



2 Fundamentals

2.3.1 Definition
A bilinear pairing is a map e : G1 × G2 → GT , with source groups G1,G2 (written
additively), and a target group GT (written multiplicatively), satisfying (cf. [18]):
Bilinearity e is linear in both of its arguments:

e(A+ C,B) = e(A,B) · e(C,B)

e(A,B + C) = e(A,B) · e(A,C)

which implies for any x, y ∈ Z:

e(xA, yB) = e(A,B)xy

Non-degeneracy
(e(P,Q) = 1 for all Q ∈ G2)→ P =∞

Computability e is efficiently computable
Bilinear pairings are classified into three separate types, depending on the relationship

of groups G1 and G2 (cf. [11, p. 3115]):
Type 1 There exists an efficiently computable isomorphism from G1 to G2 and vice

versa (or simply G1 = G2)

Type 2 There exists an efficiently computable isomomorphism from G2 into G1, but as
far as we know not from G1 into G2

Type 3 There is no currently known, efficiently computable isomomorphism from either
source group to the other

While type 1 pairings have been preferred in the past due to their simplicity, it has
been shown that they are not sufficiently secure (cf. [11, p. 3118]). Therefore, nowadays
type 2 and in particular type 3 pairings are preferable.

2.3.2 Applications of pairings
Here is a list of just a few applications of bilinear pairings in order to give an overview
about their usefulness in cryptography:

Using pairings to solve the DDHP

If there is a bilinear pairing e : G2
1 → GT , then the DDHP on the group G1 becomes easy

to solve: Given a generator G for G1, and the transferred values A = αG and B = βG,
and a candidate value C = γG, we have

αβ = γ ⇔ e(αG, βG) = e(G,G)αβ = e(G,G)γ = e(G, γG)⇔ e(A,B) = e(G,C)

which can be checked trivially.

12



2.3 Bilinear pairings

Joux’s three-party one-round key agreement

Before the discovery of bilinear pairings, there was no known algorithm for a Diffie-
Hellman-like key agreement for three parties (Alice, Bob and Charlie), that requires just
one round of communications. Given a bilinear pairing e : G2

1 → GT with G being the
generator of G1, however, this can be done like this (cf. [16, p. 387-388]):

• Alice generates her private key α uniformly at random from the range [1, nG − 1]
and broadcasts A = αG to Bob and Charlie. Similarly, Bob and Charlie broadcast
B = βG and C = γG, respectively.

• Now Alice can compute the secret shared keyK asK = e(G,G)αβγ = e(βG, γG)α =
e(B,C)α, and Bob and Charlie can compute K in a similar manner.

• Now, K can be used to derive a symmetric secret key for further communications.

BLS short signatures

In the BLS short signature scheme (named after the creators Boneh, Lynn and Shacham,
[5]), signatures consist of a single element on an elliptic curve E, which can represented
by a single natural number (usually simply its x-coordinate). Given a bilinear pairing
e : G1 ×G2 → GT , a generator G of G1, and a hash function H : {0, 1}∗ → G2 \ {0G2},
the scheme works as follows (cf. [18]):

• Alice generates her private key α uniformly at random from the range [1, nG − 1]
and computes her public key A = αG ∈ G1

• Given a message m ∈ {0, 1}∗, Alice computes her signature as S = αH(m) ∈ G2

• Given Alice’s public key A, the message m, and her signature S on it, anybody
can now verify it by checking the following equality using Alice’s public key A:

e(G,S) = e(G,αH(m)) = e(αG,H(m)) = e(A,H(m))

Identity-based encryption

Bilinear pairings also opened the door for entirely new encryption schemes, most no-
tably identity-based encryption (IBE), where keys are generated by a trusted third tarty
(TTP) based on the recipient’s identifying information (cf. [18]):

• First, the TTP decides on a secure pairing e : G1 × G2 → GT with G2 being
a group of order n with generator G. Then, it generates a secret private key
s ∈ [1, n− 1] ⊆ Z and a public key S = sG ∈ G2. Lastly, the TTP also defines a
cryptographic hashing function H : {0, 1}∗ → G1 \ {0G1} which maps an arbitrary
binary message to an element of the source group G1. Except for s, all of these
values are made available publicly.

13



2 Fundamentals

• Let’s say, Alice now wants to send a message m to Bob with Bob’s identifying
information (e.g. email, name, or address) given by IDB ∈ {0, 1}∗. Next, Alice
generates a random integer r ∈ [1, n − 1] and R = rG. Then she encrypts the
message m to EK using a symmetric encryption scheme with a key derived from
K := e(H(IDB), S)r, and sends (EK , R, IDB) to Bob via a potentially insecure
channel.

• Bob now needs to connect to the TTP via a secure channel in order to receive
dB := sH(IDB) from it. If he has stored this value (e.g. because he obtained it
already for a previous message that used the same ID), he can skip this step. Given
EK and R, Bob can then compute e(dB, R) = e(sH(IDB), rG) = e(H(IDB), sG)r =
e(H(IDB), S)r = K and use K to decrypt EK in order to get the original message
m.

As summarized in [28] and [18], IBE has numerous advantages: Encrypted messages
can be sent without the need of any prior input from Bob. Also, Alice could add further
constraints to IDB, for example a minimum age requirement: Assuming the TTP knows
Bob’s birthday, it could then refuse to send the decryption key for this ID to Bob until
he has reached the required age, making it impossible for him to decrypt the message as
long as he is too young. In order to avoid the overhead of needing to contact the TTP
for every new message though, these IDs should ideally be chosen from a small discrete
set.
These advantages, however, come at the cost of a high degree of dependency towards

the TTP, who is being in control of all keys: The TTP could decrypt any messages
that Alice sends to Bob via insecure channels, rendering all communications insecure if
the TTP gets compromised. Also, the TTP needs to be online whenever a new identity
is used. If the aforementioned method of adding additional constraints to messages is
used, Bob might be unable to decrypt any of his messages unless the TTP is online.

Sequential Aggregate Signatures

Another application of pairings, which explicitly requires type 3 pairings in order to work
securely, are the sequential aggregate signatures (SAS) introduced in [21]. In contrast to
the Camenisch-Lysyanskaya signatures [6], whose sizes grow linearly with the number r
of parties, the SAS approach results in a final signature consisting of only two values,
regardless of r. The procedure can be summarized in the following way:

Initialization There is a type 3 pairing e : G1 × G2 → GT with groups of prime order
p. G1 ∈ G1 and G2 ∈ G2 are the generators of the two source groups. An
integer x is then chosen at random from [1, p− 1] and X1 := xG1 and X2 := xG2
are computed. Except for x, all of these values are public parameters available
to all r parties. Each party i has a (private) signing key yi ∈ [1, p− 1] and a
(public) verification key Yi := yiG2. The initial, "empty" signature σ0 is defined
as σ0 := (α0, β0) := (G1, X1) ∈ G2

1.

14



2.3 Bilinear pairings

Signing Starting with an empty message M = 〈 〉 and the "empty" certificate σ0, M
is passed from party 1 to party 2 to party 3, etc. Each party i adds a message
mi ∈ [1, p− 1] to M and updates the current certificate σi−1 = (αi−1, βi−1) based
on that message, their signing key yi, and a random integer ti ∈ [1, p− 1]:

σi = (tiαi−1, ti(βi−1 + yimiαi−1))

Thus we have

αr = trαr−1 = trtr−1αr−2 = ... =
(

r∏
i=1

ti

)
G1 = tG1, with t :=

r∏
i=1

ti

and

βr = tr(βr−1 + yrmrαr−1) = trβr−1 + tyrmrG1

= trtr−1(βr−2 + yr−1mr−1αr−2) + tyrmrG1

= trtr−1βr−2 + tyr−1mr−1G1 + tyrmrG1

= ... = t

(
β0 +

(
r∑
i=1

yimi

)
G1

)
=
(
x+

r∑
i=1

yimi

)
tG1

Verification Given the public keys Yi of all parties, the final message M = 〈m1, ...,mr〉
and the aggregated signature σr = (αr, βr), the authenticity of the signature can
now be verified by checking if e(αr, X2 +∑

imjYi) = e(βr, G2) holds, since

e

(
αr, X2 +

∑
i

miYi

)
= e

(
tG1, X2 +

∑
i

miyiG2

)

= e

(
tG1,

(
x+

∑
i

miyi

)
G2

)

= e

((
x+

∑
i

miyi

)
tG1, G2

)
= e(βr, G2).

2.3.3 Reduced Tate pairing
One of the most popular pairings is the reduced Tate pairing. Given an elliptic curve
E(Fp), a large prime r dividing #E(Fp), and the embedding degree k of r, the source
and target groups of the reduced Tate pairing e : G1×G2 → GT are defined as (cf. [10]):

• G1 is the r-torsion subgroup of E(Fp):

G1 = E(Fp)[r] = {P ∈ E(Fp) : rP =∞},

• G2 is the quotient group of equivalence classes of elements from E(Fpk) under the

15



2 Fundamentals

equivalence equation a ≡ b⇔ (a− b) ∈ rE(Fpk) =
{
rP : P ∈ E(Fpk)

}
:

G2 = E(Fpk)/rE(Fpk),

• the target group GT is the set of the r-th roots of unity (over Fpk):

GT = µr :=
{
x ∈ Fpk : xr = 1

}
.

The pairing e now maps two elliptic curve points (P,Q) ∈ G1 × G2 to an element of
GT by evaluating e(P,Q) = fr,P (Q)(pk−1)/r, where f is defined to be a function with r
zeros at P , one pole at rP , and r − 1 poles at ∞, which can be expressed as (see [26]):

(fr,P ) = r(P )− (rP )− (r − 1)∞

One of main reasons why the Tate pairing has become so widespread is that it is
efficiently computable using Miller’s algorithm [10] detailed in Listing 2.2, where lA,B is
the function defining the line passing through A and B (or the tangent line if A = B),
s.t. Q is on that line if and only if lA,B(Q) = 0.

Listing 2.2: Compute e(P,Q) = fr,P (Q)(pk−1)/r via the Miller algorithm
1 tateMillerAlgorithm (r = (rLrL−1...r0)2, P, Q):
2 T ← P
3 f ← 1
4 for i from L-2 downto 0: # " M i l l e r l o o p "
5 f ← f2 · lT,T (Q)
6 T ← 2T
7 if ri = 1:
8 f ← f · lT,P (Q)
9 T ← T + P

10 return f(pk−1)/r # f i n a l e x p o n e n t i a t i o n

16



3 Optimization ideas
While Chapter 2 summarized structures and algorithms that were already implemented
in the upb.crypto.math library, this chapter is about ideas for new algorithm imple-
mentations that might improve the library’s performance.
In Section 3.1 we will describe how the performance of the basic elliptic curve op-

erations (addition and doubling) can be significantly improved by working with other
coordinate systems. In Section 3.2 we present the multiple windowed approaches for
fast exponentiation in multiplicative groups (which is equivalent to scalar multiplication
in elliptic curve groups), and in Section 3.3 we will expand on this topic by describing
more involved strategies that can be employed to further increase performance when
computing the product of powers of group elements.
Section 3.4 details another type of pairing, the ate pairing, which can be used in order

to improve the performance of Miller loop, and Section 3.5 closes with some ideas about
how parts of the existing code from the upb.crypto.math library could be rewritten in
a more efficient manner.
When determining the costs of certain operations in this chapter, we will ignore field

additions/subtractions and multiplications with small constants as those operations in-
duce only marginal costs compared to field inversions, squarings and general multiplica-
tions.

3.1 Projective and Jacobian coordinates
The two-dimensional representation P = (x, y) of a an elliptic curve point P , as in-
troduced in Section 2.2, is also referred to as affine coordinates. A major disadvantage
when working with affine coordinates is that any addition or doubling operation requires
one division, which is equivalent to a costly field inversion, followed by a multiplication.
Field inversions, which are usually computed using the extended Euclidean algorithm,
are commonly estimated to require as much computation as around 50-100 general field
multiplications (see [22]). It’s thus desirable to find a way to avoid having to perform
inversions for each operation.
Various alternative coordinate systems have been proposed, many of which share the

idea of adding a third coordinate Z to each point, which essentially "accumulates" all
necessary divisions. This way, if you perform multiple addition/doubling operations in
a row (as is the case when computing scalar multiples), you will only need at most one
division, at the end, when you transform the point back to affine coordinates. In case
you don’t require affine coordinates as an end result, no divisions at all are needed.
Two of the most common coordinate systems are projective coordinates and Jacobian

17



3 Optimization ideas

coordinates:

Projective coordinates A projective point P = (X, Y, Z), with Z 6= 0, represents the
affine point (x, y) = (X/Z, Y/Z). In Figure 3.1 you can see how the projective
point (2, 2, 2) is equivalent to the point (1, 1) in the affine plane with Z = 1 (i.e.
the line from the origin to (2, 2, 2) intersects the affine plane at point (1, 1, 1)).

Jacobian coordinates A Jacobian point P = (X, Y, Z), with Z 6= 0, represents the
affine point (x, y) = (X/Z2, Y/Z3). Using the square and cube of Z here instead
of using Z directly – as it is done with projective coordinates – allows for certain
optimizations when doubling a point (see Section 3.1.5).

Figure 3.1: Projective coordinates and the affine plane (with Z = 1)

In the following sections we will describe how to implement transformation, addition
and doubling operations in these alternative coordinate systems. In each case, only the
most efficient implementation we have found from various sources is mentioned.
Section 3.1.7 contains a final overview of all operations mentioned here, and their

respective costs.

3.1.1 Transformations
An affine point (x, y) can be mapped to the equivalent projective/Jacobian point (x, y, 1)
without any further operations required. On the other hand, in order to transform a
projective point (X, Y, Z) to an affine point (x, y) = (X/Z, Y/Z) requires two divisions
by Z. This can be implemented by first computing the inverse Z−1 and then doing two
multiplication: (x, y) = (X · Z−1, Y · Z−1).

18



3.1 Projective and Jacobian coordinates

Similarly, transforming a Jacobian point (X, Y, Z) to an affine point (x, y) = (X/Z2, Y/Z3)
also requires a field inversion to compute Z−1. Before we can multiply with X and Y ,
however, we need one squaring to compute Z−2, and one multiplication to get Z−3.
Thus, one inversion, one squaring, and three general multiplications in total.
A projective/Jacobian point (X, Y, Z) with Z = 1 is called normalized and can be

transformed to the equivalent affine point (X, Y ) without requiring any further opera-
tions. If two projective or Jacobian points P and Q have the same coordinates when
normalized, we write P = Q.

3.1.2 Projective addition

For this and the following sections, we will assume we want to add the projective or
Jacobian points P = (X1, Y1, Z1) and Q = (X2, Y2, Z2) to get the sum R = P + Q =
(X3, Y3, Z3), with Q = P in case of doubling. As described in [8], we can compute the
sum of two projective points in the following manner:

WX ← X1Z2, WY ← Y1Z2, WZ ← Z1Z2,

u← Y2Z1 −WY , u2 ← u2,

v ← X2Z1 −WX , v2 ← v2, v3 ← v2v,

R← v2WX , A← u2WZ − v3 − 2R,
X3 ← vA, Y3 ← u(R− A)− v3WY , Z3← v3WZ

This approach requires 12 multiplications, 2 squarings. Even though no divisions were
performed, the resulting projective point is equivalent to the affine point we would have
computed if we had normalized the coordinates first and then applied the normal affine
addition as described in Section 2.2.3; for example, for the X-coordinate we have:

X3

Z3
= vA

v3Z1Z2

= u2Z1Z2 − v3 − 2v2X1Z2

v2Z1Z2

=
(
u

v

)2
− X2Z1 −X1Z2

Z1Z2
− 2X1Z2

Z1Z2

=
(
Y2Z1 − Y1Z2

X2Z1 −X1Z2

)2
− X2

Z2
+ X1

Z1
− 2X1

Z1

=
(
Y2/Z2 − Y1/Z1

X2/Z2 −X1/Z1

)2

− X1

Z1
− X2

Z2
= x3

With x1 := X1
Z1
, y1 := Y1

Z1
, x2 := X2

Z1
and y2 := Y2

Z2
being the normalized affine coordi-

nates, this equivalent to the affine addition operation. A similar computation for the
Y -coordinate would show that Y3

Z3
= y3.

19



3 Optimization ideas

Detecting special cases

For the above procedure to work, we need P and Q to have different X-coordinates
when normalized, because otherwise v would be zero, resulting in an invalid point with
Z3 = 0:

X1

Z1
= X2

Z2
⇔ X1Z2 = X2Z1 ⇔ v = X2Z1 −X1Z2 = 0⇔ Z3 = 0

Similarly, we can detect if the two points have different Y -coordinates by looking at u:

Y1

Z1
= Y2

Z2
⇔ Y1Z2 = Y2Z1 ⇔ u = Y2Z1 − Y1Z2 = 0

Since both of these values are computed as part of the normal projective addition pro-
cedure, no significant overhead is caused in cases where v 6= 0 and we just continue with
the general addition procedure. If v = 0 and u 6= 0, we have a vertical line, and we can
immediately return ∞ without any further costs. If, on the other hand v = 0 = u, we
have P = Q and we must perform a doubling operation, which would require all the
costs associated with that, in addition to the five already performed multiplications. It
is, however, very unlikely to encounter a doubling when a general multiplication was
intended (e.g., for the "double-and-add"-algorithm, we would just call the doubling pro-
cedure directly, skipping these five unnecessary multiplications), thus that special case
can be ignored when determining the average costs of the general projective addition
operation.
A very similar approach for detecting special cases can also be employed for addition

of Jacobian coordinates.

3.1.3 Projective doubling
[22] details a efficient method for doubling a projective point P , requiring only 11 mul-
tiplications/squarings, by performing following operations in the given order:

X11 ← X2
1 , Z11 ← Z2

1 ,

w ← aZ11 + 3X11, s← 2Y1Z1, s2 ← s2,

R← Y1s, R2 ← R2,

B ← (X1 +R)2 −X11 −R2, h← w2 − 2B,
X3 ← hs, Y3 ← w(B − h)− 2R2, Z3 ← s · s2

This approach requires 5 multiplications and 6 squarings.

3.1.4 Jacobian addition
[15] gives the following procedure for computing the sum of two Jacobian points:

20



3.1 Projective and Jacobian coordinates

Z11 ← Z2
1 , Z22 ← Z2

2 ,

U1 ← X1Z22, U2 ← X2Z11, H ← U2 − U1,

S1 ← Y1Z2Z22, S2 ← Y2Z1Z11, r ← 2 · (S2 − S1),
I ← (2H)2, J ← HI, V ← U1I,

X3 ← r2 − J − 2V, Y3 ← r · (V −X3)− 2S1 · J,
Z3 ← ((Z1 + Z2)2 − Z11 − Z22) ·H

This approach requires 11 multiplications and 5 squarings, thus two operations more
than were necessary for projective addition.

3.1.5 Jacobian doubling

[15] also shows the following very efficient doubling procedure for an Jacobian point P :

X11 ← X2
1 , Y11 ← Y 2

1 , Z11 ← Z2
1 ,

F ← Y 2
11, S ← 2 · ((X1 + Y11)2 −X11 − F ),

M ← 3X11 + aZ2
11, X3 ←M2 − 2S,

Y3 ←M(S −X3)− 8F, Z3 ← (Y1 + Z1)2 − Y11 − Z11

This approach requires just one multiplications and 8 squarings, which is two op-
erations less than required for doubling using projective coordinates. Also, almost all
operations here are squarings, which are generally preferable to multiplications as they
can be performed slightly faster for large numbers (see [7]).

3.1.6 Mixed additions

The procedures described above work for any projective/Jacobian points, without further
restrictions. Sometimes however, we know that the points adhere to certain constrains,
which might allow for some optimizations when computing additions (or doublings). In
particular, we might know that one of the points (w.l.o.g. the second) is normalized
(i.e. Z2 = 1). Since the second point is now essentially in affine coordinates, such an
addition operation is also called "mixed" (see [8]), as we are working with points from
two different coordinate systems.
[22] and [15] show how to implement mixed additions requiring only 9 multiplications

and 2 squarings (if P is a projective point) and 7, multiplications and 4 squarings (if
P is given in Jacobian coordinates). The algorithms are essentially equivalent to those
presented in Sections 3.1.2 and 3.1.4, just that multiplications with Z2 are simply left
out.

21



3 Optimization ideas

Table 3.1: Overview of costs of various elliptic curve point operations (S=squaring,
M=general multiplication, I=field inversion, C=50I+M+S)

Operation I M S C

affine addition 1 2 1 53
affine doubling 1 2 2 54
projective to affine transformation 1 2 0 52
Jacobian to affine transformation 1 3 1 54
projective addition 0 12 2 14
projective doubling 0 5 6 11
Jacobian addition 0 11 5 16
Jacobian doubling 0 1 8 9
mixed addition (projective+affine) 0 9 2 11
mixed addition (Jacobian+affine) 0 7 4 11

3.1.7 Comparison of costs
Taking the costs for affine coordinates (discussed in Sections 2.2.3 and 2.2.4) and the
numbers from the previous sections, we might want to compare these operations with
each other, ideally based on a simple cost function C(I,M, S), where I, M, and S repre-
sent the number of field inversions, general multiplications, and squarings, respectively.
With a conservative estimate of an inversion being equivalent to about 50 multipli-

cations, and assuming – for simplicity – that squarings cost about as much as general
multiplications (S = M), we would get C(I,M, S) = 50I + M + S, giving the final
results presented in Table 3.1.
A few things of note:

• As projective/Jacobian still require on field inversion in the end in order to trans-
form the point to affine coordinates, if only a single doubling or addition operation
is needed, staying in the affine coordinate system is most efficient. However, the
numbers from Table 3.1 suggest that as soon as you want to perform more than one
doubling or addition operation in a row, working in either of the three-dimensional
coordinate systems will be significantly faster.

• While the normal projective addition operation is faster than the Jacobian one,
the Jacobian coordinates perform significantly better in regards to the doubling
operation. When performing scalar multiplication (via Algorithm 2.1), doublings
are expected to be performed about twice as often as additions; thus, it is to

22



3.2 Windowed exponentiation

be expected that in these situations, Jacobian coordinates are faster than projec-
tive ones. This advantage should be even more pronounced when further opti-
mizations are employed: Using mixed coordinates would make Jacobian additions
about as fast as projective additions, while sliding-window techniques (see Section
3.2) would further decrease the number of required additions. With multiexpo-
nentiation evaluations that share the doubling operation though (see Section 3.3),
projective coordinates might perform again better.

• Even if the point Q is not already normalized, mixed additions might still be
preferable to normal projective additions in cases where you perform many addi-
tions with Q in a row, e.g. when computing a scalar multiple kQ. If k is large
enough, the savings from using the cheaper addition procedure could compensate
for the costly normalization (i.e. one inversion and some multiplications), which
is required in the beginning.

3.2 Windowed exponentiation
As mentioned in Section 2.2.6, the "double-and-add"-algorithm for computing a scalar
multiple kP ∈ GA with k ∈ Z≥1 in a additive group GA is equivalent to "square-and-
multiply"-algorithm for computing the power ge ∈ GM in a multiplicative group GM .
Many variations of that basic algorithm exist in the literature, most of them commonly
written in multiplicative notation. Therefore, we will also employ the multiplicative
notation within this section and the next (Section 3.3), where we will describe more
general versions of the "double-and-add"/"square-and-multiply"-algorithm that can be
used when exponentiating multiple bases at the same time.

3.2.1 2w-ary exponentiation
Given a random element g from a groupG and a random L-bit exponent e = (eL−1eL−2 . . . e0)2 ∈
N, the basic "square-and-multiply" algorithm would require L squarings and L/2 general
multiplications on average (see [9, p. 147]).
The idea of the 2w-ary exponentiation method is to reduce the number of required

multiplications by precomputing xd for every d ∈ [0, 2w − 1] and iterating through the
bits of e in d-bit chunks F (referred to as windows), multiplying by the precomputed
power xFi only if Fi 6= 0 (cf. [17]):

Listing 3.1: Compute xe using the 2w-ary method
1 2w-ary - exponentiation (x,w, e=(eL−1eL−2...e0)2):
2 if w does not divide L:
3 pad e with zeros so that its new length L is a multiple

↪→ of w
4 # p r e c o m p u t a t i o n s :
5 X ← new Array # i n d e x e d b y [ 1 . . . 2w − 1]
6 X[1] ← x

23



3 Optimization ideas

7 for i in 2...2w − 1:
8 X[i] ← X[i -1] · x # 2w − 2 m u l t i p l i c a t i o n s
9 R ← X[(eL−1...eL−d)2]

10
11 # m a i n l o o p :
12 i ← L-w
13 while i > 0:
14 for j in 1...w:
15 R ← R2

16 F ← (ei−1...ei−w)2
17 if F 6= 0:
18 R ← R · X[F]
19 i ← i - w
20 return R

For example, with w = 2 and e = (11001100110011)2, only the four marked chunks
would trigger a multiplication in this algorithm. Including the two multiplications for the
precomputation of x2 and x3, and the 12 squarings we get a total of 18 operations. The
normal square-and-multiply method, on the other hand, would require 13 squarings and
8 multiplications (for the 8 1s), thus 21 operations in total. In general, we need about
2w multiplications (and 1 squaring) for the precomputation, and about L squarings and
L(1− 2−w)/w multiplications during the evaluation phase (see [19]).

3.2.2 Basic sliding window exponentiation
The sliding window approach is very similar to the 2w-ary exponentiation, the only
difference being how the bit string is split into chunks: Instead of always taking exactly
k bits per chunk, we skip an arbitrary number of zeros until we reach the first 1-bit.
From there, we now take the longest chunk of length at most w which ends with a one.
This process is repeated until we have processed the whole bit string (cf. [9, p. 150]):

Listing 3.2: Compute xe using the basic sliding window method
1 sliding -window - exponentiation (x,w, e=(eL−1eL−2...e0)2):
2 # p r e c o m p u t a t i o n s :
3 X ← new Array # i n d e x e d b y [ 1 , 3 , 5 , . . . ,2w − 1] ( e v e n p o w e r s

↪→ a r e n o t n e c e s s a r y )
4 X[1] ← x
5 x2 ← x · x # o n e s q u a r i n g
6 for i from 3 to 2w − 1 step 2:
7 X[i] ← X[i -2] · x2 # 2w/2 m u l t i p l i c a t i o n s
8 R ← 1 # n e u t r a l e l e m e n t o f G
9

10 # m a i l l o o p :
11 i ← L-1

24



3.2 Windowed exponentiation

12 while i ≥ 0:
13 if ei = 0: # s k i p z e r o s
14 R ← R2

15 i ← i - 1
16 else: # non - z e r o c h u n k s t a r t s
17 s ← max(i-w+1, 0) # m o s t r i g h t m o s t p o s s i b l e e n d o f

↪→ c h u n k
18 while ei = 0:
19 s ← s + 1 # s e a r c h f o r f i r s t 1
20 for h from 1 to i-s+1:
21 R ← R2 # s h i f t r e s u l t b y l e n g t h o f c h u n k
22 R ← R · X[(eiei−1...es)2] # m u l t i p l y b y c h u n k v a l u e
23 i ← s - 1
24 return R

By allowing more flexibility on where the chunks start and end, the sliding win-
dow method will often result in fewer multiplications, for example with w = 2 and
e = (1110011001100111)2, the sliding window approach will result in only six non-zero
chunks:

(11 1001100110011 1)2

while the 2w-ary method would result in eight non-zero chunks:

(11 10 01 10 01 10 01 11)2

A further advantage of this approach is that because we only consider non-zero chunks
ending with a 1-bit, we don’t need to compute the even powers of x during the precom-
putation phase. In total we have about 2w/2 multiplications (and one squaring) for
the precomputation, about L squarings during the evaluation, as well as L/(w + 1)
multiplications on average (see [19]).

3.2.3 Signed-digit methods

If inversions are cheap in G (as it is for example in elliptic curve groups), exponentiation
algorithms employing divisions become interesting. For example, g63 could be computed
as

g63 = g64/g1 = g(1000000)2 · g−1,

which can be computed very quickly since 64 is a power of two. In the following sections
we will assume that the costs of inversions are at most as expensive as additions/sub-
tractions and therefore similarly ignore them when summarizing the costs for exponen-
tiations.

25



3 Optimization ideas

Binary NAF

The signed binary representation consists only of the digits 0, 1 and 1 = −1. In general,
this representation is not unique (e.g. (111)2 = 4 + 2 + 1 = 7 = 8 − 1 = (1001)2).
However, when we add the restriction that two adjacent digits cannot both be non-zero,
there is a unique representation for every number (see [12, p. 98]). This is called the
non-adjacent form (NAF) for that number.
The NAF can be computed by the following algorithm (cf. [9, p. 151]):

Listing 3.3: Compute the NAF representation for e
1 computeNAF (e=(eL−1eL−2...e0)2):
2 eL ← 0 # p a d e w i t h a z e r o o n t h e l e f t
3 c ← 0
4 R ← new Array # i n d e x e d b y [ 0 . . . L ]
5 for i in 0 to L:
6 d ← floor ((c + ei + ei+1) / 2)
7 R[i] ← c + ei - 2·d
8 swap c and d
9 return (R[L]R[L -1]...R[0])NAF

For evaluating a power xe with e being in non-adjacent form, our sliding-window
Algorithm 3.2 can be used, requiring L squarings and L/3 multiplications on average
(see [12, p. 98]). Since the computation of the NAF representation doesn’t require any
expensive operations, the costs for precomputations remain about the same.

wNAF

A more general signed-digit representation of an exponent e is the width-w non-adjacent
form (wNAF). A sequence (nL−1nL−2...n0) is the wNAF-representation of e if and only
if (see [19]):

• every ni ∈ Z is either zero or odd

• |ni| < 2w−1 for all i

• e = ∑L−1
i=0 ni2i

• at most w consecutive digits are non-zero

Due to the last constraint, many digits in the wNAF are zero, reducing the number
of required multiplications. The wNAF can be computed by the following algorithm (cf.
[9, p. 153]):

Listing 3.4: Compute the wNAF representation for e
1 compute -w-NAF(w, e=(eL−1eL−2...e0)2):
2 i ← 0
3 R ← new Array # i n d e x e d b y [ 0 . . . L - 1 ]

26



3.3 Multiexponentiation

4 while e > 0:
5 if e is odd:
6 R[i] ← n mod 2w
7 e ← n - R[i]
8 else:
9 R[i] ← 0

10 e ← e / 2
11 i ← i + 1
12 return (R[L -1]R[L -2]...R[0])wNAF

For evaluating the computed wNAF, the original square-and-multiply algorithm can
be used, with the modification that instead of multiplying with base g1, we need a multi-
plication with the precomputed power gei . As summarized in [19], the precomputations
require again one squaring and 2w/2 multiplications, while the evaluation requires L
squarings but only L/(w + 2) multiplications on average.

3.2.4 Comparison of costs
Here is a table summarizing the costs of the presented exponentiation methods:

Table 3.3: Overview of expected costs of various exponentiation methods; S=squaring,
M=general multiplication

Method Precomputation Evaluation

Basic square-and-multiply - LS + (L/2)M
2w-ary exponentiation ≈ 1S + 2wM ≈ LS + (L(1− 2−w)/w)M
Basic sliding window method ≈ 1S + (2w/2)M ≈ LS + (L/(w + 1))M
Signed-digit method (binary NAF) ≈ 1S + (2w/2)M ≈ LS + (L/3)M
Signed-digit method (wNAF) ≈ 1S + (2w/2)M ≈ LS + (L/(w + 2))M

3.3 Multiexponentiation
A multiexponentiation is a product of r ≥ 2 powers in multiplicative groups:

ge1
1 g

e2
2 . . . ger

r =
r∏
i=1

gei
i ,

27



3 Optimization ideas

which is equivalent to sums of scalar multiples in additive groups:

e1g1 + e2g2 . . . ergr =
r∑
i=1

eigi.

Just as in the previous section though, we will stick with the first notation, as it is more
common in the literature.
In various cryptographic schemes, including the sequential aggregate signature scheme

described in Section 2.3.2, multiexponentiations with two or more bases are computed.
For simplicity, let’s assume that all exponents ei have the same bit-length L. (If this
is not the case, the shorter exponents can be padded with zeros.) A trivial evaluation
would be to compute all powers separately (requiring at least L squarings each) and then
multiplying the results (r − 1 further multiplications) in order to get the final result.
Clearly, this is not yet optimal; thus, we will discuss more efficient alternatives in the
following sections.
First, the next section will describe the most effective optimization for multiexpo-

nentiation computation. Afterwards we will go into detail in regards to two categories
of further optimizations: Simultaneous methods, where precomputations of products
of different bases (with various powers) are computed, and interleaved methods where
the precomputed powers for each base are calculated separately, thus allowing for more
flexibility.

3.3.1 Basic idea: merging the squarings
A major optimization is to perform the squarings not for each base separately, but
instead for all bases in parallel. Following example illustrates the idea:

a5b6c3d7 = ((abd)2bcd)2acd

Rather than computing the powers for all bases separately, this way all required
squaring operations are only performed once, reducing the overall cost to a fraction.
Algorithm 3.5 shows how this method can be implemented:

Listing 3.5: Compute multiexponentiation with merged squarings
1 computeMultiExpoBasic (x=(x1, . . . , xr), e=

↪→ (e1, . . . , er) = ((e1,L−1e1,L−2...e1,0)2, . . . , (er,L−1er,L−2...er,0)2)):
2 R ← 1 # n e u t r a l e l e m e n t o f G
3 for i in L-1 downto 0:
4 R ← R2

5 for j in 1 to r:
6 if ej,i = 1:
7 R ← R · xj
8 return R

28



3.3 Multiexponentiation

3.3.2 Simultaneous methods
Simultaneous methods (see [19]) precompute combinations of powers. Given a window
size w, simultaneous methods will precompute and store all relevant products of bases
powered to at most 2w − 1. In principle, all exponentiation techniques described in
Section 3.2 should also work for simultaneous multiexponentiation.
As an example, here is how simultaneous 2w-ary exponentiation would look like: It

would be very similar to 2w-ary single-exponentiation, but at the beginning, products of
powers will be precomputed:

TE1,...,Er
:=

r∏
i=1

gEi
i for all (E1, . . . , Er) ∈ [−(2w − 1), 2w − 1]r ⊆ Zr

Then, exponentiation is performed "simultaneously", with block-size w. With w = 2
this might look like:

a62b35c20 = ((a3b2c)4a3c)4a2b3 = (T 4
3,2,1 · T3,0,1)4 · T2,3,0,

with e.g. T3,2,1 being the precomputed power product a3b2c1.
This procedure would require about 2rw multiplications/squarings to precompute the

2rw small power products, and additional L
w+2−r multiplications/squarings to compute

the final result.

3.3.3 Interleaved methods
Just like with the simultaneous methods, basically all of the previously mentioned ex-
ponentiation algorithms from Section 3.2 could also be used for interleaved multiexpo-
nentiation.
In contrast to simultaneous methods, interleaved multiexponentiation methods only

precompute powers of the bases separately, without any combinations (see [19]). The
exponentiations of the various bases are thus very much independent from each other,
they just share their squaring operation with each other.
This has multiple advantages:

• The number of required precomputations grows linear in r, rather than exponen-
tial, making it feasible to compute even multiexponentiations with more than 10
or 20 different bases.

• Since the precomputations are done for each base separately, precomputed powers
could be reused for further multiexponentiations that share some (but not neces-
sarily all) of the bases with the first multiexponentiation.

• Different window sizes could be chosen for different base/exponent-pairs, allowing
for choosing the right parameter for each individual exponentiation.

As an example, here is how an interleaved sliding windows approach would look like
for computing ae1be2 with the two different window sizes w1 = 2, w2 = 1:

29



3 Optimization ideas

ae1be2 = a9831b15 = a100110011001112b11112 = ((((((((a)16G1,3)16G1,3)4b)2b)2G1,3b)2ab

with G1,3 := a3 having been precomputed. Assuming – for simplicity – all bases have
the same bit length L and the same window size w is used for each base, interleaved
sliding window multiexponentiation as described in [19] requires only r2w−1 multiplica-
tions/squarings for precomputing the powers, and about Lr

w+1 multiplications/squarings
for the evaluation itself.

3.3.4 Comparison
The costs of the sliding window examples above for the simultaneous and the interleav-
ing approach are similar also when using other exponentiation algorithms like 2w-ary
exponentiation or wNAF (see [19]). In general, it holds that the simultaneous approach
will consist of a precomputation requiring time and space that grows exponentially in r,
and an evaluation phase which doesn’t significantly increase as r grows. The interleaving
approach, on the other hand, will result in a precomputation phase with space and time
costs that are linear in r and an evaluation phase with costs that are linear in r as well.
Thus, if the number of bases r is rather small and resources for the heavy precom-

putation phase are available, the simultaneous approach should be used, in particular if
the set of bases will used more than one multiexponentiation. If on the other hand, r is
rather large, and the specific set of bases will not be used for further multiexponentia-
tions, then the interleaving approach should be used, due to it’s cheaper precomputation
phase.

3.4 Ate pairing
Multiple variations of the Tate pairing (described in Section 2.3.3) have been devised
in order to improve its runtime. One of these variations is the Ate pairing, which uses
a different source set G2, which reduces the required number of iterations of the Miller
loop (Algorithm 2.2).
Formally, the Ate pairing is a bilinear map e : G1 × G2 → GT with G1, G2, and GT

defined as:

G1 := E(Fpk)[r] ∩ ker (πp − [1]) = E(Fp)[r]
G2 := E(Fpk)[r] ∩ ker (πp − [p])
GT := µr

with πp((x, y)) := (xp, yp) being the Frobenius endomorphism, and [x] representing the
scalar multiplication function.
This definition of the source groups has the interesting property that E(Fpk)[r] =

G1 ⊕ G2 (see [20, p. 25]), i.e. each point Q ∈ E(Fpk)[r] can be represented as a sum

30



3.5 Implementation-specific optimizations

Q1 +Q2 with Q1 ∈ G1 and Q2 ∈ G2.
Since G2 has changed compared to its definition for the Tate pairing, we need to find

a generator for it in order to be able to generate random elements for it (which is needed
for procedures like the SRS signatures discussed in Section 2.3.2).
Given a point Q chosen randomly from E(Fpk)[r] (which can be represented as Q =

Q1 +Q2 with Q1 ∈ G1, Q2 ∈ G2), we can find a generator R ∈ G2 by computing

πp(Q)−Q = πp(Q1) + πp(Q2)−Q1 −Q2

= Q1 + pQ−Q1 −Q2

= (p− 1)Q2 =: R ∈ G2

with πp(Q1) = Q1 and πp(Q2) = pQ2 because they are in the kernel of πp − [1] and
πp − [p], respectively. And we have R = (p− 1)Q2 ∈ G2 because Q2 ∈ G2.
The pairing function itself can be evaluated just like for the Tate pairing, using the

Miller function f . However, now it suffices to pass t−1 instead of r as the loop parameter,
and P and Q need to be swapped (see [3]):

e(P,Q) = ft−1,Q(P )(pk−1)/r

.
As we’ve seen in Section 2.2.7, we have t ≤ 2

√
pk for the trace of Frobenius t. Since

then number of iterations for the Miller loop depends on the number of bits in the
given loop parameter, the cost for the Miller loop is essentially halved, which might
significantly improve the performance of this approach, depending on how costly the
final exponentiation step is in comparison to the Miller loop.

3.5 Implementation-specific optimizations
We have so far described algorithmic optimizations at great lengths, but in practice,
specific implementation details can easily be just as relevant for the final performance.
When running elliptic curve point operation tests, a performance analysis with the

VisualVM profiler [27] showed that the BigInteger.mod call in the constructor of the
class ZnElement (which represents numbers from Fp) is a major hotspot, with runtime
costs exceeding even the total costs of all field multiplications performed elsewhere in
the upb.crypto.math library during that test.
A simple optimization would be to only call the BigInteger.mod if the value v is ac-

tually outside of the range [0, p− 1]. Elliptic curve point addition and doubling consists
of numerous field subtractions, the result of which should on expectation be within the
range [0, p− 1] in about 50% of cases, which might lead to a significant speedup when
the BigInteger.mod calls are skipped.
Another cause of suboptimal performance might be due to the complex structure of

the upb.crypto.math library: There is a deep inheritance tree with numerous wrapper
functions that often do little else than calling another method from a superclass. Also,

31



3 Optimization ideas

there are many type cast, which could potentially be avoided. A flatter class hierarchy,
which fewer method calls and less type casts might significantly improve the performance.
Implementation and evaluation of these two optimization ideas will be discussed in

Sections 4.5 and 5.6, respectively.

32



4 Implementation
In this chapter, we discuss how we implemented the ideas presented in the previous
chapter and integrated the code into the existing upb.crypto.math library.
First, Section 4.1 will give an overview about the general architecture of the ex-

isting code, and at which places the new code was added. Then, Sections 4.2 and
4.3 describe details of the implementation of the new elliptic point operations and
(multi)exponentiation algorithms, while Section 4.4 describes how the Ate pairing was
implemented.
Next, Section 4.5 describes a mostly separate implementation that avoids the complex

existing class hierarchy, Section 4.6 delves into the intricacies of testing the correctness
and performance of the new code, and Section 4.7 closes with a short summary of how
tests can be run on Android as well.

4.1 General architecture
In Figure 4.1 we can see an overview over the hierarchy of the most relevant classes
from the upb.crypto.math library, including new ones we have added over the course
of writing this thesis. At the very top we have the Structure interface that represents
any algebraic mathematical structure, with declared methods for getting the size of the
structure and taking an element of it uniformly at random. Subinterfaces are Group and
Ring, declaring – among other things – methods for getting neutral elements and for
inquiring whether or not they are commutative.
Further down the Ring tree we have the Field interface with the implementing classes

Zp (representing Fp) and ExtensionField (representing Fpk). Meanwhile, in the Group
subtree we have the interface WeierstrassCurve declaring methods for getting the pa-
rameters defining a Weierstrass curve, and its subclass PairingSourceGroup which is
the base class for the source groups used for bilinear pairings, containing attributes for
e.g. the generator, cofactor, and size of the source group.
Parallel to the tree for these structures, we also have a separate hierarchy for the

elements of these structures: Element as the base interface, and then GroupElement,
RingElement, FieldElement, ZpElement (which is an inner class of Zp), and Exten-
sionFieldElement, in a hierarchy equivalent to the structures they belong to. These
interfaces/classes contain methods for actually performing valid mathematical opera-
tions on them, e.g. GroupElement has the op method for performing the group opera-
tion, while ZpElement contains the methods add, sub, mul, inv, and pow, for addition,
subtraction, etc.

33



4 Implementation

Figure 4.1: Inheritance hierarchy of the relevant classes

34



4.2 Elliptic curve point operations

Down the GroupElement tree we have the abstract base class AbstractElliptic-
CurvePoint with attributes for the X, Y , and Z coordinates and declared methods for
adding two points and computing the line equation for the line passing through two
given points (required for the miller algorithm 2.2). Subclasses which actually imple-
ment these methods are AffineEllipticCurvePoint, which was already part of the
upb.crypto.math library), as well as MyProjectiveEllipticCurvePoint and MyJa-
cobiEllipticCurvePoint which we implemented in order to improve the performance
of the elliptic curve point operations. The prefix "My" was chosen in order to make
clear which components where added over the course of writing this thesis, and can be
removed once they are integrated into the main branch of the library.
Subclasses for the elements of the source groups for pairings over BN curves inherit

from AffineEllipticCurvePoint. Pairing computations with projective or Jacobian
coordinates are not currently supported.
Separate from the inheritance trees of the Structure and Element interfaces, we have

the AbstractPairing class (defining the miller function, among other things) with the
subclass BarretoNaehrigTatePairing for the previously implemented Tate pairing, and
the new class MyBarretoNaehrigAtePairing for the Ate pairing, which is equivalent to
the Tate pairing class except that it passes different parameters to the miller function (P
and Q are swapped, and t−1 is passed as loop parameter instead of r), and it computes
an appropriate generator as described in Section 3.4.
Classes for single- and multiexponentiation, as well as for the simplified implementa-

tion do not inherit from any existing class and are therefore not included in Figure 4.1.
Instead, they are described in more detail in Sections 4.3 and 4.5.

4.2 Elliptic curve point operations
In this section, we’ll discuss how we implemented the elliptic curve point operations in
projective and Jacobian coordinates.
For projective coordinates, all logic for the implementation of the curve point oper-

ations can be found in the class MyProjectiveEllipticCurvePoint. It contains the
methods add for addition, square for doubling (its name inspired by the multiplicative
notation, as it overrides a method from the GroupElement interface which already used
the multiplicative notation also for the pow method), and addAssumingZ2IsOne which
performs a mixed addition (it assumes that the second point’s Z coordinate is equal
to 1). All these methods essentially just implement the mathematical procedures as
outlined in Sections 3.1.2 and 3.1.3.
The perhaps most interesting part of the implementation is how the add method deals

with special cases, which is shown in Listing 4.1: If this or Q is the neutral element,
the other point is returned (since P +∞ = P = ∞ + P ). If Q is normalized (i.e. its
z-coordinate is 1), the specialized addAssumingZ2IsOne is called.
At the very beginning, we check if the second point (Q) is identical to the first one

(this), in which case we want to perform a doubling operation rather than continuing
with the addition procedure. This simple reference equality checking is insufficient,

35



4 Implementation

however. Even checking the actual coordinates separately for equality would not be
enough, since two projective points with different coordinates can still represent the
same (affine) point. Thus, as described in Section 3.1.2, after computing the first four
temporary variables (x1z2, v, y1z2, and u), we can detect this special case, as well as the
case that they lie on the same vertical line, by checking if v and/or u are zero. Since u
and v are also required for the rest of the normal addition procedure, this implementation
doesn’t cause significant additional computational costs.

Listing 4.1: Corner case checking in the MyProjectiveEllipticCurvePoint.add
method

1 public AbstractEllipticCurvePoint add(
↪→ AbstractEllipticCurvePoint Q) {

2 if (Q == this)
3 return this.square ();
4 if (Q. isNeutralElement ())
5 return this;
6 if (this. isNeutralElement ())
7 return Q;
8 if (Q. isNormalized ())
9 return addAssumingZ2IsOne (Q); / / m i x e d a d d i t i o n

↪→ a p p l i c a b l e
10 FieldElement x1z2 = x.mul(Q.z);
11 FieldElement v = Q.x.mul(z).sub(x1z2);
12 FieldElement y1z2 = y.mul(Q.z);
13 FieldElement u = Q.y.mul(z).sub(y1z2);
14 if (v.isZero ()) { / / x c o o r d i n a t e s a r e e q u a l
15 if (u.isZero ()) { / / y c o o r d i n a t e s a r e a l s o e q u a l →

↪→ d o u b l e t h e p o i n t
16 return this.square ();
17 }
18 / / v e r t i c a l l i n e → s u m i s n e u t r a l e l e m e n t
19 return ( AbstractEllipticCurvePoint ) structure .

↪→ getNeutralElement ();
20 }
21 [...] / / n o s p e c i a l c a s e a p p l i e s ; c o m p u t e s u m a n d r e t u r n

↪→ r e s u l t p o i n t i n t h e n o r m a l w a y
22 }

The implementation for Jacobian coordinates in the class MyJacobiEllipticCurve-
Point is basically equivalent to the MyProjectiveEllipticCurvePoint class, except
that the computation for addition and doubling uses the appropriate Jacobian formulas
introduced in Sections 3.1.4 and 3.1.5.

36



4.3 Exponentiations

4.3 Exponentiations

The next subsections describe the implementation details of the algorithms for single
exponentiation (with only one base), and multiexponentiation, respectively.

4.3.1 Single exponentiation

The class MySingleExponentiationAlgorithms contains implementations of all the pre-
viously discussed single exponentiation methods: simpleSquareAndMultiplyPow im-
plements the simple default square-and-multiply method, while the methods powUs-
ing2wAryMethodMethod, powUsingSlidingWindow, and powUsingWNafMethod imple-
ment the corresponding advanced methods. Small powers of the base in question can
be precomputed by corresponding static methods and are passed as arguments to the
evaluation methods. Bit operations were used wherever possible, since they’re very fast.

4.3.2 Multiexponentiation

In order to group a set of bases into an object so they can potentially be evaluated
with different exponents multiple times in a convenient manner, we decided to create
the class MyBasicPowProduct to represent such an expression. The previously existing
class PowProductExpression served a similar purpose. However, it used very costly
routines intended to optimize the evaluation order of the power product which slowed
the total execution time down significantly. Also, it employed a HashMap for storing the
bases which made it inconvenient for precomputing small power product combinations
(for simultaneous multiexponentiation approaches) and might also be significantly slower
than just using plain arrays, in particular because for projective and Jacobian points
there is no trivial hashing function that would avoid a costly normalization.
The class MyBasicPowProduct contains a method evaluate which returns the re-

sult when computing the multiexponentiation with the exponents, which are passed as
arguments. This evaluate method intentionally employs the trivial strategy for com-
puting the multiexponentiation – computing the powers of each base separately and then
multiplying the results – and is intended to be overridden by methods from subclasses
implementing more advanced algorithms by employing more elaborate precomputations:
The subclass MySimplePowProductWithSharedDoublings simply overrides the eval-

uate function, replacing it with an simple implementation that share the doubling op-
eration for all bases, without any precomputation; meanwhile, the subclasses MyIn-
terleavingSlidingWindowPowProduct and MySimultaneousSlidingWindowPowProd-
uct precompute the small powers required for the interleaving and the simultaneous
sliding window approach, respectively, and efficiently compute the multiexponentiation
in the evaluate method. For best performance, bit operations are used wherever pos-
sible.

37



4 Implementation

4.4 Ate pairing
Implementation-wise, the Ate pairing is very similar to the Tate pairing and we’ve been
able to reuse most of the existing code. Just like the existing class BarretoNaehrig-
TatePairing, our new class MyBarretoNaehrigAtePairing inherits from Abstract-
Pairing, and the only major required changes consisted of swapping P and Q, and pass-
ing t-1 instead of r when calling the Miller function. Additionally, the evaluateLine
method needed to be appropriately adapted, which turned out to be a rather non-trivial
task: It was not immediately obvious how elements of the source and target groups were
represented, in particular because sextic twists were employed for increased efficiency,
allowing an elliptic curve point P on E over Fp12 to be represented on a "twisted" curve
E ′ by a point P ′ over the much smaller extension field Fp2 . Twists are a very complex
subject and outside the scope of this thesis. For a detailed account on twists, see [20,
pp. 13-16].
After a thorough analysis of the existing code tough, we deduced that the used rep-

resentation is the one described in [20, pp. 64-65]. Implementing the line functions for
the Ate pairing as detailed in that paper finally led to a working pairing computation.

4.5 Simplified implementation
As discussed in Section 3.5, the existing library components might cause performance
penalties due to the potentially unnecessary call BigInteger.mod that happen each time
a new ZpElement is created, as well as by the complex class hierarchy with many type
casts and long chains of method calls.
In order to evaluate the impact these aspects of the upb.crypto.math library have, we

created an entirely independent class MyProjectiveTriple for performing rudimentary
elliptic curve operations (in projective coordinates) by directly working with BigIn-
tegers (while performing the modulo operation manually, only when necessary) and
avoiding any overhead from unnecessary method calls. The implementation is limited
to performing addition, doubling and scalar multiplication on projective elliptic curve
points, since reimplementing all existing functionality in a simplified way would cer-
tainly be outside the scope of this thesis. But by comparing the performance of this
simplified implementation with the original one that was integrated into the existing
class hierarchy, we should get a good estimate about the general costs associated with
it.
Listing 4.2 shows how the MyProjectiveTriple class implements the modulo opera-

tions when performing a point addition:
The private function modp manages the task of performing a modulo operation (for

simplicity, p is saved an attribute of the instance) operation, only calling the expensive
BigInteger.mod method when the argument x is outside the range [0, p− 1]. (The first
three lines of the modp function could be commented out, in order to mimic the behavior
of the modulo operation performed by the upb.crypto.math library.)
The add function performs the point addition (checking of corner cases has been

38



4.6 Testing

removed to improve readability). Instead of performing a modp operation after each
field operation, it only calls modp after each multiplication (in order to keep the values
reasonable small), thereby saving even more modulo computations. Since we call modp
for the result coordinates rx, ry, and rz though, the returned point is still correct.

Listing 4.2: Modulo and addition implementation in the MyProjectiveTriple class
1 private BigInteger modp( BigInteger x) {
2 if (x. compareTo (p) < 0 && x.signum () ≥ 0) {
3 return x;
4 }
5 return x.mod(p);
6 }
7
8 public MyProjectiveTriple add( MyProjectiveTriple q) {
9 BigInteger x1z2 = modp(x. multiply (q.z));

10 BigInteger v = modp(q.x. multiply (z)). subtract (x1z2);
11 BigInteger y1z2 = modp(y. multiply (q.z));
12 BigInteger u = modp(q.y. multiply (z)). subtract (y1z2);
13 BigInteger uu = modp(u. multiply (u));
14 BigInteger vv = modp(v. multiply (v));
15 BigInteger vvv = modp(v. multiply (vv));
16 BigInteger r = modp(vv. multiply (x1z2));
17 BigInteger z1z2 = modp(z. multiply (q.z));
18 BigInteger a = modp(uu. multiply (z1z2)). subtract (vvv).

↪→ subtract (r. shiftLeft (1));
19 BigInteger rx = modp(v. multiply (a));
20 BigInteger ry = modp(u. multiply (r. subtract (a)). subtract (

↪→ vvv. multiply (y1z2)));
21 BigInteger rz = modp(vvv. multiply (z1z2));
22 return new MyProjectiveTriple (p, curveParameterA , rx , ry ,

↪→ rz);
23 }

4.6 Testing
The next two subsections detail how the new code described in the last sections has
been tested for correctness and efficiency.

4.6.1 Unit tests
There were already quite a few unit tests present in the upb.crypto.math library to
begin with. In particular, the GroupTests and the PairingTests unit tests were very
useful: The GroupTests unit tests were parameterized, so that we could check the

39



4 Implementation

correctness of basic group operations of the new projective and Jacobian elliptic curve
points by simply adding the corresponding structure to a list containing all groups that
are to be tested; meanwhile, the PairingTests unit tests were copied to a separate file
AtePairingTests in order to test the correctness of the Ate pairing.
In addition to these tests, we also created the entirely new unit test files Single-

ExponentiationTests, MultiExponentiationTests, and ProjectiveTripleTests in
order to test the correctness of the new single- and multiexponentiation algorithms, and
the independent ProjectiveTriple class.
In the beginning, these unit tests were also used to roughly measure the performance

of the components under test, but all final evaluations used in this thesis were done with
separate main-functions in the main code in order to allow for easier execution via Bash
scripts and to avoid potential overhead from the IDE or testing framework.

4.6.2 Performance tests
In this section, we will discuss relevant aspects of the way we performed performance
tests: Letting the JVM "warm-up" before doing our measurements, and automating the
testing procedure by writing Bash scripts.

Warm-up

An important aspect to consider when measuring the performance of Java is the "warm-
up" phase of the JVM. As discussed in [14], performance-heavy tasks like class loading
and just-in-time (JIT)-compilation can occur in particular in the beginning of the run,
skewing the results.
In order to avoid this problem, we decided to perform twice as many iterations than

we intend to measure, and then discarding the measurements from the first half of them.
This way, we can assume that the JVM has already been sufficiently warmed up by the
time we start measuring (which is usually a couple seconds after the run started).

Bash scripts

Even if performing warm-up iterations as described in the previous sections there might
still be undesired side-effects when running performance tests with different parameters
right one after the other in the same JVM instance. For example, garbage collection of
space used for the previous test round might decrease the performance of the test with
the current parameters.
In order to make comparisons as fair as possible, we decided to run a fresh JVM

instance for each parameter configuration we wanted to test. Because starting tests for
each configuration manually would be too time-consuming, we wrote Bash scripts to
automate these tests. Listing 4.3, for example, shows a Bash script that we used to
measure the performance of simple multiexponentiation algorithms for different number
of bases.

40



4.7 Smartphone implementation

Listing 4.3: An example Bash script that executes performance tests for the simple mul-
tiexponentiation algorithms (with window size of 1 and no caching)

1 # ! / b i n / b a s h
2 runcommand ="/usr/lib/jvm/java -8- openjdk -amd64/bin/java [

↪→ arguments to set classpath , etc ...] de.upb.crypto.math
↪→ .swante. profiling . ThesisMultiExpo "

3 basepath ="/[ absolute path to library source code ]/ upb.crypto
↪→ .math"

4 outputfile =" outputs /out1.txt"
5 myrun () {
6 echo $1
7 eval " $runcommand $1" >> $outputfile
8 }
9 echo " outputs :" > $outputfile

10 iters="100" # n u m b e r o f r e p e t i t i o n s
11 securityParam ="128" # h a l f o f t h e c u r v e ’ s b i t l e n g t h
12 windowSize ="1" # d o e s n ’ t c h a n g e f o r t h e s i m p l e a l g o r i t h m s
13 cacheSmallPowers ="False" # s m a l l p o w e r s a r e n e v e r c a c h e d f o r

↪→ t h e s i m p l e a l g o r i t h m s
14 for coordType in jacobi projective
15 do
16 for algorithmIndex in 0 1 2
17 do
18 for numberOfBases in 1 2 3 4 5 6 7 8 9 10
19 do
20 myrun " $securityParam $coordType $numberOfBases

↪→ $iters $windowSize $algorithmIndex
↪→ $cacheSmallPowers "

21 done
22 done
23 done

4.7 Smartphone implementation
Considering the widespread use of mobile messaging apps like WhatsApp and Telegram,
developers should make sure that the encryption algorithms they wish to employ also
work on smartphones, which tend to have significantly less memory and computing
power than PCs.
Given that this thesis is specifically aimed towards Java implementations, we decided

to build a small Android app in order to test the performance of our elliptic curve
algorithms. We started with a default app template using the Android Studio IDE [2],
added the upb.crypto.math library, and then wrote performance tests similar to those

41



4 Implementation

described above. Since running an app with different parameters via a Bash script is
non-trivial, we decided to run all tests within a single launch of the app via the IDE
instead. The computations are run in a separate background thread, which is started
during the creation of the main GUI activity.

42



5 Evaluation
This chapter shows the most relevant results we got when evaluating the performance
of the algorithms presented in the previous chapters.
Section 5.1 opens with a description of the environment in which the evaluations were

run, including used hardware, software and curve parameters. Section 5.2 shows mea-
surements for basic field operations, followed by Section 5.3 which compares different
coordinate types with each other. Sections 5.4 and 5.5 deal with single- and multiex-
ponentiation, respectively, Section 5.6 shows how much the performance of the existing
code by employing a simplified implementation, and Section 5.7 compares the Ate pair-
ing with the previously implemented Tate pairing. Lastly, Section 5.8 closes with a quick
look at how well the code performs on a smartphone, in comparison to a laptop.

5.1 Set-up
Unless otherwise noted, all tests in this chapter are run on a Lenovo ThinkPad E580
Laptop (Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 16GB RAM), running the Linux
Mint 19.1 operating system. The smartphone tests were executed on a Honor 7X Smart-
phone with a HiSilicon Kirin 659 processor (4 x 2.36 GHz + 4 x 1.7 GHz), 4 GB RAM,
and 64 GB memory, running Android version 8.0.
The code was compiled and run with Java version 1.8 and didn’t require any fur-

ther libraries except for those dependencies the upb.crypto.math library already had
(e.g. junit and log4j), as well as the Android Java SDK (for the smartphone tests).
Tests were performed on Barreto-Naehrig curves, since this was the kind of curve the
upb.crypto.math library was specialized for, with a group order with a bit length of
either 256 or 512 bit, as recommended curve parameters suggest values in this range for
secure cryptography (see [25]).
Tests were run with as few open applications as possible, in order to minimize potential

noise.

5.2 Basic field operations evaluations
Figure 5.1 depicts the runtime costs of the basic field operation add, mul, etc. when
executed via the Zp class from the upb.crypto.math library.
We can see that multiplication and squaring are almost equally performant (probably

because the optimized algorithms for squaring that are implemented in the BigInte-
ger class are only applicable for significantly larger values), while both addition and

43



5 Evaluation

Figure 5.1: Total cost (in ms) of performing 107 operations of the given kind on random
field elements of given bit length

subtraction take considerably less time. Costs for inversions are more than an order of
magnitude higher than for multiplications/squarings. While this difference is not quite
as pronounced as guessed in Section 3.1.7, it is still high enough to justify why we would
like to avoid inversions by using projective or Jacobian coordinates instead of affine
coordinates.

5.3 Affine vs Jacobian vs projective coordinates
Figure 5.2 shows the costs of the basic elliptic curve operations – addition and doubling
– over 256- and 512-bit curves for different coordinate systems.
The affine coordinates are easily outperformed by the other coordinate systems by a

factor of 2x-3x. As predicted in Section 3.1.7, projective coordinates perform better for
the normal addition, while Jacobian coordinates are faster when it comes to doubling.
Using mixed coordinates improves both projective and Jacobian addition, but has a
slightly larger effect on Jacobian coordinates than on projective ones, which also aligns
with previous predictions.

5.4 Comparison of single exponentiation techniques
In Figure 5.3 we can see for Jacobian coordinates how well various single exponentia-
tion algorithms (both with and without caching precomputed small powers) perform in
comparison to the simple double-and-add procedure, with varying values for the window
size. With an appropriately chosen window size (4 seems to be the optimal value in at

44



5.4 Comparison of single exponentiation techniques

Figure 5.2: Total cost (in ms) of performing 105 operations of the given kind on random
elements of 256- and 512-bit BN-curves (over Fp)

least this example configuration), even if no caching of small powers is used (i.e. the
small powers need to be recomputed again for each exponentiation), all three depicted
algorithms perform significantly better than the simple double-and-add technique, with
wNAF being fastest. If caching is allowed (i.e. the precomputation of the small pow-
ers is only done once, at the beginning, and not included in the runtime costs), the
exponentiations get ever cheaper with increasing window size.
Figure 5.4 shows the equivalent plot for projective coordinates, with slightly different

results: With caching, Jacobian coordinates perform significantly better, for window
sizes larger than 2. Without caching, projective coordinates perform faster for both
small and large window sizes, while for a window size of 4 both approaches perform
about equally well. This can be explained by considering that the precomputation
phase consists of general point addition operations, which are significantly faster in
projective coordinates: For large window sizes, the expected number of additions during
the evaluation phase is very small, but large for the precomputation phase. For small
window sizes, on the other hand, the precomputation phase is insignificant, but the
expected number of additions during the evaluation phase is still rather high, making
projective coordinates faster.
Thus we can conclude, in cases where caching of small powers makes sense because

the same base will be used multiple times (e.g. generators or public keys like in the
Diffie-Hellman key exchange), the window size should be chosen as large as possible,
as long as the space and runtime side effects from the required precomputation don’t
become excessive. In cases where each base is used only once, a smaller window size
should be used, ideally around 4. The wNAF algorithm is to be preferred over the other
ones, and Jacobian coordinates should be used when caching small powers, otherwise
projective coordinates are preferable.

45



5 Evaluation

Figure 5.3: Total cost (in ms) of performing 5000 exponentiations using different algo-
rithms on random elements of a 256-bit BN-curve (over Fp) using Jacobian
coordinates, with exponents chosen uniformly at random from Fp

Figure 5.4: Total cost (in ms) of performing 5000 exponentiations using different algo-
rithms on random elements of a 256-bit BN-curve (over Fp) using projective
coordinates, with exponents chosen uniformly at random from Fp

5.5 Comparison of multiexponentiation techniques
Figure 5.5 shows performance measurements for the trivial multiexponentiation algo-
rithm (where the power of each base is computed separately), the original implementa-
tion using HashMaps, as well as our equivalent simplified array-based implementation.

46



5.5 Comparison of multiexponentiation techniques

Figure 5.5: Total cost (in ms) of performing 100 multiexponentiations of the given num-
ber of random bases from a 256-bit BN-curve (over Fp) in projective coor-
dinates using basic algorithms, with exponents chosen uniformly at random
from Fp

You can observe that the original version and the array-based implementation are
almost equally fast, both of them being significantly faster than the trivial implementa-
tion, because they share the doubling operations when there are multiple bases. (For this
test, the costly call of the dynamicOptimization method from the original PowProduct-
Expression has been commented out; with the dynamicOptimization call, the original
version would perform significantly slower than the simplified array-based version.)
For the trivial implementation, Jacobian coordinates are slightly faster than projec-

tive coordinates, which makes sense considering that this implementation basically just
performs a few single exponentiations separately, and as discussed in the previous sec-
tion, Jacobian coordinates perform better than projective coordinates when performing
single exponentiations.
For the other two multiexponentiation algorithms that share the doubling operations,

though, projective coordinates are again faster than the Jacobian ones, because fewer
doublings are performed, and projective coordinates perform additions faster than Jaco-
bian ones. In order to improve the readability of the plots for the following sliding win-
dow multiexponentiation algorithms, only results for projective coordinates are shown.
(Measurements in Jacobian coordinates are very similar, just slightly slower.)
Figure 5.6 depicts the performance of the simultaneous sliding window approach for

multiexponentiation with window sizes ranging from 1 to 4. (For window sizes 3 and
4, the data is truncated, since the Laptop’s space limitations were reached.) If the
precomputed power combinations can be cached and reused, this approach is extremely
fast and evaluations don’t cost significantly more as the number of bases grows. If the
precomputation needs to be done for every multiexponentiation though (because no set

47



5 Evaluation

Figure 5.6: Total cost (in ms) of performing 100 multiexponentiations of the given num-
ber of random bases from a 256-bit BN-curve (over Fp) in projective co-
ordinates using the simultaneous sliding window technique, with exponents
chosen uniformly at random from Fp

of bases is used more than once), the simultaneous approach becomes quickly unfeasible
for a larger number of bases r, as it grows exponentially in r.

Figure 5.7: Total cost (in ms) of performing 100 multiexponentiations of the given num-
ber of random bases from a 256-bit BN-curve (over Fp) in projective coordi-
nates using the interleaved sliding window technique, with exponents chosen
uniformly at random from Fp

48



5.6 Performance gains via implementation-specific optimizations

In Figure 5.7, on the other hand, we can see how the interleaving approach results
in linear complexity for both the precomputation as well as the evaluation phase. Up
until a window size of about 4, the runtime improves both for the version with caching
as well as for the one without. With a larger window size, however, the precomputation
does start to cause significant costs and only if caching and reuse of small powers is
possible, such a large window size would make sense. (Note that the precomputation is
not nearly as costly here as for the simultaneous approach, since only the direct powers
of the bases rather than combinations of them are computed.)
In conclusion, we can give the recommendation to use the simultaneous approach

(with window size of 1 or at most 2 because otherwise the precomputation become to
time- and space- consuming) when the number of bases doesn’t exceed 10 and power
combinations can be cached and will be reused. In all other cases, the interleaving
approach should be employed, with a window size of about 4 if no caching is applicable,
and as large a value as possible otherwise (as long as the precomputation phase uses not
more time or space than available).

5.6 Performance gains via implementation-specific
optimizations

Figure 5.8 shows the performance impact of the BigInteger.mod operation from the Zn
constructor and the total overhead from the complex structure of the upb.crypto.math
library by the example of projective scalar multiplication performed by different com-
ponents: We can see that the original implementation is already significantly improved
when optimizing the ZnElement creation by not performing the mod operation when the
passed BigInteger is already in the desired range [0, p− 1]. The right columns shows
how the simplified implementation from the MyProjectiveTriple class can even further
improve the performance.
These effects are significantly more pronounced for the shorter 256-bit curve than

for the 512-bit curve, presumably because the overhead from the ZnElement creation
doesn’t increase as much with a larger number of bits as the time consumed by the main
computations.

5.7 Tate vs Ate pairing
In Table 5.1 we can see the runtimes of Tate pairing and Ate pairing computation on 256-
and 512-bit BN-curves. The Ate pairing ran about 6.5% faster than the Tate pairing
for the 256-bit curve, but only about 1.5% faster on the 512-bit BN-curve. Apparently,
the reduced number of required miller loop iterations leads to significantly improved
performance as long as the curve size is not too large. With 512-bit, or even larger curve
sizes, the improvement is less significant, presumably because the final exponentiation
(which requires expensive Fpk-arithmetic) has larger relative costs for large bit lengths.

49



5 Evaluation

Figure 5.8: Relative improvement (in comparison to the original version) of perform-
ing 104 simple double-and-add scalar multiplications of random projective
points from a 256- or 512-bit BN-curve (over Fp), using the slightly modi-
fied version (with optimized ZnElement creation), and MyProjectiveTriple
implementation

Table 5.1: Runtimes (in ms) of 50 pairing computation of the given type over a BN-curve
of given bit length

256-bit 512-bit
Tate pairing 76 133 192 691
Ate pairing 71 324 189 837

5.8 Performances on a smartphone
Rather than running all tests from above anew on the Android phone, we decided to
focus on multiexponentiation: It’s the most complex problem presented so far, and its
high requirement for memory and computing power will show us the limits of performing
elliptic curve algorithms on smartphones. Since we already established that projective
coordinates perform slightly faster for multiexponentiation with all algorithms except
the trivial one, for simplicity, we’ll just show the results for projective coordinates.
Figure 5.9 shows how fast multiexponentiations perform when employing the three

basic implementations. Note that only 5 iterations were performed, in contrast to the
100 iterations performed for the laptop tests from Section 5.5. The average runtime
of performing a single multiexponentiation is about 25 times slower on the Honor 7X
Android phone than on the ThinkPad E580 laptop (see Section 5.1 for the exact hardware

50



5.8 Performances on a smartphone

Figure 5.9: Total cost (in ms) of performing 5 multiexponentiations of the given number
of random bases from a 256-bit BN-curve (over Fp) in projective coordinates
using basic algorithms on a smartphone, with exponents chosen uniformly
at random from Fp

specifications of these devices). Except for this astoundingly large slowdown, the three
algorithms exhibit behavior equivalent to the one seen in the laptop tests.

Figure 5.10: Total cost (in ms) of performing 5 multiexponentiations of the given number
of random bases from a 256-bit BN-curve (over Fp) in projective coordinates
using the simultaneous sliding window technique on a smartphone, with
exponents chosen uniformly at random from Fp

51



5 Evaluation

Results for simultaneous sliding window multiexponentiation are shown in Figure
5.10. We can see how very quickly the precomputation phase leads to exceedingly high
computation times, even with rather small bases. With appropriate calls to the Android
SDK we determined the total memory available for the app to be 384MB. While all other
tested algorithms only used between 30 and 90MB the simultaneous sliding window
multiexponentiation required more than 300MB when the window size and the number
of bases was relatively large, leading to much overhead due to memory allocation /
garbage collection. This is why, compared to the laptop tests, the computation costs
grow more quickly on the smartphone; and for e.g. five bases and a window size of four,
it was not even possible at all to do the required precomputation, while this was no
problem on the laptop.

Figure 5.11: Total cost (in ms) of performing 5 multiexponentiations of the given number
of random bases from a 256-bit BN-curve (over Fp) in projective coordinates
using the interleaved sliding window technique on a smartphone, with ex-
ponents chosen uniformly at random from Fp

In Figure 5.11 we the evaluation results for interleaved sliding window multiexponen-
tiation, which are just as for the laptop: Without caching small powers, a window size
of four performs best, and with caching, larger window sizes can be used to improve
performance further.
In conclusion, we can say that the limited available memory of smartphones should

be taken into account when choosing the extent of precomputations to be performed.
More importantly, the performance on the phone in general seems to be much slower
than on the laptop, even in cases where little memory was used. Thus, all elliptic curve
algorithms should be implemented as efficiently as possible in order to ensure that they
execute sufficiently fast even on these platforms.

52



6 Conclusion & future work
In conclusion, we would like to emphasize in which areas putting time and effort into
optimizing performance was most worthwhile: Clearly, using projective or Jacobian co-
ordinates instead of affine ones was a great performance enhancement, similarly using
sliding window techniques for single- and multiexponentiation significantly improved
upon the existing code. Considering, on the other hand, how much time we have spent
analyzing the difference between projective and Jacobian coordinates, or the between
sliding window and wNAF exponentiation, leading to only small improvements of per-
formance, we can’t help but wonder if some of that time could have been spent elsewhere
more effectively.
Bearing in mind the large improvement that we achieved by a simple additional if-

clause to avoid unnecessary modulo operations or by the simplified ProjectiveTriple
code, we would like to point out that the notion of "premature optimization" – a deroga-
tory term commonly used to describe the premature attempt to improve performance
by working on low-level implementation details – can sometimes also be applied in the
reverse direction: Optimizing the theoretical runtime of the algorithms by using new
and rather complicated approaches from a vast set of scientific papers might often just
improve performance by a minuscule amount, while working on the specific implementa-
tion details might lead to much more significant improvements in less time. In the end,
it is of the essence to find the right middle ground between these two extremes.
Regarding future work, it might thus be worthwhile to have an even closer look at how

the BigInteger class is used: A specialized wrapper class might be able to encapsulate
optimizations that might further reduce the number of performed mod operations, e.g. by
just subtracting p once (if necessary) after an addition of two values from Fp thus saving
the expensive mod operation. Using the internal MutableBigInteger class directly might
also improve performance significantly.
Further experiments about other types of pairing (like the Eta pairing [13]) as well as

how the final exponentiation step could be improved (see [24]) might be useful. Entirely
new topics of interest could include how to perform elliptic curve algorithms in a par-
allelized fashion, or how to make them secure against side-channel attacks. Finally, our
new code could get better integrated into the existing library, with automated heuristics
deciding when to use which algorithm.

53





Bibliography
[1] Leonard Adleman. “A subexponential algorithm for the discrete logarithm problem

with applications to cryptography”. In: 20th Annual Symposium on Foundations
of Computer Science (SFCS 1979). IEEE. 1979, pp. 55–60.

[2] Android Studio website. url: https://developer.android.com/studio (visited
on 07/20/2019).

[3] Paulo SLM Barreto and Michael Naehrig. “Pairing-friendly elliptic curves of prime
order”. In: International Workshop on Selected Areas in Cryptography. Springer.
2005, pp. 319–331.

[4] Ian Blake et al. Elliptic curves in cryptography. Vol. 265. Cambridge university
press, 1999.

[5] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short signatures from the Weil
pairing”. In: International Conference on the Theory and Application of Cryptology
and Information Security. Springer. 2001, pp. 514–532.

[6] Jan Camenisch and Anna Lysyanskaya. “Signature schemes and anonymous cre-
dentials from bilinear maps”. In: Annual International Cryptology Conference.
Springer. 2004, pp. 56–72.

[7] Mathieu Ciet et al. “Trading inversions for multiplications in elliptic curve cryp-
tography”. In: Designs, codes and cryptography 39.2 (2006), pp. 189–206.

[8] Henri Cohen, Atsuko Miyaji, and Takatoshi Ono. “Efficient elliptic curve exponen-
tiation using mixed coordinates”. In: International Conference on the Theory and
Application of Cryptology and Information Security. Springer. 1998, pp. 51–65.

[9] Henri Cohen et al. Handbook of elliptic and hyperelliptic curve cryptography. Chap-
man and Hall/CRC, 2005.

[10] Augusto Jun Devegili, Michael Scott, and Ricardo Dahab. “Implementing cryp-
tographic pairings over Barreto-Naehrig curves”. In: International Conference on
Pairing-Based Cryptography. Springer. 2007, pp. 197–207.

[11] Steven D Galbraith, Kenneth G Paterson, and Nigel P Smart. “Pairings for cryp-
tographers”. In: Discrete Applied Mathematics 156.16 (2008), pp. 3113–3121.

[12] Darrel Hankerson, Alfred J Menezes, and Scott Vanstone. “Guide to elliptic curve
cryptography”. In: Computing Reviews 46.1 (2005), p. 13.

[13] Florian Hess, Nigel P Smart, and Frederik Vercauteren. “The eta pairing revisited”.
In: IEEE Transactions on Information Theory 52.10 (2006), pp. 4595–4602.

55

https://developer.android.com/studio


Bibliography

[14] Vojtěch Horky et al. “Dos and don’ts of conducting performance measurements in
java”. In: Proceedings of the 6th ACM/SPEC International Conference on Perfor-
mance Engineering. ACM. 2015, pp. 337–340.

[15] Jacobian coordinates for short Weierstrass curves. url: http://www.hyperelliptic.
org/EFD/g1p/auto-shortw-jacobian.html (visited on 07/20/2019).

[16] Antoine Joux. “A one round protocol for tripartite Diffie–Hellman”. In: Interna-
tional algorithmic number theory symposium. Springer. 2000, pp. 385–393.

[17] Cetin K Koç. “Analysis of sliding window techniques for exponentiation”. In: Com-
puters & Mathematics with Applications 30.10 (1995), pp. 17–24.

[18] Alfred Menezes. “An introduction to pairing-based cryptography”. In: Recent trends
in cryptography 477 (2009), pp. 47–65.

[19] Bodo Möller. “Algorithms for multi-exponentiation”. In: International Workshop
on Selected Areas in Cryptography. Springer. 2001, pp. 165–180.

[20] Michael Naehrig. “Constructive and computational aspects of cryptographic pair-
ings”. In: (2009).

[21] David Pointcheval and Olivier Sanders. “Short randomizable signatures”. In: Cryp-
tographers’ Track at the RSA Conference. Springer. 2016, pp. 111–126.

[22] Projective coordinates for short Weierstrass curves. url: http://www.hyperelliptic.
org/EFD/g1p/auto-shortw-projective.html (visited on 07/20/2019).

[23] Ronald L Rivest, Adi Shamir, and Leonard Adleman. “A method for obtaining
digital signatures and public-key cryptosystems”. In: Communications of the ACM
21.2 (1978), pp. 120–126.

[24] Michael Scott et al. “On the final exponentiation for calculating pairings on ordi-
nary elliptic curves”. In: International Conference on Pairing-Based Cryptography.
Springer. 2009, pp. 78–88.

[25] Standards for Efficient Cryptography Group. url: https://www.secg.org/ (vis-
ited on 07/20/2019).

[26] Frederik Vercauteren. “Optimal pairings”. In: IEEE Transactions on Information
Theory 56.1 (2009), pp. 455–461.

[27] VisualVM website. url: https://visualvm.github.io/ (visited on 07/20/2019).
[28] Carl Youngblood. “An introduction to identity-based cryptography”. In: CSEP

590TU (2005), pp. 1–7.

56

http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html
http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html
http://www.hyperelliptic.org/EFD/g1p/auto-shortw-projective.html
http://www.hyperelliptic.org/EFD/g1p/auto-shortw-projective.html
https://www.secg.org/
https://visualvm.github.io/

	Abstract
	Introduction
	Fundamentals
	Finite fields
	Definition
	Extension fields
	Discrete logarithm problem

	Elliptic curves
	Definition
	Inverse
	General point addition
	Point doubling
	Corner cases
	Scalar multiplication
	Group order
	Barreto-Naehrig curves
	Application example: elliptic curve Diffie–Hellman key exchange

	Bilinear pairings
	Definition
	Applications of pairings
	Reduced Tate pairing


	Optimization ideas
	Projective and Jacobian coordinates
	Transformations
	Projective addition
	Projective doubling
	Jacobian addition
	Jacobian doubling
	Mixed additions
	Comparison of costs

	Windowed exponentiation
	2w-ary exponentiation
	Basic sliding window exponentiation
	Signed-digit methods
	Comparison of costs

	Multiexponentiation
	Basic idea: merging the squarings
	Simultaneous methods
	Interleaved methods
	Comparison

	Ate pairing
	Implementation-specific optimizations

	Implementation
	General architecture
	Elliptic curve point operations
	Exponentiations
	Single exponentiation
	Multiexponentiation

	Ate pairing
	Simplified implementation
	Testing
	Unit tests
	Performance tests

	Smartphone implementation

	Evaluation
	Set-up
	Basic field operations evaluations
	Affine vs Jacobian vs projective coordinates
	Comparison of single exponentiation techniques
	Comparison of multiexponentiation techniques
	Performance gains via implementation-specific optimizations
	Tate vs Ate pairing
	Performances on a smartphone

	Conclusion & future work

