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Abstract
This paper deals with multi-channel speech recognition in scenar-
ios with multiple speakers. Recently, the spectral characteristics
of a target speaker, extracted from an adaptation utterance, have
been used to guide a neural network mask estimator to focus on
that speaker. In this work we present two variants of speaker-
aware neural networks, which exploit both spectral and spatial
information to allow better discrimination between target and
interfering speakers. Thus, we introduce either a spatial pre-
processing prior to the mask estimation or a spatial plus spectral
speaker characterization block whose output is directly fed into
the neural mask estimator. The target speaker’s spectral and spa-
tial signature is extracted from an adaptation utterance recorded
at the beginning of a session. We further adapt the architecture
for low-latency processing by means of block-online beamform-
ing that recursively updates the signal statistics. Experimental
results show that the additional spatial information clearly im-
proves source extraction, in particular in the same-gender case,
and that our proposal achieves state-of-the-art performance in
terms of distortion reduction and recognition accuracy.
Index Terms: Source extraction, Multi-channel speech enhance-
ment, Online beamforming, Robust speech recognition, Speaker
adaptation

1. Introduction
In recent years, research on Automatic Speech Recognition
(ASR) has led to an increase of recognition accuracy, mainly due
to the rise of deep neural networks. One example of particular
interest is ASR for conference scenarios, where multiple speak-
ers have to be transcribed to get an accurate summary. However,
the ASR performance can be severely affected by different types
of distortion such as background noise, reverberation and, espe-
cially, overlapping speakers.

When the recording devices employ microphone arrays,
beamforming techniques can be used as a front-end to reduce dis-
tortions. State-of-the-art techniques are based on time-frequency
masks indicating speech or interference dominance [1, 2]. The
estimated masks are used to obtain spatial speech and noise
statistics, which in turn are needed to compute the coefficients of
the beamformer. Among other approaches, neural networks have
been applied to mask estimation, showing state-of-the-art results
[3, 4], while still allowing for low-latency processing [5, 6, 7].

The performance of these neural network-based mask es-
timators degrades in the presence of multiple, simultaneously
active speakers, as the model is unable to discriminate between
them. Several techniques have been recently proposed to deal
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with this source separation problem, showing promising results:
Deep Clustering (DC) [8], Deep Attractor Networks (DANs)
[9] or permutation invariant training [10]. These techniques are
designed to extract the signals from all speakers. However, in
many scenarios we are only interested in one target speaker.

Other techniques focus on one target speaker by using con-
text information to select the desired one [11, 12, 13]. Thus,
in [14] Zmolikova et al. proposed a network structure called
Speaker Beam (SB), which uses an adaptation utterance (AU)
of the desired speaker to focus on its spectral characteristics for
the separation task. However, the performance of SB degrades
in open-speaker-sets in case of overlapping speakers having the
same gender. Other works have defined a set of finite AUs and
trained a mask estimator to focus on the speaker using one of
these predefined utterances [15, 16]. These approaches rely on
the fact that the AU is predefined and known in advance. In [17]
a network is trained to focus on the direction of the target speaker,
which is provided by oracle information. Lately, the information
from an AU has been used directly in an ASR system to allow
speech separation without any additional front-end [18, 19].

In this work we propose two novel multi-channel low-latency
speech extraction systems, which retrieve spatial and spectral
information from an AU to force a neural network to focus on the
speech signal of a target speaker. In both systems, the AU does
not need to be fixed but it can be any utterance from the target
speaker at his/her target position. For the first proposal, a spatial
pre-processing is applied to both the AU and the noisy speech
signal before they are fed into the neural network mask estimator.
For the second proposal, a set of features capturing spatial and
spectral information are used for mask estimation. We assume
that each speaker has recorded an initial utterance without other
interfering speakers and that the speakers change their positions
only slightly between the AU recording and the session from
which the target speech is to be extracted. This requirement is
mostly satisfied in a conference scenario. Nevertheless, if the tar-
get speaker moves, a short reinitialization can be applied to adapt
the system to the new position. The advantage of the presented
approach is that it does not depend on any specific AU, any spe-
cific noise condition during adaptation or the application of other
additional information, while still exploiting the spectral and
spatial properties of the target signal. Experimental results show
that our proposal achieves good recognition accuracy and low
distortion in comparison with other state-of-the-art approaches.

The reminder of the paper is organized as follows. The
block-online beamformer procedure is explained in Section 2.
In Section 3 the proposed mask estimators based on SB are
introduced. The description of the experimental framework and
the results are addressed in Section 4 and final conclusions are
drawn in Section 5.



2. Block-Online Beamformer Estimation
We assume a multi-channel noisy speech signal in the short-time
Fourier transform (STFT) domain,

Y(t, f) = X(t, f) + N(t, f), (1)

where X(t, f) and N(t, f) are the multi-channel target speech
and the noise signal vector, respectively, t is the frame index and
f the frequency bin index. The noise signal accounts for the
background noise, late reverberation and interfering speakers.
The time and frequency indices will be omitted where possible.

The estimation of the beamformer coefficients requires an
estimation of the spatial correlation matrices (SCM) for both the
clean speech ΦXX and the noise signals ΦNN . To allow for
low-latency processing, these matrices are recursively estimated
in blocks of L frames for every frequency bin using a speech or
a noise activity mask Mν with ν = {X,N} [7],

Φνν(nL) = βνΦνν((n− 1)L) + (1− βν)Φ̂νν(nL), (2)

Φ̂νν(nL) =

L−1∑
l=0

Mν(nL− l)Y(nL− l)YH(nL− l), (3)

where βν is the forgetting factor and n the block index. This
way, we can estimate and apply the beamformer in each block
of frames.

The aforementioned procedure needs an initialization of the
speech and noise SCMs. For example, the work in [7] initializes
the SCM by using an identity matrix for the noise and zero
matrix for the speech. Better performance can be obtained with a
proper initialization which makes use of prior information about
the spatial characteristics of the signals. Thus, we can assume a
diffuse noise field as initialization for the noise SCM with [20]:

ΦNN,diffuse(f) = φN (f) · sinc (2πfFs · d/c) , (4)

where Fs is the sampling frequency, d is the matrix of distances
between the microphones, c is the speed of sound and φN (f)
is the noise Power Spectral Density (PSD). We calculate an
estimate of the noise PSD from the first block of the distorted ut-
terance. In Equation (4) the sinc operator has to be understood to
be applied to each matrix element separately. The target speech
SCM may be initialized with a matrix ΦUU corresponding to the
SCM of the multi-channel AU signal U(t, f). This way the spa-
tial information and the characteristics of the acoustic channels
between the speaker and the microphones are exploited.

From the estimated SCMs a beamformer is computed for
every block step. We use the rank-1 approximation [21] of
the Minimum Variance Distortionless Response (MVDR) beam-
former formulation presented in [22]:

F =
Φ−1
NNΦ̃XX

tr{Φ−1
NNΦ̃XX}

u, (5)

where u is a unit vector pointing to the reference microphone,
tr{·} is the trace operator and Φ̃XX is a rank-1 approximation
of the speech SCM [21], defined as

Φ̃XX = aaH · tr{ΦXX}/tr{aaH}, (6)

where a = ΦNNP
{
Φ−1
NNΦXX

}
with P {·} standing for the

principal component of a matrix.
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Figure 1: System overview of the PreBF-based source extraction.

3. SpatialBeam Speech Extraction
To estimate the masks Mν for the beamforming vector compu-
tation, we develop a mask estimator based on the SB approach
proposed in [14]. Disregarding the spatial pre-processing block
(explained later), this SB approach corresponds to the right half
of the diagram depicted in Figure 1. The approach consists of
a neural network-based mask estimator, composed of a recur-
rent layer and several feedforward layers, provided with speaker
information about the target speaker. This is achieved by in-
troducing an auxiliary network fed with the AU. The auxiliary
network obtains an output vector α, which will be referred to
as speaker representation. On the other hand, one of the feed-
forward layers of the SB mask estimator is split into several
sub-layers, whose individual outputs are combined by means of
the weighting vector α. The auxiliary network and the mask
estimator are jointly trained. This way, the mask estimator is
adapted to focus on the target speaker.

The SB approach is adapted in this work for online mask
estimation in a similar way to [7]. First, the bi-directional
Long-Short-Term-Memory (LSTM) layer is replaced by a single
LSTM layer of twice the output size, thus reducing the informa-
tion available to the network to current and past frames. The
utterance mean and variance offline normalization is replaced by
a recursive mean normalization, since this has shown to perform
well in the online case [7].

The SB approach shows a performance degradation when
applied in a scenario with overlapping speakers with similar
spectral characteristics, as observed in speakers of the same
gender. In this case, the mask estimator is not able to separate
the target speaker from the interfering ones. This problem is
alleviated in cases where both speakers are part of the training
data. However, the retraining option proposed in [14] is not
feasible in an online scenario.

To solve the aforementioned problem, we propose to use
spatial information obtained directly from the AU assuming a
steady target speaker position. This allows a better separation
between speakers with similar active frequencies and speech
patterns. Thus, we propose two different approaches which
exploit the spatial information provided by additional blocks.

The first proposal is to apply a spatial pre-processing to the
noisy speech signal and the AU before its use in the SB mask
estimator and the auxiliary network. The block diagram of this
proposal is depicted in Figure 1 along with the SB mask estima-
tor. We choose an MVDR beamformer as spatial pre-processor.
The SCMs for this initial beamformer are the same ones used
as initialization of the block-online beamforming presented in
Section 2. Additionally, we apply the rank-1 approximation
explained above to force the beamformer to concentrate on the
spatial information in ΦUU . Both the AU and the subsequent
distorted utterance are enhanced with this initial beamforming
vector, Finit. The resulting single-channel signals are then fed
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Figure 2: System overview of the proposed online mask estimator
based on SpeakerBeam and spatial features.

into the SB network and the auxiliary network for target speaker
and noise mask estimation. The final beamformer (BF in the
figure) use these masks to extract the target signal in each block
as described in the previous section. The advantage of this pre-
processing, referred to as PreBF from now on, is that, although
it does not provide a strong enough separation on its own for an
ASR system, the overlapping speakers are suppressed so that a
more accurate mask estimation is possible.

As an alternative we propose to use additional spatial fea-
tures at the input of the auxiliary and mask estimation networks.
Even if the magnitude spectral properties of the target speaker do
not offer enough distinct information, the phase differences be-
tween different microphone signals provide another independent
source of information to identify the target speaker. Therefore,
the auxiliary network can calculate distinct speaker embeddings
for speakers with similar speech by using this additional spatial
information. Similarly, for speakers with small differences in
their position with respect to the microphones, the spectral infor-
mation may still offer a more conclusive speaker representation.

To enable the mask estimator to benefit from these more
meaningful speaker embeddings, the mask estimator input has to
be extended with these new spatial features. The block diagram
of the extended SB mask estimator is depicted in Figure 2. As
spatial features, we use the Interchannel Phase Difference (IPD)
computed similarly to [23] as

cosIPD(t, f, p, q) = cos (∠yt,f,p − ∠yt,f,q) , (7)
sinIPD(t, f, p, q) = sin (∠yt,f,p − ∠yt,f,q) , (8)

where p, q are channel indices, ∠ is the phase operator and y
can indicate either the noisy speech signal or the adaptation
utterance (single-channel STFT domain). These features have
been shown to result in a significant improvement for DC [23].
For two channel input signals, the spatial features are calculated
as described in Equations (7) and (8), where one of the channels
acts as reference channel. In the case of more than two channels,
each pair of channels is treated like a two channel problem. The
mean- and variance-normalized logarithmic spectrum of the AU
is used at the input of the auxiliary network as spectral features.

To force the SB network to use both the spatial and spectral
information, two independent auxiliary networks are trained,
using either the spectral or the spatial features. The mean pooling
at the output of each auxiliary network is carried out in both time
and channel dimensions. The estimated speaker representation
vector αspectral is used to weight half of the sub-layers of the SB
adaptation layer and αspatial to weight the other half.

For the input of the SB mask estimator, the spectral and
spatial features obtained from the multi-channel noisy speech
signal are concatenated. To reduce the required size of the
Recurrent Neural Network (RNN), a bottleneck in form of a
feedforward layer is introduced at the input of SB.

4. Experiments
We evaluate the proposed approaches on a simulated database
and compare their results to DANs and SB. To this end, we use
the signal to distortion ratio (SDR) metric following the imple-
mentation presented in [24], which measures the performance of
the enhancement procedure. Despite recent criticism expressed
e.g. in [25], we chose this metric because of its comparability.
Additionally, the system is evaluated in terms of the Short-Time
Objective Intelligibility (STOI) metric [26] for speech intelligi-
bility and Word Error Rate (WER) to test its performance in a
conference scenario for ASR.

The multi-channel database is described in [27]. It con-
sists of 30000 utterances for the training set, 500 utterances for
the development set and 1500 utterances for the evaluation set.
Each example is created by randomly choosing two utterances
from the Wall Street Journal (WSJ) database and convolving
the signals with six channel Room Impulse Responses (RIRs)
simulated by the Image Method [28]. The utterances are previ-
ously downsampled to 8 kHz. The shorter of the two generated
multi-channel signals is padded with zeros in order to match
the duration of the other signal. This padding is done randomly
at the start and end of the utterance. The observation utterance
thus consists of the sum of both utterances plus additional white
Gaussian noise with an SNR of 20 to 30 dB. Every speaker can
only be found in one of the previous sets, which ensures different
speakers in the training and evaluation of the system. Therefore,
we characterize the database as an open-speaker-set database.

Note that the speaker position is assumed approximately
fixed for the duration of an utterance. Thus, beamforming, whose
coefficients are computed offline for the whole utterance, can be
considered the best solution if low latency is not an issue.

For the STFT computation, a 512-point FFT is used with a
Hann window and a 75% overlap, resulting in 257 frequency bins
for each time frame. The mask estimator consists of an LSTM
layer of 1024 units, two feedforward layers with 1024 units each
and one output layer. The first feedforward layer is split into 30
sub-layers for the SB approach. The auxiliary network has two
feedforward layers of 50 units and an output layer of 30 units,
as in [14]. As loss function we chose the binary cross entropy
between the estimated masks and ideal binary masks calculated
from the reverberated clean speech signals.

Finally, for the block-online estimation we use blocks of five
frames and a forgetting factor of βν = 0.95.

4.1. Backend

The Acoustic Model (AM) of the ASR back-end is a Wide
Residual Network as proposed in [29]. This back-end uses
logarithmic mel filterbank input features and it consists of two
LSTM layers. The AM is combined with a trigram language
model from the WSJ baseline script provided by the KALDI
toolkit [30]. All hyper-parameters were taken from [29]. The
AM is trained on the artificially reverberated WSJ utterances
without overlapped speech. The decoding is performed without
language model rescoring. Note that the AM and the ASR engine
operate offline for all experiments since we focus on the front-
end processing. However, they may be replaced by an online
version to obtain a fully online operating system.

4.2. Initialization Method Evaluation

First, we evaluate the performance of the different proposed
online strategies when ideal binary masks are used. The results
are shown in Table 1, where the offline method and the different



Table 1: SDR, STOI and WER scores obtained for different
initialization of the SCM estimation using ideal binary masks.

Method Initialization STOI SDR WER
ΦXX ΦNN dB %

Offline – – 0.84 12.37 16.40

Online
Zeros

Identity 0.82 10.95 19.89
Diffuse 0.82 11.13 19.60

ΦUU
Identity 0.82 10.69 17.88
Diffuse 0.83 11.10 16.94

Table 2: SDR, STOI and WER scores obtained for different
speaker extractors.

BF Extractor STOI SDR WER
dB %

Offline

SpeakerBeam 0.76 8.78 28.66
DAN 0.78 11.38 23.70
PreBF 0.80 10.00 23.32
Spt. Features 0.80 9.70 23.50

Online
Online-PreBF 0.74 5.54 34.60
Online-Spt. Features 0.75 5.09 33.61

initializations for the SCMs are compared in terms of STOI,
SDR and WER. For the target speech SCM both an all zero
initialization and the use of the SCM estimated on the AU is
evaluated. On the other hand, the noise SCM is either initialized
with the identity matrix or the SCM of a diffuse noise field. In
terms of initialization, the best performance is achieved for the
combination of diffuse noise SCM and target speaker spatial in-
formation extracted from the multi-channel adaptation utterance.
It is observed that this combination is close to the offline beam-
former in recognition accuracy, and it also obtains competitive
results in distortion reduction and intelligibility. This shows that
a proper initialization is helpful for beamformer convergence.

4.3. Speaker Extraction Evaluation

Next we compare in Table 2 different speaker extraction systems
based on neural network mask estimation and beamforming. The
results show that both the extractor using spatial pre-processing
at its input and the network using spatial features achieve WER
scores superior to the state-of-the-art approaches DANs and SB.
In terms of signal distortion, the use of spatial information does
not lead to any improvement. However, both systems outperform
the state-of-art in speech intelligibility gain. This shows that
both proposed systems achieve competitive results while they
allow to focus on the target speaker. We also tested the PreBF
proposal using only pre-processing but not the SB approach,
obtaining a WER of 27.03%. This shows that the combination
of the spatial pre-processing with the speaker information of the
SB approach outperforms the independent systems.

The online versions of the proposed systems have a higher
WER, mainly due to the block-online updating of the SCM
statistics but also because of the use of a single LSTM layer.
Nevertheless, the systems still achieve competitive results for on-
line recognition, with the use of spatial features as the preferred
approach for ASR.

Table 3: SDR and WER scores obtained for the different speaker
extractors. Results are separated for overlapped speaker of the
same and different gender.

Method SDR (dB) WER (%)

Differ. Same Differ. Same

SpeakerBeam 10.17 7.25 23.13 34.82
PreBF 10.68 9.24 21.21 25.67
Spt. Features 10.92 8.49 19.49 28.52

As described in Section 3, SB struggles on utterances that
contain mixed speech from speakers of the same gender. There-
fore, we split the results into utterances with overlapped speakers
of different and same gender to evaluate how our strategies per-
form in each scenario. The results for speech distortion and
recognition accuracy are shown in Table 3. As can be seen,
while the SB system performs well in the different gender case,
it degrades in utterances with speakers of the same gender, in-
creasing the final WER. The use of spatial features in our second
approach improves the accuracy of the estimator but still under-
performs on utterances with speakers of the same gender. This
may be caused by the fact that the network has difficulties to
learn both spectral and spatial characteristics for the separation
task. On the other hand, the use of our PreBF approach is partic-
ularly effective in the same gender case, achieving similar results
to the different gender case. This is especially true for the WER,
where difference between different and same gender utterances
is reduced from 11.69% to 4.46%. The PreBF approach has the
advantage that the input to the network is already processed, so
the estimator exploits the more attenuated interfering speakers
in the input signal to distinguish the target one.

5. Conclusions

In this paper we presented two novel systems for block-online
multi-channel target speaker extraction, which exploit both spa-
tial and spectral information of the target speaker obtained from
an adaptation utterance. Also, we proposed an initialization of
the spatial covariance matrices which was shown to be useful in
online beamforming. The obtained results show that our systems
outperform other state-of-the-art separation techniques, without
the need of fixing an adaptation utterance in advance or relying
on additional oracle information. Our experiments revealed that
beamforming on the input of the mask estimator can reduce the
separation error especially in utterances with speakers of the
same gender, achieving low speech distortion and good recogni-
tion accuracy while allowing low-latency processing. In future
work we will evaluate whether a combination of the proposed
systems allows for further improvements.
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[14] K. Zmolı́ková, M. Delcroix, K. Kinoshita, T. Higuchi,
A. Ogawa, and T. Nakatani, “Speaker-aware neural network based
beamformer for speaker extraction in speech mixtures,” in Proc.
InterSpeech, August 2017, pp. 2655–2659.

[15] Y. Kida, D. Tran, M. Omachi, T. Taniguchi, and Y. Fujita,
“Speaker selective beamformer with keyword mask estimation,”
arXiv e-prints, p. arXiv:1810.10727, October 2018.

[16] S. Sivasankaran, E. Vincent, and D. Fohr, “Keyword-based
speaker localization: Localizing a target speaker in a multi-
speaker environment,” in Proc. InterSpeech, September 2018, pp.
2703–2707.

[17] Z. Chen, X. Xiao, T. Yoshioka, H. Erdogan, J. Li, and Y. Gong,
“Multi-channel overlapped speech recognition with location guided
speech extraction network,” in 2018 IEEE Spoken Language Tech-
nology Workshop (SLT), December 2018, pp. 558–565.

[18] M. Delcroix, K. Zmolı́ková, K. Kinoshita, A. Ogawa, and
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