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Abstract: We investigate optical microresonators consisting of either one or two coupled
rectangular strips between upper and lower slab waveguides. The cavities are evanescently
excited under oblique angles by thin-film guided, in-plane unguided waves supported by one
of the slab waveguides. Beyond a specific incidence angle, losses are fully suppressed. The
interaction between the guided mode of the cavity-strip and the incoming slab modes leads
to resonant behavior for specific incidence angles and gaps. For a single cavity, at resonance,
the input power is equally split among each of the four output ports, while for two cavities an
add-drop filter can be realized that, at resonance, routes the incoming power completely to the
forward drop waveguide via the cavity. For both applications, the strength of the interaction is
controlled by the gaps between cavities and waveguides.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical microresonators are used for many functionalities in integrated optics, e.g. for wavelength
modulation, switching, or filtering purposes. Due to their compact size, wide spectral tunability
and strong light confinement they gained huge interest. They are one of the main building blocks
in silicon photonics integrated circuits, mainly in the area of optical telecommunication (see [1]
and references cited therein). One of the basic configurations is a four-port system consisting
of two parallel straight waveguides, serving as input and output buses, evanescently coupled to
a cavity placed in between. Most of the earlier concepts deal with circular cavities [2–7], but
structures with rectangular shapes have gained interest as well [8–13].

The disadvantage of these concepts, already when considered as 2-D models, is that the devices
are inherently lossy [1]. Furthermore, specific dimensions are required to obtain the desired
resonant behavior of sufficient quality [8–10]. In this work we reconsider these devices in a
2.5-D setting, meaning excitation by an incoming wave under an oblique angle θ as illustrated in
Figure 1(a). We will show that as a result, losses are suppressed at sufficiently high angles θ and
rather arbitrary cavity parameters can be selected.

We consider microresonators consisting of a rectangular, standing wave micro-strip cavity of
fixed dimensions w × h, which is surrounded by two slab waveguides of identical thickness d, at
the same but variable distance g to the cavity as shown in Figure 1(b). In contrast to standard
notions of open dielectric cavities with a more or less confined resonance mode, in the present
2.5-D setting the strip is infinitely extended along its axis and supports a mode that is propagating
in z-direction. The resonances observed in our structures are based on these lossless guided
modes. The structure is excited by the fundamental TE mode of the lower waveguide, while the
upper slab acts as the receiver. The incident wave reaches the cavity strip under an incidence
angle θ with respect to the x-axis in the x-z-plane. We consider "semi-guided", vertically (y)
guided, laterally (x, z) unguided waves. The theory [11,14–20] behind the "oblique incidence of
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Fig. 1. Oblique evanescent excitation of a dielectric resonator with rectangular micro-strip
cavity; schematic view (a) and cross section view (b). The incoming semi-guided wave
propagates under an incidence angle θ normal to the cavity. Outgoing optical waves are
either directly transmitted, forward or backward dropped, or reflected. PA,PB,PC and PD
indicate the outgoing power at the respective ports. Material parameters correspond to a SOI
design with refractive indices ng = 3.45 in the guiding layers and nb = 1.45 in the claddings
and the gaps between the layers. Waveguide thicknesses are defined as d = h = 0.22 µm
with a cavity width of w = 0.5 µm and variable gap distance g. Incoming wave is the TE
mode for vacuum wavelength λ = 1.55 µm.

semi-guided waves" is reviewed in Section 2. All necessary parameters are listed in the caption
of Figure 1 for a typical SOI waveguide design.
While a single resonator cavity only drops a quarter of the input power in each output port,

a configuration with two cavities can be configured to transfer all incoming signal power to a
single receiver port, i.e. can realize an optical add-drop filter [21]. Hence, after discussing a
single cavity in Section 3, we will expand the configuration by a second cavity in Section 4. We
are going to analyze the structures for different geometry parameters.
This work takes up our earlier results from [11], where we considered a simpler structure

without the upper slab waveguide (two-port system) and only the single cavity case. Such a
structure works as a system with a non-radiating bound state (the guided mode of the rectangular
cavity) and a wave continuum (guided by the slab). Hence, this realizes what we called "bound
state coupled to a continuum" in [11]. We adopt the waveguide parameters, especially we fix the
size of the cavity, for our present studies.

2. Oblique excitation of a microresonator

For a standard 2-D setting, meaning θ = 0◦, the configuration results in a scalar problem for
either TE or TM polarized waves. For the more general approach of oblique incidence θ , 0◦,
the polarizations become coupled which results in a vectorial 2.5-D problem. For that case, we
can define critical angles beyond which scattering to non guided modes or/and TM excitation is
fully suppressed. Here, we will shortly discuss the theory behind these critical angles. For a
more detailed analysis we refer to Refs. [11,14–20].
We basically assume fields of time dependence ∼ exp(iωt) with angular frequency ω given

by the vacuum wavelength λ = 2π/k = 2πc/ω, for vacuum wavenumber k and speed of light
c. For the considered waveguide thickness (d = 0.22 µm) both slab waveguides guide the
fundamental TE and TM modes with effective mode indices NTE = 2.823 and NTM = 1.725. The
incoming semi-guided TE wave has a field dependence ∼ Ψin(kz, y) exp(−i(kxx+ kzz)), where the
wavenumbers are determined by the incidence angle θ. According to Figure 1(a) the wavenumber
in lateral direction is defined by kz = kNTEsinθ and in propagation direction by kx = kNTEcosθ
with the condition k2N2

TE = k2x + k2z .
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The whole waveguide structure is homogeneous/constant in z-direction, such that, at all
positions, the overall field solution can be restricted to a single Fourier component given by the
in-plane wavenumber kz. Hence, the outgoing fields share this dependence and can be written in
a similar form as the incoming field by ∼ Ψout(kz, .) exp(−i(kξξ + kzz)). Here, ξ describes an
arbitrary outgoing propagation direction. This formalism is valid for all propagating waves as
well as all non-guided, radiated waves.

The condition k2N2
out = k2ξ + k2z = k2ξ + k2N2

TEsin2θ still has to hold for each outgoing wave
propagating in ξ-z-direction. Depending on the involved outgoing mode and its effective mode
index Nout, the outgoing mode is either a propagating mode (k2ξ>0) or an evanescent mode
(k2ξ<0). By considering the detailed reasonings of [11,14–20] critical angles can be defined by
sin θcrit = Nout/NTE, beyond which no power transfer to that specific outgoing mode is given.
In that case the mode becomes evanescent and does not carry any optical power away from
the discontinuity. For the Si/SiO2 configuration considered in this work two critical angles are
relevant:

• θb: All radiative, non-guided (“cladding”-) modes have effective mode indices Nout ≤ nb.
For θ ≥ θb = 30.9◦ (sin θb = nb/NTE) these modes become evanescent and radiation losses
are completely suppressed.

• θTM: The reflected and transmitted fundamental TM mode becomes evanescent for
θ ≥ θTM = 46.3◦ (sin θTM = NTM/NTE). The input power is then fully reflected and/or
transmitted into one of the four outgoing TE modes.

3. Single cavity resonators

We will start by analyzing the configuration regarding scattering parameters. The finite element
solver of COMSOLMultiphysics [22] is used to solve the frequency domain Maxwell’s equations.
Port boundary conditions are applied to excite and absorb plane waves consisting of a specific
mode index – value to be stated – and direction. Furthermore they are also used to easily calculate
scattering parameters. To simulate an infinite structure with open boundaries perfectly matched
layers (PMLs) are added around the whole structure. By defining an out-of-plane wavenumber kz
COMSOL is able to simulate oblique incidence, hence this represents the former 2.5-D setting.

First, we will start with the mode analysis of the resonator cavity. For the parameters listed in
the caption of Figure 1 COMSOL predicts a mode index of the fundamental guided TE mode of
Nm = 2.4192. A fundamental TM mode is supported as well, but has a lower mode index, i.e.
corresponds to a resonance at an angle outside our present range of interest. This wavenumber
can be translated to an incidence angle θm in line with the argumentation of Section 2 by
kNm = kNTEsinθm, such that the wavenumber kz of the incoming wave matches the wavenumber
of the cavity mode. This results in a value of θm = 58.99◦. By exciting the input slab at angles
around θm the mode in the cavity is excited and resonant behavior can be observed. Figure 2(a)
shows respective sweeps over θ for different gap distances and Figure 2(b) illustrates some
corresponding fields at resonance angle θr.
Under an incidence angle of θ = 0◦, at normal incidence, COMSOL predicts a transmitted

power of about 99% to port B (PB = 98.93%). Power transfer to the upper forward and backward
port is in the range of 10−4 and thus hardly present. Radiation losses appear but remain negligible.
Hence for this case the waves just pass by below the cavity without any disturbances.

For increasing incidence angle this behavior is changing according to the curves of Figure 2(a).
In all cases the range of incidence angles is above the critical angles θb = 30.9◦ and θTM = 46.3◦,
thus excitation of TM modes is suppressed and the configuration is lossless. For a fixed gap size
there exists a specific incidence angle θr for which the power transfer to each port is equal, thus the
power is quartered (PA = PB = PC = PD = 25%). This behavior is observed for excitation angles
close to θm. At resonance, the incoming slab mode excites the mode in the strip waveguide, which
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Fig. 2. (a) Relative transmission / reflection power levels of a microresonator with a single
cavity for different gaps g ∈ {200, 300, 400} nm as a function of the incidence angle θ; (b)
field plots of the absolute electric field log10 |E| at resonant angle θr for the corresponding
fixed gap distances g from (a). The contour lines indicate the levels of 2%, 5% and 10% of
the overall absolute field maximum.

in turn radiates equally into both slab waveguides along the positive and negative x-directions.
Since only one cavity mode exists, there is only one component decaying along those directions
such that no complete destructive interference and thus no power cancellation at any specific port
is possible. Therefore this leads to the same output power at each port [23,24].
The resonance angle θr deviates from θm especially for small gap distances. This is due

to the presence of the slab waveguides and is explained by coupling induced resonance shifts
[25]. For larger gap distances the angle θr moves closer to θm and the resonance sharpens. The
curves for PA, PC and PD become more and more similar, thus they overlap in the plots. Some
corresponding fields are shown in Figure 2(b) at resonance angle θr. As can be observed, the
field shape in the cavity resembles more and more the guided TE mode of the cavity. We chose a
logarithmic scaling of the absolute electric field value to show the field in the slabs, which is
much smaller than the field maximum in the cavity, especially for increasing gap distance.

The resonator characteristics are controlled by the interaction between the cavity and the slabs,
hence depend strongly on the gap distance g. Figure 3(a) shows the resonant angles θr as a
function of the gap g. As expected, the resonance angle converges against the angle of the cavity
mode θm for increasing gap size. Additionally the field strength in the cavity is considered in

Fig. 3. Resonance angles θr with equal outgoing power on each port (a) and absolute square
of the electric field maximum Ec in the center of the cavity relative to the absolute field
maximum E0 of the isolated slab at θ = 58.99◦ (b) versus the gap g.
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Figure 3(b). Illustrated is the ratio of the electric field magnitude in the center of the cavity at
resonance, normalized to the field at the center of the incoming slab without cavity and upper
slab. The value grows exponentially for increasing gap distance, hence predicts a high Q-factor
of the resonator. This behavior can also be observed in Figure 2(b), for which reason we chose
the logarithmic scaling for those plots. For further details and properties of a single rectangular
microcavity evanescently excited by oblique semi-guided waves, we refer to our earlier published
results in [11].

4. Filter configuration with two identical cavities

A single cavity is not able to transfer all incoming power to one drop port at resonance, and
thus is not directly suitable for a configuration as an add-drop filter. Therefore, following the
concepts from [10], we will expand the structure to two identical rectangular cavities separated by
a horizontal distance s as shown in Figure 4. This configuration is able to route all input power to
a single channel [10,23,24,26]. We consider a symmetric structure with identical gap g between
the slabs and both cavities. Waveguide parameters are again adopted from Figure 1.

Fig. 4. Cross section view of a symmetric four-port configuration consisting of two identical
cavities with dimensions w × h at distance s. Input and receiver slabs of thickness d are
separated by the distance g from the cavities. Specific waveguide parameters are adopted
from Figure 1. As before, the incoming semi-guided TE wave propagates at angle θ as
demonstrated in Figure 1(a).

We will start by analyzing the resonator cavities regarding their guided modes, which strongly
depend on the inter-cavity separation s. For a small distance we have to handle the two strips
as a coupled waveguide system that supports one mode ("supermode") with even symmetry,
and a second mode with odd symmetry (with respect to the symmetry plane y = 0). Their
effective refractive indices are given by Nm,e (even) and Nm,o (odd). The values differ from
each other, e.g. for a cavity distance of s = 530 nm the COMSOL mode solver predicts values
of Nm,e = 2.4199 (θm,e = 59.01◦) and Nm,o = 2.4186 (θm,o = 58.95◦). For increasing cavity
distance the system is becoming more and more decoupled. Hence, the strips must be treated
as two separate systems that do not directly affect each other. Therefore the effective refractive
indices of the two decoupled modes are inherently given by the index Nm = 2.4192 of the single
cavity, or an incidence angle of θm = 58.99◦. The values Nm,e and Nm,o slowly converge to the
value of the single cavity for increasing cavity distance, leading to a decoupled system.

4.1. Directly coupled cavities

First we look at systems with comparably small distance s, where a direct interaction between the
cavity strips must be assumed. The dotted line in Figure 5(b) illustrates the outgoing relative
power to port C over the incidence angle θ for a quite narrow cavity distance s = 100 nm. For
this sufficiently small distance the cavity modes are coupled and we can thus find an even and
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odd mode, with corresponding incidence angles θm,e and θm,o, as mentioned before. By exciting
the structure at angles close to θm,e or θm,o, resonances can be identified where either the even or
the odd mode is excited in the cavities. This results in an identical behavior as for the single
cavity from Section 3, leading to a quarter of input power to each output port. As before, the
two resonance peaks get sharper and narrower for increasing gap g. Note that for a small gap
distance, e.g. g = 200 nm, the peaks already overlap, so that it is not possible to excite the odd
mode without the even mode. Hence, this does not lead to a quarter of the input power in each
output port.

Fig. 5. (a) Field plots of the absolute electric field log10 |E| at resonance (θr, sr) for different
gaps g ∈ {200, 300, 400} nm. Contour lines indicate the levels at 2%, 5% and 10% of the
overall field maximum. (b) Outgoing power PC in the forward drop port over the incidence
angle θ for different cavity distances s around the resonance (θr, sr) for the corresponding
gaps from (a). The angles θm,e and θm,o associated with the even (e) and odd (o) supermodes
of the coupled strips at s = 100 nm are indicated.

Next, we adapt the procedure that led to Figure 3(a) to find resonant states (θr, sr) for the
configuration with two cavities. To that end, we fix the gap distance g and search for incidence
angles θ and cavity distances s that lead to full power drop in the forward port (PC = 1).
Figure 5(a) shows plots of the electric field (again in logarithmic scale) at resonance (θr, sr) for
gap distances g ∈ {200, 300, 400} nm. Additionally, the solid line in Figure 5(b) illustrates the
outgoing power to port C as a function of the incidence angle θ for the cavity distance sr that
leads to resonance. Here, at a distance sr and angle θr, the position of the two peaks of the even
and odd mode coincide, and the structure realizes full power drop to the forward port PC by
exciting these modes simultaneously.
Analogously to a single cavity at resonance, here the incoming slab mode excites the even

and odd modes in the cavity, which in turn leak into the slab waveguides in both directions.
However, now two supermodes are relevant. At resonance, the even mode excites the slab modes
in forward and backward directions with the same phase, while exciting the odd mode results in
a π-phase-shift between the slab modes in forward direction and those in backward direction.
By combining the two processes (because of degeneracy the two independent processes appear
simultaneously at resonance) the waves in backward direction get fully canceled due to the phase
shift. Furthermore the incoming wave interferes destructively with the forward slab mode excited
by the cavities, which results in a full power drop into the upper waveguide [23,24].
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4.2. Interpretation in terms of leaky modes

Especially in Figure 5(b) for s = 100 nm one observes on the one hand a wide hill positioned
around the incidence angle that excites the odd mode and on the other hand a narrow peak that
corresponds to the even mode at a larger incidence angle. To explain the different shapes of
these resonances it is useful to determine the leaky even and odd modes of the overall structure,
including now both strip-cavities and slab waveguides. The calculated effective index values Ns
are shown in Figure 6 as a function of the separation s. Depicted are the real (a) and imaginary
part (b) of the even (solid line) and odd (dashed line) modes.

Fig. 6. Real (a) and imaginary (b) part of the effective index Ns for the even (solid line) and
odd (dashed line) modes for the overall structure (including cavities and slabs) depending on
the separation s for different gaps g ∈ {200, 300, 400} nm.

For the separation of s = 100 nm the imaginary part of the effective index of the even mode is
approximately zero – nearly a guided mode –, while for the odd mode the absolute value of the
imaginary part is comparably large. This relates to the leakage of the modes and predicts the
broad resonance for the leaky odd mode. In contrast, the peak for the even mode is very narrow,
as it hardly leaks.

The periodic behavior with respect to the separation s of the imaginary part in Figure 6(b) for
the even and odd mode can be predicted by analytical arguments. Both cavities radiate into the
slab waveguides, where the fields overlap. For specific separations s this interference is either
destructive or constructive, depending on whether the even or odd mode is considered. Because
of the phase shift of the even and odd modes, the curves are shifted by half a period.

Furthermore, the degeneracy at resonance and its corresponding resonance angle, observed in
Section 4.1, Figure 5, of the two modes can be clarified with the mode analysis of the overall
structure. The modes are degenerate as the real parts match. According to Figure 6(a) the
curves cross approximately at a separation of 520 nm, 585 nm and 680 nm for the given gaps of
200 nm, 300 nm and 400 nm. The effective indices at the intersection points can be converted
into angles of 57.53◦, 58.72◦ and 58.94◦. These values agree well with the before calculated
resonance states (θr, sr) (see Figure 5(a)).

This procedure is also applicable to the single cavity resonator from Section 3. Mode analysis
with COMSOL of the composite system with only a single cavity predicts one leaky mode
with complex effective index that is different for each gap. Translating the real parts of the
wavenumbers again to corresponding angles, one receives values of 57.54◦, 58.71◦ and 58.94◦
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for the given gaps g ∈ {200, 300, 400} nm. These angles also deviate only slightly from the
calculated resonance angles θr in Figure 2(b). Note, however, that fundamentally different
problems – leaky eigenvalue problem and mode propagation problem – are considered.

4.3. Wavelength spectra

Respective sweeps over the wavelength are shown in Figure 7 for the configurations with the
(θr, sr)-parameters of Figure 5(a). Full power transfer is achieved at the resonance wavelength
λr = 1.55 µm. Thus, for fixed geometrical parameters and fixed angle this represents an add-drop
filter for one specific wavelength in the spectral range as considered.

Fig. 7. (a) Outgoing power scans PC over the wavelength λ for different gap distances g at
resonance with the corresponding values (θr, sr) adopted from Figure 5(a). (b) Enlargement
of the resonance peak for a smaller range of wavelengths around the resonance wavelength
λr = 1.55 µm.

As for the angular spectra in Figure 5(a), we observe resonance features consisting of a wider
lower "hill", leveling out at PC = 0.25, with a superimposed narrower peak that reaches PC = 1.
For growing gap g, the lower hills become narrower, just as the resonances of the single cavity
resonators in Figure 2. Contrarily, the upper peaks appear to widen slightly (cf. Figure 7(b)), when
the gap is increased. An analogous behavior (not explicitly shown) is observed for the angular
spectra in Figure 5(b). This can be understood, if one attributes the width of the hill primarily to
the width of the elementary strip resonances, while the width of the peaks is being determined by
the positions of the resonances associated with the individual cavity supermodes. Apparently,
at smaller gaps g, these positions depend stronger on the angular/wavelength parameter than at
large g, leading to the narrower peaks.

4.4. Filter without direct coupling of the cavities

For increasing distance s the two-cavity system becomes decoupled. Here, we only refer to
the case g = 200 nm and fix the incidence angle at θ = 57.56◦, i.e at the resonant angle of the
single cavity. Sweeps over the cavity distances s for fixed gap and incidence angle are shown
in Figure 8(a). At specific values of s the structure achieves full forward drop, while otherwise
(beyond a certain distance s ≈ 500 nm) the power is quartered. Also at the remaining outputs
(not shown), with the exception of the regions around the specific s with full forward drop, the
outgoing power stays roughly constant at 25% at each port. Hence, here the composite system
behaves similar to the single cavity from Section 3 at resonance. Some corresponding field plots
for "doubly-resonant" configurations are shown in Figure 8(b).
The "periodic" dependence PC(s) of the distance s and the corresponding power strengths

can also be justified by semi-analytical arguments. For suitable large cavity distances we can
divide the overall system into three subsystems: a resonator with a single cavity as introduced in
Section 3 (left cavity of the complete system), a system consisting of two parallel uncoupled, "far
away" straight slab waveguides and another resonator with a single cavity (right cavity of the
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Fig. 8. Outgoing power PC in the forward drop port over the cavity distance s for fixed gap
g = 200 nm and incidence angle θ = 57.56◦ (a) and corresponding logarithmic field plots of
the absolute electric field log10 |E| at resonance (b).

complete system). In order to describe the behavior of the overall configuration with two cavities,
we combine the three subsystems by semi-analytical methods. The behavior of a single cavity
is described by the scattering matrix from Section 3 at resonance, calculated numerically with
COMSOL. Furthermore, in the region between the cavities we can assume harmonic forward and
backward propagating fields with a dependence ∼ e±ikxx on the x-coordinate with wavenumber
kx as introduced in Section 2 By combining the three elements, we can describe the behavior
of the composite system. The result is shown in Figure 8(a) by the dashed line. Except for
short distances s, the results fit well to the numerical COMSOL solution (solid line). For small
distances the two cavities interact directly, not only through the bus waveguides. Therefore the
analytical assumption of three independent subsystems is not valid and leads to different values.
These semi-analytical results depend very sensitively on the calculated scattering parameters for
a single cavity. Already small changes lead to considerably different values. This model now
allows to predict the distance ∆s of the peaks in Figure 8(a). After finding one resonating length
sr, increasing the distance between the two cavities by ∆s adds another hotspot, representing
the standing wave pattern, in the slab waveguide as observed in Figure 8(b) and still leads to
resonance. For this reason, the periodicity of the resonance peaks is given by ∆s = λ/(2NTEcosθ).
For the parameters from Figure 8(a) this results in a value of ∆s = 512 nm. This value also agrees
well with the numerical COMSOL calculations.

5. Concluding remarks

Theoretical approaches for the resonance behavior of a four-port rectangular microresonator have
been demonstrated in a framework of a time domain coupled mode theory [10] or by general
analysis of tunneling processes through localized resonant states [23,26]. It is predicted that
for a specific wavelength and a configuration with one localized state (one guided mode in the
cavity) half of the input power can be dropped to the upper waveguide, while the rest of the power
remains in the bus waveguide or is lost to radiation. Hence this predicts an output power of 25%
at each port for a lossless configuration with one cavity. Furthermore two localized states are
needed, meaning an even and odd mode, to achieve full forward drop of the input power. This is
forced by “accidental” degeneracy of the resonant frequencies due to the presence of the slab.
Thus a lossless structure with two cavities can enable full forward drop of the incoming power.

All the results discussed in this work refer to a structure that is infinitely extended in z-direction;
especially the infinite extent of the incident wave is important for the calculated results. To use
this structure in real 3-D integrated photonic circuits, it is necessary to assume incoming waves
confined also in the lateral direction. This is possible by considering Gaussian wave packets
[12,27], or wave bundles formed by an additional rib waveguide [16], which is wide, weakly
etched and placed such that it generates a semi-guided wave bundle coming in at a suitable
oblique angle. These confined waves contain some range of wavenumbers in lateral direction
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kz. In the limit of wide, extremely narrowband incoming beams, covering only a small range of
wavenumbers, the structures act comparably to the present infinite model configuration.

Our present structures with oblique incidence angle θ realize a fully lossless setting. Accord-
ingly, our simulations lead to results for a single cavity with quarter power in each output slab
and to 100% power drop in the forward direction for the filter configuration with two cavities. In
both cases fully-forward resonances are observed for specific gap distances and incidence angles,
while the dimensions of the cavity are arbitrary.
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