
Algorithm Selection as Recommendation: From
Collaborative Filtering to Dyad Ranking

Alexander Tornede, Marcel Wever, Eyke Hüllermeier

Heinz Nixdorf Institute and Department of Computer Science
Paderborn University

Warbuger Str. 100, 33100 Paderborn, Germany
E-Mail: {alexander.tornede,marcel.wever,eyke}@uni-paderborn.de

1 Introduction

Problem classes such as integer optimization, SAT, and classification can
be tackled by a large variety of algorithms, the performance of which
may differ depending on the concrete problem instance at hand. In fact,
theoretical arguments even exclude the existence of a single algorithm
that is superior to all other algorithms on all instances of a problem class
[17]. Hence, compared to using the algorithm that is best on average
across an entire class of problem instances, called the single best solver
(SBS), selecting a suitable algorithm for each instance separately should
result in an increased overall performance.

This expectation has been confirmed in recent algorithm selection (AS)
competitions [1]. Algorithm selection seeks to support and automate the
selection of an algorithm that is most suitable for a given problem instance.
Meanwhile, quite a number of methods for AS has been proposed in the
literature [8]. One interesting idea is to treat AS as a recommendation
problem, and to apply techniques such as collaborative filtering [6]. Going
beyond standard collaborative filtering, we propose to tackle AS as a
problem of so-called dyad ranking [13]. This approach is motivated by at
least two potential advantages:

∙ First, treating problem/algorithm pairs as dyads allows the learner
to exploit properties (features) of both the problem instances and
the candidate algorithms.

∙ Second, providing recommendations in the form of rankings of a
set of candidate algorithms is presumably easier than evaluating
each of them in terms of a precise numerical score.

Proc. 29. Workshop Computational Intelligence, Dortmund, 28.-29.11.2019 1

These advantages are substantiated by first experimental studies in the
field of automated machine learning, i.e., the recommendation of machine
learning algorithms for model induction on a given dataset.

2 Algorithm Selection

In the setting of (per-instance) algorithm selection, we are given a set of
problem instances ℐ, a set of algorithms 𝒜, and a performance measure
𝑚 : ℐ × 𝒜 → R. The goal is to find an algorithm selector 𝑠 : ℐ → 𝒜 such
that, for a given instance 𝑖 ∈ ℐ, the selector 𝑠 chooses the algorithm with
best performance according to measure 𝑚 on instance 𝑖. Accordingly,
the optimal selector, called oracle, is defined by

𝑠*(𝑖) = arg max
𝑎∈𝒜

𝑚(𝑖, 𝑎) (1)

for all 𝑖 ∈ ℐ. For simplicity, we subsequently ignore any form of random-
ness imposed by an algorithm.

In practice, the performance measure 𝑚 is usually costly to compute.
Therefore, the obvious brute-force strategy of evaluating all algorithms
for a given instance and returning the one performing best according to 𝑚
is infeasible. Fortunately, we are usually provided with a subset ℐ𝐷 ⊂ ℐ
of the instance space for which several of the algorithms have already
been evaluated according to 𝑚. Invoking machine learning methods, this
information can be used as training data to infer an algorithm selector
𝑠 : ℐ → 𝒜 approximating the oracle (1).

Most state-of-the-art approaches to AS are complex systems that involve
several steps, such as pre-solvers, portfolios, and other techniques, in
addition to their core machine learning component [18, 5]. Here, we only
focus on the latter, which is typically realized in the form of a regression
model ℎ : ℐ × 𝒜 → R. This model is supposed to track the performance
of an algorithm for a given instance, and hence can be seen as a form
of surrogate for 𝑚. Thus, an algorithm selector 𝑠 can be constructed
by returning the algorithm 𝑎 that performs best on problem instance 𝑖
according to ℎ:

𝑠(𝑖) = arg max
𝑎∈𝒜

ℎ(𝑖, 𝑎) (2)

Note that, in contrast to the performance measure 𝑚, the function ℎ is
usually cheap to evaluate. In contrast to the oracle (1), the computation

2 Proc. 29. Workshop Computational Intelligence, Dortmund, 28.-29.11.2019

of (2) is hence feasible. Nevertheless, one can also cast the learning
problem in another form, for example as a recommendation problem in
the context of collaborative filtering.

3 Algorithm Selection through Collaborative Filtering

Preference learning methods [3] for predicting rankings of algorithms
for a given instance have recently gained attention. This is motivated
by the observation that predictions of exact performances are sufficient
but actually not necessary for choosing the best algorithm from a set of
candidates. Hence, learning a regression model ℎ : ℐ × 𝒜 → R appears
to be an unnecessarily difficult problem.

In particular, methods related to collaborative filtering (CF) [6] have
recently been studied [9, 10, 19, 2, 15, 4], although this idea was already
introduced in [14] about a decade ago. In the standard CF setting, one
is confronted with a set of products 𝒫 and a set of users 𝒰 , and given a
sparse |𝒰| × |𝒫| rating matrix 𝑅. The value contained in 𝑅(𝑢, 𝑝) is the
rating of product 𝑝 by user 𝑢. Common tasks associated with CF include
matrix completion, which has the goal to infer the missing entries of the
matrix 𝑅, and the cold-start problem, where an entire new row in the
rating matrix 𝑅 has to be predicted for a new user.

By treating problem instances as users, i.e. 𝒰 = ℐ, and products as
algorithms, i.e. 𝒫 = 𝒜, we can construct a rating matrix for algorithm
selection in a very similar way, namely by filling the matrix with the evalu-
ations of 𝑚 available in the training data. An example of a corresponding
rating matrix is depicted in Fig. 1.

This setting has two main disadvantages. Firstly, instead of incorporating
expert knowledge about the algorithms in an explicit way, only latent
characteristics (if at all) are induced (as done in [9]). Secondly, precise
numerical information about the performance of algorithms is required.
In practice, such information is often difficult to obtain, whereas weaker
information in the form of qualitative comparisons between algorithms is
more readily available. Imagine, for example, a scenario in which several
algorithms are run in parallel until the first one found a solution. Then,
if runtime is the performance measure to be optimized, precise numerical
information is only generated for the first algorithm, while the knowledge
that all other algorithms are worse is not directly used.

Proc. 29. Workshop Computational Intelligence, Dortmund, 28.-29.11.2019 3

A1 A2 A3 ...

I1

A4 A98 A99 A100

I2

...

...

I998

I999 0.01

0.38

0.67

0.86

0.91

0.24

0.78

0.34

0.16

Algorithms

In
st
an
ce
s

Figure 1: Depiction of a rating matrix filled with performance values from an
algorithm selection dataset. Entries 𝑅(𝑖, 𝑎) contain the known performance
of algorithm 𝑎 on instance 𝑖 and empty cells indicate unknown
performances.

Moving from CF to dyad ranking [13] alleviates both of these disad-
vantages. Firstly, dyad ranking allows algorithm characteristics to be
explicitly incorporated into the learning process. Secondly, dyad ranking
merely requires qualitative training information in the form of rankings
rather than precise numerical performances.

4 Algorithm Selection through Dyad Ranking

In addition to a feature representation for problem instances, we now
also assume a feature representation for algorithms. By exploiting this
information, there is hope to either speed up the model inference process
or derive a more accuarate model. Moreover, instead of a real-valued
rating matrix 𝑅, we assume a set of rankings over algorithms for the
instances in the training set to be given. More precisely, we assume
rankings over so-called dyads.

In (contextual) dyad ranking, a dyad (𝑥, 𝑦) consists of a context 𝑥 ∈
𝒳 ⊆ R𝑘 from a context space 𝒳 and an alternative 𝑦 ∈ 𝒴 ⊆ R𝑟. The
training data we assume to be given is of the form

𝒟 =
{︀

(𝑥𝑖, 𝑦𝑖,1) ≻ . . . ≻ (𝑥𝑖, 𝑦𝑖,𝑙𝑖
)
}︀𝑁

𝑖=1 ⊂ ℛ(𝒳 × 𝒴) (3)

4 Proc. 29. Workshop Computational Intelligence, Dortmund, 28.-29.11.2019

and contains rankings with an underlying hidden preference relation ≻
over the space of dyads 𝒳 × 𝒴, where 𝑙𝑖 is the length of the 𝑖th ranking
in 𝒟, and ℛ(𝒳 × 𝒴) is the space of rankings over 𝒳 × 𝒴 . The goal is to
learn a “dyad ranker”

ℎ : 𝒫 (𝒳 × 𝒴) → ℛ(𝒳 × 𝒴) (4)

which, given an arbitrary set of dyads (𝒫 is the power set), ranks these
dyads according to the hidden preference relation ≻.

To tackle the dyad ranking problem, we make use of the PLNet algorithm,
a neural-network-based algorithm for learning a parametrized probability
distribution over rankings, called the Plackett-Luce (PL) model [13].

A corresponding training dataset (3) is constructed by computing the
feature representation of each algorithm and sorting the algorithms ac-
cording to their performance in each row of the rating matrix 𝑅(𝑖, ·),
pertaining to problem instance 𝑖. Additionally using the feature repre-
sentation for instances, one can then extend the ranking to a ranking
over dyads.

Problems to be considered during the construction include the sparseness
of 𝑅 as well as ties among algorithms for an instance in the rating matrix.
The former can be solved by omitting algorithms with an unknown
performance from the associated ranking. The easiest solution to the
latter problem is to treat ties of algorithms by not comparing them
directly. This can be achieved by creating a ranking ignoring 𝑛 tied
algorithms, copying it 𝑛 times and adding each ignored algorithm in one
of these copies at the respective position.

As already mentioned, a feature representation is required for both
problem instances and algorithms. In the literature, various ways of
representing instances via features have been proposed, depending on the
problem domain. In the AutoML setting considered in this work, the
instances are machine learning datasets and associated feature represen-
tations are called meta-features [11]. An example of such meta-features
are landmarkers, which are performance values of cheap-to-train algo-
rithms on the respective dataset or a subset thereof. As shown in [12],
landmarkers can be used successfully in the context of algorithm selection
and can yield better results than statistical measures, such as the number
of classes in a dataset. Accordingly, for the experiments in this work, we
make use of landmarking features for representing datasets. More specifi-
cally, we use 45 OpenML landmarkers [16], which are computed based

Proc. 29. Workshop Computational Intelligence, Dortmund, 28.-29.11.2019 5

on learning algorithms such as Naive Bayes, One-Nearest Neighbour,
Decision Stump, Random Tree, REPTree and J48.

Finding a feature representation for algorithms is more difficult, and the
related literature is very sparse. We decided to represent algorithms via
their parameters. Given a set of algorithms, we compute the union of
their parameters and create a vector that has as many entries as the set
of parameters. Then, when given a parametrized algorithm, we set the
elements of the vector corresponding to its parameters to the respective
values. Furthermore, for each component which can be contained in
an algorithm, the vector contains a binary feature indicating whether
the component is present or not. While this representation is simple, it
has the disadvantage of not generalizing well across different algorithms
that do not share any parameters, as they are essentially represented by
disjoint subvectors of the original vector.

5 Experimental Results

We evaluated our approach in the AutoML setting, more specifically
in the multi-class classification AutoML setting. Accordingly, instances
correspond to multi-class classifcation datasets. Furthermore, the set
of algorithms 𝒜 we consider is a set of machine learning (classification)
pipelines. By pipeline we mean the sequential combination of a data
preprocessing step (such as a PCA) and a classification algorithm (such
as an SVM). We considered 10 preprocessing steps and 7 classification
algorithms resulting in a total of 70 classification pipelines. In addition,
we considered up to 100 parametrizations for each of these pipelines
and in total achieve an algorithm set with 5927 elements. We evaluated
each of these parametrized pipelines on 29 classification datasets from
OpenML1. Due to evaluation timeouts, only 89% of the theoretical
amount of performance values is used.

Based on these performance values, we randomly sampled 10 train/test
(70%/30%) splits on the datasets (i.e., each split features 20 training
datasets and 9 test datasets). For each of these splits, we created dyad
ranking training datasets by randomly sampling rankings of pipelines of
length two, i.e., pairwise comparisons under the condition that the two
pipelines do not have the same performance on the respective dataset. In

1https://www.openml.org/

6 Proc. 29. Workshop Computational Intelligence, Dortmund, 28.-29.11.2019

https://www.openml.org/

Figure 2: Kendall’s 𝜏 rank correlation results for our dyad ranking approach based on
different training dataset sizes and several baselines. All results are
averaged across the test datsets and the train/test splits. On the x-axis,
the number of pairwise rankings per training dataset used for training the
associated dyad ranker is displayed whereas the y-axis shows the
correlation measure value.

order to estimate how much information the learning algorithm (PLNet)
requires to perform well, we evaluated different amounts of pairwise
comparisons per dataset.

After training, we evaluated the approach by comparing the predicted
ranking over all pipelines (for which we have a performance value) for
each test dataset to the ground truth ranking obtained from the true per-
formances using the Kendall’s 𝜏 rank correlation measure [7], which takes
values in [−1, +1]. We compared our approach against two instantiations
of a nearest neighbor baseline, which, given a new dataset, computes the
𝑛 closest training datasets according to the Euclidean distance, computes
the average performance of all pipelines across these datasets and returns
a ranking based on these averages. Furthermore, we compare against an
average performance baseline, which simply returns a ranking based on
the average performance of each pipeline across all training datasets, and
an average rank baseline which does the same but averages the ranks
instead of the performances. We averaged all results across the test
datsets and the train/test splits we sampled.

Fig. 2 shows the value of the correlation measure as a function of the
amount of training information (number of pairwise rankings per training

Proc. 29. Workshop Computational Intelligence, Dortmund, 28.-29.11.2019 7

Table 1: This table gives the difference between the best pipeline across all pipelines
(in terms of accuracy) and the best one of the top-k pipelines returned by
the different approaches.

Approach k Perf. Diff. k Perf. Diff.
DR 3 0.032 5 0.028
1-nn 3 0.045 5 0.045
2-nn 3 0.053 5 0.052

avg. rank 3 0.045 5 0.044
avg. perf. 3 0.046 5 0.046

dataset used for training the associated dyad ranker). As the baselines al-
ways consider all data available in the training datasets, their performance
does not change with different amounts of rankings.

As expected, the performance of the dyad ranking approach increases with
the amount of training data — quite strongly up to around 1300 rankings
per training dataset and more slowly thereafter. More importantly, the
approach surpasses all baselines with only 500 pairwise rankings per
training dataset, which is a remarkable result as the training information
used by the dyad ranker is only a tiny fraction of the information made
available to the baselines.

Furthermore, since the version of AS we consider in this work is mainly
concerned with returning the best pipeline for a new dataset, we compared
our approach to the baselines by computing the difference between the
best pipeline (in terms of accuracy) and the best one of the top-k pipelines
returned by the different approaches. This evaluation gives an idea of
how much worse it is to run the top-k pipelines returned by the ranking
approach compared to running the best pipeline (according to the oracle)
only. The results of the experiment are depicted in Table 1.

The dyad ranking approach (trained with 1400 pairwise comparisons per
training dataset for this experiment) outperforms all other baselines by at
least 1.3% percent points for 𝑘 = 3 and 1.6% points for 𝑘 = 5. Admittedly,
even the baselines achieve a reasonable result in this experiment, as
even a performance difference of about 5% to the oracle is still very
good. Nevertheless, only the dyad ranking approach is able to achieve
a considerably better result when increasing 𝑘, which makes us believe

8 Proc. 29. Workshop Computational Intelligence, Dortmund, 28.-29.11.2019

that it approximates the ground truth ranking better in the sense that it
puts good pipelines in close proximity to their correct rank.

For full details regarding the experiments, we refer the interested reader
to the github repository2 containing all details and code required to
reproduce the results presented here.

6 Conclusion and Future Work

We proposed to tackle the algorithm selection problem as a dyad ranking
problem and addressed key questions regarding the creation of training
datasets and feature representation for both algorithms and datasets.

Our first experimental studies show that dyad ranking outperforms the
baselines we used for comparison. In future work, we plan to corroborate
these preliminary results by more thorough evaluations of the approach in
different scenarios as well as a comparison to state-of-the-art collaborative
filtering methods.

Acknowledgement

This work was supported by the German Research Foundation (DFG)
within the Collaborative Research Center ”On-The-Fly Computing” (SFB
901/3 project no. 160364472).

The authors gratefully acknowledge the funding of this project by com-
puting time provided by the Paderborn Center for Parallel Computing
(PC2).

References

[1] Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri
Malitsky, Alexandre Fréchette, Holger Hoos, Frank Hutter, Kevin
Leyton-Brown, Kevin Tierney, et al. Aslib: A benchmark library for
algorithm selection. Artificial Intelligence, 237:41–58, 2016.

2https://github.com/alexandertornede/ci_2019_as_via_dyad_ranking

Proc. 29. Workshop Computational Intelligence, Dortmund, 28.-29.11.2019 9

https://github.com/alexandertornede/ci_2019_as_via_dyad_ranking

[2] Tiago Cunha, Carlos Soares, and André C. P. L. F. de Carvalho.
CF4CF: recommending collaborative filtering algorithms using col-
laborative filtering. In Proceedings of the 12th ACM Conference
on Recommender Systems, RecSys 2018, Vancouver, BC, Canada,
October 2-7, 2018, pages 357–361, 2018.

[3] Johannes Fürnkranz and Eyke Hüllermeier. Preference learning.
Springer, 2010.

[4] Nicolo Fusi, Rishit Sheth, and Melih Elibol. Probabilistic matrix
factorization for automated machine learning. In Advances in Neural
Information Processing Systems, pages 3348–3357, 2018.

[5] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Torsten
Schaub, Marius Thomas Schneider, and Stefan Ziller. A portfolio
solver for answer set programming: Preliminary report. In In-
ternational Conference on Logic Programming and Nonmonotonic
Reasoning, pages 352–357. Springer, 2011.

[6] David Goldberg, David A. Nichols, Brian M. Oki, and Douglas B.
Terry. Using collaborative filtering to weave an information tapestry.
Commun. ACM, 35(12):61–70, 1992.

[7] Maurice G Kendall. A new measure of rank correlation. Biometrika,
30(1/2):81–93, 1938.

[8] Pascal Kerschke, Holger H Hoos, Frank Neumann, and Heike Traut-
mann. Automated algorithm selection: Survey and perspectives.
Evolutionary computation, 27(1):3–45, 2019.

[9] Yuri Malitsky and Barry O’Sullivan. Latent features for algorithm
selection. In Proceedings of the Seventh Annual Symposium on
Combinatorial Search, SOCS 2014, Prague, Czech Republic, 15-17
August 2014., 2014.

[10] Mustafa Misir and Michèle Sebag. Alors: An algorithm recommender
system. Artif. Intell., 244:291–314, 2017.

[11] Phong Nguyen, Melanie Hilario, and Alexandros Kalousis. Using
meta-mining to support data mining workflow planning and opti-
mization. Journal of Artificial Intelligence Research, 51:605–644,
2014.

10 Proc. 29. Workshop Computational Intelligence, Dortmund, 28.-29.11.2019

[12] Bernhard Pfahringer, Hilan Bensusan, and Christophe G Giraud-
Carrier. Meta-learning by landmarking various learning algorithms.
In ICML, pages 743–750, 2000.

[13] Dirk Schäfer and Eyke Hüllermeier. Dyad ranking using plackett-luce
models based on joint feature representations. Machine Learning,
107(5):903–941, 2018.

[14] David H. Stern, Horst Samulowitz, Ralf Herbrich, Thore Graepel,
Luca Pulina, and Armando Tacchella. Collaborative expert portfolio
management. In Proceedings of the Twenty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July
11-15, 2010, 2010.

[15] Lisheng Sun-Hosoya, Isabelle Guyon, and Michèle Sebag. Activmetal:
Algorithm recommendation with active meta learning. In Proceedings
of the Workshop on Interactive Adaptive Learning@ECML-PKDD
2018 Dublin, Ireland, September 10th, 2018., pages 48–59, 2018.

[16] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo.
Openml: Networked science in machine learning. SIGKDD Explo-
rations, 15(2):49–60, 2013.

[17] David H Wolpert, William G Macready, et al. No free lunch theorems
for optimization. IEEE transactions on evolutionary computation,
1(1):67–82, 1997.

[18] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown.
Satzilla: portfolio-based algorithm selection for sat. Journal of
artificial intelligence research, 32:565–606, 2008.

[19] Chengrun Yang, Yuji Akimoto, Dae Won Kim, and Madeleine
Udell. OBOE: collaborative filtering for automl initialization. CoRR,
abs/1808.03233, 2018.

Proc. 29. Workshop Computational Intelligence, Dortmund, 28.-29.11.2019 11

	A. Tornede, M. Wever, E. Hüllermeier

