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Abstract

Solving optimization problems with parallel algorithms has a long tradition

in OR. Its future relevance for solving hard optimization problems in many

fields, including finance, logistics, production and design, is leveraged through

the increasing availability of powerful computing capabilities. Acknowledging

the existence of several literature reviews on parallel optimization, we did not

find reviews that cover the most recent literature on the parallelization of both

exact and (meta)heuristic methods. However, in the past decade substantial

advancements in parallel computing capabilities have been achieved and used

by OR scholars so that an overview of modern parallel optimization in OR

that accounts for these advancements is beneficial. Another issue from previous

reviews results from their adoption of different foci so that concepts used to de-

scribe and structure prior literature differ. This heterogeneity is accompanied

by a lack of unifying frameworks for parallel optimization across methodologies,

application fields and problems, and it has finally led to an overall fragmented

picture of what has been achieved and still needs to be done in parallel op-

timization in OR. This review addresses the aforementioned issues with three

contributions: First, we suggest a new integrative framework of parallel compu-

tational optimization across optimization problems, algorithms and application

IInvited review
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domains. The framework integrates the perspectives of algorithmic design and

computational implementation of parallel optimization. Second, we apply the

framework to synthesize prior research on parallel optimization in OR, focusing

on computational studies published in the period 2008-2017. Finally, we suggest

research directions for parallel optimization in OR.

Keywords: computing science, parallel optimization, computational

optimization, literature review

1. Introduction

Parallel optimization has received attention in the operations research (OR)

field already for decades. Drawing on algorithmic and computational paral-

lelism in OR is appealing as real-life optimization problems in a broad range

of application domains are usually NP-hard and even the implementation of

(meta)heuristic optimization procedures may require substantial computing re-

sources. It has been argued that parallelism is crucial to make at least some

problem instances tractable in practice and to keep computation times at rea-

sonable levels (Talbi, 2009; Crainic et al., 2006).1 However, unsurprisingly, the

application of parallel optimization has been hesitant because i) parallelizing

algorithms is challenging in general from both the algorithmic and the com-

putational perspective, and ii) a viable alternative to parallelizing algorithms

has been the exploitation of ongoing increases of clock speed of single CPUs of

modern microprocessors. But this growth process reached a limit already several

years ago due to heat dissipation and energy consumption issues (Diaz et al.,

2012). This development makes parallelization efforts (not only in optimization)

much more important than it was in earlier times.

Fortunately, the need for parallelization has been acknowledged and accom-

panied by an increased availability of parallel computing resources. This avail-

ability is rooted in two phenomena: a) the rapid development of parallel hard-

1Impressive computational results of applying parallelization to the traveling salesman
problem (TSP) are reported by Crainic et al. (2006, p.2).
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ware architectures and infrastructures, including multi-core CPUs and GPUs,

local high-speed networks and massive data storage, and of libraries and soft-

ware frameworks for parallel programming (Talbi, 2009; Crainic et al., 2006;

Brodtkorb et al., 2013); b) the increased availability of parallel computing re-

sources as commodity good to researchers, who have (free or low-priced) access

to multi-core laptops and workstations, and even to high-performance clusters

offered by universities and public cloud providers.

The benefits of exploiting parallel processing for optimization algorithms are

multi-faceted. Searching the solution space can be speeded up for both exact

and (meta)heuristic algorithms so that the optimal solution or a given aspiration

level of solution quality, respectively, can be achieved quicker. Implementations

can also benefit from improved quality of the obtained solutions, improved ro-

bustness, and solvability of large-scale problems (Talbi, 2009, p. 460f).

We found many published reviews on parallel optimization for particular

problems, methodologies, applications, research disciplines, and technologies.

Reviews of parallelization for particular optimization problems were provided

for one-dimensional integer knapsack problems (Gerasch and Wang, 1994), vehi-

cle routing problems (VRPs) (Crainic, 2008), non-linear optimization (Lootsma

and Ragsdell, 1988), mixed integer programming (Nwana and Mitra, 2000)

and multiobjective optimization (Nebro et al., 2005). Most of the reviews

that we found focus on parallel optimization regarding particular methodolo-

gies. While branch-and-bound algorithms have been reviewed by Gendron and

Crainic (1994), the majority of methodological literature reviews have focused

on metaheuristics: reviews have addressed tabu search (TS) (Crainic et al.,

2005), simulated annealing (SA)(Aydin and Yigit, 2005), variable neighbor-

hood search (VNS) (Pérez et al., 2005), Greedy Randomized Adaptive Search

Procedures (GRASPs) (Resende and Ribeiro, 2005), swarm intelligence algo-

rithms (Tan and Ding, 2016), particle swarm optimization algorithms (Zhang

et al., 2015), and different types of evolutionary algorithms, including genetic

algorithms (GAs) (Adamidis, 1994; Luque et al., 2005; Cantú-Paz, 1998; Alba

and Troya, 1999; Adamidis, 1994; Knysh and Kureichik, 2010), ant colony opti-
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mization algorithms (Pedemonte et al., 2011; Janson et al., 2005), scatter search

(López et al., 2005) and evolutionary strategies (Rudolph, 2005). Several reviews

have covered sets of metaheuristics (Cung et al., 2002; Alba et al., 2005; Crainic

and Hail, 2005; Pardalos et al., 1995; Crainic and Toulouse, 2003, 2010; Crainic

et al., 2014; Crainic, 2018, 2019; Alba et al., 2013) and hybrid metaheuristics

(Cotta et al., 2005; Luna et al., 2005). Application- and discipline-oriented

reviews of parallel optimization have been provided for routing problems in

logistics (Schulz et al., 2013) and for parallel metaheuristics in the fields of

telecommunications and bioinformatics (Nesmachnow et al., 2005; Trelles and

Rodriguez, 2005; Martins and Ribeiro, 2006). Reviews that focus on particu-

lar parallelization technologies (in particular, General Purpose Computation on

Graphics Processing Unit (GPGPU)) have been proposed by Boyer and El Baz

(2013), Tan and Ding (2016) and Schulz et al. (2013).

We acknowledge the excellent work provided in these reviews, from which

our review has benefited substantially. At the same time, we see several ar-

guments that call for a new literature review. First, we did not find reviews

that cover the most recent literature on the parallelization of both exact and

(meta)heuristic methods published in the decade 2008-2017. During this time,

substantial advancements in parallel computing capabilities and infrastructures

have been achieved and used by many OR scholars so that an overview of mod-

ern parallel optimization in OR that accounts for these advancements when

synthesizing and classifying the literature is beneficial. Second, based on differ-

ent foci adopted in previous literature reviews, the concepts used to describe and

structure prior literature differ. This heterogeneity is accompanied by a lack of

unifying frameworks for describing parallel optimization across methodologies,

application fields, and problems. This has led finally to an overall fragmented

picture of what has been achieved and what still needs to be done in parallel

optimization in OR. As a side effect, the heterogeneity with which paralleliza-

tion studies in OR have been described in terms of algorithmic parallelization,

computational parallelization and performance of parallelization is high, which

is beneficial from a diversity perspective but also raises problems: First, it re-
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mains unclear for authors what should be reported in an OR study that draws

on parallel optimization; second, our own experience based on screening and

reading several hundreds of articles is that the heterogeneity makes it often

time-consuming and in some case even impossible for readers to identify the

aforementioned parallelization characteristics of a study, to classify the study

accordingly and to compare studies with each other.

Accounting for the aforementioned challenges, we provide three contributions

in this literature review. First and to our best knowledge, we suggest the first

universally applicable framework for parallel optimization in OR, which can be

used by researchers to systematically describe their parallelization studies and

position these in the landscape of parallel optimization without requirements

on the application domain touched, the problem addressed, the methodology

parallelized or the technology applied. In particular, the suggested framework

integrates both algorithmic design and computational implementation issues of

parallel optimization, which are usually being addressed separately in the liter-

ature. Second, we apply the integrative framework to synthesize prior research

on parallel optimization in the field of OR published in the decade 2008-2017,

focusing on those studies which include computational experiments. Finally, we

suggest research directions, including recommendations, for prospective studies

on parallel optimization in OR.

We structure our review as follows: In Section 2, we develop a framework for

computational studies on parallel optimization. In Section 3, we define the scope

and literature selection process of our review, before we review the literature in

Section 4 based on the suggested framework. We provide research directions for

future research in Section 5 before we conclude our review in Section 6.

2. Parallelization Framework

Computational studies on parallel optimization usually report on four per-

spectives of parallelization (Gendron and Crainic, 1994; Alba and Luque, 2005;

Crainic and Hail, 2005; Talbi, 2009; Pedemonte et al., 2011; Crainic, 2018,
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2019): object of parallelization, algorithmic parallelization, computational paral-

lelization and performance of parallelization. While our review of the literature

revealed that most studies make either implicitly or explicitly use of the afore-

mentioned perspectives, we also observed a high level of heterogeneity in terms

of terminology, taxonomies of parallel algorithmic design, granularity of infor-

mation on parallel implementation, and performance metrics used to report

computational results. As a consequence, with an increasing body of computa-

tional studies, it has become challenging to gain an overview of computational

achievements, to compare studies in terms of their achievements, to develop

consistent taxonomies for computational studies, and to identify white spots

that need further research.

In order to mitigate the aforementioned problems in the field of parallel op-

timization, we suggest a new descriptive framework of computational parallel

optimization studies (see Figure 1). The scope of the applicability of the pro-

posed framework in the area of parallel optimization is wide with regard to two

dimensions: First, it does not make any assumptions about the addressed appli-

cation domain, the optimization problem to solve, the parallelized methodology

or the applied technology. We denote this broad applicability as horizontal in-

tegration, referring to the horizontal layers in Figure 1. Second, it integrates the

aforementioned perspectives (layers) and is based on well-established principles

in the literature on algorithmic and computational parallelization. Similarly,

we refer to this broad applicability as vertical integration, which brings together

the – usually separately applied – perspectives on parallel optimization found

in the disciplines of OR and computer science. In this context, our framework

adopts an integrated view on parallel optimization.
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2.1. Object of parallelization

The object of parallelization comprises the OR problem to be solved (e.g.,

TSP, VRP, JSSP) and the algorithm to be applied (e.g., b&b, GA, SA, TS),

which effect each other. Problem types and algorithm types are both described

in detail in Section 4.2.

2.2. Algorithmic parallelization

The algorithmic parallelization refers to the methodological perspective on

how parallelism is applied to solve an optimization problem by decomposition.

As suggested for metaheuristics (Crainic, 2019) , we detail this perspective by

distinguishing various types of parallelization strategy, process and search con-

trol, and communication topology (see Figure 1). Parallelization strategies have

been defined according to the source of parallelism (Cung et al., 2002; Crainic

and Toulouse, 2003; Crainic and Hail, 2005; Crainic and Toulouse, 2010; Crainic,

2019). Four types are distinguished: (1) Functional parallelism applies when de-

composition occurs at the algorithm level by, for example, evaluating neighbor

solutions or computing the fitness of a solution in parallel. This parallelization

strategy does not alter the algorithmic logic, the search space or the behavior of

the sequential version, and it is thus also referred to as low-level. As parallelism

occurs at a low level inside a single algorithm, we coin the term fine-grained

intra-algorithm parallelism. Since the overall search follows only a single search

path, this type of parallelism has also been denoted as single-walk parallelization,

in contrast to the following strategies, where the overall search follows multiple

trajectories and are referred to as multiple-walk parallelization strategies (Cung

et al., 2002). (2) Domain decomposition refers to the approach of separating

and exploring the search space explicitly yielding a number of smaller and eas-

ier to solve subproblems to be addressed simultaneously by applying the same

sequential algorithm. The partial solutions are finally used to reconstruct an

entire solution of the original problem. The separation of the search space may

be obtained, for example, by discarding or fixing variables and constraints. This

separation may result in a partition (disjoint subsets) or a coverage (subsets may
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overlap) of the overall search space. In contrast to the low-level strategy, where

parallelism occurs at a local and predefined part of the algorithm, domain de-

composition involves concurrent explorations of subspaces using the same algo-

rithm. Thus, we introduce the term coarse-grained intra-algorithm parallelism.

(3) Separating the search space can also be performed implicitly through con-

current explorations of the search space by different or differently parameterized

methods. When the concurrent execution of methods does not involve any ex-

change of information prior to identifying the best overall solution at the final

synchronization step, the parallelization strategy is referred to as independent

multi-search, which can be perceived as coarse-grained inter-algorithm paral-

lelism. (4) When the concurrent execution of methods and their explorations

of subspaces involves the exchange of information through cooperation mecha-

nisms while the search process is in progress, cooperative multi-search occurs.

The sharing of information may even be accompanied with the creation of new

information out of exchanged data. As the interactions of the cooperative search

algorithms specify the global search behavior, a new metaheuristic in its own

right emerges (Crainic and Toulouse, 2008). While cooperation yields in many

cases a collective output with better solutions than a parallel independent search

(Crainic, 2019), exchanges should not be too frequent to avoid communication

overheads and premature “convergence” to local optima (Toulouse et al., 2000,

2004). As in the case of independent multi-search, also cooperative multi-search

can be seen as coarse-grained inter-algorithm parallelism. Finally, it should be

noticed that parallelization strategies are not mutually incompatible and may be

combined into comprehensive algorithmic designs (Crainic et al., 2006; Crainic,

2019). For example, low-level and decomposition parallelism have been jointly

applied to branch-and-bound (Adel et al., 2016) and dynamic programming (Vu

and Derbel, 2016), (Maleki et al., 2016), and low-level parallelism and coopera-

tive multi-search have been applied to a hybrid metaheuristic (Munawar et al.,

2009) which uses a genetic algorithm and hill climbing.

While the aforementioned parallelization strategies have been formulated

for the class of metaheuristics, the strategy-defining principles are of general
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nature of parallelizing optimization algorithms so that the scope of applicability

of the parallelization strategies can be straightforward extended to other algo-

rithm classes, including exact methods and (problem-specific) heuristics. For

example, Gendron and Crainic (1994) have defined three types of parallelism for

branch-and-bound: their type 1 parallelism refers to parallelism when perform-

ing operations on generated subproblems, such as executing the bounding op-

eration in parallel for each subproblem. This type can be perceived as low-level

parallelism. Parallelism of type 2 consists of building the branch-and-bound

tree in parallel by performing operations on several subproblems concurrently.

This type of parallelism involves an explicit separation of the search space and

can, thus, be perceived as domain decomposition. Finally, the case of type

3 parallelism implies that several branch-and-bound trees are built in parallel,

with the trees being characterized by different operations (branching, bounding,

testing for elimination, or selection). This parallelism includes the option to use

the information generated during the construction of a tree for the construction

of another one. When such information is exchanged, type 3 parallelism can

be perceived as cooperative multi-search, otherwise it corresponds to indepen-

dent multi-search. The straightforward matching of parallelization strategies for

metaheuristics with types of parallelism defined for an exact method supports

our previous argument that the four parallelization strategies can be applied to

the general “universe” of optimization algorithms.

Process and search control refers to how the global problems-solving process

is controlled, how concurrent processes communicate with each other, and how

diverse the overall search process is. We adopt the three dimensions suggested

by Crainic and Hail (2005): Search control cardinality determines whether the

global search is controlled by a single process (1-control, 1C)) or by several

processes (p-control, pC) which may collaborate or not. Search control and

communications refers to how information is exchanged between processes and

distinguishes between synchronous and asynchronous communication. In the

former case, all concerned processes have to stop and engage in some form of

communication and information exchange at specified moments (e.g., number of
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iterations) exogenously determined. In the latter case, processes are in charge

of their own search as well as of establishing communications with other pro-

cesses, and the global search terminates once each individual search stops. Both

synchronous and asynchronous communication can be further qualified with re-

gard to whether additional knowledge is derived from communication, leading

to four categories of control and communication: rigid (RS) and knowledge

synchronization (KS) in the synchronous case, and collegial (C) and knowledge

collegial (KC) in the asynchronous case. Finally, the diversity of search may

vary according to whether concurrently executed methods start from the same

or different solutions, and to whether their search follows the same or different

logics2; the diversity of search is also referred to as search differentiation. From

these two dimensions the following four classes can be derived: 1. same initial

point/population, same search strategy (SPSS); 2.same initial point/population,

different search strategies (SPDS); 3. multiple initial points/populations, same

search strategies (MPSS); 4. multiple initial points/populations, different search

strategies (MPDS). While the term “point” relates to single-solution methods,

the notion “population” is used for population-based ones, such as genetic al-

gorithms or ant colony optimizations. As in the case of parallelization strate-

gies described above, the three dimensions of process and search control have

been suggested for the classification of metaheuristics (Crainic and Hail, 2005;

Crainic, 2018, 2019) but can be extended straightforward to other classes of

optimization algorithms.

When concurrent processes exchange information, they may communicate

with each other in a direct or indirect way. Direct communication involves

message-based communication along some communication topology, such as a

tree, ring, or fully connected mesh (Talbi, 2009; Crainic, 2019). This communi-

cation topology needs to be projected on a physical interconnection topology as

part of the implementation design. In contrast, indirect communication involves

2Two logics are characterized as “different” even when based on the same methodology
(e.g., two tabu searches or genetic algorithms) if they vary in terms of components (e.g.,
neighborhoods or selection mechanism) or parameter values (Crainic, 2019).
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the use of a centralized or distributed memory, which are used as shared data

resources of concurrent processes (Crainic, 2019).

The three perspectives of parallel algorithm design, namely parallelization

strategy, process and search control, and communication topology, are linked

together (Crainic, 2018, 2019). Low-level parallelization is generally targeted

in 1C/RS/SPSS designs, with the 1C (control cardinality) being implemented

with a master-slave approach. Examples are the neighborhood evaluation of

a local search heuristic, and the application of operators and the determina-

tion of fitness values in a GA. Domain decomposition is often implemented

using a master-slave 1C/RS scheme with MPSS or MPDS search differentiation

but can also be performed in a pC, collegial decision making framework with

MPSS or MPDS search differentiation. Independent multi-search is inherently

a pC parallelization strategy, which follows from the same or different starting

point(s)/population(s) with or without different search strategies (i.e., SPDS,

MPSS or MPDS search differentiation). As the concurrently executed search

processes do not exchange information prior to the final step, they follow the RS

control and communication paradigm. Finally, cooperative multi-search is also

a pC parallelization strategy, which may start from possibly different starting

points/populations and may follow different search strategies (i.e., SPDS, MPSS

or MPDS search differentiation). In contrast to independent multi-search, in-

formation is exchanged between processes during the search. This exchange of

information can vary in different ways, which results in a large diversity of co-

operation mechanisms. First, different types of information may be exchanged,

including “good” solutions and context information. Second, cooperating pro-

cesses may exchange information directly by sending messages to each other

based on a given communication topology, or indirectly using memories which

act as data pools shared by processes. A third option distinguishes between

synchronous and asynchronous cooperation, where processes either need to stop

its activities’ until all others are ready or not, respectively.
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2.3. Computational parallelization

When parallel algorithms are implemented and executed in modern compu-

tational environments, different parallel programming models may be applied in

a variety of programming environments. Albeit being intertwined (see, for ex-

ample, (Talbi, 2009)), they represent different facets of parallel implementation

from a conceptual perspective. Four (pure) parallel programming models can

be distinguished: threads, shared memory, message passing (Diaz et al., 2012;

Talbi, 2009) and single-instruction-multiple-data (SIMD). In the thread pro-

gramming model, lightweight processes (threads) are executed, where the com-

munication between threads is based on shared addresses. The shared memory

programming model, where, too, tasks share a common address space, oper-

ates at a higher abstraction level than threads. Today, both the thread and

the shared memory model are executed on a multi-core CPU architecture on a

single computer node. In contrast, in the message passing programming model

the communication between processes is done by sending and receiving mes-

sages. Each process has its own address space that is not shared with other

processes. This model is designed for execution in computer clusters, where dif-

ferent nodes are connected through high-speed networks. Note that, depending

on the particular parallel programming model, parallel executed software parts

are labeled differently usually as threads, tasks or processes. Finally, SIMD ex-

ploits data parallelism by operating a single instruction on multiple data on

a vector processor or array processor. Beyond the pure parallel programming

models sketched above, the heterogeneous model General Purpose Computation

on Graphics Processing Unit (GPGPU) has received increasing attention (e.g.,

(Brodtkorb et al., 2013)). GPGPU harnesses the capabilities of multi-core CPUs

and many-core GPUs, where threads are executed in parallel on GPU cores and

where GPUs can have different levels of shared memory; in this sense, we can

speak of heterogeneous systems (Diaz et al., 2012). Other heterogeneous mod-

els are distributed shared memory models and field programmable gate arrays

(FPGAs). In modern computing environments, (pure or heterogeneous) parallel

programming models are sometimes combined with each other by, e.g., jointly
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using threads and GPGPU, shared memory and message passing, or threads

and message passing (Diaz et al., 2012). Such approaches are referred to as

hybrid models.

Parallel programming environments are related to parallel programming

models and comprise languages, libraries, APIs (application programming in-

terfaces) and frameworks.

2.4. Parallel performance metrics

The general purpose of parallel computation is to take advantage of increased

processing power to solve problems faster or to achieve better solutions. The

former goal is a matter of scalability, which is defined as the degree to which it is

capable of efficiently utilizing increased computing resources. Performance mea-

sures of scalability fall into two main groups: speedup and efficiency. Speedup

Sp := S
TP

is defined as the ratio of sequential computation time S to parallel

computation time Tp when the parallel algorithm is executed on p processing

units (e.g., cores in a multicore processor architecture). The serial time S can

be measured differently, leading to different interpretations of speedup (Barr

and Hickman, 1993): When S refers to the fastest serial time on any serial com-

puter, speedup is denoted as absolute. Alternatively, S may also refer to the

time required to solve a problem with the parallel code on one processor. This

type of speedup is qualified as relative. When real-time reduction is considered

as the primary objective of parallel processing, absolute speedup is the relevant

type. While speedup relates serial to parallel times, efficiency Ep :=
Sp

p relates

speedup to the number of processing units used. With the definition of efficiency,

we can qualify speedup as sublinear speedup (Ep < 1), linear speedup (Ep = 1),

or superlinear speedup (Ep > 1). Sublinear speedup is often due to serial parts

of a parallel algorithm and several reasons for a nonvanishing serial part can

be distinguished. Superlinear speedup can occur, for example, when during the

parallel execution of a branch-and-bound algorithm one processor finds a good

bound early in the solution process and communicates it to other processors

for truncation of their search domains (Barr and Hickman, 1993). Finally, it
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should be noticed that while the application of speedup and related efficiency

concepts to algorithms which have a “natural” serial version is straightforward,

their unmodified application to multi-search algorithms, which are parallel in

nature, does not make much sense as no basis of comparison is available.

A second important performance measure in parallel optimization is the

solution quality achieved through parallelization. Solution quality can be mea-

sured in various ways. When the optimal solution value or a bound of it is

known, the relative gap to (the bound of) the optimal value can be determined.

A second option is to relate the achieved solution quality with that obtained

from sequential versions of the parallelized algorithm (relative improvement).

However, this option requires that a sequential version of the parallel algorithm

exists in terms of unchanged algorithmic logic and the trajectory through the

search space. This is not the case, for example, when cooperative multi-search

occurs, which defines a new algorithm due to cooperation. Finally, the solution

quality obtained through parallelization may be compared with the quality of

the best known solution obtained from any serial implementation (absolute im-

provement). Overall, the goal of achieving better solutions can be perceived as

an issue of effectiveness.

3. Scope and literature selection process

The focus of our literature review lies on computational studies of parallel op-

timization, where physical or virtual parallel computing architectures have been

applied to OR problems, such as TSPs, VRPs and FSSPs (flow shop scheduling

problems). Due to the interdisciplinary nature of the OR field, such studies are

not only found in OR outlets but also in those of many other disciplines, includ-

ing management science, mathematics, engineering, natural sciences, combina-

tions of engineering and natural sciences (such as chemical engineering), com-

puter science, bioinformatics, material science, geology and medicine. While

we include outlets of these disciplines in our search (see the succeeding subsec-

tion), we would like to stress that the focus of our review lies on studies on OR
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problems and that it is beyond the scope of this review to identify and clas-

sify all articles of parallel optimization addressing problems in related fields or

even across all fields (optimization in general). Adopting this view, we exclude

from our review, for example, mathematical studies on parallelizing matrix com-

putations or on conjugate gradient methods, computer science studies on load

balancing issues in parallel computing environments or on solving hard problems

in theoretical computer science (e.g., the subset sum problem), and parallel op-

timization studies across fields, such as those addressing the effects of migration

in parallel evolutionary algorithms. We also exclude works on parallel optimiza-

tion when their purpose lies in designing or implementing other methodologies,

such as simulation, data analysis, data mining, machine learning and artificial

intelligence. We further exclude meta optimization (calibrating parameters of

optimization models or methodologies). We explicitly acknowledge the impor-

tance of these areas but they deserve and need dedicated literature reviews.

Finally, from a technological perspective, we also do not consider distributed

optimization that makes use of geographically dispersed computers and allows

using grids, which comprise networks of many, often thousands or even millions

of single computers. This field applies programming models and parallel pro-

gramming environments that differ from those used in our framework, and it

would need a dedicated literature review, too.

Accounting for the previously described scope of our review, we implemented

different streams of literature search. A detailed description of the literature

search process is provided in the online Appendix A. Although having imple-

mented different streams of search, we admit that the application of our search

procedure does not guarantee to identify all computational studies of parallel

optimization in OR and that we may have overlooked studies. However, we are

confident to have acquired a body of literature that is sufficiently comprehensive

to draw a firm picture of computational parallelization in OR during the decade

2008-2017.
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4. Literature survey

In this section, we provide a synthesis of the literature published in the

decade 2008-2017. We first offer a brief meta analysis, then we analyze the

body of literature with regard to which optimization problems have been solved

by which (parallelized) algorithms before we present the findings of our liter-

ature analysis, structured along optimization algorithms and based upon the

framework suggested above. Findings on (i) effectiveness and (ii) parallel pro-

gramming environments are not presented here because (i) effectiveness results

have been reported only rarely and in partially inconsistent ways in the studies

of our sample, making comparisons of results difficult, and (ii) parallel pro-

gramming environments should be considered across algorithms. We discuss

both topics in Section 5. With regard to speedup, we qualify it by efficiency

when reported in a study. When GPGPU is used as programming model, we

only report speedup values without providing the number of parallel processing

units or information on efficiency. The reason is that the number of parallel

working units (usually GPGPU threads) needs to be interpreted different from

that counting other parallel working units (CPU threads, processes) so that ef-

ficiency usually being defined as the ratio of speedup and the number of parallel

processing units is not applied here. Details on this issue as well as the coding

of all studies in our sample are provided in the online Appendix B.

4.1. Meta analysis

Overall, our sample consists of 206 studies, with 164 studies published in

77 different journals, 38 studies published at 36 different workshops, sympo-

siums, conferences or congresses, and four studies published as book chapters.

The joint distribution of articles over scientific outlets and years is summarized

in Table 1, which shows that (1) there is no clear temporal development of

the numbers of papers published per year, (2) while the number of scholarly

outlets (journals, proceedings, etc.) which have published computational stud-

ies on parallel optimization in OR is high, only nine outlets have published at
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Outlet
Year

Sum
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

ASC 2 1 1 1 1 2 8
CIE 1 1 1 1 1 5
COR 1 1 3 2 2 2 11

CCPE 1 1 3 5
EJOR 3 1 1 1 1 3 2 2 13
IJOC 1 1 2 1 1 6
JPDC 1 1 1 2 4 1 1 1 12
JSC 1 1 1 2 5
PC 1 1 1 2 2 1 8

Other journals 7 5 5 12 12 11 7 10 12 13 91
Proceedings 3 5 7 11 4 4 3 1 37

Book chapters 2 1 1 1 5
Sum 15 15 16 32 22 24 16 18 21 27 206

ASC: Applied Soft Computing
CIE: Computers & Industrial Engineering
COR: Computers & Operations Research
CCPE: Concurrency and Computation-Practice & Experience
EJOR: European Journal of Operational Research
IJOC: INFORMS Journal on Computing
JPDC: Journal of Parallel and Distributed Computing
JSC: Journal of Supercomputing
PC: Parallel Computing

Table 1: Joint distribution of selected articles over scientific outlets and years

least five articles during the decade 2008-2017 and only three outlets (namely,

Computers & Operations Research, European Journal of Operational Research,

Journal of Parallel and Distributed Computing) have published more than ten

articles in the same period. Overall, this publication landscape does not reveal

clear clusters in terms of time or outlet, it rather shows that computational and

parallel optimization in OR has been covered permanently (and) distributed

over many outlets rooted in different yet related academic disciplines, including

OR, Computer Science and Engineering. Apparently, this research area is of

multidisciplinary relevance.

4.2. Problem types and parallelized algorithms

We now describe the identified body of literature from the perspective of

problem types and types of parallelized algorithms. Table 2 shows the joint
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Alg. Problem type
Sum

type AP FLP FSSP GTP JSSP KP BFP MILP MSP SOP TSP VRP Other

B-a-X 1 7 3 2 3 2 4 2 3 13 40
DP 2 3 1 4 10
IPM 2 2 4

PSEA 2 1 1 4

PSH 1 1 1 1 2 6 12

TS 4 5 2 1 1 2 5 3 23
SA 2 2 1 1 1 3 1 11

VNS 1 2 1 1 4 2 11
GRAS 2 2
OSSH 1 1

GA 2 2 3 1 1 3 3 3 10 28
OEA 1 1 2 1 1 1 6 13
SSPR 1 1 2
ACO 2 12 2 16
PSO 1 2 1 3 5 12
BCO 2 1 3
FA 1 1

HM 1 1 2 1 1 1 2 3 4 2 7 25

OH 1 1 2 4

MH 1 1 2

MS 1 1 1 3

Sum 11 7 22 13 11 11 17 6 11 5 28 20 65 227

Optimization Problem Type Algorithm type

AP: Assignment Problem Exact algorithms:
FLP: Facility Location Problem B-a-X: Branch & X
FSSP: Flow Shop Scheduling Problem DP: Dynamic programming
GTP: Graph Theory Problem IPM: Interior point method
JSSP: Job Shop Scheduling Problem PSEA: Problem-specific exact algorithms
KP: Knapsack Problem PSH: Problem-specific heuristics
BFP: Benchmark function optimization problem(s) Single-solution based metaheuristics:
MILP: (Mixed) Integer Linear Program TS: Tabu search
MSP: Machine Scheduling Problem SA: Simulated annealing
SOP: Stochastic Optimization Problem VNS: Variable neigborhood search
TSP: Traveling Salesman Problem GRAS: (Greedy randomized) adaptive search
VRP: Vehicle Routing Problem OSSH: Other single solution heuristics

Population-based metaheuristics:
GA: Genetic algorithm
OEA: Other evolutionary algorithms
SSPR: Scatter search & path relinking
ACO: Ant colony optimization
PSO: Particle swarm optimization
BCO: Bee colony optimization
FA: Fireworks algorithm

HM: Hybrid metaheuristics
OH: Other heuristics
MH: Matheuristics
MS: Multi-search algorithms

Table 2: Joint distribution of selected articles over problems and (parallelized) algorithms
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distribution of articles over these two dimensions. We identified problem types

by, firstly, coding for each article of our sample the covered problem(s) and,

secondly, consolidating problems to problem types widely used in the OR lit-

erature3 Overall, we identified nine “application-oriented” problem types (AP,

FLP, FSSP, GTP, JSSP, KP, MSP, TSP, VRP) and three “mathematically-

oriented” problem types (BFP, MILP, SOP).4 Adopting this distinction leads

to assigning a study that, for example, formulates a TSP as a mixed-integer lin-

ear program to the problem class “TSP” rather than to the class “MILP” as it is

TSP instances that are focused and not MILP instances in general. Conversely,

studies assigned to one of the classes BFP, MILP or SOP explicitly address the

related mathematically-oriented problem type and are not necessarily linked to

any specific application . We consolidated all problem types for which only very

few computational parallelization studies have been published to the category

“Other”5.

With regard to types of algorithms, we draw on a taxonomy suggested by

Talbi (2009), who distinguishes between exact algorithms (e.g., branch-and-

bound), problem-specific heuristics (e.g., Lin-Kernighan heuristic for the TSP),

single-solution based metaheuristics (e.g., tabu search), and population-based

metaheuristics (e.g., genetic algorithms)6. We extend the taxonomy by adding

some algorithm types: hybrid metaheuristics refer to an metaheuristic where

parts of a (meta)heuristic A are embedded into a step of a (meta)heuristic B;

matheuristics refer to the interoperation of metaheuristics and (exact) mathe-

matical programming techniques; multi-search algorithms refers to the combi-

3An example of consolidation is grouping the “multi-depot VRP” and the “VRPs with
time windows” to the problem type “VRP”.

4While application-oriented problem types (e.g., TSP) usually lead to mathematical for-
mulations which have an overall and coherent logic across the components (objective function,
constraints, variables, etc.) of a model, “mathematically-oriented” problem types (e.g., MILP)
have mathematical formulations where single components have to meet mathematical assump-
tions (e.g., binary variables, linear terms) without requiring the overall model to refer to a
specific application concept.

5When an article studies several “other” problem types, we did not count the number of
other problem types but coded it as a single appearance of an “other problem type”.

6The authors also suggest the type approximation algorithms, which we do not use in this
review.
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nation of several independent search algorithms, which may collaborate or not.

Finally, we provide other heuristics as a residual type for those (meta)heuristics

which do not fit to any of the aforementioned algorithm types.

It should be noticed that the sums of addressed problem types and par-

allelized algorithm types shown in Table 2 do not equal the sample size for

different reasons: (i) some articles in our sample apply more than one algorithm

type to a single problem type and/or investigate more than one optimization

problem type; (ii) a few articles do not clearly reveal (from our perspective) the

targeted problem or the applied algorithm, or they do not parallelize any algo-

rithm but only the evaluation of the objective function; due to these reasons,

we excluded five articles from the presentation in Table 2. Overall, it should be

kept in mind that each combination of addressed problem type and parallelized

algorithm type is a “case” of a study, where a single study may have several

cases. The perspective on optimization problems addressed in computational

parallelization studies shows that a broad range of problem types have been

covered. Beyond the 12 problem types highlighted, the residual class of other

problem types includes 63 cases, in which computational parallelization has been

applied to mostly different problem types. However, we also notice that a set

of 12 problem types account for more than 70% of all cases, with a focus on the

TSP, the FSSP and the VRP, which jointly account for more than 30% of all

cases. Similar results are obtained from adopting the algorithmic perspective.

While a broad range of exact algorithms and single-solution, population-based

and hybrid metaheuristics have been parallelized, only a few algorithm types

(branch-and-X (X=bound, cut, price, etc.), GAs, hybrid metaheuristics, TS) ac-

count for more than 50% of all cases, with branch-and-X accounting for about

18%. Jointly adopting the problem and algorithmic perspective, again, shows a

large diversity but in this case no large clusters occur. Only four combinations

(ant colony optimization applied to the TSP, branch-and-X applied to the FSSP,

TS applied to the FSSP, TS applied to the VRP) have been covered in at least

five cases, but these four combinations account for only about 13% of all cases.

In the remainder of this section, we present parallel computational optimiza-
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Algorithm type Computational studies

Exact algorithms:
Branch & X (Mezmaz et al., 2014; Chakroun et al., 2013b; Herrera et al., 2017; Taoka et al., 2008;

Ponz-Tienda et al., 2017; Ismail et al., 2014; Paulavicius et al., 2011; Christou and
Vassilaras, 2013; McCreesh and Prosser, 2015; Eckstein et al., 2015; Carvajal et al.,
2014; Borisenko et al., 2017; Gmys et al., 2017; Liu and Kao, 2013; Bak et al., 2011;
Gmys et al., 2016; Silva et al., 2015; Barreto and Bauer, 2010; Vu and Derbel, 2016;
Chakroun and Melab, 2015; Paulavičius and Žilinskas, 2009; Posypkin and Sigal, 2008;
Chakroun et al., 2013a; Aitzai and Boudhar, 2013; Ozden et al., 2017; Cauley et al.,
2011; Xu et al., 2009; Aldasoro et al., 2017; Pages-Bernaus et al., 2015; Lubin et al.,
2013; Adel et al., 2016; Borisenko et al., 2011; Boukedjar et al., 2012; Carneiro et al.,
2011; Galea and Le Cun, 2011; Herrera et al., 2013; Sanjuan-Estrada et al., 2011)

Dynamic programming (Dias et al., 2013; Aldasoro et al., 2015; Maleki et al., 2016; Tan et al., 2009; Stivala
et al., 2010; Boyer et al., 2012; Boschetti et al., 2016; Kumar et al., 2011; Rashid et al.,
2010; Tran, 2010)

Interior point method (Huebner et al., 2017; Hong et al., 2010; Lubin et al., 2012; Lucka et al., 2008)
Problem-specific exact
algorithms

(Li et al., 2015; Rossbory and Reisner, 2013; Kollias et al., 2014; Bozdağ et al., 2008))

Problem-specific heuristics (Dobrian et al., 2011; Ozden et al., 2017; Ismail et al., 2011; Bożejko, 2009; Lancin-
skas et al., 2015; Koc and Mehrotra, 2017; Redondo et al., 2016; Hemmelmayr, 2015;
Benedicic et al., 2014; Gomes et al., 2008; Baumelt et al., 2016; Luo et al., 2015).

Single-solution based metaheuristics:
Tabu search (Rudek, 2014; Jin et al., 2012; Bozejko et al., 2017; Hou et al., 2017; Bozejko et al.,

2013; Czapinski and Barnes, 2011; James et al., 2009; Czapiński, 2013; Bukata et al.,
2015; Cordeau and Maischberger, 2012; Wei et al., 2017; Janiak et al., 2008; Shylo
et al., 2011; Jin et al., 2014; Bożejko et al., 2016; Jin et al., 2011; Maischberger and
Cordeau, 2011; Van Luong et al., 2013; Dai et al., 2009; Melab et al., 2011)

Simulated annealing (Thiruvady et al., 2016; Rudek, 2014; Defersha, 2015; Mu et al., 2016; Wang et al.,
2015; Ferreiro et al., 2013; Lou and Reinitz, 2016; Banos et al., 2016; Bożejko et al.,
2009, 2016; Lazarova and Borovska, 2008)

Variable neigborhood
search

(Yazdani et al., 2010; Lei and Guo, 2015; Davidović and Crainic, 2012; Quan and Wu,
2017; Menendez et al., 2017; Eskandarpour et al., 2013; Coelho et al., 2016; Polat,
2017; Tu et al., 2017; Aydin and Sevkli, 2008; Polacek et al., 2008)

(Greedy randomized)
adaptive search

(Caniou et al., 2012; Santos et al., 2010)

Other single solution
heuristics

(Hifi et al., 2014)

Population-based metaheuristics:
Genetic algorithm (Massobrio et al., 2017; Liu et al., 2016; Dorronsoro et al., 2013; Defersha and Chen,

2008, 2010; Huang et al., 2012; Liu and Wang, 2015; Defersha and Chen, 2012;
Homberger, 2008; Gao et al., 2009; Tosun et al., 2013; Zhang et al., 2016; Lu et al.,
2014; Abu-lebdeh et al., 2016; Kang et al., 2016; He et al., 2010; Limmer and Fey,
2017; Abbasian and Mouhoub, 2013; Roberge et al., 2013; Lančinskas and Žilinskas,
2013; Lančinskas and Żilinskas, 2012; Lazarova and Borovska, 2008; Sancı and İşler,
2011; Umbarkar et al., 2014; Wang et al., 2012; Zhao et al., 2011; Vallada and Ruiz,
2009; Arellano-Verdejo et al., 2017)

Other evolutionary al-
gorithms

(Fabris and Krohling, 2012; Pedroso et al., 2017; Cao et al., 2017; Dorronsoro et al.,
2013; Aldinucci et al., 2016; Figueira et al., 2010; Derbel et al., 2014; Baños et al.,
2014; Nebro and Durillo, 2010; Nowotniak and Kucharski, 2011; Redondo et al., 2008;
Weber et al., 2011; Zhao et al., 2011; Izzo et al., 2009)

Scatter search & path
relinking

(Kerkhove and Vanhoucke, 2017; Bożejko, 2009)

Ant colony optimiza-
tion

(Ling et al., 2012; Cecilia et al., 2013; Delevacq et al., 2013; Zhou et al., 2017; Hadian
et al., 2012; Yang et al., 2016; Cecilia et al., 2011; Skinderowicz, 2016; Abouelfarag
et al., 2015; Lazarova and Borovska, 2008; You, 2009; Zhao et al., 2011; Yu et al.,
2011b; Diego et al., 2012; Tsutsui, 2008; Dongdong et al., 2010)

Particle swarm opti-
mization

(Aitzai and Boudhar, 2013; Yu et al., 2017; Roberge et al., 2013; Scheerlinck et al.,
2012; Ze-Shu et al., 2017; Qu et al., 2017; Hung and Wang, 2012; Laguna-Sanchez
et al., 2009; Mussi et al., 2011; Deep et al., 2010; Ding et al., 2013; Wang et al., 2008)

Bee colony optimization (Luo et al., 2014; Davidovic et al., 2011; Subotic et al., 2011)
Fireworks algorithm (Ding et al., 2013)

Hybrid metaheuristics (Thiruvady et al., 2016; Delevacq et al., 2013; Arrondo et al., 2014; Patvardhan et al.,
2016; Nesmachnow et al., 2012; Redondo et al., 2011; Mezmaz et al., 2011; Ku et al.,
2011; Li et al., 2017; Yu et al., 2011a; Munawar et al., 2009; Ravetti et al., 2012;
Ben Mabrouk et al., 2009; Subramanian et al., 2010; Scheerlinck et al., 2012; Czapinski,
2010; Banos et al., 2013; Olensek et al., 2011; Fujimoto and Tsutsui, 2011; Ibri et al.,
2010; Lančinskas and Žilinskas, 2013; Van Luong et al., 2012; Xhafa and Duran, 2008;
Zhao et al., 2011; Zhu and Curry, 2009)

Other heuristics (Benedicic et al., 2014; Sathe et al., 2012; Juan et al., 2013; Sancı and İşler, 2011)

Matheuristics (Stanojevic et al., 2015; Groer et al., 2011)

Multi-search algorithms (Chaves-Gonzalez et al., 2011; Vidal et al., 2017; Lahrichi et al., 2015)

Table 3: Parallel computational optimization studies in OR
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tion studies in OR grouped by algorithm types. An overview over the studies

of our sample is given is Table 3.

Exact algorithms: The majority of studies that apply exact algorithms

parallelize branch-and-X algorithms. These studies analyze a broad range of

optimization problems. Almost all adopt domain decomposition as paralleliza-

tion strategy using a 1C/C or pC/C scheme with MPSS search differentiation,

and most studies which report on the used communication topology apply a

(one- or multiple-tier) master-slave approach. These efforts are not surprising

as they reflect a straightforward (and traditional) way to parallelize branch-

and-X algorithms. In contrast, the landscape of applied parallel programming

models is more diverse and includes approaches based on threads, message pass-

ing, shared memory and GPGPUs. With regard to the former three models,

mostly sublinear or linear speedup has been reported but there are also a few

studies (Ponz-Tienda et al., 2017; Borisenko et al., 2011; Galea and Le Cun,

2011) that report superlinear speedup. This speedup can be achieved, for ex-

ample, when a parallel executed algorithm provides “good” bounds that allow

pruning large parts of the search tree at early stages. The use of GPGPUs has

shown mixed results in terms of speedup; however, in some cases the reported

speedup is substantial (between 76.96 and 170.69) (Chakroun et al., 2013a),

which makes GPGPUs highly appealing for parallelizing branch-and-X algo-

rithms. However, it should also be acknowledged that several of these GPGPU

studies have reported a high variance of speedup with regard to problem in-

stances solved. Dynamic programming7 is the second most often parallelized

exact algorithm. Its parallelization in terms of addressed problems is quite di-

verse. In most cases, low-level is used as parallelization strategy with a 1C/RS

scheme and SPSS search differentiation. The landscape of applied communica-

tion topologies is quite homogeneous, with almost all studies that report on the

applied communication topology drawing on a (one- or multiple-tier) master-

slave approach. In contrast, the set of implemented programming models is

7An introduction into parallel dynamic programming is provided by Almeida et al. (2006).
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heterogeneous. Interestingly and in contrast to branch-and-X parallelization,

the reported speedups are all sublinear. Studies that use GPGPUs report dif-

ferent ranges of speedup, with one study (Tran, 2010) reporting an exceptionally

high speedup in the range of 900-2,500. In addition, we found only a few studies

which parallelize the interior point method. All of these studies address stochas-

tic optimization problems, using low-level parallelism in a 1C/RS scheme with

SPSS search differentiation, and they achieve sublinear or linear speedup. While

all studies apply message passing as parallel programming model, the topologies

used differ. Finally, a few exact methods designed for specific optimization prob-

lems (the knapsack problem (Li et al., 2015), mixed integer linear programming

(Rossbory and Reisner, 2013) and graph theory problems (Kollias et al., 2014;

Bozdağ et al., 2008)) have been parallelized. While all four studies show sub-

linear or linear speedup, the characteristics of algorithmic and computational

parallelization are different.

Single-solution based metaheuristics: Single-solution based metaheuris-

tics manipulate and transform a single solution during the search. They can

occur in many different forms and their parallelization has been discussed in

(Melab et al., 2006; Talbi, 2009). Parallelization can occur at the solution level,

iteration level and algorithmic level. While parallelizing at the solution and

iteration level generally corresponds to low-level parallelization with a 1C/RS

scheme and SPSS search differentiation, parallelization at the algorithmic level

is open to the broad range of parallelization strategies, and process and search

control options. Our literature review revealed that mainly three single-solution

based metaheuristics have been parallelized: TS, SA and VNS. TS has been ap-

plied to a variety of optimization problems. Most studies apply parallelization

at the solution or iteration level, thereby adopting low-level parallelization with

a 1C/RS scheme and SPSS search differentiation and a master-slave communi-

cation topology. We found a few exceptions from this algorithmic parallelization

pattern; for example, Jin et al. (2012); James et al. (2009); Jin et al. (2014, 2011)

adopt cooperative multi-search parallelization of TS, and Dai et al. (2009) im-

plement domain decomposition parallelization of TS. The landscape of applied
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parallel programming models is quite diverse and includes approaches based on

threads, message passing, shared memory, SIMD, and GPGPUs. Speedup re-

sults are mixed, including superlinear speedup (Bozejko et al., 2013; Shylo et al.,

2011). The implementation on GPGPUs has shown substantial differences with

regard to speedup, reaching values up to 420 (Czapiński, 2013). The landscape

of parallel SA studies, which have also been applied to a variety of optimization

problems, is more diverse than that of GA studies. It has been addressed by

all four parallelization strategies with varying types of process and search con-

trol and with different programming models. In contrast to this heterogeneity,

most studies apply a master-slave communication topology. Only a few studies

report the achieved speedup, which is mostly sublinear. We found one study

(Ferreiro et al., 2013) that parallelizes SA using GPGPU and achieves speedups

in the range of about 73.44-269.46. VNS has also been applied to many differ-

ent problems with all four parallelization strategies and a variety of process and

search control variations, communication topologies, and programming models.

As in the case of SA, about half of the studies do not report on speedup and

those which do report sublinear speedup, with the exception of Polacek et al.

(2008), who achieve linear speedup. One study uses GPGPU (Coelho et al.,

2016) and achieves a speedup in the range of 0.93-14.49. Additionally, we found

two studies (Caniou et al., 2012; Santos et al., 2010) that parallelize (greedy ran-

domized) adaptive search and one study (Hifi et al., 2014) that parallelizes large

neighborhood search (subsumed under “other single solution heuristic (OSSH)”

in Table 2).

Population-based metaheuristics: In contrast to single-solution based

metaheuristics, in population-based algorithms a whole population of solutions

is evolved. Most prominent classes of population-based metaheuristics include

evolutionary algorithms, scatter search and path relinking, swarm intelligence

algorithms, and bee colony optimization (Talbi, 2009). When population-based

algorithms are parallelized, we distinguish three models which, albeit having

been suggested originally for evolutionary algorithms in general and GAs in

particular (Alba and Tomassini, 2002; Talbi, 2009; Agrawal and Mathew, 2004;
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Melab et al., 2006; Cantú-Paz, 2005; Luque et al., 2005), can be applied to

other classes of population-based algorithms as well: global, island (with or

without migration), and cellular model. In the global model, parallel techniques

are used to speed up the operation of the algorithm without changing the basic

operation of the sequential version. When the evaluation of the whole population

is done in parallel, parallelism occurs at the iteration level; when the algorithm

evaluates a single individuum in parallel, parallelism occurs at the solution

level. In both cases, low-level parallelization applies. Island models typically

run (identical or different) serial population-based algorithm on subpopulations

to avoid getting stuck in local optima of the search space. If individuals can

be transmitted between subpopulations, the island model is also referred to

as migration model ; however, island models can also occur without migration.

While in the former case, migration usually leads to a cooperative multi-search,

the latter case generally corresponds to independent multi-search parallelization.

The cellular model may be seen as a special case of the island model where an

island is composed of a single individual. It should be noted that the models

may be applied jointly (Cantú-Paz (2005), for example, describes such model

combinations for GAs).

Evolutionary algorithms belong to the types of algorithms that have at-

tracted substantial parallelization efforts. A good overview of the diversity

with which combinations of different parallelization strategies and program-

ming models can be applied to evolutionary algorithms is provided by Limmer

and Fey (2017). In our sample, we found a focus on GAs as a particular sub-

class of evolutionary algorithm; we subsume all evolutionary algorithms other

than GAs under the residual subclass“other evolutionary algorithms”. GAs

have been parallelized for a variety of optimization problems. Most of the stud-

ies adopt the island model with migration (cooperative multi-search) with a

pC/RS scheme and MPSS or MPDS search differentiation. Only a few stud-

ies use the island model without migration (independent multi-search) with a

pC/RS scheme and MPSS search differentiation, or the global model (low-level)

with a 1C/RS scheme and SPSS search differentiation. Interestingly, all but
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one study (Vallada and Ruiz, 2009) apply synchronous communication. In the

presence of the island model, a diversity of communication topologies has been

applied with mostly message passing being used as programming model. In

contrast, when the global model is applied, threads or GPGPU are drawn upon

and mostly the master-slave topology is implemented. The described correla-

tion between the parallelization strategy and the parallel programming model

is not surprising as the communication between (a usually moderate number

of) islands through exchanging messages is appealing while the processing of (a

usually large number of) individuals in a global population through (an often

large number of) threads executed on a CPU or GPGPU seems appropriate.

Only about half of the 27 GA studies that we found report speedup values.

Speedup results are overall mixed, including superlinear speedup (Homberger,

2008; Abu-lebdeh et al., 2016). The application of GPGPUs has led to homoge-

neous results, with a maximum speedup of about 33 (Wang et al., 2012). Evo-

lutionary algorithms other than GAs, such as differential evolution or immune

algorithm, have been applied to a variety of optimization problems. Almost

all of these studies adopt the island model with migration (cooperative multi-

search) with a pC/RS scheme and MPSS or MPDS search differentiation. We

found only two studies (Baños et al., 2014; Izzo et al., 2009) which report an

asynchronous communication. We identified no pattern regarding the applied

communication topology and programming model.

Swarm intelligence algorithms are inspired from the collective behavior of

species such as ants, fish and birds. Subclasses of swarm intelligence algorithms

for which we found parallelization studies are ant colony optimization (includ-

ing ant colony systems and “MAX-MIN Ant Systems” (Dorigo and Stützle,

2004)), particle swarm optimization, and fireworks algorithms. Parallelization

strategies of ant colony optimization can be classified according to the above

mentioned three strategies of parallelizing population-based metaheuristics; i.e.,

global, island or cellular model. Here, we follow the suggestion of Randall and

Lewis (2002) to distinguish the parallel evaluation of solution elements, parallel

ant colonies (independent or interacting) and parallel ants. These strategies are
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specializations of the global model, island model (without or with migration),

and cellular model, respectively, of population-based metaheuristics. Interest-

ingly, most of the parallelization studies using ant colony optimization have

addressed the TSP. VRPs (Yu et al., 2011b; Diego et al., 2012) and assignment

problems (Tsutsui, 2008; Dongdong et al., 2010) have been solved by two studies

each. Almost all studies use parallel ants or multiple ant colonies but, overall,

the studies vary regarding parallelization strategies, process and search con-

trol, communication topologies and programming models. Those studies which

qualify the achieved speedups, report sublinear speedups. The speedup achieved

through GPGPU parallelization goes up to 25. Particle swarm optimization has

been applied to solve a diverse set of optimization problems. Most of the paral-

lelization studies make use of the global or island model, realized as low-level or

cooperative multi-search parallelization, respectively, with a master-slave com-

munication topology. The process and search control implementations differ,

with only one study (Wang et al., 2008) reporting asynchronous communica-

tion. Mostly message passing and GPGPU are used as parallel programming

model. Speedups achieved on GPGPU go up to about 190; studies not using the

GPGPU model either do not report speedup values or show an overall diverse

picture. In addition, we identified one study (Ding et al., 2013) that applies a

fireworks algorithm.

Other population-based metaheuristics: We identified five studies that

parallelize population-based metaheuristics other than evolutionary algorithms

and swarm intelligence algorithms, namely scatter search and path relinking

(Kerkhove and Vanhoucke, 2017; Bożejko, 2009), and bee colony optimization

(Luo et al., 2014; Davidovic et al., 2011; Subotic et al., 2011). Addressed prob-

lems, algorithmic and computational parallelization characteristics as well as

efficiency results (where reported) are quite diverse.

Hybrid metaheuristics: Hybrid metaheuristics are joint applications of

several (meta)heuristics (Talbi, 2009; Crainic, 2019). They are “appropriate can-

didates” for the application of a(n) (independent or cooperative) multi-search

strategy. A diverse set of optimization problems has been investigated with par-
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allel hybrid metaheuristics. The combinations of (meta)heuristics include ant

colony optimization and local search, GAs and local search, GAs and SA, and

GAs and TS, among others. Due to the diverse set of combined (meta)heuristics,

unsurprisingly, the studies differ substantially with regard to addressed prob-

lems, parallelization strategies, process and search and control, communication

topologies and parallel programming models. Although none of these studies re-

port a superlinear speedup, Zhu and Curry (2009) reports an achieved speedup

of 403.91 when parallelizing a combination of ant colony optimization and pat-

tern search with a GPGPU-based implementation.

Problem-specific heuristics, other heuristics, matheuristics, and

multi-search algorithms: Problem-specific heuristics have been parallelized

for a variety of optimization problems, including a graph theory problem (Do-

brian et al., 2011), TSPs (Ozden et al., 2017; Ismail et al., 2011), a FSSP

(Bożejko, 2009), a facility location problem (Lancinskas et al., 2015), a mixed

integer linear program (Koc and Mehrotra, 2017), and several other problems

(Redondo et al., 2016; Hemmelmayr, 2015; Benedicic et al., 2014; Gomes et al.,

2008; Baumelt et al., 2016; Luo et al., 2015). We found four studies which

parallelize heuristics that differ from all types described above: an agent-based

heuristic (Benedicic et al., 2014), an auction-based heuristic (Sathe et al., 2012),

a Monte Carlo simulation inside a heuristic-randomization process (Juan et al.,

2013), and a random search algorithm (Sancı and İşler, 2011). We found two

studies which parallelize matheuristics (Stanojevic et al., 2015; Groer et al.,

2011) and three studies which suggest multi-search algorithms (Chaves-Gonzalez

et al., 2011; Vidal et al., 2017; Lahrichi et al., 2015). Due to the diverse na-

ture of the aforementioned studies, we do not look for patterns in algorithmic

parallelization, computational parallelization and scalability results.

5. Research directions

Based on the analysis of the identified literature published in the covered pe-

riod (2008-2017), we subsequently suggest some research directions which may
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help (re)focusing on those areas that did not get much attention or were even

neglected during the focused period. We would like to note that the observa-

tion of the absence or rareness of certain types of studies primarily refers to

the aforementioned period. Work published prior to this period and surveys

published earlier than this review (see Section 1) have addressed some of the

“white spots” in research identified for the aforementioned period, which calls

for re-focusing on related research paths.

5.1. Publication landscape and overall prospective research

The analysis of publication data reveals that computational and parallel op-

timization in OR has been steadily attractive for many journals and conferences

not only in the OR field but also in various neighbor disciplines. This broad

interest is also reflected in the diverse landscape of which optimization problems

have been solved by which (parallelized) algorithms. While this diversity shows

the large relevance and broad applicability of computational parallelization in

optimization, a closer look also reveals that the landscape is still fragmented de-

spite the algorithmic accumulation of branch-and-X, GAs and TS studies and

the problem accumulation of FSSPs, TSPs and VRPs. This makes it difficult to

analyze which combinations of problems and algorithms are promising for par-

allelization and how the algorithmic and computational parallelization should

be designed. It should be noted that in the presence of a broad scope of prob-

lems and algorithms in parallel optimization, the number of approximately 200

studies published in ten years is relatively low. Future research and education

can benefit from fostering (knowledge on how to conduct) computational studies

in parallel optimization to overcome the limitations imposed by fragmentation

(recommendations 1a and 1b in Table 4).

5.2. Object of parallelization

From the algorithmic perspective, branch-and-X algorithms represent the

largest cluster of computational parallelization studies. In a few studies, this

parallelization has even led to superlinear speedup but in most cases “only”
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(sub)linear speedups have been achieved. Future research should shed more

light on how to achieve superlinear speedups (recommendation 2a). With re-

gard to dynamic programming, which is the second most often analyzed type of

exact algorithms, the (sublinear) speedup achievements are less promising (see

recommendation 2b). Again, our subsample of dynamic programming studies

and their coding can serve as a basis for future investigations on more efficient

dynamic programming parallelization, in particular on how to achieve super-

linear speedup. We extend this recommendation to future research on paral-

lelization of Lagrangean decomposition, which is – as dynamic programming –

another methodology often used in the important field of stochastic optimiza-

tion but which has hardly been parallelized. Parallelization efforts with regard

to interior point methods are hardly existent, which asks for more research in

this regard (recommendation 2c).

Among single-solution based metaheuristics, three metaheuristics have re-

ceived particular attention regarding parallelization: TS, SA and VNS. For

TS, speedup results are mixed, including two studies that report superlinear

speedups, and the implementation on GPGPUs has shown substantial differ-

ences with regard to speedup. Future research should analyze this heteroge-

neous picture (recommendation 2d). With regard to SA and VNS, not much

can be said on efficiency as, unfortunately, many studies do not report achieved

speedups (see recommendation 2e). Beyond the aforementioned metaheuristics,

other single-solution based metaheuristics, including greedy randomized adaptive

search, guided local search, fast local search, and iterated local search (Gendreau

et al., 2010, 2019), have not received much attention with regard to paralleliza-

tion, which points to further research opportunities (recommendation 2f).

With regard to population-based metaheuristics, GAs are the most often

parallelized type of algorithm. However, only a few studies provide speedup

values, some of them reporting superlinear speedups. While these achievements

are promising, not much knowledge about the factors that lead to superlinear

speedup (see recommendation 2g) has been developed. Furthermore, paralleliza-

tion results for GAs as well as other evolutionary algorithms are mainly based
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on synchronous communication so that not much is known about the potential

of applying asynchronous communication (recommendation 2h) . The second

and third most often parallelized type of population-based metaheuristics are

ant colony optimization and particle swarm optimization, respectively. With re-

gard to ant colony optimization, achieved speedups are not very promising and

mostly limited to applications to the TSP. Regarding particle swarm optimiza-

tion, speedup results are quite mixed, with a promising speedup value of about

190 reported when using the GPGPU model. These results show that further re-

search on parallelizing ant colony optimization and particle swarm optimization

is recommendable (recommendation 2i). Analogously to single-solution based

metaheuristics, some algorithms of population-based methaheuristics, including

SSPR, BCO and FA, have not received much attention, which shows avenues

for further research (recommendation 2j).

Interestingly, we found only very few research on the parallelization of mat-

heuristics. We believe that the parallelization of both of its’ elements, meta-

heuristic components and exact mathematical programming techniques, are

promising areas of future research (recommendation 2k).

Similarly few attention has been attracted by multi-search algorithms, which

offer a straightforward parallelization approach through parallelizing the execu-

tion of independent search algorithms involved in multi-search. We consider

this research stream, in particular cooperative multi-search algorithms, to be

highly relevant for future research on parallelization (recommendation 2l).

Beyond the previously identified algorithmic research directions, future re-

search should also adopt problem-specific perspectives (recommendation 2m).

5.3. Algorithmic parallelization and computational parallelization

The algorithmic parallelization in the studies of our sample has drawn on

all four (pure) parallelization strategies and on combinations of pure strategies.

Low-level parallelization is the most often implemented strategy, with 83 out of

206 studies having used this type of parallelism. The process and search con-

trol is usually a 1C/RS scheme with SPSS search differentiation. Most studies
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which use low-level parallelism apply a master-slave communication topology,

which is a straightforward approach. However, there are several exceptions,

including fully-connected meshs (e.g., (Huebner et al., 2017)) and trees (e.g.,

(Tan et al., 2009)). It would be useful to know under which conditions commu-

nication topologies other than the master-slave topology are advantageous for

low-level parallelization (recommendation 3a). Interestingly, even for low-level

parallelism a diverse set of parallel programming models and environments have

been used, including message passing. This is a bit surprising as message passing

is generally applied for the communication between ”‘heavy weight processes”

executed on different computing nodes.

Domain decomposition as parallelization strategy occurs in 56 studies, with

most of them parallelizing branch-and-X algorithms, which can be parallelized

straightforward by decomposition. Regarding control cardinality, we found 1C

and pC control modes applied similarly often. However, control and commu-

nication mostly follows an asynchronous, collegial scheme with no knowledge

being exchanged between parallel processes; the used search differentiation is

largely MPSS. Future research may explore opportunities that knowledge-based

communication offer (recommendation 3b).

Independent multi-search as a parallelization strategy has been applied in

only 18 studies, in contrast to cooperative multi-search, which has been imple-

mented in 72 studies. This trend is encouraging as the potential of exchanging

information between parallel processes in order to jointly achieve better solu-

tions in less time has thereby been acknowledged by researchers. The vast ma-

jority of all studies which apply (independent or cooperative) multi-search uses

a (synchronous) rigid synchronization (type “RS”); we identified only four stud-

ies (Groer et al., 2011; Bukata et al., 2015; Jin et al., 2014; Lahrichi et al., 2015)

which make use of knowledge-based communication. Future research should

foster the exploration of knowledge-based communication when multi-search

is applied (recommendation 3c). - Parallelization strategies can be combined

to exploit complementary ways of parallelizations. For example, low-level and

domain decomposition parallelism have been jointly applied to branch-and-X
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algorithms (Vu and Derbel, 2016; Adel et al., 2016) and to dynamic program-

ming (Maleki et al., 2016), and low-level and multi-search parallelism to genetic

algorithms (Abbasian and Mouhoub, 2013; Munawar et al., 2009). In total, we

found eight studies which apply such combinations. Future research should more

intensively tap the potential that joint applications of different parallelization

strategies offer (recommendation 3d). Finally, different parallelization strate-

gies can be applied (separately) to the same algorithm and problem in order to

compare their effectiveness and scalability and to determine most appropriate

and inappropriate parallelizations. Although we identified as many as 21 studies

which follow this path, we encourage scholars to intensify research in this regard

(recommendation 3e).

A broad range of different communication topologies has been applied, with

master-slave being the most often used topology. The appropriateness of a

communication topology needs to be linked to the particular algorithm and

the applied parallelization strategy so that no general recommendations are

appropriate. However, in the sample of computational studies we found only a

few studies (e.g., (Mezmaz et al., 2014; Herrera et al., 2013; Rashid et al., 2010;

Aydin and Sevkli, 2008)) that have implemented more than one topology for

one parallelization strategy of a particular algorithm. This low number calls for

more studies that investigate multiple topologies for particular combinations of

algorithms and parallelization strategies (recommendation 3f).

The parallel implementation of optimization algorithms has exploited over-

all a rich set of programming models and modern programming environments,

including low-level threads (Java threads and POSIX threads), shared mem-

ory (mainly OpenMP), message passing (mainly MPI), and GPGPUs (mainly

CUDA-based). In addition, also hybrid programming models, including mes-

sage passing and shared memory, shared memory and GPGPU, threads and

GPGPU, and message passing and threads, have been used in a few studies.

Other programming models, such as SIMD, have only rarely been used. We

found several studies which provide either no or incomplete information on the

used parallel programming model(s). We recommend that studies report on the
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programming model and programming environment used for their paralleliza-

tion (recommendation 3g).

Only a few studies report on their (re-)use of software frameworks for paral-

lelization, such as ParadisEO (INRIA, n.d.) for parallel and distributed meta-

heuristics or Bob++ (Djerrah et al., 2006) for branch and bound parallelization.

Reasons for not drawing on such frameworks can be manifold. Scholars may

deliberately decide to not make use of them due to the inappropriateness of

frameworks for their implementation case or due to too time-consuming efforts

to get acquainted with the frameworks. Or, scholars are not aware of the exis-

tence of such frameworks. Either way, the development, propagation and use of

re-usable software frameworks can substantially reduce the tedious and error-

prone implementation of parallel optimization code (see recommendation 3h).

5.4. Performance of parallelization

Scalability is essential regarding the appropriateness of a parallel implemen-

tation of an optimization algorithm. Interestingly, in 70 out of 206 studies

speedup values are not (completely) reported or speedup is interpreted differ-

ent from how it is usually done (see Section 2.4); for example, some studies

determine the speedup by executing the serial and the parallel code on different

hardware, resulting in speedup values that are challenging to interpret. Other

studies determine the speedup only of parts of an algorithm or use another par-

allel implementation as base (see Appendix B for more details). In such cases,

speedup values are hardly comparable with those of other studies and, thus,

limit the usefulness of scalability analysis (see recommendation 4a).

But even in case speedup is provided, comparisons with other studies need

to be done carefully for several reasons: First, scalability results are difficult to

compare with those of other studies when technological characteristics of parallel

working units (or even of hardware environments) differ. For example, threads

at the software level need to be distinguished from threads at the hardware level

(hyperthreading), and MPI processes executed on different physical nodes may

perform different from those executed on different cores on the same physical
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node. Second, values of weak speedup need to be distinguished from those of

relative speedup (see Section 2.4). A list of issues related to speedup comparison

is provided in Appendix B. We condense our suggestions in recommendation 4b.

We analyzed the studies in our sample with regard to how many parallel

working units (threads or processes) have been used, which we refer to as range

of parallelization. The number of parallel threads executed on a CPU has been

mostly not above 32 and it reaches its maximum at 128. When message passing

is used on one or several nodes, the number of parallel processes units has in

most cases not exceeded 256 and it has reached its maximum at 8,192. Hybrid

approaches mostly use up to 1,024 parallel units, with the maximum number

having been 2,048. Overall, the range of parallelization is quite limited compared

to the number of parallel units that are available in modern parallel computing

environments (see recommendation 4c).

Our analysis of how studies in the literature have considered the effective-

ness of parallelization (to obtain better solutions) showed that many studies

do not analyze this category of performance and that those studies which pro-

vide effectiveness results use many different ways to report these. They apply

different stop criteria (numbers of iterations, wall time, number of function

evaluations, combinations of these criteria, etc.) and different evaluation crite-

ria (objective value, relative gap to the best (known) solution value, numbers

of instances solved to optimality, relative improvements, etc.), and often do not

make the applied stop criteria explicit, which makes it difficult to assess par-

allel implementations and to compare studies with regard to effectiveness (see

recommendation 4d).

5.5. Presentation of studies

Finally, having reviewed more than two hundreds of parallelization studies,

we found that studies differ substantially in the way how information on paral-

lelization is provided, to what extent information is made explicit, and in which

section(s) of the paper which information on parallelization is provided. This

heterogeneity may reflect different practices in various subfields and journals,
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and it not advisable to recommend any standardization in this regard. How-

ever, in several studies we found information on parallelization being reported

incomplete, intransparent or distributed, which can make it tedious to fully un-

derstand the applied parallelization. The framework suggested in this paper

may help to mitigate these issues when researchers adopt it and describe how

it applies to their studies (recommendation 5).

6. Conclusion

This invited review suggests a new integrative framework for parallel com-

putational optimization. It integrates the perspectives on parallel optimization

found in the disciplines of OR and computer science, and it distinguishes four

levels: i) object of parallelization, ii) algorithmic parallelization, iii) compu-

tational parallization, and iv) performance of parallelization. We apply this

framework to synthesize the body of literature (206 studies published between

2008 and 2017) of parallel computational optimization in OR. It should be no-

ticed that the applicability of the suggested framework is not limited to the

OR field. Finally, we suggest several bundles of research recommendations for

parallel computational optimization in OR, with the recommendations grouped

along the layers of the suggested framework.
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Publication landscape and overall prospective research
1a Implementation of dedicated (tracks at) workshops and conferences and publication of edited books, such as (Alba, 2005; Talbi,

2006), and of special issues in journals
1b Integration of parallel optimization and its application in modern parallel computing environments in curricula of OR education

Object of parallelization
2a Identification of those (algorithmic and computational) factors that drive superlinear speedup when parallelizing branch-and-X

algorithms. The sample of 41 cases and their coding provided in this review offer a basis for this research.
2b Identification of ways to make parallelization of dynamic programming and of Lagrangean decomposition more efficient and to

achieve superlinear speedup. Our subsample of dynamic programming studies and their coding can serve as a basis for future
investigations.

2c Amplification of parallelization efforts with regard to interior point methods.
2d Analysis of heterogeneous picture of efficiency of TS parallelization to identify those factors that are most promising.
2e Amplification of scalability analysis with regard to parallelizations of SA and VNS.
2f Extension of parallelization efforts to a more comprehensive set of single-solution based metaheuristics, including greedy randomized

adaptive search, guided local search, fast local search, and iterated local search.
2g Identification of those factors that drive superlinear speedup when parallelizing GAs.
2h Application of asynchronous communication to genetic algorithms and other evolutionary algorithms.
2i Amplification of parallelization efforts with regard to ant colony optimization and particle swarm optimization.
2j Extension of parallelization efforts to a more comprehensive set of population-based metaheuristics, including scatter search & path

relinking, bee colony optimization, and fireworks algorithms.
2k Intensification of research on parallelizing matheuristics.
2l Intensification of research on the parallelization of multi-search algorithms, in particular those which include collaboration.
2m Adoption of problem-specific perspectives by analyzing which parallelization efforts (algorithms, parallel algorithm designs, parallel

implementations) lead to which performance for a particular optimization problem. From Table 2 it can be seen that, in particular,
FSSPs, TSPs, and VRPs have attracted fairly high number of parallelization studies that can be used for further analysis.

Algorithmic parallelization and computational parallelization
3a Identification of conditions under which communication topologies other than the master-slave topology are advantageous for

low-level parallelization.
3b Exploration of opportunities that knowledge-based communication offers in the case of domain decomposition.
3c Exploration of knowledge-based communication when multi-search parallelism is applied.
3d Tapping the potential that joint applications of different parallelization strategies offer.
3e Comparisons of effects that different parallelization strategies have when applied to a particular algorithm and problem in order to

determine (in)appropriate parallelization strategies in this case.
3f Investigation of multiple strategies and/or multiple topologies for a particular algorithm in order to compare the performance of

these alternatives.
3g Documentation of programming model and programming environment used for parallelization.
3h Development and propagation of easy-to-use and flexible software frameworks for parallel optimization.

Performance of parallelization
4a Provision of values of both speedup and efficiency with regard to serial implementations executed on the same hardware.
4b Comparison of speedup and efficiency between algorithms of different studies needs to account for computational parallelization

details and the type of speedup (e.g., relative or weak speedup) considered.
4c Extension of the range of parallelization (in terms of parallel computing units) to analyze scalability at larger levels.
4d Amplification of research on effectiveness of computational parallelization and documentation of applied stop and evaluation criteria.

Presentation of studies
5 Application of frameworks for describing parallelization studies to avoid incompleteness, intransparency and distributed provision

of parallelization information. The framework suggested in this paper may be used.

Table 4: Recommendations for future research on parallel computational opti-
mization in OR
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Cantú-Paz, E., 2005. Theory of parallel genetic algorithms. John Wiley & Sons,
Inc., Hoboken, New Jersey.. chapter 18. pp. 423–445.
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Davidović, T., Crainic, T.G., 2012. MPI parallelization of variable neighborhood
search. Electronic Notes in Discrete Mathematics 39, 241–248.

Davidovic, T., Ramljak, D., Šelmic, M., Teodorovic, D., 2011. Mpi paralleliza-
tion of bee colony optimization, in: Proc. 1st International Symposium &
10th Balkan Conference on Operational Research, pp. 193–200.

Deep, K., Sharma, S., Pant, M., 2010. Modified parallel particle swarm opti-
mization for global optimization using message passing interface, in: Proceed-
ings of the 5th International Conference on Bio-Inspired Computing: Theories
and Applications (BIC-TA), pp. 1451–1458.

Defersha, F.M., 2015. A simulated annealing with multiple-search paths and
parallel computation for a comprehensive flowshop scheduling problem. In-
ternational Transactions in Operational Research 22, 669–691.

Defersha, F.M., Chen, M., 2008. A parallel genetic algorithm for dynamic
cell formation in cellular manufacturing systems. International Journal of
Production Research 46, 6389–6413.

Defersha, F.M., Chen, M., 2010. A parallel genetic algorithm for a flexible
job-shop scheduling problem with sequence dependent setups. International
Journal of Advanced Manufacturing Technology 49, 263–279.

Defersha, F.M., Chen, M., 2012. Mathematical model and parallel genetic al-
gorithm for hybrid flexible flowshop lot streaming problem. International
Journal of Advanced Manufacturing Technology 62, 249–265.

Delevacq, A., Delisle, P., Gravel, M., Krajecki, M., 2013. Parallel ant colony
optimization on graphics processing units. Journal of Parallel and Distributed
Computing 73, 52–61.

Derbel, B., Humeauc, J., Liefooghe, A., Verel, S., 2014. Distributed localized
bi-objective search. European Journal of Operational Research 239, 731–743.

Dias, B.H., Tomim, M.A., Marques Marcato, A.L., Ramos, T.P., Brandi, R.B.S.,
Da Silva Junior, I.C., Passos Filho, J.A., 2013. Parallel computing applied
to the stochastic dynamic programming for long term operation planning of
hydrothermal power systems. European Journal of Operational Research 229,
212–222.

Diaz, J., Munoz-Caro, C., Nino, A., 2012. A survey of parallel programming
models and tools in the multi and many-core era. IEEE Transactions on
parallel and distributed systems 23, 1369–1386.
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Appendix A. Literature selection process

When invited by the editorial board of European Journal of Operational

Research in 2018, we were recommended to concentrate on the last decade of

literature whenever possible. Following this recommendation is particularly

reasonable for the body of literature on parallel optimization in OR because

it accounts for a massive growth in computing performance in this period and

resulting substantial advances of studies published regarding algorithmic paral-

lelization, parallel software implementation and achieved computational results.

We conducted a title search in the most renowned OR journals. More specif-

ically, we considered those 49 OR journals which are ranked “A+”, “A”, “B”

or “C” in the German VHB-JOURQUAL 3 ranking of the German Academic

Association for Business Research (German Academic Association for Business

Research (VHB)); a complete list of these journals is included in Table A.5. As

we expected to find research related to parallel optimization in OR also in jour-

nals that are dedicated to parallel computing, we included the following four

journals in our search: Journal of Parallel and Distributed Computing, Inter-

national Journal of Parallel Programming, Parallel Programming and Parallel

Processing and Applied Mathematics. We used Web of Science to conduct a

title search for both sets of journals, using the following search string:

(parallel* OR distributed OR ”‘shared memory” OR MPI OR OpenMP

OR CUDA OR GPU OR SMP) AND NOT ”parallel machine”
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Acknowledging that research on parallel optimization relevant to the OR

discipline is likely to be published also in journals of other disciplines and in

conference proceedings and books, we also conducted a title search using Web

of Science Core Collection without any restrictions regarding the publication

outlet. However, we needed to adjust the search string in order keep the resulting

list of articles manageable. The search strings that we used is as follows:

• “parallel* optimization” OR “parallel* branch” OR “parallel* discrete”

OR “parallel heuristic” OR “parallel exact” OR “parallel meta” OR “par-

allel genetic” OR “parallel tabu” OR “parallel evolutionary” OR “paral-

lel* ant colony” OR “parallel* simulated annealing” OR “parallel* vari-

able neighborhood search” OR “parallel* Greedy Randomized Adaptive

Search Procedures” OR “parallel* scatter search” OR “parallel* dynamic

programming”

• (MPI OR OpenMP OR CUDA OR GPU) AND (heuristic* OR exact OR

meta OR genetic OR branch OR optimization OR discrete OR tabu)

• (parallel* AND algorithm) AND (knapsack OR transport OR logistics OR

evolutionary)

We also conducted a backward search of reference sections of literature re-

views we identified (see the introduction of this article).

Overall, our literature search returned more than 1,100 entries. With the

support of a PhD and several student workers, we used the title of an article

to decide whether it should be excluded from further analysis due to a missing

fit with the scope of this review, resulting in a preliminary list of 238 entries .

Finally, with the help of the student workers we analyzed the content of each of

these articles and excluded further 83 entries for a variety of reasons, including

a missing fit with scope and the use of languages other than English. Finally, we

conducted a backward search of reference sections of the remaining 155 articles

to mitigate the risk of overlooking relevant studies: in a first step, we selected

potentially relevant articles based on their title; in a second step, we analyzed
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the selected articles by inspecting the full text to decide whether they should

be included in the final set of considered articles or not; this procedure yielded

50 additional articles. Overall, the ultimate set of articles, referred to as our

sample, consists of 206 computational studies on parallel optimization in OR

published between 2008 and 2017.

Appendix B. Coding of computational parallelization studies

This section contains the detailed coding results of our sample with the ex-

ception of three studies: Östermark (2014, 2015) do not explicit the algorithm

parallelized; Bozejko (2012) parallelizes the problem-specific evaluation of ob-

jective function but no overall algorithm is considered. To sum up, the tables

in this section include 203 studies of the full sample (206 studies).

The articles are grouped along types of algorithms, with Table B.6 address-

ing exact methods, Table B.7 addressing single-solution based metaheuristics,

Table B.8 addressing population-based metaheuristics, Table B.9 addressing

hybrid metaheuristics, and Table B.10 addressing problem-specific heuristics,

other heuristics, and matheuristics. Unsurprisingly, not all studies included in

our sample provide sufficiently precise details that allow coding all attributes.

In cases where incomplete or ambiguous information is provided , we use the

value “n/a”. We need to point to two exceptions from this rule: 1) in the col-

umn “Process and search control”, which show a triple classification, the usage

of “n/a” for one or more of the three classes may confuse the reader. Thus, we

prefer to use the symbol “?” where information is not available or ambiguous,

or where our classification is not applicable (e.g., in reference (Derbel et al.,

2014), a semi-synchronous mode is used because MPI-synchronization occurs at

a pairwise level but not at a global level (p. 15)). 2) The entry “n/a” in the

“Scalability” column has a more sophisticated interpretation, which we unfold

in the text below.

The entries in the columns labeled “Problem” and “Algorithm” use the ab-

breviations as shown in Table 2 in the main text of the article. Entries in
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columns labeled “Parallelization strategy”, “Process & search control”, “Com-

munication topology” and “Programming model” are used as described in the

main text.

The column “Scalability” covers both speedup and efficiency. It shows dif-

ferent types of entries: speedup that is qualified by its type of efficiency is

provided in the form “sublinear (n=2-16)”, for example, where the range of n

indicating the numbers of parallel processing units used. Speedup that varies

between (sub)linear and superlinear depending on tested instances is described

accordingly. Speedup achieved with GPGPUs is given as a single value or as

an interval. We do not qualify speedup in this case as the number of paral-

lel working units (usually GPGPU threads) needs to be interpreted different

from that counting other parallel working units (CPU threads, processes) be-

cause they differ substantially from a technological perspective. Also, for the

same reason, the determination of efficiency of parallelization should not be

computed as the ratio of speedup and the number of parallel processing units.

The entry “n/a” in the “Scalability” column is an umbrella type and can have

several different meanings described below. When more than one experiment

has been conducted (e.g, applying different (versions of) algorithms, different

(sets of) benchmark instances, and/or different programming models), speedup

information is numbered.

Reasons for labeling scalability as “n/a” turned out to be appropriate for

manifold reasons:

• Times are compared with theoretical serial times.

• Speedup is related to other parallel executed algorithms or to parallel

execution of the same algorithm (for example, because the execution on a

single processing unit was practically infeasible due to time limitations);

i.e., we report only speedups (weak or relative) related to serial executions

of algorithms.

• The type of reference execution is unknown.

62



• No speedup values are reported or tedious work is necessary to determine

them from data reported.

• Speedup values are provided in in supplementary material which is inac-

cessible.

• Speedup values only refer to parts of algorithms.

• Running times must not be compared as i) different (hardware) ma-

chines/computing environments are used, or ii) different levels of objective

functions are achieved by reference execution(s) and execution of parallel

algorithm.

• Parallelization is conducted in a virtual environment where no physical

parallelization occurs. Then, execution times are hardly comparable as

parallel execution times will often be larger than sequential times due to

parallelization overhead.

We do not qualify speedup (as “linear”, for example) in the case of GPGPU

as programming model as the number of parallel working units (usually GPGPU

threads) needs to be interpreted different from that counting other parallel work-

ing units (CPU threads, processes) because they differ substantially from a

technological perspective. Also, for the same reason, the determination of ef-

ficiency of parallelization should not be computed as the ratio of speedup and

the number of parallel processing units.
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