Parallel computational optimization in operations
research: A new integrative framework, literature
review and research directions™

Guido Schryen
Department of Management Information Systems, Paderborn University

Warburger Str. 100, 33098 Paderborn, Germany

Abstract

Solving optimization problems with parallel algorithms has a long tradition
in OR. Its future relevance for solving hard optimization problems in many
fields, including finance, logistics, production and design, is leveraged through
the increasing availability of powerful computing capabilities. Acknowledging
the existence of several literature reviews on parallel optimization, we did not
find reviews that cover the most recent literature on the parallelization of both
exact and (meta)heuristic methods. However, in the past decade substantial
advancements in parallel computing capabilities have been achieved and used
by OR scholars so that an overview of modern parallel optimization in OR
that accounts for these advancements is beneficial. Another issue from previous
reviews results from their adoption of different foci so that concepts used to de-
scribe and structure prior literature differ. This heterogeneity is accompanied
by a lack of unifying frameworks for parallel optimization across methodologies,
application fields and problems, and it has finally led to an overall fragmented
picture of what has been achieved and still needs to be done in parallel op-
timization in OR. This review addresses the aforementioned issues with three
contributions: First, we suggest a new integrative framework of parallel compu-

tational optimization across optimization problems, algorithms and application

*nvited review

Preprint submitted to European Journal of Operational Research November 17, 2019

domains. The framework integrates the perspectives of algorithmic design and
computational implementation of parallel optimization. Second, we apply the
framework to synthesize prior research on parallel optimization in OR, focusing
on computational studies published in the period 2008-2017. Finally, we suggest
research directions for parallel optimization in OR.

Keywords: computing science, parallel optimization, computational

optimization, literature review

1. Introduction

Parallel optimization has received attention in the operations research (OR)
field already for decades. Drawing on algorithmic and computational paral-
lelism in OR is appealing as real-life optimization problems in a broad range
of application domains are usually NP-hard and even the implementation of
(meta)heuristic optimization procedures may require substantial computing re-
sources. It has been argued that parallelism is crucial to make at least some
problem instances tractable in practice and to keep computation times at rea-
sonable levels (Talbil |2009; (Crainic et al.| 2006)E| However, unsurprisingly, the
application of parallel optimization has been hesitant because i) parallelizing
algorithms is challenging in general from both the algorithmic and the com-
putational perspective, and ii) a viable alternative to parallelizing algorithms
has been the exploitation of ongoing increases of clock speed of single CPUs of
modern microprocessors. But this growth process reached a limit already several
years ago due to heat dissipation and energy consumption issues (Diaz et al.
2012). This development makes parallelization efforts (not only in optimization)
much more important than it was in earlier times.

Fortunately, the need for parallelization has been acknowledged and accom-
panied by an increased availability of parallel computing resources. This avail-

ability is rooted in two phenomena: a) the rapid development of parallel hard-

Hmpressive computational results of applying parallelization to the traveling salesman
problem (TSP) are reported by |Crainic et al| (2006} p.2).

ware architectures and infrastructures, including multi-core CPUs and GPUs,

local high-speed networks and massive data storage, and of libraries and soft-

ware frameworks for parallel programming (Talbi, 2009; (Crainic et al., 2006;

Brodtkorb et al.| 2013); b) the increased availability of parallel computing re-

sources as commodity good to researchers, who have (free or low-priced) access
to multi-core laptops and workstations, and even to high-performance clusters
offered by universities and public cloud providers.

The benefits of exploiting parallel processing for optimization algorithms are
multi-faceted. Searching the solution space can be speeded up for both exact
and (meta)heuristic algorithms so that the optimal solution or a given aspiration
level of solution quality, respectively, can be achieved quicker. Implementations
can also benefit from improved quality of the obtained solutions, improved ro-
bustness, and solvability of large-scale problems p. 460f).

We found many published reviews on parallel optimization for particular
problems, methodologies, applications, research disciplines, and technologies.

Reviews of parallelization for particular optimization problems were provided

for one-dimensional integer knapsack problems (Gerasch and Wang},[1994), vehi-

cle routing problems (VRPs) 2008), non-linear optimization (Lootsma;

land Ragsdell, 1988), mixed integer programming (Nwana and Mitral 2000)

and multiobjective optimization (Nebro et all) [2005). Most of the reviews

that we found focus on parallel optimization regarding particular methodolo-
gies. While branch-and-bound algorithms have been reviewed by
, the majority of methodological literature reviews have focused
on metaheuristics: reviews have addressed tabu search (TS) (Crainic et al.|
2005)), simulated annealing (SA)(Aydin and Yigitl [2005)), variable neighbor-
hood search (VNS) (Pérez et al. 2005, Greedy Randomized Adaptive Search
Procedures (GRASPs) (Resende and Ribeirol [2005]), swarm intelligence algo-
rithms (Tan and Ding| 2016), particle swarm optimization algorithms
, and different types of evolutionary algorithms, including genetic
algorithms (GAs) (Adamidis, [1994; Luque et al.| [2005; [Cantu-Pazl, 1998} |Alba)
land Troyal, [1999} [Adamidis|, [1994} [Knysh and Kureichik] [2010)), ant colony opti-

mization algorithms (Pedemonte et al., 2011} |Janson et al., [2005)), scatter search

(Lopez et al.[2005) and evolutionary strategies (Rudolphl 2005). Several reviews
have covered sets of metaheuristics (Cung et al., 2002; |Alba et al., [2005} |Crainic|

and Hail, 2005}, [Pardalos et all, [1995} [Crainic and Toulouse), [2003], 2010} [Crainic|
let al., |2014} [Crainic), [2018], 2019; |Alba et al., [2013)) and hybrid metaheuristics

(Cotta et all [2005; [Luna et all [2005). Application- and discipline-oriented

reviews of parallel optimization have been provided for routing problems in

logistics (Schulz et al. |2013) and for parallel metaheuristics in the fields of

telecommunications and bioinformatics (Nesmachnow et al., 2005; Trelles and|

Rodriguezl, 2005f Martins and Ribeirol 2006]). Reviews that focus on particu-

lar parallelization technologies (in particular, General Purpose Computation on

Graphics Processing Unit (GPGPU)) have been proposed by Boyer and El Baz|
(2013), [Tan and Ding| (2016)) and [Schulz et al.| (2013).

We acknowledge the excellent work provided in these reviews, from which
our review has benefited substantially. At the same time, we see several ar-
guments that call for a new literature review. First, we did not find reviews
that cover the most recent literature on the parallelization of both exact and
(meta)heuristic methods published in the decade 2008-2017. During this time,
substantial advancements in parallel computing capabilities and infrastructures
have been achieved and used by many OR scholars so that an overview of mod-
ern parallel optimization in OR that accounts for these advancements when
synthesizing and classifying the literature is beneficial. Second, based on differ-
ent foci adopted in previous literature reviews, the concepts used to describe and
structure prior literature differ. This heterogeneity is accompanied by a lack of
unifying frameworks for describing parallel optimization across methodologies,
application fields, and problems. This has led finally to an overall fragmented
picture of what has been achieved and what still needs to be done in parallel
optimization in OR. As a side effect, the heterogeneity with which paralleliza-
tion studies in OR have been described in terms of algorithmic parallelization,
computational parallelization and performance of parallelization is high, which

is beneficial from a diversity perspective but also raises problems: First, it re-

mains unclear for authors what should be reported in an OR study that draws
on parallel optimization; second, our own experience based on screening and
reading several hundreds of articles is that the heterogeneity makes it often
time-consuming and in some case even impossible for readers to identify the
aforementioned parallelization characteristics of a study, to classify the study
accordingly and to compare studies with each other.

Accounting for the aforementioned challenges, we provide three contributions
in this literature review. First and to our best knowledge, we suggest the first
universally applicable framework for parallel optimization in OR, which can be
used by researchers to systematically describe their parallelization studies and
position these in the landscape of parallel optimization without requirements
on the application domain touched, the problem addressed, the methodology
parallelized or the technology applied. In particular, the suggested framework
integrates both algorithmic design and computational implementation issues of
parallel optimization, which are usually being addressed separately in the liter-
ature. Second, we apply the integrative framework to synthesize prior research
on parallel optimization in the field of OR published in the decade 2008-2017,
focusing on those studies which include computational experiments. Finally, we
suggest research directions, including recommendations, for prospective studies
on parallel optimization in OR.

We structure our review as follows: In Section[2] we develop a framework for
computational studies on parallel optimization. In Section [3] we define the scope
and literature selection process of our review, before we review the literature in
Section [4] based on the suggested framework. We provide research directions for

future research in Section [B] before we conclude our review in Section [6l

2. Parallelization Framework

Computational studies on parallel optimization usually report on four per-
spectives of parallelization (Gendron and Crainic, [1994; |Alba and Luque, [2005;
Crainic and Haill [2005; [Talbi, [2009; [Pedemonte et all 2011} [Crainic, [2018|

2019): object of parallelization, algorithmic parallelization, computational paral-
lelization and performance of parallelization. While our review of the literature
revealed that most studies make either implicitly or explicitly use of the afore-
mentioned perspectives, we also observed a high level of heterogeneity in terms
of terminology, taxonomies of parallel algorithmic design, granularity of infor-
mation on parallel implementation, and performance metrics used to report
computational results. As a consequence, with an increasing body of computa-
tional studies, it has become challenging to gain an overview of computational
achievements, to compare studies in terms of their achievements, to develop
consistent taxonomies for computational studies, and to identify white spots
that need further research.

In order to mitigate the aforementioned problems in the field of parallel op-
timization, we suggest a new descriptive framework of computational parallel
optimization studies (see Figure . The scope of the applicability of the pro-
posed framework in the area of parallel optimization is wide with regard to two
dimensions: First, it does not make any assumptions about the addressed appli-
cation domain, the optimization problem to solve, the parallelized methodology
or the applied technology. We denote this broad applicability as horizontal in-
tegration, referring to the horizontal layers in Figure[I} Second, it integrates the
aforementioned perspectives (layers) and is based on well-established principles
in the literature on algorithmic and computational parallelization. Similarly,
we refer to this broad applicability as vertical integration, which brings together
the — usually separately applied — perspectives on parallel optimization found
in the disciplines of OR and computer science. In this context, our framework

adopts an integrated view on parallel optimization.

YO ut sarpnjs uoryezipyrered Teuoryeindurod 10y yIomaurelj aarpersaquy T onsrg

uolnelBeul [B)UOZIIOH

uonezio|eled
J0109[q0

uonezig|eled
olwyobly

wyiobly wa|qo.d
(Asowsw pajnquysip (" -*ysew‘aaly‘bun :paynqulsip
‘Alowaw pazi|esusd) aAe|s-1a)sew :paz||enuan)
10011pU| paig wsi|a|jesed wsj|o|ejed wsl|9|eled
/ - wyyobje-1ayul wyoble-enur wyoble-equl
ABojodo} uoiesunwwoy paulesb-asie0) paulelb-esieoy paulelb-aul4
H \\\\ /// m m
(SAdW'SSdW (D> 'snouoiyouAse _ “
'SAdS'SSdS) S)'SY :snouoiyouAs) (0d'ol) yoless-Hinw yosees-ninw uopisodwioosp L
UOIJBNUSIAYIP YoJeas UOIEOluNWILIOD % [05uoo All[eulpied [o5u0o oAei8dood Juspuadapul utewop
— 1 _— ~ N s _—
|0J]U0D YoJeas pue ssad0id ABsjens uonezijs|jeied

uBisap wyjliobje |ajjeled

(" ‘Wv3da‘o3sipeied) ('vano ‘IdN ‘diwuedQ) (-
sylomawel{ S|dV % seuelqi

—~— _

JuswiuodiAue Buiwwelboud |ojeled

‘ener Q)
abenbuen

\

(Nd9dD “69)
snoauabolsjoy

T~ N\ |

Buissed Alowsw speaiy}
AnIS obessapy paleys |9AS|-MO

/)

jopow Buiwwelibold

uonejuswaldwy |9|jeied

uonezijo|jesed
|euoneindwo)

SSBUBAN0BYT

SOLIJOW 9oUBWLIONAd

Aouarog dnpaadg
\ e
Ayjigejeog

uonezije|esed
Jo @ouewlIopad

uoneJsBayul [eoIBA

2.1. Object of parallelization

The object of parallelization comprises the OR problem to be solved (e.g.,
TSP, VRP, JSSP) and the algorithm to be applied (e.g., b&b, GA, SA, TS),
which effect each other. Problem types and algorithm types are both described
in detail in Section [£.21

2.2. Algorithmic parallelization

The algorithmic parallelization refers to the methodological perspective on
how parallelism is applied to solve an optimization problem by decomposition.
As suggested for metaheuristics (Crainic, 2019) , we detail this perspective by
distinguishing various types of parallelization strategy, process and search con-
trol, and communication topology (see Figure[l). Parallelization strategies have
been defined according to the source of parallelism (Cung et al., [2002} |Crainic
and Toulouse, |2003; |Crainic and Hail, |2005; [Crainic and Toulouse} 2010; |Crainic,
2019)). Four types are distinguished: (1) Functional parallelism applies when de-
composition occurs at the algorithm level by, for example, evaluating neighbor
solutions or computing the fitness of a solution in parallel. This parallelization
strategy does not alter the algorithmic logic, the search space or the behavior of
the sequential version, and it is thus also referred to as low-level. As parallelism
occurs at a low level inside a single algorithm, we coin the term fine-grained
intra-algorithm parallelism. Since the overall search follows only a single search
path, this type of parallelism has also been denoted as single-walk parallelization,
in contrast to the following strategies, where the overall search follows multiple
trajectories and are referred to as multiple-walk parallelization strategies (Cung
et al., 2002). (2) Domain decomposition refers to the approach of separating
and exploring the search space explicitly yielding a number of smaller and eas-
ier to solve subproblems to be addressed simultaneously by applying the same
sequential algorithm. The partial solutions are finally used to reconstruct an
entire solution of the original problem. The separation of the search space may
be obtained, for example, by discarding or fixing variables and constraints. This

separation may result in a partition (disjoint subsets) or a coverage (subsets may

overlap) of the overall search space. In contrast to the low-level strategy, where
parallelism occurs at a local and predefined part of the algorithm, domain de-
composition involves concurrent explorations of subspaces using the same algo-
rithm. Thus, we introduce the term coarse-grained intra-algorithm parallelism.
(3) Separating the search space can also be performed implicitly through con-
current explorations of the search space by different or differently parameterized
methods. When the concurrent execution of methods does not involve any ex-
change of information prior to identifying the best overall solution at the final
synchronization step, the parallelization strategy is referred to as independent
multi-search, which can be perceived as coarse-grained inter-algorithm paral-
lelism. (4) When the concurrent execution of methods and their explorations
of subspaces involves the exchange of information through cooperation mecha-
nisms while the search process is in progress, cooperative multi-search occurs.
The sharing of information may even be accompanied with the creation of new
information out of exchanged data. As the interactions of the cooperative search
algorithms specify the global search behavior, a new metaheuristic in its own
right emerges (Crainic and Toulouse) 2008). While cooperation yields in many
cases a collective output with better solutions than a parallel independent search
(Crainic}, 2019), exchanges should not be too frequent to avoid communication
overheads and premature “convergence” to local optima (Toulouse et al.l 2000}
2004)). As in the case of independent multi-search, also cooperative multi-search
can be seen as coarse-grained inter-algorithm parallelism. Finally, it should be
noticed that parallelization strategies are not mutually incompatible and may be
combined into comprehensive algorithmic designs (Crainic et al., [2006; |Crainic)
2019). For example, low-level and decomposition parallelism have been jointly
applied to branch-and-bound (Adel et al.}|2016|) and dynamic programming (Vu
and Derbel, [2016), (Maleki et al., 2016, and low-level parallelism and coopera-
tive multi-search have been applied to a hybrid metaheuristic (Munawar et al.|
2009) which uses a genetic algorithm and hill climbing.

While the aforementioned parallelization strategies have been formulated

for the class of metaheuristics, the strategy-defining principles are of general

nature of parallelizing optimization algorithms so that the scope of applicability
of the parallelization strategies can be straightforward extended to other algo-
rithm classes, including exact methods and (problem-specific) heuristics. For
example, |Gendron and Crainic| (1994) have defined three types of parallelism for
branch-and-bound: their type 1 parallelism refers to parallelism when perform-
ing operations on generated subproblems, such as executing the bounding op-
eration in parallel for each subproblem. This type can be perceived as low-level
parallelism. Parallelism of type 2 consists of building the branch-and-bound
tree in parallel by performing operations on several subproblems concurrently.
This type of parallelism involves an explicit separation of the search space and
can, thus, be perceived as domain decomposition. Finally, the case of type
3 parallelism implies that several branch-and-bound trees are built in parallel,
with the trees being characterized by different operations (branching, bounding,
testing for elimination, or selection). This parallelism includes the option to use
the information generated during the construction of a tree for the construction
of another one. When such information is exchanged, type 3 parallelism can
be perceived as cooperative multi-search, otherwise it corresponds to indepen-
dent multi-search. The straightforward matching of parallelization strategies for
metaheuristics with types of parallelism defined for an exact method supports
our previous argument that the four parallelization strategies can be applied to
the general “universe” of optimization algorithms.

Process and search control refers to how the global problems-solving process
is controlled, how concurrent processes communicate with each other, and how
diverse the overall search process is. We adopt the three dimensions suggested
by [Crainic and Hail (2005)): Search control cardinality determines whether the
global search is controlled by a single process (1-control, 1C)) or by several
processes (p-control, pC) which may collaborate or not. Search control and
communications refers to how information is exchanged between processes and
distinguishes between synchronous and asynchronous communication. In the
former case, all concerned processes have to stop and engage in some form of

communication and information exchange at specified moments (e.g., number of

10

iterations) exogenously determined. In the latter case, processes are in charge
of their own search as well as of establishing communications with other pro-
cesses, and the global search terminates once each individual search stops. Both
synchronous and asynchronous communication can be further qualified with re-
gard to whether additional knowledge is derived from communication, leading
to four categories of control and communication: rigid (RS) and knowledge
synchronization (KS) in the synchronous case, and collegial (C) and knowledge
collegial (KC) in the asynchronous case. Finally, the diversity of search may
vary according to whether concurrently executed methods start from the same
or different solutions, and to whether their search follows the same or different
logicsﬂ; the diversity of search is also referred to as search differentiation. From
these two dimensions the following four classes can be derived: 1. same initial
point/population, same search strategy (SPSS); 2.same initial point/population,
different search strategies (SPDS); 3. multiple initial points/populations, same
search strategies (MPSS); 4. multiple initial points/populations, different search
strategies (MPDS). While the term “point” relates to single-solution methods,
the notion “population” is used for population-based ones, such as genetic al-
gorithms or ant colony optimizations. As in the case of parallelization strate-
gies described above, the three dimensions of process and search control have
been suggested for the classification of metaheuristics (Crainic and Hail, [2005;
Crainic), 2018, [2019) but can be extended straightforward to other classes of
optimization algorithms.

When concurrent processes exchange information, they may communicate
with each other in a direct or indirect way. Direct communication involves
message-based communication along some communication topology, such as a
tree, ring, or fully connected mesh (Talbi, 2009; (Crainic, 2019). This communi-
cation topology needs to be projected on a physical interconnection topology as

part of the implementation design. In contrast, indirect communication involves

2Two logics are characterized as “different” even when based on the same methodology
(e.g., two tabu searches or genetic algorithms) if they vary in terms of components (e.g.,
neighborhoods or selection mechanism) or parameter values (Crainic, [2019)).

11

the use of a centralized or distributed memory, which are used as shared data
resources of concurrent processes (Crainic, [2019)).

The three perspectives of parallel algorithm design, namely parallelization
strategy, process and search control, and communication topology, are linked
together (Crainic, [2018, [2019). Low-level parallelization is generally targeted
in 1C/RS/SPSS designs, with the 1C (control cardinality) being implemented
with a master-slave approach. Examples are the neighborhood evaluation of
a local search heuristic, and the application of operators and the determina-
tion of fitness values in a GA. Domain decomposition is often implemented
using a master-slave 1C/RS scheme with MPSS or MPDS search differentiation
but can also be performed in a pC, collegial decision making framework with
MPSS or MPDS search differentiation. Independent multi-search is inherently
a pC parallelization strategy, which follows from the same or different starting
point(s)/population(s) with or without different search strategies (i.e., SPDS,
MPSS or MPDS search differentiation). As the concurrently executed search
processes do not exchange information prior to the final step, they follow the RS
control and communication paradigm. Finally, cooperative multi-search is also
a pC parallelization strategy, which may start from possibly different starting
points/populations and may follow different search strategies (i.e., SPDS, MPSS
or MPDS search differentiation). In contrast to independent multi-search, in-
formation is exchanged between processes during the search. This exchange of
information can vary in different ways, which results in a large diversity of co-
operation mechanisms. First, different types of information may be exchanged,
including “good” solutions and context information. Second, cooperating pro-
cesses may exchange information directly by sending messages to each other
based on a given communication topology, or indirectly using memories which
act as data pools shared by processes. A third option distinguishes between
synchronous and asynchronous cooperation, where processes either need to stop

its activities’ until all others are ready or not, respectively.

12

2.8. Computational parallelization

When parallel algorithms are implemented and executed in modern compu-
tational environments, different parallel programming models may be applied in
a variety of programming environments. Albeit being intertwined (see, for ex-
ample, (Talbil 2009)), they represent different facets of parallel implementation
from a conceptual perspective. Four (pure) parallel programming models can
be distinguished: threads, shared memory, message passing (Diaz et al., [2012;
Talbi, [2009) and single-instruction-multiple-data (SIMD). In the thread pro-
gramming model, lightweight processes (threads) are executed, where the com-
munication between threads is based on shared addresses. The shared memory
programming model, where, too, tasks share a common address space, oper-
ates at a higher abstraction level than threads. Today, both the thread and
the shared memory model are executed on a multi-core CPU architecture on a
single computer node. In contrast, in the message passing programming model
the communication between processes is done by sending and receiving mes-
sages. Each process has its own address space that is not shared with other
processes. This model is designed for execution in computer clusters, where dif-
ferent nodes are connected through high-speed networks. Note that, depending
on the particular parallel programming model, parallel executed software parts
are labeled differently usually as threads, tasks or processes. Finally, SIMD ex-
ploits data parallelism by operating a single instruction on multiple data on
a vector processor or array processor. Beyond the pure parallel programming
models sketched above, the heterogeneous model General Purpose Computation
on Graphics Processing Unit (GPGPU) has received increasing attention (e.g.,
(Brodtkorb et al.;|2013)). GPGPU harnesses the capabilities of multi-core CPUs
and many-core GPUs, where threads are executed in parallel on GPU cores and
where GPUs can have different levels of shared memory; in this sense, we can
speak of heterogeneous systems (Diaz et al.l 2012)). Other heterogeneous mod-
els are distributed shared memory models and field programmable gate arrays
(FPGAs). In modern computing environments, (pure or heterogeneous) parallel

programming models are sometimes combined with each other by, e.g., jointly

13

using threads and GPGPU, shared memory and message passing, or threads
and message passing (Diaz et al.l 2012)). Such approaches are referred to as
hybrid models.

Parallel programming environments are related to parallel programming
models and comprise languages, libraries, APIs (application programming in-

terfaces) and frameworks.

2.4. Parallel performance metrics

The general purpose of parallel computation is to take advantage of increased
processing power to solve problems faster or to achieve better solutions. The
former goal is a matter of scalability, which is defined as the degree to which it is
capable of efficiently utilizing increased computing resources. Performance mea-
sures of scalability fall into two main groups: speedup and efficiency. Speedup
Sp = % is defined as the ratio of sequential computation time S to parallel
computation time 7}, when the parallel algorithm is executed on p processing
units (e.g., cores in a multicore processor architecture). The serial time S can
be measured differently, leading to different interpretations of speedup (Barr
and Hickman||1993)): When S refers to the fastest serial time on any serial com-
puter, speedup is denoted as absolute. Alternatively, S may also refer to the
time required to solve a problem with the parallel code on one processor. This
type of speedup is qualified as relative. When real-time reduction is considered
as the primary objective of parallel processing, absolute speedup is the relevant
type. While speedup relates serial to parallel times, efficiency E, := % relates
speedup to the number of processing units used. With the definition of efficiency,
we can qualify speedup as sublinear speedup (E, < 1), linear speedup (E, = 1),
or superlinear speedup (E, > 1). Sublinear speedup is often due to serial parts
of a parallel algorithm and several reasons for a nonvanishing serial part can
be distinguished. Superlinear speedup can occur, for example, when during the
parallel execution of a branch-and-bound algorithm one processor finds a good
bound early in the solution process and communicates it to other processors

for truncation of their search domains (Barr and Hickman) (1993). Finally, it

14

should be noticed that while the application of speedup and related efficiency
concepts to algorithms which have a “natural” serial version is straightforward,
their unmodified application to multi-search algorithms, which are parallel in
nature, does not make much sense as no basis of comparison is available.

A second important performance measure in parallel optimization is the
solution quality achieved through parallelization. Solution quality can be mea-
sured in various ways. When the optimal solution value or a bound of it is
known, the relative gap to (the bound of) the optimal value can be determined.
A second option is to relate the achieved solution quality with that obtained
from sequential versions of the parallelized algorithm (relative improvement).
However, this option requires that a sequential version of the parallel algorithm
exists in terms of unchanged algorithmic logic and the trajectory through the
search space. This is not the case, for example, when cooperative multi-search
occurs, which defines a new algorithm due to cooperation. Finally, the solution
quality obtained through parallelization may be compared with the quality of
the best known solution obtained from any serial implementation (absolute im-
provement). Overall, the goal of achieving better solutions can be perceived as

an issue of effectiveness.

3. Scope and literature selection process

The focus of our literature review lies on computational studies of parallel op-
timization, where physical or virtual parallel computing architectures have been
applied to OR problems, such as TSPs, VRPs and FSSPs (flow shop scheduling
problems). Due to the interdisciplinary nature of the OR field, such studies are
not only found in OR outlets but also in those of many other disciplines, includ-
ing management science, mathematics, engineering, natural sciences, combina-
tions of engineering and natural sciences (such as chemical engineering), com-
puter science, bioinformatics, material science, geology and medicine. While
we include outlets of these disciplines in our search (see the succeeding subsec-

tion), we would like to stress that the focus of our review lies on studies on OR

15

problems and that it is beyond the scope of this review to identify and clas-
sify all articles of parallel optimization addressing problems in related fields or
even across all fields (optimization in general). Adopting this view, we exclude
from our review, for example, mathematical studies on parallelizing matrix com-
putations or on conjugate gradient methods, computer science studies on load
balancing issues in parallel computing environments or on solving hard problems
in theoretical computer science (e.g., the subset sum problem), and parallel op-
timization studies across fields, such as those addressing the effects of migration
in parallel evolutionary algorithms. We also exclude works on parallel optimiza-
tion when their purpose lies in designing or implementing other methodologies,
such as simulation, data analysis, data mining, machine learning and artificial
intelligence. We further exclude meta optimization (calibrating parameters of
optimization models or methodologies). We explicitly acknowledge the impor-
tance of these areas but they deserve and need dedicated literature reviews.
Finally, from a technological perspective, we also do not consider distributed
optimization that makes use of geographically dispersed computers and allows
using grids, which comprise networks of many, often thousands or even millions
of single computers. This field applies programming models and parallel pro-
gramming environments that differ from those used in our framework, and it
would need a dedicated literature review, too.

Accounting for the previously described scope of our review, we implemented
different streams of literature search. A detailed description of the literature
search process is provided in the online Although having imple-
mented different streams of search, we admit that the application of our search
procedure does not guarantee to identify all computational studies of parallel
optimization in OR and that we may have overlooked studies. However, we are
confident to have acquired a body of literature that is sufficiently comprehensive
to draw a firm picture of computational parallelization in OR during the decade

2008-2017.

16

4. Literature survey

In this section, we provide a synthesis of the literature published in the
decade 2008-2017. We first offer a brief meta analysis, then we analyze the
body of literature with regard to which optimization problems have been solved
by which (parallelized) algorithms before we present the findings of our liter-
ature analysis, structured along optimization algorithms and based upon the
framework suggested above. Findings on (i) effectiveness and (ii) parallel pro-
gramming environments are not presented here because (i) effectiveness results
have been reported only rarely and in partially inconsistent ways in the studies
of our sample, making comparisons of results difficult, and (ii) parallel pro-
gramming environments should be considered across algorithms. We discuss
both topics in Section With regard to speedup, we qualify it by efficiency
when reported in a study. When GPGPU is used as programming model, we
only report speedup values without providing the number of parallel processing
units or information on efficiency. The reason is that the number of parallel
working units (usually GPGPU threads) needs to be interpreted different from
that counting other parallel working units (CPU threads, processes) so that ef-
ficiency usually being defined as the ratio of speedup and the number of parallel
processing units is not applied here. Details on this issue as well as the coding

of all studies in our sample are provided in the online

4.1. Meta analysis

Overall, our sample consists of 206 studies, with 164 studies published in
77 different journals, 38 studies published at 36 different workshops, sympo-
siums, conferences or congresses, and four studies published as book chapters.
The joint distribution of articles over scientific outlets and years is summarized
in Table |1} which shows that (1) there is no clear temporal development of
the numbers of papers published per year, (2) while the number of scholarly
outlets (journals, proceedings, etc.) which have published computational stud-

ies on parallel optimization in OR is high, only nine outlets have published at

17

Outlet Year Sum
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
ASC 2 1 1 1 1 2 8
CIE 1 1 1 1 1 5
COR 1 1 3 2 2 2 11
CCPE 1 1 3 5
EJOR 3 1 1 1 1 3 2 2 13
1JOC 1 1 2 1 1 6
JPDC 1 1 1 2 4 1 1 1 12
JSC 1 1 1 2 5
PC 1 1 1 2 2 1 8
Other journals 7 5 5 12 12 11 7 10 12 13 91
Proceedings 3 5 7 11 4 4 3 1 37
Book chapters 2 1 1 1 5
Sum 15 15 16 32 22 24 16 18 21 27 206

ASC: Applied Soft Computing

CIE: Computers & Industrial Engineering

COR: Computers & Operations Research

CCPE: Concurrency and Computation-Practice & Experience
EJOR: European Journal of Operational Research

1JOC: INFORMS Journal on Computing

JPDC: Journal of Parallel and Distributed Computing

JSC: Journal of Supercomputing

PC: Parallel Computing

Table 1: Joint distribution of selected articles over scientific outlets and years

least five articles during the decade 2008-2017 and only three outlets (namely,
Computers & Operations Research, European Journal of Operational Research,
Journal of Parallel and Distributed Computing) have published more than ten
articles in the same period. Overall, this publication landscape does not reveal
clear clusters in terms of time or outlet, it rather shows that computational and
parallel optimization in OR has been covered permanently (and) distributed
over many outlets rooted in different yet related academic disciplines, including
OR, Computer Science and Engineering. Apparently, this research area is of

multidisciplinary relevance.

4.2. Problem types and parallelized algorithms

We now describe the identified body of literature from the perspective of

problem types and types of parallelized algorithms. Table [2| shows the joint

18

Alg. Problem type Sum
type AP FLP FSSP GTP JSSP KP BFP MILP MSP SOP TSP VRP Other
B-a-X 1 7 3 2 3 2 4 2 3 13 40
DP 2 3 1 4 10
IPM 2 2 4
PSEA 2 1 1 4
PSH 1 1 1 1 2 6 12
TS 4 5 2 1 1 2 5 3 23
SA 2 2 1 1 1 3 1 11
VNS 1 2 1 1 4 2 11
GRAS 2 2
OSSH 1 1
GA 2 2 3 1 1 3 3 3 10 28
OEA 1 1 2 1 1 1 6 13
SSPR 1 1 2
ACO 2 12 2 16
PsSO 1 2 1 3 5 12
BCO 2 1 3
FA 1 1
HM 1 1 2 1 1 1 2 3 4 2 7 25
OH 1 1 2 4
MH 1 1 2
MS 1 1 1 3
Sum 11 7 22 13 11 11 17 6 11 5 28 20 65 227

Optimization Problem Type

Algorithm type

AP: Assignment Problem

FLP: Facility Location Problem

FSSP: Flow Shop Scheduling Problem
GTP: Graph Theory Problem

JSSP: Job Shop Scheduling Problem
KP: Knapsack Problem

BFP: Benchmark function optimization problem(s)
MILP: (Mixed) Integer Linear Program
MSP: Machine Scheduling Problem
SOP: Stochastic Optimization Problem
TSP: Traveling Salesman Problem
VRP: Vehicle Routing Problem

Exact algorithms:
B-a-X: Branch & X
DP: Dynamic programming
IPM: Interior point method
PSEA: Problem-specific exact algorithms

PSH: Problem-specific heuristics

Single-solution based metaheuristics:
TS: Tabu search
SA: Simulated annealing
VNS: Variable neigborhood search
GRAS: (Greedy randomized) adaptive search
OSSH: Other single solution heuristics

Population-based metaheuristics:
GA: Genetic algorithm
OEA: Other evolutionary algorithms
SSPR: Scatter search & path relinking
ACO: Ant colony optimization
PSO: Particle swarm optimization
BCO: Bee colony optimization
FA: Fireworks algorithm

HM: Hybrid metaheuristics

OH: Other heuristics

MH: Matheuristics

MS: Multi-search algorithms

Table 2: Joint distribution of selected articles over problems and (parallelized) algorithms

19

distribution of articles over these two dimensions. We identified problem types
by, firstly, coding for each article of our sample the covered problem(s) and,
secondly, consolidating problems to problem types widely used in the OR lit-
eratureﬂ Overall, we identified nine “application-oriented” problem types (AP,
FLP, FSSP, GTP, JSSP, KP, MSP, TSP, VRP) and three “mathematically-
oriented” problem types (BFP, MILP, SOP)E| Adopting this distinction leads
to assigning a study that, for example, formulates a TSP as a mixed-integer lin-
ear program to the problem class “T'SP” rather than to the class “MILP” as it is
TSP instances that are focused and not MILP instances in general. Conversely,
studies assigned to one of the classes BFP, MILP or SOP explicitly address the
related mathematically-oriented problem type and are not necessarily linked to
any specific application . We consolidated all problem types for which only very
few computational parallelization studies have been published to the category
“Other’Fl

With regard to types of algorithms, we draw on a taxonomy suggested by
Talbi| (2009), who distinguishes between ezact algorithms (e.g., branch-and-
bound), problem-specific heuristics (e.g., Lin-Kernighan heuristic for the TSP),
single-solution based metaheuristics (e.g., tabu search), and population-based
metaheuristics (e.g., genetic algorithms)ﬁ We extend the taxonomy by adding
some algorithm types: hybrid metaheuristics refer to an metaheuristic where
parts of a (meta)heuristic A are embedded into a step of a (meta)heuristic B;
matheuristics refer to the interoperation of metaheuristics and (exact) mathe-

matical programming techniques; multi-search algorithms refers to the combi-

3An example of consolidation is grouping the “multi-depot VRP” and the “VRPs with
time windows” to the problem type “VRP”.

4While application-oriented problem types (e.g., TSP) usually lead to mathematical for-
mulations which have an overall and coherent logic across the components (objective function,
constraints, variables, etc.) of a model, “mathematically-oriented” problem types (e.g., MILP)
have mathematical formulations where single components have to meet mathematical assump-
tions (e.g., binary variables, linear terms) without requiring the overall model to refer to a
specific application concept.

5When an article studies several “other” problem types, we did not count the number of
other problem types but coded it as a single appearance of an “other problem type”.

6The authors also suggest the type approzimation algorithms, which we do not use in this
review.

20

nation of several independent search algorithms, which may collaborate or not.
Finally, we provide other heuristics as a residual type for those (meta)heuristics
which do not fit to any of the aforementioned algorithm types.

It should be noticed that the sums of addressed problem types and par-
allelized algorithm types shown in Table [2| do not equal the sample size for
different reasons: (i) some articles in our sample apply more than one algorithm
type to a single problem type and/or investigate more than one optimization
problem type; (ii) a few articles do not clearly reveal (from our perspective) the
targeted problem or the applied algorithm, or they do not parallelize any algo-
rithm but only the evaluation of the objective function; due to these reasons,
we excluded five articles from the presentation in Table[2] Overall, it should be
kept in mind that each combination of addressed problem type and parallelized
algorithm type is a “case” of a study, where a single study may have several
cases. The perspective on optimization problems addressed in computational
parallelization studies shows that a broad range of problem types have been
covered. Beyond the 12 problem types highlighted, the residual class of other
problem types includes 63 cases, in which computational parallelization has been
applied to mostly different problem types. However, we also notice that a set
of 12 problem types account for more than 70% of all cases, with a focus on the
TSP, the FSSP and the VRP, which jointly account for more than 30% of all
cases. Similar results are obtained from adopting the algorithmic perspective.
While a broad range of exact algorithms and single-solution, population-based
and hybrid metaheuristics have been parallelized, only a few algorithm types
(branch-and-X (X=bound, cut, price, etc.), GAs, hybrid metaheuristics, TS) ac-
count for more than 50% of all cases, with branch-and-X accounting for about
18%. Jointly adopting the problem and algorithmic perspective, again, shows a
large diversity but in this case no large clusters occur. Only four combinations
(ant colony optimization applied to the TSP, branch-and-X applied to the FSSP,
TS applied to the FSSP, TS applied to the VRP) have been covered in at least
five cases, but these four combinations account for only about 13% of all cases.

In the remainder of this section, we present parallel computational optimiza-

21

Algorithm type

Computational studies

Exact algorithms:

Branch & X

Dynamic programming

. Liu and Kao 2013 Bak et al. 2011

mys et al.l |20 615' va et al., 12015 arreto an auer) 12010 u_an erbell 12016

Chakroun and Melab} |2015; |Paulavi¢ius and Zilinskas| 12009} |Posypkin and Sigall 12008

Chakroun et al.l [2013a) itzal an oudhar zden et al. |Cauley et al.

u et al. asoro et al. ages-Bernaus et al. \Lubin et al.}

2013} |[Adel et al.[[2016} [Borisenko et al.| [2011} [Boukedjar et al. 2; |Carneiro et al.}
2011; |Galea and Le Cunl 2011} [Herrera et al.l 12013} |[Sanjuan-Estrada et al.| 12011

as et al. asoro et al. aleki et al. an et al. tivalal

et al.| 2010 |Boyer et al.}|2012} |Boschetti et al.}|2016} |[Kumar et al.||2011;|Rashid et al.

2010 /Tran| |201

Interior point method

uebner et al.

Problem-specific
algorithms

exact

1et al.

Problem-specific heuristics

(Dobrian et al| [2011} [Ozden et al) [2017} [lsmail et al.
skas et all [2015} [Koc and Mehrotral [2017}
[Benedicic et al) [2014} [Gomes et al.l [2008

Single-solution based metaheuristics:
Tabu search

P Czepas end Fernedl 0T

2012} |
Ill
Cordeau Bl

Simulated annealing

Variable neigborhood

search

Greedy randomized

adaptive search

antos et al.’

Other single solution

heuristics

Hifi et al.l 2014

Population-based metaheuristics:

Genetic algorithm Massobrio et al.} [2017} [Liu et al.| |2016} [Dorronsoro et al.} |Defersha and Chen
uang et al. iu_and Wan Defersha and Chen
omberger) |2 ao et al. osun et al. ang et al. u et al.
Abu-lebdeh et al. ang et al. e et al. immer_an e
2017} |Abbasian_and Mouhoubl [2013: [Roberge et _al.l |2013; |[Lancinskas_and_Zilinskas
2013} [Lanc¢inskas and Zilinskas| |2012} |Lazarova and Borovska, |2008} [Sanci _and Isler.
2011} [Umbarkar ot al.| [2014 ang et al.} |2012} |Zhao et al.} |2011; [Vallada and Ruiz
2009; |Arellano-Verdejo et al.} |2017]
Other ovolutionary al- abris and Krohling edroso ot al., 2017 [Cao et al.|, 2017 [Dorronsoro ot al.
gorithms 2013 inucci et al.l [2016 igueira et al.l 2010 erbel et al.| [201 anos et al.
201 ebro an urillo} |2010; owotniak an ucharskil 2011 edondo et al.| [2008
‘Weber et al.l [2011} [Zhao et al.l 12011} [Izzo et al., [2009;
catter searc pat erkhove an anhoucke ozejko
relinking
Ant colony optimiza-
tion
Particle swarm opti-
mization

Bee colony optimization

Fireworks algorithm

Ding et al. 0

Hybrid metaheuristics

Thiruvady et al., 2016] [Delevacq et al}|2013f [Arrondo ot al.,|2014} [Patvardhan et al.
016} [Nesmachnow et al. [2012} |[Redondo et al.| [2011} [Mezmaz ot al} [2011f [Ku et al.
3011} [L1 ot al. 2017 a ot al.| [2011af [Munawar ot al. [2009 [Ravetti ot al.] [2012
Bon Mabrouk of al. Subramanian ot al Choerlinck ot al.
o 2013} [Olensek et al.l [2011)
lll

Other heuristics

Benedicic et al.l 2014} [Sathe et al) [2012} [Juan et al.| [2013} [Sanc: and Isler) [2011)

Matheuristics

Stanojevic et al.,[2015;|Groer et al.l|2011

Multi-search algorithms

(Chaves-Gonzalez et al.| [2011} Vidal et al.| [2017} [Lahrichi et al.[[2015)

Table 3:

Parallel computational optimization studies in OR

22

tion studies in OR grouped by algorithm types. An overview over the studies
of our sample is given is Table

Exact algorithms: The majority of studies that apply exact algorithms
parallelize branch-and-X algorithms. These studies analyze a broad range of
optimization problems. Almost all adopt domain decomposition as paralleliza-
tion strategy using a 1C/C or pC/C scheme with MPSS search differentiation,
and most studies which report on the used communication topology apply a
(one- or multiple-tier) master-slave approach. These efforts are not surprising
as they reflect a straightforward (and traditional) way to parallelize branch-
and-X algorithms. In contrast, the landscape of applied parallel programming
models is more diverse and includes approaches based on threads, message pass-
ing, shared memory and GPGPUs. With regard to the former three models,
mostly sublinear or linear speedup has been reported but there are also a few
studies (Ponz-Tienda et al., |2017; Borisenko et al., 2011} |Galea and Le Cun,
2011) that report superlinear speedup. This speedup can be achieved, for ex-
ample, when a parallel executed algorithm provides “good” bounds that allow
pruning large parts of the search tree at early stages. The use of GPGPUs has
shown mixed results in terms of speedup; however, in some cases the reported
speedup is substantial (between 76.96 and 170.69) (Chakroun et al., |2013a)),
which makes GPGPUs highly appealing for parallelizing branch-and-X algo-
rithms. However, it should also be acknowledged that several of these GPGPU
studies have reported a high variance of speedup with regard to problem in-
stances solved. Dynamic programminﬂ is the second most often parallelized
exact algorithm. Its parallelization in terms of addressed problems is quite di-
verse. In most cases, low-level is used as parallelization strategy with a 1C/RS
scheme and SPSS search differentiation. The landscape of applied communica-
tion topologies is quite homogeneous, with almost all studies that report on the
applied communication topology drawing on a (one- or multiple-tier) master-

slave approach. In contrast, the set of implemented programming models is

7 An introduction into parallel dynamic programming is provided by [Almeida et al.| (2006)).

23

heterogeneous. Interestingly and in contrast to branch-and-X parallelization,
the reported speedups are all sublinear. Studies that use GPGPUs report dif-
ferent ranges of speedup, with one study (Tran, 2010 reporting an exceptionally
high speedup in the range of 900-2,500. In addition, we found only a few studies
which parallelize the interior point method. All of these studies address stochas-
tic optimization problems, using low-level parallelism in a 1C/RS scheme with
SPSS search differentiation, and they achieve sublinear or linear speedup. While
all studies apply message passing as parallel programming model, the topologies
used differ. Finally, a few exact methods designed for specific optimization prob-
lems (the knapsack problem (Li et al [2015), mixed integer linear programming
(Rossbory and Reisner|, |2013)) and graph theory problems (Kollias et al., 2014}
Bozdag et all 2008)) have been parallelized. While all four studies show sub-
linear or linear speedup, the characteristics of algorithmic and computational
parallelization are different.

Single-solution based metaheuristics: Single-solution based metaheuris-
tics manipulate and transform a single solution during the search. They can
occur in many different forms and their parallelization has been discussed in
(Melab et al.l [2006; Talbi, [2009). Parallelization can occur at the solution level,
iteration level and algorithmic level. While parallelizing at the solution and
iteration level generally corresponds to low-level parallelization with a 1C/RS
scheme and SPSS search differentiation, parallelization at the algorithmic level
is open to the broad range of parallelization strategies, and process and search
control options. Our literature review revealed that mainly three single-solution
based metaheuristics have been parallelized: TS, SA and VNS. TS has been ap-
plied to a variety of optimization problems. Most studies apply parallelization
at the solution or iteration level, thereby adopting low-level parallelization with
a 1C/RS scheme and SPSS search differentiation and a master-slave communi-
cation topology. We found a few exceptions from this algorithmic parallelization
pattern; for example, |Jin et al.| (2012);|James et al.| (2009)); Jin et al.[(2014} [2011))
adopt cooperative multi-search parallelization of TS, and Dai et al.| (2009)) im-

plement domain decomposition parallelization of T'S. The landscape of applied

24

parallel programming models is quite diverse and includes approaches based on

threads, message passing, shared memory, SIMD, and GPGPUs. Speedup re-

sults are mixed, including superlinear speedup (Bozejko et al.L|2013} Shylo et al.,
2011). The implementation on GPGPUs has shown substantial differences with

regard to speedup, reaching values up to 420 (Czapinskil [2013). The landscape

of parallel SA studies, which have also been applied to a variety of optimization

problems, is more diverse than that of GA studies. It has been addressed by
all four parallelization strategies with varying types of process and search con-
trol and with different programming models. In contrast to this heterogeneity,
most studies apply a master-slave communication topology. Only a few studies

report the achieved speedup, which is mostly sublinear. We found one study

(Ferreiro et al.,[2013) that parallelizes SA using GPGPU and achieves speedups

in the range of about 73.44-269.46. VNS has also been applied to many differ-
ent problems with all four parallelization strategies and a variety of process and
search control variations, communication topologies, and programming models.
As in the case of SA, about half of the studies do not report on speedup and
those which do report sublinear speedup, with the exception of

(2008), who achieve linear speedup. One study uses GPGPU (Coelho et al.|
2016)) and achieves a speedup in the range of 0.93-14.49. Additionally, we found

two studies (Caniou et al.} 2012} [Santos et al,[2010) that parallelize (greedy ran-

domized) adaptive search and one study (Hifi et al.,2014) that parallelizes large

neighborhood search (subsumed under “other single solution heuristic (OSSH)”

in Table .

Population-based metaheuristics: In contrast to single-solution based
metaheuristics, in population-based algorithms a whole population of solutions
is evolved. Most prominent classes of population-based metaheuristics include
evolutionary algorithms, scatter search and path relinking, swarm intelligence
algorithms, and bee colony optimization . When population-based
algorithms are parallelized, we distinguish three models which, albeit having
been suggested originally for evolutionary algorithms in general and GAs in

particular (Alba and Tomassini| 2002; Talbi, 2009; [Agrawal and Mathew, 2004;

25

Melab et al.l 2006} |Canttu-Pazl 2005; [Luque et al., |2005), can be applied to
other classes of population-based algorithms as well: global, island (with or
without migration), and cellular model. In the global model, parallel techniques
are used to speed up the operation of the algorithm without changing the basic
operation of the sequential version. When the evaluation of the whole population
is done in parallel, parallelism occurs at the iteration level; when the algorithm
evaluates a single individuum in parallel, parallelism occurs at the solution
level. In both cases, low-level parallelization applies. Island models typically
run (identical or different) serial population-based algorithm on subpopulations
to avoid getting stuck in local optima of the search space. If individuals can
be transmitted between subpopulations, the island model is also referred to
as magration model; however, island models can also occur without migration.
While in the former case, migration usually leads to a cooperative multi-search,
the latter case generally corresponds to independent multi-search parallelization.
The cellular model may be seen as a special case of the island model where an
island is composed of a single individual. It should be noted that the models
may be applied jointly (Cantu-Paz| (2005)), for example, describes such model
combinations for GAs).

Evolutionary algorithms belong to the types of algorithms that have at-
tracted substantial parallelization efforts. A good overview of the diversity
with which combinations of different parallelization strategies and program-
ming models can be applied to evolutionary algorithms is provided by |[Limmer
and Fey| (2017)). In our sample, we found a focus on GAs as a particular sub-
class of evolutionary algorithm; we subsume all evolutionary algorithms other
than GAs under the residual subclass“other evolutionary algorithms”. GAs
have been parallelized for a variety of optimization problems. Most of the stud-
ies adopt the island model with migration (cooperative multi-search) with a
pC/RS scheme and MPSS or MPDS search differentiation. Only a few stud-
ies use the island model without migration (independent multi-search) with a
pC/RS scheme and MPSS search differentiation, or the global model (low-level)
with a 1C/RS scheme and SPSS search differentiation. Interestingly, all but

26

one study (Vallada and Ruiz, [2009)) apply synchronous communication. In the
presence of the island model, a diversity of communication topologies has been
applied with mostly message passing being used as programming model. In
contrast, when the global model is applied, threads or GPGPU are drawn upon
and mostly the master-slave topology is implemented. The described correla-
tion between the parallelization strategy and the parallel programming model
is not surprising as the communication between (a usually moderate number
of) islands through exchanging messages is appealing while the processing of (a
usually large number of) individuals in a global population through (an often
large number of) threads executed on a CPU or GPGPU seems appropriate.
Only about half of the 27 GA studies that we found report speedup values.
Speedup results are overall mixed, including superlinear speedup (Homberger|
2008; |Abu-lebdeh et al.,|2016|). The application of GPGPUs has led to homoge-
neous results, with a maximum speedup of about 33 (Wang et al., 2012)). Evo-
lutionary algorithms other than GAs, such as differential evolution or immune
algorithm, have been applied to a variety of optimization problems. Almost
all of these studies adopt the island model with migration (cooperative multi-
search) with a pC/RS scheme and MPSS or MPDS search differentiation. We
found only two studies (Banos et al., |2014; [Izzo et al., 2009) which report an
asynchronous communication. We identified no pattern regarding the applied
communication topology and programming model.

Swarm intelligence algorithms are inspired from the collective behavior of
species such as ants, fish and birds. Subclasses of swarm intelligence algorithms
for which we found parallelization studies are ant colony optimization (includ-
ing ant colony systems and “MAX-MIN Ant Systems” (Dorigo and Stiitzle,
2004)), particle swarm optimization, and fireworks algorithms. Parallelization
strategies of ant colony optimization can be classified according to the above
mentioned three strategies of parallelizing population-based metaheuristics; i.e.,
global, island or cellular model. Here, we follow the suggestion of Randall and
Lewis| (2002)) to distinguish the parallel evaluation of solution elements, parallel

ant colonies (independent or interacting) and parallel ants. These strategies are

27

specializations of the global model, island model (without or with migration),
and cellular model, respectively, of population-based metaheuristics. Interest-
ingly, most of the parallelization studies using ant colony optimization have
addressed the TSP. VRPs (Yu et al., [2011b} |Diego et al., 2012) and assignment
problems (Tsutsuil [2008; Dongdong et al.|,2010]) have been solved by two studies

each. Almost all studies use parallel ants or multiple ant colonies but, overall,
the studies vary regarding parallelization strategies, process and search con-
trol, communication topologies and programming models. Those studies which
qualify the achieved speedups, report sublinear speedups. The speedup achieved
through GPGPU parallelization goes up to 25. Particle swarm optimization has
been applied to solve a diverse set of optimization problems. Most of the paral-
lelization studies make use of the global or island model, realized as low-level or
cooperative multi-search parallelization, respectively, with a master-slave com-

munication topology. The process and search control implementations differ,

with only one study (Wang et al., 2008) reporting asynchronous communica-

tion. Mostly message passing and GPGPU are used as parallel programming
model. Speedups achieved on GPGPU go up to about 190; studies not using the

GPGPU model either do not report speedup values or show an overall diverse

picture. In addition, we identified one study (Ding et al., |2013) that applies a

fireworks algorithm.

Other population-based metaheuristics: We identified five studies that
parallelize population-based metaheuristics other than evolutionary algorithms
and swarm intelligence algorithms, namely scatter search and path relinking
(Kerkhove and Vanhoucke] 2017} [Bozejkol, [2009), and bee colony optimization
(Luo et al |2014; Davidovic et al., [2011} |Subotic et al., 2011). Addressed prob-

lems, algorithmic and computational parallelization characteristics as well as
efficiency results (where reported) are quite diverse.

Hybrid metaheuristics: Hybrid metaheuristics are joint applications of

several (meta)heuristics (Talbi, [2009; |Crainic|, [2019)). They are “appropriate can-

didates” for the application of a(n) (independent or cooperative) multi-search

strategy. A diverse set of optimization problems has been investigated with par-

28

allel hybrid metaheuristics. The combinations of (meta)heuristics include ant
colony optimization and local search, GAs and local search, GAs and SA, and
GAs and TS, among others. Due to the diverse set of combined (meta)heuristics,
unsurprisingly, the studies differ substantially with regard to addressed prob-
lems, parallelization strategies, process and search and control, communication

topologies and parallel programming models. Although none of these studies re-

port a superlinear speedup, |Zhu and Curry| (2009) reports an achieved speedup

of 403.91 when parallelizing a combination of ant colony optimization and pat-
tern search with a GPGPU-based implementation.

Problem-specific heuristics, other heuristics, matheuristics, and
multi-search algorithms: Problem-specific heuristics have been parallelized
for a variety of optimization problems, including a graph theory problem
[brian et all [2011]), TSPs (Ozden et al) [2017; Tsmail et all, [2011)), a FSSP
2009), a facility location problem (Lancinskas et all [2015), a mixed
integer linear program (Koc and Mehrotra) [2017), and several other problems
(Redondo et al., 2016} [Hemmelmayr, [2015; Benedicic et al.l [2014; |Gomes et al.,
[2008; Baumelt et al., 2016} [Luo et all 2015). We found four studies which

parallelize heuristics that differ from all types described above: an agent-based

heuristic (Benedicic et al.||2014]), an auction-based heuristic (Sathe et al.;|2012),

a Monte Carlo simulation inside a heuristic-randomization process (Juan et al.|

2013), and a random search algorithm (Sanci and Isler, [2011). We found two

studies which parallelize matheuristics (Stanojevic et al., 2015; |Groer et al.,
2011)) and three studies which suggest multi-search algorithms (Chaves-Gonzalez|
let al) [2011} [Vidal et all, 2017 [Lahrichi et all [2015). Due to the diverse na-

ture of the aforementioned studies, we do not look for patterns in algorithmic

parallelization, computational parallelization and scalability results.

5. Research directions

Based on the analysis of the identified literature published in the covered pe-

riod (2008-2017), we subsequently suggest some research directions which may

29

help (re)focusing on those areas that did not get much attention or were even
neglected during the focused period. We would like to note that the observa-
tion of the absence or rareness of certain types of studies primarily refers to
the aforementioned period. Work published prior to this period and surveys
published earlier than this review (see Section |1)) have addressed some of the
“white spots” in research identified for the aforementioned period, which calls

for re-focusing on related research paths.

5.1. Publication landscape and overall prospective research

The analysis of publication data reveals that computational and parallel op-
timization in OR has been steadily attractive for many journals and conferences
not only in the OR field but also in various neighbor disciplines. This broad
interest is also reflected in the diverse landscape of which optimization problems
have been solved by which (parallelized) algorithms. While this diversity shows
the large relevance and broad applicability of computational parallelization in
optimization, a closer look also reveals that the landscape is still fragmented de-
spite the algorithmic accumulation of branch-and-X, GAs and TS studies and
the problem accumulation of FSSPs, TSPs and VRPs. This makes it difficult to
analyze which combinations of problems and algorithms are promising for par-
allelization and how the algorithmic and computational parallelization should
be designed. It should be noted that in the presence of a broad scope of prob-
lems and algorithms in parallel optimization, the number of approximately 200
studies published in ten years is relatively low. Future research and education
can benefit from fostering (knowledge on how to conduct) computational studies
in parallel optimization to overcome the limitations imposed by fragmentation

(recommendations la and 1b in Table [4)).

5.2. Object of parallelization

From the algorithmic perspective, branch-and-X algorithms represent the
largest cluster of computational parallelization studies. In a few studies, this

parallelization has even led to superlinear speedup but in most cases “only”

30

(sub)linear speedups have been achieved. Future research should shed more
light on how to achieve superlinear speedups (recommendation 2a). With re-
gard to dynamic programming, which is the second most often analyzed type of
exact algorithms, the (sublinear) speedup achievements are less promising (see
recommendation 2b). Again, our subsample of dynamic programming studies
and their coding can serve as a basis for future investigations on more efficient
dynamic programming parallelization, in particular on how to achieve super-
linear speedup. We extend this recommendation to future research on paral-
lelization of Lagrangean decomposition, which is — as dynamic programming —
another methodology often used in the important field of stochastic optimiza-
tion but which has hardly been parallelized. Parallelization efforts with regard
to interior point methods are hardly existent, which asks for more research in
this regard (recommendation 2c).

Among single-solution based metaheuristics, three metaheuristics have re-
ceived particular attention regarding parallelization: TS, SA and VNS. For
TS, speedup results are mixed, including two studies that report superlinear
speedups, and the implementation on GPGPUs has shown substantial differ-
ences with regard to speedup. Future research should analyze this heteroge-
neous picture (recommendation 2d). With regard to SA and VNS, not much
can be said on efficiency as, unfortunately, many studies do not report achieved
speedups (see recommendation 2e). Beyond the aforementioned metaheuristics,
other single-solution based metaheuristics, including greedy randomized adaptive
search, guided local search, fast local search, and iterated local search (Gendreau
et al, 2010, 2019)), have not received much attention with regard to paralleliza-
tion, which points to further research opportunities (recommendation 2f).

With regard to population-based metaheuristics, GAs are the most often
parallelized type of algorithm. However, only a few studies provide speedup
values, some of them reporting superlinear speedups. While these achievements
are promising, not much knowledge about the factors that lead to superlinear
speedup (see recommendation 2g) has been developed. Furthermore, paralleliza-

tion results for GAs as well as other evolutionary algorithms are mainly based

31

on synchronous communication so that not much is known about the potential
of applying asynchronous communication (recommendation 2h) . The second
and third most often parallelized type of population-based metaheuristics are
ant colony optimization and particle swarm optimization, respectively. With re-
gard to ant colony optimization, achieved speedups are not very promising and
mostly limited to applications to the TSP. Regarding particle swarm optimiza-
tion, speedup results are quite mixed, with a promising speedup value of about
190 reported when using the GPGPU model. These results show that further re-
search on parallelizing ant colony optimization and particle swarm optimization
is recommendable (recommendation 2i). Analogously to single-solution based
metaheuristics, some algorithms of population-based methaheuristics, including
SSPR, BCO and FA, have not received much attention, which shows avenues
for further research (recommendation 2j).

Interestingly, we found only very few research on the parallelization of mat-
heuristics. We believe that the parallelization of both of its’ elements, meta-
heuristic components and exact mathematical programming techniques, are
promising areas of future research (recommendation 2k).

Similarly few attention has been attracted by multi-search algorithms, which
offer a straightforward parallelization approach through parallelizing the execu-
tion of independent search algorithms involved in multi-search. We consider
this research stream, in particular cooperative multi-search algorithms, to be
highly relevant for future research on parallelization (recommendation 21).

Beyond the previously identified algorithmic research directions, future re-

search should also adopt problem-specific perspectives (recommendation 2m).

5.8. Algorithmic parallelization and computational parallelization

The algorithmic parallelization in the studies of our sample has drawn on
all four (pure) parallelization strategies and on combinations of pure strategies.
Low-level parallelization is the most often implemented strategy, with 83 out of
206 studies having used this type of parallelism. The process and search con-

trol is usually a 1C/RS scheme with SPSS search differentiation. Most studies

32

which use low-level parallelism apply a master-slave communication topology,
which is a straightforward approach. However, there are several exceptions,
including fully-connected meshs (e.g., (Huebner et al) [2017)) and trees (e.g.,
(Tan et al.l [2009))). It would be useful to know under which conditions commu-
nication topologies other than the master-slave topology are advantageous for
low-level parallelization (recommendation 3a). Interestingly, even for low-level
parallelism a diverse set of parallel programming models and environments have
been used, including message passing. This is a bit surprising as message passing
is generally applied for the communication between ”‘heavy weight processes”
executed on different computing nodes.

Domain decomposition as parallelization strategy occurs in 56 studies, with
most of them parallelizing branch-and-X algorithms, which can be parallelized
straightforward by decomposition. Regarding control cardinality, we found 1C
and pC control modes applied similarly often. However, control and commu-
nication mostly follows an asynchronous, collegial scheme with no knowledge
being exchanged between parallel processes; the used search differentiation is
largely MPSS. Future research may explore opportunities that knowledge-based
communication offer (recommendation 3b).

Independent multi-search as a parallelization strategy has been applied in
only 18 studies, in contrast to cooperative multi-search, which has been imple-
mented in 72 studies. This trend is encouraging as the potential of exchanging
information between parallel processes in order to jointly achieve better solu-
tions in less time has thereby been acknowledged by researchers. The vast ma-
jority of all studies which apply (independent or cooperative) multi-search uses
a (synchronous) rigid synchronization (type “RS”); we identified only four stud-
ies (Groer et al.l |2011; Bukata et al.,[2015; |Jin et al.l |2014; Lahrichi et al., [2015)
which make use of knowledge-based communication. Future research should
foster the exploration of knowledge-based communication when multi-search
is applied (recommendation 3c). - Parallelization strategies can be combined
to exploit complementary ways of parallelizations. For example, low-level and

domain decomposition parallelism have been jointly applied to branch-and-X

33

algorithms (Vu and Derbel, 2016} |Adel et al. |2016) and to dynamic program-
ming (Maleki et al.,|2016)), and low-level and multi-search parallelism to genetic
algorithms (Abbasian and Mouhoub|, [2013; Munawar et al 2009). In total, we
found eight studies which apply such combinations. Future research should more
intensively tap the potential that joint applications of different parallelization
strategies offer (recommendation 3d). Finally, different parallelization strate-
gies can be applied (separately) to the same algorithm and problem in order to
compare their effectiveness and scalability and to determine most appropriate
and inappropriate parallelizations. Although we identified as many as 21 studies
which follow this path, we encourage scholars to intensify research in this regard
(recommendation 3e).

A broad range of different communication topologies has been applied, with
master-slave being the most often used topology. The appropriateness of a
communication topology needs to be linked to the particular algorithm and
the applied parallelization strategy so that no general recommendations are
appropriate. However, in the sample of computational studies we found only a
few studies (e.g., (Mezmaz et all [2014; Herrera et al., |2013; [Rashid et al., 2010
Aydin and Sevkli, [2008)) that have implemented more than one topology for
one parallelization strategy of a particular algorithm. This low number calls for
more studies that investigate multiple topologies for particular combinations of
algorithms and parallelization strategies (recommendation 3f).

The parallel implementation of optimization algorithms has exploited over-
all a rich set of programming models and modern programming environments,
including low-level threads (Java threads and POSIX threads), shared mem-
ory (mainly OpenMP), message passing (mainly MPI), and GPGPUs (mainly
CUDA-based). In addition, also hybrid programming models, including mes-
sage passing and shared memory, shared memory and GPGPU, threads and
GPGPU, and message passing and threads, have been used in a few studies.
Other programming models, such as SIMD, have only rarely been used. We
found several studies which provide either no or incomplete information on the

used parallel programming model(s). We recommend that studies report on the

34

programming model and programming environment used for their paralleliza-
tion (recommendation 3g).

Only a few studies report on their (re-)use of software frameworks for paral-
lelization, such as ParadisEO (INRIA| n.d.) for parallel and distributed meta-
heuristics or Bob++ (Djerrah et al.,|2006) for branch and bound parallelization.
Reasons for not drawing on such frameworks can be manifold. Scholars may
deliberately decide to not make use of them due to the inappropriateness of
frameworks for their implementation case or due to too time-consuming efforts
to get acquainted with the frameworks. Or, scholars are not aware of the exis-
tence of such frameworks. Either way, the development, propagation and use of
re-usable software frameworks can substantially reduce the tedious and error-

prone implementation of parallel optimization code (see recommendation 3h).

5.4. Performance of parallelization

Scalability is essential regarding the appropriateness of a parallel implemen-
tation of an optimization algorithm. Interestingly, in 70 out of 206 studies
speedup values are not (completely) reported or speedup is interpreted differ-
ent from how it is usually done (see Section ; for example, some studies
determine the speedup by executing the serial and the parallel code on different
hardware, resulting in speedup values that are challenging to interpret. Other
studies determine the speedup only of parts of an algorithm or use another par-
allel implementation as base (see for more details). In such cases,
speedup values are hardly comparable with those of other studies and, thus,
limit the usefulness of scalability analysis (see recommendation 4a).

But even in case speedup is provided, comparisons with other studies need
to be done carefully for several reasons: First, scalability results are difficult to
compare with those of other studies when technological characteristics of parallel
working units (or even of hardware environments) differ. For example, threads
at the software level need to be distinguished from threads at the hardware level
(hyperthreading), and MPI processes executed on different physical nodes may

perform different from those executed on different cores on the same physical

35

node. Second, values of weak speedup need to be distinguished from those of
relative speedup (see Section. A list of issues related to speedup comparison
is provided in We condense our suggestions in recommendation 4b.

We analyzed the studies in our sample with regard to how many parallel
working units (threads or processes) have been used, which we refer to as range
of parallelization. The number of parallel threads executed on a CPU has been
mostly not above 32 and it reaches its maximum at 128. When message passing
is used on one or several nodes, the number of parallel processes units has in
most cases not exceeded 256 and it has reached its maximum at 8,192. Hybrid
approaches mostly use up to 1,024 parallel units, with the maximum number
having been 2,048. Overall, the range of parallelization is quite limited compared
to the number of parallel units that are available in modern parallel computing
environments (see recommendation 4c).

Our analysis of how studies in the literature have considered the effective-
ness of parallelization (to obtain better solutions) showed that many studies
do not analyze this category of performance and that those studies which pro-
vide effectiveness results use many different ways to report these. They apply
different stop criteria (numbers of iterations, wall time, number of function
evaluations, combinations of these criteria, etc.) and different evaluation crite-
ria (objective value, relative gap to the best (known) solution value, numbers
of instances solved to optimality, relative improvements, etc.), and often do not
make the applied stop criteria explicit, which makes it difficult to assess par-
allel implementations and to compare studies with regard to effectiveness (see

recommendation 4d).

5.5. Presentation of studies

Finally, having reviewed more than two hundreds of parallelization studies,
we found that studies differ substantially in the way how information on paral-
lelization is provided, to what extent information is made explicit, and in which
section(s) of the paper which information on parallelization is provided. This

heterogeneity may reflect different practices in various subfields and journals,

36

and it not advisable to recommend any standardization in this regard. How-
ever, in several studies we found information on parallelization being reported
incomplete, intransparent or distributed, which can make it tedious to fully un-
derstand the applied parallelization. The framework suggested in this paper
may help to mitigate these issues when researchers adopt it and describe how

it applies to their studies (recommendation 5).

6. Conclusion

This invited review suggests a new integrative framework for parallel com-
putational optimization. It integrates the perspectives on parallel optimization
found in the disciplines of OR and computer science, and it distinguishes four
levels: i) object of parallelization, ii) algorithmic parallelization, iii) compu-
tational parallization, and iv) performance of parallelization. We apply this
framework to synthesize the body of literature (206 studies published between
2008 and 2017) of parallel computational optimization in OR. It should be no-
ticed that the applicability of the suggested framework is not limited to the
OR field. Finally, we suggest several bundles of research recommendations for
parallel computational optimization in OR, with the recommendations grouped

along the layers of the suggested framework.

7. Acknowledgements

I am grateful for the support of the editor, Prof. Emanuele Borgonovo, and
the many comments of the anonymous reviewers, who helped much in improving
this review article. I acknowledge the great efforts and tedious work of Gerhard
Rauchecker, Constanze Hilmer, Richard Schuster, Abdullah Burak, Melih Yil-
maz, Henning Siemes and Philip Empl, who contributed much to the identifica-
tion and the coding of many research papers. This research has been supported

by a grant (no. 315925033) of the German Science Foundation (DFG).

37

Publication landscape and overall prospective research

la Implementation of dedicated (tracks at) workshops and conferences and publication of edited books, such as (Albaj 2005} [Talbi, |
2006)), and of special issues in journals

1b Integration of parallel optimization and its application in modern parallel computing environments in curricula of OR education

Object of parallelization

2a Identification of those (algorithmic and computational) factors that drive superlinear speedup when parallelizing branch-and-X
algorithms. The sample of 41 cases and their coding provided in this review offer a basis for this research.

2b Identification of ways to make parallelization of dynamic programming and of Lagrangean decomposition more efficient and to
achieve superlinear speedup. Our subsample of dynamic programming studies and their coding can serve as a basis for future
investigations.

2c Amoplification of parallelization efforts with regard to interior point methods.

2d Analysis of heterogeneous picture of efficiency of TS parallelization to identify those factors that are most promising.

2e Amplification of scalability analysis with regard to parallelizations of SA and VNS.

2f Extension of parallelization efforts to a more comprehensive set of single-solution based metaheuristics, including greedy randomized
adaptive search, guided local search, fast local search, and iterated local search.

2g Identification of those factors that drive superlinear speedup when parallelizing GAs.

2h Application of asynchronous communication to genetic algorithms and other evolutionary algorithms.

2i Amplification of parallelization efforts with regard to ant colony optimization and particle swarm optimization.

2j Extension of parallelization efforts to a more comprehensive set of population-based metaheuristics, including scatter search € path
relinking, bee colony optimization, and fireworks algorithms.

2k Intensification of research on parallelizing matheuristics.

21 Intensification of research on the parallelization of multi-search algorithms, in particular those which include collaboration.

2m | Adoption of problem-specific perspectives by analyzing which parallelization efforts (algorithms, parallel algorithm designs, parallel
implementations) lead to which performance for a particular optimization problem. From Table it can be seen that, in particular,
FSSPs, TSPs, and VRPs have attracted fairly high number of parallelization studies that can be used for further analysis.

Algorithmic parallelization and computational parallelization

3a Identification of conditions under which communication topologies other than the master-slave topology are advantageous for
low-level parallelization.

3b Exploration of opportunities that knowledge-based communication offers in the case of domain decomposition.

3c Exploration of knowledge-based communication when multi-search parallelism is applied.

3d Tapping the potential that joint applications of different parallelization strategies offer.

3e Comparisons of effects that different parallelization strategies have when applied to a particular algorithm and problem in order to
determine (in)appropriate parallelization strategies in this case.

3f Investigation of multiple strategies and/or multiple topologies for a particular algorithm in order to compare the performance of
these alternatives.

3g Documentation of programming model and programming environment used for parallelization.

3h Development and propagation of easy-to-use and flexible software frameworks for parallel optimization.

Performance of parallelization

4da Provision of values of both speedup and efficiency with regard to serial implementations executed on the same hardware.

4b Comparison of speedup and efficiency between algorithms of different studies needs to account for computational parallelization
details and the type of speedup (e.g., relative or weak speedup) considered.

4c Extension of the range of parallelization (in terms of parallel computing units) to analyze scalability at larger levels.

4d Amplification of research on effectiveness of computational parallelization and documentation of applied stop and evaluation criteria.

Presentation of studies
5 Application of frameworks for describing parallelization studies to avoid incompleteness, intransparency and distributed provision

of parallelization information. The framework suggested in this paper may be used.

Table 4: Recommendations for future research on parallel computational opti-
mization in OR

38

References

Abbasian, R., Mouhoub, M., 2013. A hierarchical parallel genetic approach for
the graph coloring problem. Applied Intelligence 39, 510-528.

Abouelfarag, A.A., Aly, W.M., Elbialy, A.G., 2015. Performance analysis and
tuning for parallelization of ant colony optimization by using OpenMP, in:
Proceedings of the 14th IFIP TC 8 International Conference on Computer
Information Systems and Industrial Management, pp. 73-85.

Abu-lebdeh, G., Chen, H., Ghanim, M., 2016. Improving performance of genetic
algorithms for transportation systems: case of parallel genetic algorithms.
Journal of Infrastructure Systems 22.

Adamidis, P., 1994. Review of parallel genetic algorithms bibliography. Aristotle
Univ. Thessaloniki, Thessaloniki, Greece, Tech. Rep .

Adel, D., Bendjoudi, A., El Baz, D., Abdelhakim, A.Z., 2016. GPU-based two
level parallel B&B for the blocking job shop scheduling problem. Applied Soft
Computing , 747-755.

Agrawal, J., Mathew, T.V., 2004. Transit route network design using parallel
genetic algorithm. Journal of Computing in Civil Engineering 18, 248-256.
Aitzai, A., Boudhar, M., 2013. Parallel branch-and-bound and parallel PSO al-
gorithms for job shop scheduling problem with blocking. International Journal

of Operational Research 16, 14-37.

Alba, E., 2005. Parallel metaheuristics: A new class of algorithms. volume 47.
John Wiley & Sons.

Alba, E., Luque, G., 2005. Measuring the performance of parallel metaheuristics.
John Wiley & Sons, Inc., Hoboken, New Jersey. chapter 2. pp. 43-62.

Alba, E., Luque, G., Nesmachnow, S., 2013. Parallel metaheuristics: recent
advances and new trends. International Transactions in Operational Research
20, 1-48.

Alba, E., Talbi, E.G., Luque, G., Melab, N., 2005. Metaheuristics and paral-
lelism. John Wiley & Sons, Inc., Hoboken, New Jersey. chapter 4. pp. 79-103.

Alba, E., Tomassini, M., 2002. Parallelism and evolutionary algorithms. IEEE
Transactions on Evolutionary Computation 6, 443—-462.

Alba, E., Troya, J.M., 1999. A survey of parallel distributed genetic algorithms.
Complexity 4, 31-52.

Aldasoro, U., Escudero, L.F., Merino, M., Monge, J.F., Perez, G., 2015. On
parallelization of a stochastic dynamic programming algorithm for solving
large-scale mixed 0-1 problems under uncertainty. Top 23, 703-742.

Aldasoro, U., Escudero, L.F., Merino, M., Perez, G., 2017. A parallel branch-
and-fix coordination based matheuristic algorithm for solving large sized mul-
tistage stochastic mixed 0-1 problems. European Journal of Operational Re-
search 258, 590-606.

Aldinucci, M., Campa, S., Danelutto, M., Kilpatrick, P., Torquati, M., 2016.
Pool evolution: a parallel pattern for evolutionary and symbolic computing.
International Journal of Parallel Programming 44, 531-551.

39

Almeida, F., Gonzalez, D., Peldez, 1., 2006. Parallel dynamic programming.
John Wiley & Sons, Inc., Hoboken, New Jersey.. chapter 2. pp. 29-51.

Arellano-Verdejo, J., Godoy-Calderon, S., Alonso-Pecina, F., Guzman Arenas,
A., Antonio Cruz-Chavez, M., 2017. A new eflicient entropy population-
merging parallel model for evolutionary algorithms. International Journal of
Computational Intelligence Systems 10, 1186-1197.

Arrondo, A.G., Redondo, J.L., Fernandez, J., Ortigosa, P.M., 2014. Solving a
leader-follower facility problem via parallel evolutionary approaches. Journal
of Supercomputing 70, 600-611.

Aydin, M.E.; Sevkli, M., 2008. Sequential and parallel variable neighborhood
search algorithms for job shop scheduling, in: Metaheuristics for scheduling
in industrial and manufacturing applications. Springer, pp. 125-144.

Aydin, M.E., Yigit, V., 2005. Parallel simulated annealing. John Wiley & Sons,
Inc., Hoboken, New Jersey.. chapter 12. pp. 267-287.

Bak, S., Blazewicz, J., Pawlak, G., Plaza, M., Burke, E.K., Kendall, G., 2011. A
parallel branch-and-bound approach to the rectangular guillotine strip cutting
problem. INFORMS Journal on Computing 23, 15-25.

Banos, R., Ortega, J., Gil, C., 2014. Hybrid MPI/OpenMP parallel evolu-
tionary algorithms for vehicle routing problems, in: Proceedings of the 18th
International Conference on the Applications of Evolutionary Computation,
Springer-Verlag Berlin. pp. 653—664.

Banos, R., Ortega, J., Gil, C., De Toro, F., Montoya, M.G., 2016. Analysis
of OpenMP and MPI implementations of meta-heuristics for vehicle routing
problems. Applied Soft Computing 43, 262-275.

Banos, R., Ortega, J., Gil, C., Fernandez, A., De Toro, F., 2013. A simulated
annealing-based parallel multi-objective approach to vehicle routing problems
with time windows. Expert Systems with Applications 40, 1696-1707.

Barr, R.S., Hickman, B.L., 1993. Reporting computational experiments with
parallel algorithms: Issues, measures, and experts’ opinions. ORSA Journal
on Computing 5, 2-18.

Barreto, L., Bauer, M., 2010. Parallel branch and bound algorithm - a compar-
ison between serial, OpenMP and MPI implementations. Journal of Physics:
Conference Series 256, 012018.

Baumelt, Z., Dvorak, J., Sucha, P., Hanzalek, Z., 2016. A novel approach
for nurse rerostering based on a parallel algorithm. European Journal of
Operational Research 251, 624—639.

Ben Mabrouk, B., Hasni, H., Mahjoub, Z., 2009. On a parallel genetic-tabu
search based algorithm for solving the graph colouring problem. FEuropean
Journal of Operational Research 197, 1192-1201.

Benedicic, L., Stular, M., Korosec, P., 2014. A GPU-based parallel-agent op-
timization approach for the service coverage problem in UMTS networks.
Computing and Informatics 33, 1025-1046.

Borisenko, A., Haidl, M., Gorlatch, S., 2017. A GPU parallelization of branch-

40

and-bound for multiproduct batch plants optimization. Journal of Supercom-
puting 73, 639-651.

Borisenko, A., Kegel, P., Gorlatch, S., 2011. Optimal design of multi-product
batch plants using a parallel branch-and-bound method, in: Proceedings
of the 11th International Conference on Parallel Computing Technologies,
Springer-Verlag Berlin. pp. 417-430.

Boschetti, M.A., Maniezzo, V., Strappaveccia, F., 2016. Using GPU comput-
ing for solving the two-dimensional guillotine cutting problem. INFORMS
Journal on Computing 28, 540-552.

Boukedjar, A., Lalami, M.E., El-Baz, D., 2012. Parallel branch and bound on
a CPU-GPU system, in: Proceedings of the 20th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP),
pp- 392-398.

Boyer, V., El Baz, D., 2013. Recent advances on GPU computing in operations
research, in: Proceedings of the 27th International Conference on Parallel &
Distributed Processing Symposium, pp. 1778-1787.

Boyer, V., El Baz, D., Elkihel, M., 2012. Solving knapsack problems on GPU.
Computers & Operations Research 39, 42-47.

Bozdag, D., Gebremedhin, A.H., Manne, F., Boman, E.G., Catalyurek, U.V.,
2008. A framework for scalable greedy coloring on distributed-memory parallel
computers. Journal of Parallel and Distributed Computing 68, 515-535.

Bozejko, W., 2009. Solving the flow shop problem by parallel programming.
Journal of Parallel and Distributed Computing 69, 470-481.

Bozejko, W., Gnatowski, A., Pempera, J., Wodecki, M., 2017. Parallel tabu
search for the cyclic job shop scheduling problem. Computers & Industrial
Engineering 113, 512-524.

Bozejko, W., Pempera, J., Smutnicki, C., 2009. Parallel simulated annealing
for the job shop scheduling problem, in: Proceedings of the 9th International
Conference on Computational Science, Springer-Verlag Berlin. pp. 631-640.

Bozejko, W., Pempera, J., Smutnicki, C., 2013. Parallel tabu search algorithm
for the hybrid flow shop problem. Computers & Industrial Engineering 65,
466-474.

Bozejko, W., Uchronski, M., Wodecki, M., 2016. Parallel metaheuristics for the
cyclic flow shop scheduling problem. Computers & Industrial Engineering 95,
156-163.

Brodtkorb, A.R., Hagen, T.R., Schulz, C., Hasle, G., 2013. Gpu computing
in discrete optimization. part i: Introduction to the gpu. EURO journal on
transportation and logistics 2, 129-157.

Bukata, L., Sucha, P., Hanzalek, Z., 2015. Solving the resource constrained
project scheduling problem using the parallel tabu search designed for the
CUDA platform. Journal of Parallel and Distributed Computing 77, 58-68.

Caniou, Y., Diaz, D., Richoux, F., Codognet, P., Abreu, S., 2012. Performance
analysis of parallel constraint-based local search, in: Proceedings of the 17th

41

ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, New York, NY, USA. pp. 337-338.

Canti-Paz, E., 2005. Theory of parallel genetic algorithms. John Wiley & Sons,
Inc., Hoboken, New Jersey.. chapter 18. pp. 423-445.

Cantiu-Paz, E., 1998. A survey of parallel genetic algorithms. Calculateurs
Paralleles, Reseaux Et Systems Repartis 10, 141-171.

Cao, B., Zhao, J., Lv, Z., Liu, X., 2017. A distributed parallel cooperative coevo-
lutionary multiobjective evolutionary algorithm for large-scale optimization.
IEEE Transactions on Industrial Informatics 13, 2030-2038.

Carneiro, T., Muritiba, A.E., Negreiros, M., de Campos, G.A.L., 2011. A new
parallel schema for branch-and-bound algorithms using GPGPU, in: Pro-
ceedings of the 23rd International Symposium on Computer Architecture and
High Performance Computing, pp. 41-47.

Carvajal, R., Ahmed, S., Nemhauser, G., Furman, K., Goel, V., Shao, Y., 2014.
Using diversification, communication and parallelism to solve mixed-integer
linear programs. Operations Research Letters 42, 186-189.

Cauley, S., Balakrishnan, V., Hu, Y.C., Koh, C.k., 2011. A parallel branch-and-
cut approach for detailed placement. ACM Transactions on Design Automa-
tion of Electronic Systems 16.

Cecilia, J.M., Garcia, J.M., Nisbet, A., Amos, M., Ujaldon, M., 2013. Enhancing
data parallelism for ant colony optimization on GPUs. Journal of Parallel and
Distributed Computing 73, 42-51.

Cecilia, J.M., Garcia, J.M., Ujaldon, M., Nisbet, A., Amos, M., 2011. Par-
allelization strategies for ant colony optimisation on GPUs, in: Proceedings
of the 25th International Conference on Parallel & Distributed Processing
Symposium, pp. 339-346.

Chakroun, I., Melab, N., 2015. Towards a heterogeneous and adaptive parallel
branch-and-bound algorithm. Journal of Computer and System Sciences 81,
72-84.

Chakroun, I., Melab, N., Mezmaz, M., Tuyttens, D., 2013a. Combining multi-
core and GPU computing for solving combinatorial optimization problems.
Journal of Parallel and Distributed Computing 73, 1563-1577.

Chakroun, 1., Mezmaz, M., Melab, N., Bendjoudi, A., 2013b. Reducing thread
divergence in a GPU-accelerated branch-and-bound algorithm. Concurrency
and Computation-practice & Experience 25, 1121-1136.

Chaves-Gonzalez, J.M., Vega-Rodriguez, M.A., Gomez-Pulido, J.A., Sanchez-
Perez, J.M., 2011. Optimizing a realistic large-scale frequency assignment
problem using a new parallel evolutionary approach. Engineering Optimiza-
tion 43, 813-842.

Christou, I.T., Vassilaras, S., 2013. A parallel hybrid greedy branch and bound
scheme for the maximum distance-2 matching problem. Computers & Oper-
ations Research 40, 2387-2397.

Coelho, .M., Munhoz, P.LL.A., Ochi, L.S., Souza, M.J.F., Bentes, C., Farias, R.,

42

2016. An integrated CPU-GPU heuristic inspired on variable neighbourhood
search for the single vehicle routing problem with deliveries and selective
pickups. International Journal of Production Research 54, 945-962.

Cordeau, J.F., Maischberger, M., 2012. A parallel iterated tabu search heuristic
for vehicle routing problems. Computers & Operations Research 39, 2033—
2050.

Cotta, C., Talbi, E.G., Alba, E., 2005. Parallel hybrid metaheuristics. John
Wiley & Sons, Inc., Hoboken, New Jersey. chapter 15. pp. 347-370.

Crainic, T., Toulouse, M., 2008. Learning and Intelligent Optimization.
Springer, Berlin. volume 5315 of Lecture Notes in Computer Science. chapter
Explicit and emergent cooperation schemes for search algorithms. pp. 95-109.

Crainic, T.G., 2008. Parallel solution methods for vehicle routing problems,
in: The Vehicle Routing Problem: Latest Advances and New Challenges.
Springer, Boston, MA, pp. 171-198.

Crainic, T.G., 2018. Parallel Meta-heuristic Search, in: Marti, R., Panos, P.,
Resende, M.G. (Eds.), Handbook of Heuristics. Springer, Cham, pp. 1-39.
Crainic, T.G., 2019. Parallel metaheuristics and cooperative search, in: Gen-
dreau, M., Potvin, J.Y. (Eds.), Handbook of Metaheuristics. Springer, Third

edition. pp. 419-451.

Crainic, T.G., Davidovi¢, T., Ramljak, D., 2014. Designing parallel meta-
heuristic methods, in: Despotovic-Zrakic, M., Milutinovic, V., Belic, A.
(Eds.), Handbook of Research on High Performance and Cloud Computing
in Scientific Research and Education. IGI Global, Hershey, PA. chapter 11,
pp. 260—280.

Crainic, T.G., Gendreau, M., Potvin, J.Y., 2005. Parallel tabu search. John
Wiley & Sons, Inc., Hoboken, New Jersey. chapter 13. pp. 289-313.

Crainic, T.G., Hail, N., 2005. Parallel metaheuristics applications. John Wiley
& Sons, Inc., Hoboken, New Jersey. chapter 1. pp. 447-494.

Crainic, T.G., Le Cun, B., Roucairol, C., 2006. Parallel combinatorial opti-
mization. John Wiley & Sons, Inc., Hoboken, New Jersey. chapter Parallel
Branch-and-Bound Algorithms. pp. 1-28.

Crainic, T.G., Toulouse, M., 2003. Parallel strategies for meta-heuristics, in:
Handbook of metaheuristics. Springer, Boston, MA, pp. 475-513.

Crainic, T.G., Toulouse, M., 2010. Parallel meta-heuristics, in: Gendreau, M.,
Potvin, J.Y. (Eds.), Handbook of metaheuristics. Springer, Second edition.
pp. 497-541.

Cung, V.D., Martins, S.L., Ribeiro, C.C., Roucairol, C., 2002. Strategies for the
parallel implementation of metaheuristics, in: Essays and Surveys in Meta-
heuristics. Springer, Boston, MA, pp. 263—-308.

Czapinski, M., 2010. Parallel simulated annealing with genetic enhancement
for flowshop problem with CSUM. Computers & Industrial Engineering 59,
778-785.

Czapinski, M., 2013. An effective parallel multistart tabu search for quadratic

43

assignment problem on CUDA platform. Journal of Parallel and Distributed
Computing 73, 1461-1468.

Czapinski, M., Barnes, S., 2011. Tabu search with two approaches to parallel
flowshop evaluation on CUDA platform. Journal of Parallel and Distributed
Computing 71, 802-811.

Dai, C., Toulouse, M., Li, B.P.C., 2009. A multilevel cooperative tabu search
algorithm for the covering design problem. The Journal of Combinatorial
Mathematics and Combinatorial Computing , 35-65.

Davidovié, T., Crainic, T.G., 2012. MPI parallelization of variable neighborhood
search. Electronic Notes in Discrete Mathematics 39, 241-248.

Davidovic, T., Ramljak, D., Selmic, M., Teodorovic, D., 2011. Mpi paralleliza-
tion of bee colony optimization, in: Proc. 1st International Symposium &
10th Balkan Conference on Operational Research, pp. 193-200.

Deep, K., Sharma, S., Pant, M., 2010. Modified parallel particle swarm opti-
mization for global optimization using message passing interface, in: Proceed-
ings of the 5th International Conference on Bio-Inspired Computing: Theories
and Applications (BIC-TA), pp. 1451-1458.

Defersha, F.M., 2015. A simulated annealing with multiple-search paths and
parallel computation for a comprehensive flowshop scheduling problem. In-
ternational Transactions in Operational Research 22, 669—691.

Defersha, F.M., Chen, M., 2008. A parallel genetic algorithm for dynamic
cell formation in cellular manufacturing systems. International Journal of
Production Research 46, 6389-6413.

Defersha, F.M., Chen, M., 2010. A parallel genetic algorithm for a flexible
job-shop scheduling problem with sequence dependent setups. International
Journal of Advanced Manufacturing Technology 49, 263-279.

Defersha, F.M., Chen, M., 2012. Mathematical model and parallel genetic al-
gorithm for hybrid flexible flowshop lot streaming problem. International
Journal of Advanced Manufacturing Technology 62, 249-265.

Delevacq, A., Delisle, P., Gravel, M., Krajecki, M., 2013. Parallel ant colony
optimization on graphics processing units. Journal of Parallel and Distributed
Computing 73, 52—61.

Derbel, B., Humeauc, J., Liefooghe, A., Verel, S., 2014. Distributed localized
bi-objective search. European Journal of Operational Research 239, 731-743.

Dias, B.H., Tomim, M.A., Marques Marcato, A.L., Ramos, T.P., Brandi, R.B.S.,
Da Silva Junior, I.C., Passos Filho, J.A., 2013. Parallel computing applied
to the stochastic dynamic programming for long term operation planning of
hydrothermal power systems. European Journal of Operational Research 229,
212-222.

Diaz, J., Munoz-Caro, C., Nino, A., 2012. A survey of parallel programming
models and tools in the multi and many-core era. IEEE Transactions on
parallel and distributed systems 23, 1369-1386.

Diego, F.J., Gomez, E.M., Ortega-Mier, M., Garcia-Sanchez, A., 2012. Parallel

44

CUDA architecture for solving de VRP with ACO, in: Industrial Engineering;:
Innovative Networks. Springer, Boston, MA, pp. 385-393.

Ding, K., Zheng, S., Tan, Y., 2013. A GPU-based parallel fireworks algorithm
for optimization, in: Proceedings of the 15th annual conference on Genetic
and evolutionary computation, pp. 9-16.

Djerrah, A., Le Cun, B., Cung, V.D., Roucairol, C., 2006. Bob++: Frame-
work for solving optimization problems with branch-and-bound methods, in:
Proceedings of the 15th IEEE International Conference on High Performance
Distributed Computing, pp. 369-370.

Dobrian, F., Gebremedhin, A., Halappanavar, M., Pothen, A., et al., 2011.
Distributed-memory parallel algorithms for matching and coloring, in: Pro-
ceedings of the 26th International Parallel and Distributed Processing Sym-
posium Workshops & PhD Forum, pp. 1971-1980.

Dongdong, G., Guanghong, G., Liang, H., Ni, L., 2010. Application of multi-
core parallel ant colony optimization in target assignment problem, in: Pro-
ceedings of the 2010 International Conference on Computer Application and
System Modeling (ICCASM), pp. V3-514.

Dorigo, M., Stiitzle, T., 2004. Ant colony optimization. MIT Press.

Dorronsoro, B., Danoy, G., Nebro, A.J., Bouvry, P., 2013. Achieving super-
linear performance in parallel multi-objective evolutionary algorithms by
means of cooperative coevolution. Computers & Operations Research 40,
1552-1563.

Eckstein, J., Hart, W.E., Phillips, C.A., 2015. PEBBL: an object-oriented
framework for scalable parallel branch and bound. Mathematical Program-
ming Computation 7, 429-469.

Eskandarpour, M., Zegordi, S.H., Nikbakhsh, E., 2013. A parallel variable
neighborhood search for the multi-objective sustainable post-sales network
design problem. International Journal of Production Economics 145, 117—
131.

Fabris, F., Krohling, R.A., 2012. A co-evolutionary differential evolution algo-
rithm for solving min-max optimization problems implemented on GPU using
¢-CUDA. Expert Systems with Applications 39, 10324-10333.

Ferreiro, A.M., Garcia, J.A., Lopez-Salas, J.G., Vazquez, C., 2013. An efficient
implementation of parallel simulated annealing algorithm in GPUs. Journal
of Global Optimization 57, 863-890.

Figueira, J.R., Liefooghe, A., Talbi, E.G., Wierzbicki, A.P., 2010. A parallel
multiple reference point approach for multi-objective optimization. European
Journal of Operational Research 205, 390—-400.

Fujimoto, N., Tsutsui, S., 2011. A highly-parallel TSP solver for a GPU com-
puting platform, in: Proceedings of the 7th. International Conference on Nu-
merical Methods and Applications, Springer-Verlag Berlin. pp. 264-271.

Galea, F., Le Cun, B., 2011. A parallel exact solver for the three-index quadratic
assignment problem, in: Proceedings of the 2011 IEEE International Sympo-
sium on Parallel and Distributed Processing Workshops and PhD Forum, pp.

45

1940-1949.

Gao, J., He, G., Wang, Y., 2009. A new parallel genetic algorithm for solving
multiobjective scheduling problems subjected to special process constraint.
International Journal of Advanced Manufacturing Technology 43, 151-160.

Gendreau, M., Potvin, J.Y., et al. (Eds.), 2010. Handbook of metaheuristics.
volume 146 of International Series in Operations Research & Management
Science. Springer. third edition.

Gendreau, M., Potvin, J.Y., et al. (Eds.), 2019. Handbook of metaheuristics.
volume 146 of International Series in Operations Research € Management
Science. Springer.

Gendron, B., Crainic, T.G., 1994. Parallel branch-and-branch algorithms: sur-
vey and synthesis. Operations Research 42, 1042-1066.

Gerasch, T.E., Wang, P.Y., 1994. A survey of parallel algorithms for one-
dimensional integer knapsack problems. INFOR: Information Systems and
Operational Research 32, 163—-186.

Gmys, J., Mezmaz, M., Melab, N., Tuyttens, D., 2016. A GPU-based branch-
and-bound algorithm using integer-vector-matrix data structure. Parallel
Computing 59, 119-139.

Gmys, J., Mezmaz, M., Melab, N., Tuyttens, D., 2017. Ivm-based parallel
branch-and-bound using hierarchical work stealing on multi-GPU systems.
Concurrency and Computation-practice & Experience 29.

Gomes, F.C., Meneses, C.N., Pardalos, P.M., Viana, G.V.R., 2008. A parallel
multistart algorithm for the closest string problem. Computers & Operations
Research 35, 3636-3643.

Groer, C., Golden, B., Wasil, E., 2011. A parallel algorithm for the vehicle
routing problem. INFORMS Journal on Computing 23, 315-330.

Hadian, A., Shahrivari, S., Minaei-Bidgoli, B., 2012. Fine-grained parallel
ant colony system for shared-memory architectures. International Journal
of Computer Applications 53.

He, J., Chang, D., Mi, W., Yan, W., 2010. A hybrid parallel genetic algo-
rithm for yard crane scheduling. Transportation Research Part E-logistics
and Transportation Review 46, 136-155.

Hemmelmayr, V.C., 2015. Sequential and parallel large neighborhood search
algorithms for the periodic location routing problem. European Journal of
Operational Research 243, 52-60.

Herrera, J.F., Casado, L.G., Hendrix, E.M., Paulavicius, R., Ilinskas, J.,
2013. Dynamic and hierarchical load-balancing techniques applied to parallel
branch-and-bound methods, in: Proceedings of the 8th International Confer-
ence on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp.
497-502.

Herrera, J.F.R., Salmeron, J.M.G., Hendrix, E.M.T., Asenjo, R., Casado, L.G.,
2017. On parallel branch and bound frameworks for global optimization.
Journal of Global Optimization 69, 547-560.

46

Hifi, M., Negre, S., Saadi, T., Saleh, S., Wu, L., 2014. A parallel large neighbor-
hood search-based heuristic for the disjunctively constrained knapsack prob-
lem, in: Proceedings of the 2014 IEEE International Parallel & Distributed
Processing Symposium Workshops, pp. 1547-1551.

Homberger, J., 2008. A parallel genetic algorithm for the multilevel uncon-
strained lot-sizing problem. INFORMS Journal on Computing 20, 124-132.
Hong, L., Zhong-hua, L., Xue-bin, C., 2010. Parallel computing for dynamic
asset allocation based on the stochastic programming, in: Proceedings of the
2010 WASE International Conference on Information Engineering (ICIE), pp.

172-176.

Hou, N., He, F., Zhou, Y., Ai, H., 2017. A GPU-based tabu search for very
large hardware/software partitioning with limited resource usage. Journal of
Advanced Mechanical Design Systems and Manufacturing 11.

Huang, C.S., Huang, Y.C., Lai, P.J., 2012. Modified genetic algorithms for
solving fuzzy flow shop scheduling problems and their implementation with
CUDA. Expert Systems with Applications 39, 4999-5005.

Huebner, J., Schmidt, M., Steinbach, M.C., 2017. A distributed interior-point
KKT solver for multistage stochastic optimization. INFORMS Journal on
Computing 29, 612-630.

Hung, Y., Wang, W., 2012. Accelerating parallel particle swarm optimization
via GPU. Optimization Methods & Software 27, 33-51.

Ibri, S., Drias, H., Nourelfath, M., 2010. A parallel hybrid ant-tabu algorithm for
integrated emergency vehicle dispatching and covering problem. International
Journal of Innovative Computing and Applications 2, 226—236.

INRIA, n.d. Paradiseo - A Software Framewok for Metaheuristics.
http://paradiseo.gforge.inria.fr.

Ismail, M.A., Mirza, S.H., Altaf, T., 2011. A parallel and concurrent imple-
mentation of Lin-Kernighan heuristic (LKH-2) for solving traveling salesman
problem for multi-core processors using SPC 3 programming model. Interna-
tional Journal of Advanced Computer Science and Applications .

Ismail, M.M., Abd El-Raoof, O., Abd El-Wahed, W.F., 2014. A parallel branch
and bound algorithm for solving large scale integer programming problems.
Applied Mathematics & Information Sciences 8, 1691-1698.

Izzo, D., Rucinski, M., Ampatzis, C., 2009. Parallel global optimisation meta-
heuristics using an asynchronous island-model, in: 2009 IEEE Congress on
Evolutionary Computation, IEEE. pp. 2301-2308.

James, T., Rego, C., Glover, F., 2009. A cooperative parallel tabu search algo-
rithm for the quadratic assignment problem. European Journal of Operational
Research 195, 810-826.

Janiak, A., Janiak, W., Lichtenstein, M., 2008. Tabu search on GPU. Journal
of Universal Computer Science 14, 2416-2427.

Janson, S., Merkle, D., Middendorf, M., 2005. Parallel ant colony algorithms.
John Wiley & Sons, Inc., Hoboken, New Jersey. chapter 3. pp. 171-201.

47

Jin, J., Crainic, T.G., Lgkketangen, A., 2011. A guided cooperative parallel
tabu search for the capacitated vehicle routing problem, in: Proceedings of
NIK 2011, pp. 49-60.

Jin, J., Crainic, T.G., Lokketangen, A., 2012. A parallel multi-neighborhood
cooperative tabu search for capacitated vehicle routing problems. European
Journal of Operational Research 222, 441-451.

Jin, J., Crainic, T.G., Lokketangen, A., 2014. A cooperative parallel metaheuris-
tic for the capacitated vehicle routing problem. Computers & Operations
Research 44, 33-41.

Juan, A.A., Faulin, J., Jorba, J., Caceres, J., Manuel Marques, J., 2013. Using
parallel & distributed computing for real-time solving of vehicle routing prob-
lems with stochastic demands. Annals of Operations Research 207, 43-65.

Kang, S., Kim, S.S., Won, J., Kang, Y.M., 2016. GPU-based parallel genetic ap-
proach to large-scale travelling salesman problem. Journal of Supercomputing
72, 4399-4414.

Kerkhove, L.P., Vanhoucke, M., 2017. A parallel multi-objective scatter search
for optimising incentive contract design in projects. European Journal of
Operational Research 261, 1066—-1084.

Knysh, D.S., Kureichik, V.M., 2010. Parallel genetic algorithms: a survey and
problem state of the art. Journal of Computer and Systems Sciences Interna-
tional 49, 579-589.

Koc, U., Mehrotra, S., 2017. Generation of feasible integer solutions on a mas-
sively parallel computer using the feasibility pump. Operations Research
Letters 45, 652-658.

Kollias, G., Sathe, M., Schenk, O., Grama, A., 2014. Fast parallel algorithms for
graph similarity and matching. Journal of Parallel and Distributed Computing
74, 2400-2410.

Ku, M.Y., Hu, M.H., Wang, M.J., 2011. Simulated annealing based parallel
genetic algorithm for facility layout problem. International Journal of Pro-
duction Research 49, 1801-1812.

Kumar, S., Misra, A., Tomar, R.S., 2011. A modified parallel approach to sin-
gle source shortest path problem for massively dense graphs using CUDA, in:
Proceedings of the 2nd International Conference on Computer and Commu-
nication Technology (ICCCT), pp. 635-639.

Laguna-Sanchez, G.A., Olguin-Carbajal, M., Cruz-Cortes, N., Barron-
Fernandez, R., Alvarez-Cedillo, J.A., 2009. Comparative study of parallel
variants for a particle swarm optimization algorithm implemented on a mul-
tithreading GPU. Journal of Applied Research and Technology 7, 292—-309.

Lahrichi, N., Crainic, T.G., Gendreau, M., Rei, W., Crigsan, G.C., Vidal,
T., 2015. An integrative cooperative search framework for multi-decision-
attribute combinatorial optimization: Application to the mdpvrp. European
Journal of Operational Research 246, 400-412.

Lancinskas, A., Martinez Ortigosa, P., Zilinskas, J., 2015. Parallel optimiza-
tion algorithm for competitive facility location. Mathematical Modelling and

48

Analysis 20, 619-640.

Lancinskas, A., Zilinskas, J., 2012. Solution of multi-objective competitive fa-
cility location problems using parallel NSGA-II on large scale computing sys-
tems, in: Proceedings of the 11th International Conference on Applied Parallel
Computing, Springer-Verlag Berlin. pp. 422-433.

Lanéinskas, A., Zilinskas, J., 2013. Parallel multi-objective memetic algorithm
for competitive facility location, in: Proceedings of the 10th International
Conference on Parallel Processing and Applied Mathematics, Springer-Verlag
Berlin. pp. 354-363.

Lazarova, M., Borovska, P., 2008. Comparison of parallel metaheuristics for solv-
ing the TSP, in: Proceedings of the 9th International Conference on Computer
Systems and Technologies and Workshop for PhD Students in Computing,
p. 17.

Lei, D., Guo, X., 2015. A parallel neighborhood search for order acceptance
and scheduling in flow shop environment. International Journal of Production
Economics 165, 12-18.

Li, C.C., Lin, C.H., Liu, J.C., 2017. Parallel genetic algorithms on the graphics
processing units using island model and simulated annealing. Advances in
Mechanical Engineering 9.

Li, K., Liu, J., Wan, L., Yin, S., Li, K., 2015. A cost-optimal parallel algorithm
for the 0-1 knapsack problem and its performance on multicore CPU and
GPU implementations. Parallel Computing 43, 27-42.

Limmer, S., Fey, D., 2017. Comparison of common parallel architectures for the
execution of the island model and the global parallelization of evolutionary
algorithms. Concurrency and Computation: Practice and Experience 29.

Ling, C., Hai-Ying, S., Shu, W., 2012. A parallel ant colony algorithm on
massively parallel processors and its convergence analysis for the travelling
salesman problem. Information Sciences 199, 31-42.

Liu, K.H., Kao, J.J., 2013. Parallelised branch-and-bound algorithm for raster-
based landfill siting. Civil Engineering and Environmental Systems 30, 15-25.

Liu, Y.Y., Cho, W.K.T., Wang, S., 2016. Pear: a massively parallel evolutionary
computation approach for political redistricting optimization and analysis.
Swarm and Evolutionary Computation 30, 78-92.

Liu, Y.Y., Wang, S., 2015. A scalable parallel genetic algorithm for the gener-
alized assignment problem. Parallel Computing 46, 98-119.

Lootsma, F.A., Ragsdell, K.M., 1988. State-of-the-art in parallel nonlinear
optimization. Parallel Computing 6, 133—-155.

Lou, Z., Reinitz, J., 2016. Parallel simulated annealing using an adaptive re-
sampling interval. Parallel Computing 53, 23-31.

Lépez, F.G., Torres, M.G., Batista, B.M., Perez, J.A.M., Vega, J.M.M., 2005.
Parallel scatter search. John Wiley & Sons, Inc., Hoboken, New Jersey.. chap-
ter 10. pp. 223-246.

Lu, H., Liu, J., Niu, R., Zhu, Z., 2014. Fitness distance analysis for parallel

49

genetic algorithm in the test task scheduling problem. Soft Computing 18,
2385-2396.

Lubin, M., Martin, K., Petra, C.G., Sandikci, B., 2013. On parallelizing dual de-
composition in stochastic integer programming. Operations Research Letters
41, 252-258.

Lubin, M., Petra, C.G., Anitescu, M., 2012. The parallel solution of dense
saddle-point linear systems arising in stochastic programming. Optimization
Methods and Software 27, 845-864.

Lucka, M., Melichercik, I., Halada, L., 2008. Application of multistage stochastic
programs solved in parallel in portfolio management. Parallel Computing 34,
469-485.

Luna, F., Alba, E., Nebro, A.J., 2005. Parallel heterogeneous metaheuristics.
John Wiley & Sons, Inc., Hoboken, New Jersey. chapter 17. pp. 395-422.
Luo, G.H., Huang, S.K., Chang, Y.S., Yuan, S.M., 2014. A parallel bees algo-

rithm implementation on GPU. Journal of Systems Architecture 60, 271-279.

Luo, J., Hong, L.J., Nelson, B.L.., Wu, Y., 2015. Fully sequential procedures
for large-scale ranking-and-selection problems in parallel computing environ-
ments. Operations Research 63, 1177-1194.

Luque, G., Alba, E., Dorronsoro, B., 2005. Parallel genetic algorithms. John
Wiley & Sons, Inc., Hoboken, New Jersey. chapter 5. pp. 105-125.

Maischberger, M., Cordeau, J.F., 2011. Solving variants of the vehicle routing
problem with a simple parallel iterated tabu search, in: Network optimization.
Springer-Verlag Berlin, pp. 395-400.

Maleki, S., Musuvathi, M., Mytkowicz, T., 2016. Efficient parallelization using
rank convergence in dynamic programming algorithms. Communications of
the ACM 59, 85-92.

Martins, S.L., Ribeiro, C.C., 2006. Metaheuristics and applications to opti-
mization problems in telecommunications, in: Handbook of Optimization in
Telecommunications. Springer, Boston, MA, pp. 103-128.

Massobrio, R., Toutouh, J., Nesmachnow, S., Alba, E., 2017. Infrastructure
deployment in vehicular communication networks using a parallel multiobjec-
tive evolutionary algorithm. International Journal of Intelligent Systems 32,
801-829.

McCreesh, C., Prosser, P., 2015. A parallel branch and bound algorithm for the
maximum labelled clique problem. Optimization Letters 9, 949-960.

Melab, N., Luong, T., Boufaras, K., Talbi, E.G., 2011. Towards paradiseo-mo-
gpu: a framework for gpu-based local search metaheuristics, in: International
Work-Conference on Artificial Neural Networks, Springer. pp. 401-408.

Melab, N., Talbi, E.g., Cahon, S., Alba, E., Luque, G., 2006. Parallel meta-
heuristics: algorithms and frameworks. John Wiley & Sons, Inc., Hoboken,
New Jersey. chapter 6. pp. 149-161.

Menendez, B., Pardo, E.G., Sanchez-Oro, J., Duarte, A., 2017. Parallel variable
neighborhood search for the min-max order batching problem. International

50

Transactions in Operational Research 24, 635-662.

Mezmaz, M., Leroy, R., Melab, N., Tuyttens, D., 2014. A multi-core parallel
branch-and-bound algorithm using factorial number system, in: Proceedings
of the 28th International Symposium on Parallel and Distributed Processing,
pp. 1203-1212.

Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y.C., Talbi, E.G., Zomaya, A.Y.,
Tuyttens, D., 2011. A parallel bi-objective hybrid metaheuristic for energy-
aware scheduling for cloud computing systems. Journal of Parallel and Dis-
tributed Computing 71, 1497-1508.

Mu, D., Wang, C., Zhao, F., Sutherland, J.W., 2016. Solving vehicle routing
problem with simultaneous pickup and delivery using parallel simulated an-
nealing algorithm. International Journal of Shipping and Transport Logistics
8, 81-106.

Munawar, A., Wahib, M., Munetomo, M., Akama, K., 2009. Hybrid of genetic
algorithm and local search to solve MAX-SAT problem using nvidia CUDA
framework. Genetic Programming and Evolvable Machines 10, 391-415.

Mussi, L., Daolio, F., Cagnoni, S., 2011. Evaluation of parallel particle swarm
optimization algorithms within the CUDA architecture. Information Sciences
181, 4642-4657.

Nebro, A.J., Durillo, J.J., 2010. A study of the parallelization of the multi-
objective metaheuristic MOEA /D, in: Proceedings of the 11th International
Conference on Learning and Intelligent Optimization, Springer-Verlag Berlin.
pp. 303-317.

Nebro, A.J., Luna, F., Talbi, E.g., Alba, E., 2005. Parallel multiobjective op-
timization. John Wiley & Sons, Inc., Hoboken, New Jersey.. chapter 16. pp.
371-394.

Nesmachnow, S., Cancela, H., Alba, E., 2012. A parallel micro evolutionary
algorithm for heterogeneous computing and grid scheduling. Applied Soft
Computing 12, 626-639.

Nesmachnow, S., Cancela, H., Alba, E., Chicano, F., 2005. Parallel metaheuris-
tics in telecommunications. John Wiley & Sons, Inc., Hoboken, New Jersey.
chapter 20. pp. 495-515.

Nowotniak, R., Kucharski, J., 2011. GPU-based massively parallel implementa-
tion of metaheuristic algorithms. Automatyka/Akademia Gérniczo-Hutnicza
im. Stanislawa Staszica w Krakowie 15, 595-611.

Nwana, V., Mitra, 2000. Parallel mixed integer programming: a status review.
Technical Report. Department of Mathematical Sciences, Brunel University.

Olensek, J., Tuma, T., Puhan, J., Burmen, A., 2011. A new asynchronous paral-
lel global optimization method based on simulated annealing and differential
evolution. Applied Soft Computing 11, 1481-1489.

Ozden, S.G., Smith, A.E., Gue, K.R., 2017. Solving large batches of traveling
salesman problems with parallel and distributed computing. Computers &
Operations Research 85, 87-96.

o1

Pages-Bernaus, A., Perez-Valdes, G., Tomasgard, A., 2015. A parallelised dis-
tributed implementation of a branch and fix coordination algorithm. Euro-
pean Journal of Operational Research 244, 77-85.

Pardalos, P.M., Pitsoulis, L., Mavridou, T., Resende, M.G.C., 1995. Paral-
lel search for combinatorial optimization: genetic algorithms, simulated an-
nealing, tabu search and GRASP, in: Proceedings of the 2nd International
Workshop on Parallel Algorithms for Irregularly Structured Problems, pp.
317-331.

Patvardhan, C., Bansal, S., Srivastav, A., 2016. Parallel improved quantum in-
spired evolutionary algorithm to solve large size quadratic knapsack problems.
Swarm and Evolutionary Computation 26, 175-190.

Paulavicius, R., Zilinskas, J., 2009. Parallel branch and bound algorithm with
combination of lipschitz bounds over multidimensional simplices for multi-
core computers, in: Parallel Scientific Computing and Optimization. Springer,
Boston, MA, pp. 93-102.

Paulavicius, R., Zilinskas, J., Grothey, A., 2011. Parallel branch and bound
for global optimization with combination of lipschitz bounds. Optimization
Methods & Software 26, 487-498.

Pedemonte, M., Nesmachnow, S., Cancela, H., 2011. A survey on parallel ant
colony optimization. Applied Soft Computing 11, 5181-5197.

Pedroso, D.M., Bonyadi, M.R., Gallagher, M., 2017. Parallel evolutionary algo-
rithm for single and multi-objective optimisation: differential evolution and
constraints handling. Applied Soft Computing 61, 995-1012.

Polacek, M., Benkner, S., Doerner, K.F., Hartl, R.F., 2008. A cooperative and
adaptive variable neighborhood search for the multi depot vehicle routing
problem with time windows. Business Research 1, 207-218.

Polat, O., 2017. A parallel variable neighborhood search for the vehicle rout-
ing problem with divisible deliveries and pickups. Computers & Operations
Research 85, 71-86.

Ponz-Tienda, J.L., Salcedo-Bernal, A., Pellicer, E., 2017. A parallel branch
and bound algorithm for the resource leveling problem with minimal lags.
Computer-aided Civil and Infrastructure Engineering 32, 474-498.

Posypkin, M.A., Sigal, I.K., 2008. A combined parallel algorithm for solving the
knapsack problem. Journal of Computer and Systems Sciences International
47, 543-551.

Pérez, J.A.M., Hansen, P., Mladenovi¢, N., 2005. Parallel variable neighborhood
search. John Wiley & Sons, Inc., Hoboken, New Jersey. chapter 11. pp. 247—
266.

Qu, J., Liu, X., Sun, M., Qi, F., 2017. GPU-based parallel particle swarm
optimization methods for graph drawing. Discrete Dynamics in Nature and
Society .

Quan, Z., Wu, L., 2017. Design and evaluation of a parallel neighbor algo-
rithm for the disjunctively constrained knapsack problem. Concurrency and
Computation-practice & Experience 29.

92

Randall, M., Lewis, A., 2002. A parallel implementation of ant colony optimiza-
tion. Journal of Parallel and Distributed Computing 62, 1421-1432.

Rashid, H., Novoa, C., Qasem, A., 2010. An evaluation of parallel knapsack
algorithms on multicore architectures., in: Proceedings of the 2010 Interna-
tional Conference on Scientific Computing, pp. 230-235.

Ravetti, M.G., Riveros, C., Mendes, A., Resende, M.G.C., Pardalos, P.M., 2012.
Parallel hybrid heuristics for the permutation flow shop problem. Annals of
Operations Research 199, 269-284.

Redondo, J.L., Fernandez, J., Garcia, 1., Ortigosa, P.M., 2008. Parallel algo-
rithms for continuous competitive location problems. Optimisation Methods
& Software 23, 779-791.

Redondo, J.L., Garcia, 1., Ortigosa, P.M., 2011. Parallel evolutionary algorithms
based on shared memory programming approaches. Journal of Supercomput-
ing 58, 270-279.

Redondo, J.L., Marin, A., Ortigosa, P.M., 2016. A parallelized lagrangean relax-
ation approach for the discrete ordered median problem. Annals of Operations
Research 246, 253-272.

Resende, M.G.C., Ribeiro, C.C., 2005. Parallel greedy randomized adaptive
search procedures. John Wiley & Sons, Inc., Hoboken, New Jersey.. chap-
ter 14. pp. 315-346.

Roberge, V., Tarbouchi, M., Labonte, G., 2013. Comparison of parallel genetic
algorithm and particle swarm optimization for real-time UAV path planning.
IEEE Transactions on Industrial Informatics 9, 132-141.

Rossbory, M., Reisner, W., 2013. Parallelization of algorithms for linear dis-
crete optimization using paraphrase, in: Proceedings of the 24th International
Workshop on Database and Expert Systems Applications (DEXA), pp. 241—
245.

Rudek, R., 2014. Exact and parallel metaheuristic algorithms for the single
processor total weighted completion time scheduling problem with the sum-
of-processing-time based models. Computers & Operations Research 46, 91—
101.

Rudolph, G., 2005. Parallel evolution strategies. John Wiley & Sons, Inc.,
Hoboken, New Jersey. chapter 7. pp. 155-169.

Sancy, S., Isler, V., 2011. A parallel algorithm for UAV flight route planning on
GPU. International Journal of Parallel Programming 39, 809-837.

Sanjuan-Estrada, J., Casado, L.G., Garcia, 1., 2011. Adaptive parallel interval
global optimization algorithms based on their performance for non-dedicated
multicore architectures, in: Proceedings of the 19th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP),
pp. 252-256.

Santos, L., Madeira, D., Clua, E., Martins, S., Plastino, A., 2010. A parallel
GRASP resolution for a GPU architecture, in: Proceedings of the 7th Inter-
national Conference on Metaheuristics and Nature Inspired Computing, p.
META10.

93

Sathe, M., Schenk, O., Burkhart, H., 2012. An auction-based weighted matching
implementation on massively parallel architectures. Parallel Computing 38,
595-614.

Scheerlinck, K., Vernieuwe, H., De Baets, B., 2012. Zadeh’s extension principle
for continuous functions of non-interactive variables: a parallel optimization
approach. IEEE Transactions on Fuzzy Systems 20, 96-108.

Schulz, C., Hasle, G., Brodtkorb, A.R., Hagen, T.R., 2013. GPU computing in
discrete optimization: Part ii: Survey focused on routing problems. EURO
Journal on Transportation and Logistics 2, 159-186.

Shylo, O.V., Middelkoop, T., Pardalos, P.M., 2011. Restart strategies in opti-
mization: parallel and serial cases. Parallel Computing 37, 60-68.

Silva, J.M.N., Boeres, C., Drummond, L.M.A., Pessoa, A.A., 2015. Memory
aware load balance strategy on a parallel branch-and-bound application. Con-
currency and Computation-practice & Experience 27, 1122-1144.

Skinderowicz, R., 2016. The GPU-based parallel ant colony system. Journal of
Parallel and Distributed Computing 98, 48-60.

Stanojevic, P., Maric, M., Stanimirovic, Z., 2015. A hybridization of an evolu-
tionary algorithm and a parallel branch and bound for solving the capacitated
single allocation hub location problem. Applied Soft Computing 33, 24-36.

Stivala, A., Stuckey, P.J., Garcia De La Banda, M., Hermenegildo, M., Wirth,
A., 2010. Lock-free parallel dynamic programming. Journal of Parallel and
Distributed Computing 70, 839-848.

Subotic, M., Tuba, M., Stanarevic, N., 2011. Different approaches in paralleliza-
tion of the artificial bee colony algorithm. International Journal of mathe-
matical models and methods in applied sciences 5, 755-762.

Subramanian, A., Drummond, L.M.A., Bentes, C., Ochi, L.S., Farias, R., 2010.
A parallel heuristic for the vehicle routing problem with simultaneous pickup
and delivery. Computers & Operations Research 37, 1899-1911.

Talbi, E.G. (Ed.), 2006. Parallel combinatorial optimization. John Wiley &
Sons.

Talbi, E.G., 2009. Metaheuristics: from design to implementation. John Wiley
& Sons.

Tan, G., Sun, N., Gao, G.R., 2009. Improving performance of dynamic program-
ming via parallelism and locality on multicore architectures. IEEE Transac-
tions on Parallel and Distributed Systems 20, 261-274.

Tan, Y., Ding, K., 2016. A survey on GPU-based implementation of swarm
intelligence algorithms. IEEE Transactions on Cybernetics 46, 2028-2041.
Taoka, S., Takafuji, D., Watanabe, T., 2008. Enhancing PC cluster-based par-
allel branch-and-bound algorithms for the graph coloring problem. IEICE
Transactions on Fundamentals of Electronics Communications and Computer

Sciences E91A, 1140-1149.

Thiruvady, D., Ernst, A.T., Singh, G., 2016. Parallel ant colony optimization

for resource constrained job scheduling. Annals of Operations Research 242,

o4

355-372.

Tosun, U., Dokeroglu, T., Cosar, A., 2013. A robust island parallel genetic
algorithm for the quadratic assignment problem. International Journal of
Production Research 51, 4117-4133.

Toulouse, M., Crainic, T.G., Sansé, B., 2004. Systemic behavior of cooperative
search algorithms. Parallel Computing 30, 57-79.

Toulouse, M., Crainic, T.G., Thulasiraman, K., 2000. Global optimization prop-
erties of parallel cooperative search algorithms: a simulation study. Parallel
Computing 26, 91-112.

Tran, Q.N., 2010. Designing efficient many-core parallel algorithms for all-
pairs shortest-paths using CUDA, in: Proceedings of the 7th International
Conference on Information Technology: New Generations (ITNG), pp. 7-12.

Trelles, O., Rodriguez, A., 2005. Bioinformatics and parallel metaheuristics.
John Wiley & Sons, Inc., Hoboken, New Jersey. chapter 21. pp. 517-549.

Tsutsui, S., 2008. Parallel ant colony optimization for the quadratic assign-
ment problems with symmetric multi processing, in: Proceedings of the 6th
International Conference Ant Colony Optimization and Swarm Intelligence,
Springer-Verlag Berlin. pp. 363-370.

Tu, W., Li, Q., Li, Q., Zhu, J., Zhou, B., Chen, B., 2017. A spatial paral-
lel heuristic approach for solving very large-scale vehicle routing problems.
Transactions in Gis 21, 1130-1147.

Umbarkar, A., Joshi, M.S., Hong, W.C., 2014. Multithreaded parallel dual pop-
ulation genetic algorithm (mpdpga) for unconstrained function optimizations
on multi-core system. Applied Mathematics and Computation 243, 936-949.

Vallada, E., Ruiz, R., 2009. Cooperative metaheuristics for the permutation
flowshop scheduling problem. European Journal of Operational Research 193,
365 — 376.

Van Luong, T., Melab, N., Talbi, E.G., 2013. GPU computing for parallel
local search metaheuristic algorithms. IEEE transactions on computers 62,
173-185.

Van Luong, T., Taillard, E., Melab, N., Talbi, E.G., 2012. Parallelization strate-
gies for hybrid metaheuristics using a single GPU and multi-core resources, in:
Proceedings of the 12th International Conference on Parallel Problem Solving
from Nature, Springer-Verlag Berlin. pp. 368-377.

Vidal, P., Alba, E., Luna, F., 2017. Solving optimization problems using a
hybrid systolic search on GPU plus CPU. Soft Computing 21, 3227-3245.
Vu, T.t., Derbel, B., 2016. Parallel branch-and-bound in multi-core multi-
CPU multi-GPU heterogeneous environments. Future Generation Computer

Systems-the International Journal of Escience 56, 95-109.

Wang, C., Mu, D., Zhao, F., Sutherland, J.W., 2015. A parallel simulated
annealing method for the vehicle routing problem with simultaneous pickup-
delivery and time windows. Computers & Industrial Engineering 83, 111-122.

Wang, D., Wu, C.H., Ip, A., Wang, D., Yan, Y., 2008. Parallel multi-population

99

particle swarm optimization algorithm for the uncapacitated facility location
problem using OpenMP, in: Proceedings of the 2008 IEEE Congress on Evo-
lutionary Computation, pp. 1214-1218.

Wang, K., Shen, Z., et al., 2012. A GPU-based parallel genetic algorithm
for generating daily activity plans. IEEE Trans. Intelligent Transportation
Systems 13, 1474-1480.

Weber, M., Neri, F., Tirronen, V., 2011. Shuffle or update parallel differential
evolution for large-scale optimization. Soft Computing 15, 2089-2107.

Wei, K.c., Sun, X., Chu, H., Wu, C.C., 2017. Reconstructing permutation table
to improve the tabu search for the PFSP on GPU. Journal of Supercomputing
73, 4711-4738.

Xhafa, F., Duran, B., 2008. Parallel memetic algorithms for independent job
scheduling in computational grids, in: Recent advances in evolutionary com-
putation for combinatorial optimization. Springer-Verlag Berlin, pp. 219-239.

Xu, Y., Ralphs, T.K., Ladanyi, L., Saltzman, M.J., 2009. Computational experi-
ence with a software framework for parallel integer programming. INFORMS
Journal on Computing 21, 383-397.

Yang, Q., Fang, L., Duan, X., 2016. RMACO: a randomly matched parallel
ant colony optimization. World Wide Web: Internet and Web Information
Systems 19, 1009-1022.

Yazdani, M., Amiri, M., Zandieh, M., 2010. Flexible job-shop scheduling with
parallel variable neighborhood search algorithm. Expert Systems with Appli-
cations 37, 678—687.

You, Y.S., 2009. Parallel ant system for traveling salesman problem on GPUs, in:
Proceedings of 11th. International Conference on Genetic and Evolutionary
Computation, pp. 1-2.

Yu, B., Yang, Z., Sun, X., Yao, B., Zeng, Q., Jeppesen, E., 2011a. Parallel ge-
netic algorithm in bus route headway optimization. Applied Soft Computing
11, 5081-5091.

Yu, B., Yang, Z.Z., Xie, J.X., 2011b. A parallel improved ant colony opti-
mization for multi-depot vehicle routing problem. Journal of the Operational
Research Society 62, 183-188.

Yu, W.J., Li, J.Z., Chen, W.N., Zhang, J., 2017. A parallel double-level multi-
objective evolutionary algorithm for robust optimization. Applied Soft Com-
puting 59, 258-275.

Ze-Shu, R.A.O., Wan-Ying, Z.H.U., ZHANG, K., 2017. Solving graph color-
ing problem using parallel discrete particle swarm optimization on CUDA.
DEStech Transactions on Engineering and Technology Research .

Zhang, X.Y., Zhang, J., Gong, Y.J., Zhan, Z.H., Chen, W.N., Li, Y., 2016.
Kuhnmunkres parallel genetic algorithm for the set cover problem and its
application to large-scale wireless sensor networks. IEEE Transactions on
Evolutionary Computation 20, 695-710.

Zhang, Y., Wang, S., Ji, G., 2015. A comprehensive survey on particle swarm

96

optimization algorithm and its applications. Mathematical Problems in En-
gineering 2015.

Zhao, J., Liu, Q., Wang, W., Wei, Z., Shi, P., 2011. A parallel immune algorithm
for traveling salesman problem and its application on cold rolling scheduling.
Information Sciences 181, 1212-1223.

Zhou, Y., He, F., Hou, N., Qiu, Y., 2017. Parallel ant colony optimization on
multi-core SIMD CPUs. Future Generation Computer Systems .

Zhu, W., Curry, J., 2009. Parallel ant colony for nonlinear function optimiza-
tion with graphics hardware acceleration, in: Proceedings of the 2009 IEEE
International Conference on Systems, Man and Cybernetics, pp. 1803—-1808.

o7

Appendix A. Literature selection process

When invited by the editorial board of Furopean Journal of Operational
Research in 2018, we were recommended to concentrate on the last decade of
literature whenever possible. Following this recommendation is particularly
reasonable for the body of literature on parallel optimization in OR because
it accounts for a massive growth in computing performance in this period and
resulting substantial advances of studies published regarding algorithmic paral-
lelization, parallel software implementation and achieved computational results.

We conducted a title search in the most renowned OR journals. More specif-
ically, we considered those 49 OR journals which are ranked “A+7, “A” “B”
or “C” in the German VHB-JOURQUAL 3 ranking of the German Academic
Association for Business Research (German Academic Association for Business
Research (VHB)); a complete list of these journals is included in Table As
we expected to find research related to parallel optimization in OR also in jour-
nals that are dedicated to parallel computing, we included the following four
journals in our search: Journal of Parallel and Distributed Computing, Inter-
national Journal of Parallel Programming, Parallel Programming and Parallel
Processing and Applied Mathematics. We used Web of Science to conduct a

title search for both sets of journals, using the following search string:

(parallel* OR distributed OR ”‘shared memory” OR MPI OR OpenMP
OR CUDA OR GPU OR SMP) AND NOT ”parallel machine”

98

(1opiI0 [ednjoqeydye ur) sseooxd UOIO[S SINYRINI] Ul PaIOPISUOD s[ewmol yoressor uonyend Gy d[(R],

90usI0g uoIjR)IOdsuel],

[eOIS0[OPOYIRIN :f 21ed YoIeosoy uorjejrodsuedy,
MOIASY SOTWRUA(] WLISAG

Surndwo)) uo [ewInor VIS

wmnayoedg YO

S10390 YoIeasay suorjerad()

oIeasay] suoryeiod()

SOTISTSOT [DIRISOY [RARN

oI1easay suoljerad() Jo SOTyRmaY)RI
Surwrel80l1J [ed13eWaYIRIN

oIeasay suorjerod() JO SPOYISIA [RIT)RTLYIRIA
Juotegeur]y suoryeIad() 991AI9G 29 SULINORINURIA
SOTWIOU0D,] UOTSINd(] PUR [RLIOSRURIN

A[199IRNY) SWOISAG UOTIRULIOJU] JUSTIOSRURIA
oIeasay So1IsI30]

£90100G IROSOY TeUOIIRIOd() O} JO [RUINO[
SurMpeyog Jo [euInof

Ajure)Ieou() pue sy JO [RUINOf

JuoMIoSRUR]A SUIDLIJ PUR ONUOAIY JO [RUINO[
JuswegeuR]y suorjeiod() Jo rewInor

SOIISLIMOY JO [RUINO[

BUI)SLIDI0 JO [RUINO[

[019UO)) 29 SOTWRUA(] JIWOUOIH JO [ewIno
SWI9YSAG UOISINA(] JO [RUINOL

018989} UOIONPOILJ JO [eUINO[[UOI}eUIU]
SOTWOUO2]] UOI}ONPOIJ JO [RUINO[[BUOTJRUIIUT
oIessoy suoryersd() JO [RUINO[[RUOTJRUIIU]

JuewaSeur [y UONONPOIJ 23 suoryerad() JO [BUINO[[BUOIJRUISIU]
Sunyey uoIsa(] 23 A30[0UYD]], UOTJRULIOJU] JO [RUINO[[RUOIBUIdIU]

3u11s82910,] JO [RUINO[[RUOIJRLIIIU]
S90RJIU]

Surindwo)) uo ewInor SINHOINI
OISO} SWVISAG UOI)RULIOJU]
suorjoesuel], 1T

SOIjPUINAD) pUR ‘URJ\ ‘SWIO)SAG UO suoljoesuel], HHH]

UOI)RIJOZON PUe UOISIO9(] dnoir)

[ewInof SULIM)ORINURIA PUR SOIIAING O[(IXO[]
oIeasoy [euoljeiod() jo rewinor weadoanyy
SO19S1307] pue uoryelIodsuel], uo fewmor OYNH
sorpewsyjeIy parddy 99910sI(]

swelsAg jr0ddng UOISIOA(]

SOOUSIDG UOISTOA(]

Anysnpuy ut smeinduwo))

oIeasay suorjerad() pue siejnduwo))

oIessay suorjerod() jo rewmnor weodoiny [RIJUS))
oIeasey [euoljerad() Jo [ewInor JyoeJ-eIsy
90UOII[OIU] [RIOYIJIY

oIeasay suorjerad() jo sreuuy

gs(0)%

99

Acknowledging that research on parallel optimization relevant to the OR
discipline is likely to be published also in journals of other disciplines and in
conference proceedings and books, we also conducted a title search using Web
of Science Core Collection without any restrictions regarding the publication
outlet. However, we needed to adjust the search string in order keep the resulting

list of articles manageable. The search strings that we used is as follows:

e “parallel* optimization” OR “parallel* branch” OR “parallel* discrete”
OR “parallel heuristic” OR “parallel exact” OR “parallel meta” OR “par-
allel genetic” OR “parallel tabu” OR “parallel evolutionary” OR, “paral-
lel* ant colony” OR “parallel* simulated annealing” OR “parallel* vari-
able neighborhood search” OR “parallel* Greedy Randomized Adaptive
Search Procedures” OR. “parallel* scatter search” OR “parallel* dynamic

programming”

e (MPI OR OpenMP OR CUDA OR GPU) AND (heuristic* OR exact OR
meta OR genetic OR branch OR optimization OR discrete OR tabu)

e (parallel* AND algorithm) AND (knapsack OR transport OR logistics OR

evolutionary)

We also conducted a backward search of reference sections of literature re-
views we identified (see the introduction of this article).

Overall, our literature search returned more than 1,100 entries. With the
support of a PhD and several student workers, we used the title of an article
to decide whether it should be excluded from further analysis due to a missing
fit with the scope of this review, resulting in a preliminary list of 238 entries .
Finally, with the help of the student workers we analyzed the content of each of
these articles and excluded further 83 entries for a variety of reasons, including
a missing fit with scope and the use of languages other than English. Finally, we
conducted a backward search of reference sections of the remaining 155 articles
to mitigate the risk of overlooking relevant studies: in a first step, we selected

potentially relevant articles based on their title; in a second step, we analyzed

60

the selected articles by inspecting the full text to decide whether they should
be included in the final set of considered articles or not; this procedure yielded
50 additional articles. Overall, the ultimate set of articles, referred to as our
sample, consists of 206 computational studies on parallel optimization in OR

published between 2008 and 2017.

Appendix B. Coding of computational parallelization studies

This section contains the detailed coding results of our sample with the ex-
ception of three studies: Ostermark (2014} 12015)) do not explicit the algorithm
parallelized; Bozejko| (2012) parallelizes the problem-specific evaluation of ob-
jective function but no overall algorithm is considered. To sum up, the tables
in this section include 203 studies of the full sample (206 studies).

The articles are grouped along types of algorithms, with Table address-
ing exact methods, Table [B.7] addressing single-solution based metaheuristics,
Table [B-§] addressing population-based metaheuristics, Table [B.9] addressing
hybrid metaheuristics, and Table addressing problem-specific heuristics,
other heuristics, and matheuristics. Unsurprisingly, not all studies included in
our sample provide sufficiently precise details that allow coding all attributes.
In cases where incomplete or ambiguous information is provided , we use the
value “n/a”. We need to point to two exceptions from this rule: 1) in the col-
umn “Process and search control”, which show a triple classification, the usage
of “n/a” for one or more of the three classes may confuse the reader. Thus, we
prefer to use the symbol “?” where information is not available or ambiguous,
or where our classification is not applicable (e.g., in reference (Derbel et al.|
2014)), a semi-synchronous mode is used because MPI-synchronization occurs at
a pairwise level but not at a global level (p. 15)). 2) The entry “n/a” in the
“Scalability” column has a more sophisticated interpretation, which we unfold
in the text below.

The entries in the columns labeled “Problem” and “Algorithm” use the ab-

breviations as shown in Table 2] in the main text of the article. Entries in

61

columns labeled “Parallelization strategy”, “Process & search control”, “Com-
munication topology” and “Programming model” are used as described in the
main text.

The column “Scalability” covers both speedup and efficiency. It shows dif-
ferent types of entries: speedup that is qualified by its type of efficiency is
provided in the form “sublinear (n=2-16)”, for example, where the range of n
indicating the numbers of parallel processing units used. Speedup that varies
between (sub)linear and superlinear depending on tested instances is described
accordingly. Speedup achieved with GPGPUs is given as a single value or as
an interval. We do not qualify speedup in this case as the number of paral-
lel working units (usually GPGPU threads) needs to be interpreted different
from that counting other parallel working units (CPU threads, processes) be-
cause they differ substantially from a technological perspective. Also, for the
same reason, the determination of efficiency of parallelization should not be
computed as the ratio of speedup and the number of parallel processing units.
The entry “n/a” in the “Scalability” column is an umbrella type and can have
several different meanings described below. When more than one experiment
has been conducted (e.g, applying different (versions of) algorithms, different
(sets of) benchmark instances, and/or different programming models), speedup
information is numbered.

Reasons for labeling scalability as “n/a” turned out to be appropriate for

manifold reasons:

e Times are compared with theoretical serial times.

e Speedup is related to other parallel executed algorithms or to parallel
execution of the same algorithm (for example, because the execution on a
single processing unit was practically infeasible due to time limitations);
i.e., we report only speedups (weak or relative) related to serial executions

of algorithms.

e The type of reference execution is unknown.

62

e No speedup values are reported or tedious work is necessary to determine

them from data reported.

e Speedup values are provided in in supplementary material which is inac-

cessible.
e Speedup values only refer to parts of algorithms.

e Running times must not be compared as i) different (hardware) ma-
chines/computing environments are used, or ii) different levels of objective
functions are achieved by reference execution(s) and execution of parallel

algorithm.

e Parallelization is conducted in a virtual environment where no physical
parallelization occurs. Then, execution times are hardly comparable as
parallel execution times will often be larger than sequential times due to

parallelization overhead.

We do not qualify speedup (as “linear”, for example) in the case of GPGPU
as programming model as the number of parallel working units (usually GPGPU
threads) needs to be interpreted different from that counting other parallel work-
ing units (CPU threads, processes) because they differ substantially from a
technological perspective. Also, for the same reason, the determination of ef-
ficiency of parallelization should not be computed as the ratio of speedup and

the number of parallel processing units.

63

[69'0.1-96°92] ndnd e/u SSdIN/D/0d uorjsodwooop urewop X-e-g dssd ®ETOT| [T8 10 UnoIyeyD
(zg-g=u) reaurqns Surssed o8essowr EERL SSdIN/D/Dd uorjisodwodep urewop X-e-g a3 800¢| [1eS15 pue unjdAsod]
(p-g=u) eouriqns ALrowrowr poreys oAr[s-109sBUL SSdSs/su/01 [oA9[-mof X-e-g 12710 600¢| [seqsul[lz pue snpRiae[ned
||||| [cozez-se'se1l ‘[Tveteres) e/wcpe/w oo oo ooooomomomoomooomom oo m e 1
‘e ‘(sndD 9-g=u) xeaurr'g ‘[091-08] T ‘g ‘speaayy ‘g ‘e/u T e/u SsdIn/o/od uorjrsodwodsp urewop xX-e-g dSsda E qe[dN pue unoaxeyp)
(Surssed a8essowr +
(sndD g1g Arowewr pereys) priqAy ysowt (uoryrsodurooep urew
-I=w ‘sndo 9I-T=Uu) JIeaur[/resur[qns 'z ‘Surssed oSessowr | pojosuuod A[[ny e/u -op + [PA9[-mO[) PpriqLy xX-e-g dSsda E
Arowour-pareys
(00T-g=u) reaurqns ‘g ‘Surssed oSessowr T aAr[S-I93sRUT SSA/D/DT uorjisodwodop urewop X-e-g JdTIN E Isneg pue ojorred)
(y9-zg=u) 1eaury/ies (Surssed a8essowr +
-uipqns ((9T=u) SPOURISUL USOMID] SOLIRA Arowew paaeys) praqAy 2013 SSdIN/D/Dd uorjrsodwrodop urewrop X-e-g 12110 ST0T g
e/u ndnd e/u SSAIN/D/DT uorjsodwoosp urewop xX-e-g dssd 910g|[1@ 30 shmpn
[7 7 T(0z-g=u) seouwssur uoomyoq sorrea Surssed oSessowr | oae[s-toyswwr SSAN/O/01 | uomsodwosep urewop | x-e-g @0 @T@ 30) |
(pasn ool 231am /pesr)
(g=u) reoury Arowom poreys oar[s-109sBUL SSdIN/D/OT uorjrsodwooep urewop X-e-g 12710 E
1210
®/u ndndo e/u SSAN/D/OT uorytsodurodsp urewop X-e-g ‘dSd ‘dssd E F'1e 30 s&wp)
[6L°c-L91] ndodn oA®[s-109sEUW SSdIN/D/OT uorjrsodurodep urewrop X-e-g 12710 E Te 30 o)uesiiog)
sads/:/nd
‘€ ‘sads/oM/0d ¢ yoaess-rynu ~dood -g/°g
e/u Surssed oSessow oae[s-I93sRW ‘sads/sy/nd T ‘goaees-yynw ~depur T xX-e-g JdTIN YTOT|[18 30 [elfearen
.......... (Gors-omi) moun” T T T Tmamsted vivsmed T T eavismerstw T T T T T gsaw/olor T T T uesmodwesspumwep” T T Txem T T T wemo ~ ~ T T Terodlle e wmienal |
(y=u) xeaur| speaay e/u SSdIN/D/OT uorjisodwodep urewop X-e-g dLD S10T) Twmmofm Pu® [sa9I30 N
(91-g=u) 1eouriqns speo1yy e/u SSdIN/D/OT uorgrsodwosep urewrop X-e-g dLD g SBIR[ISSEA PU®R NOISLIYD
Suissed oSessow
(91-g=u) aesurqns ‘g ‘Alowewr peieys T e/u SSAIN/D/DT uoryisodwodsp urewop X-e-g 10YI10 E ‘[e 30 snmravEe])
(u pajroderun) [g'2-6'T] Surssed oSessow P01y ssdn/o/od uorjrsodwooep urewop X-e-g ad :
|||||||||||||||||||| (f&iowowt poreys + -~ -~ -~ -~~~ = -~ =-7T7-~ -~~~ =~77/7"7"7"~" "~~~ 7~7~—7/7/~ "~ ——°—°77 |
(091=u) reourpzodns Surssed oFessow) praqAy oae[s-103sEBW SSAIN/D/OT uorsodwosep urewop xX-e-g Y0 ‘e 30 epusLL-ZuoJ])
(91-F=u) 1eoury Surssed oSessowt ysowr SSdIN/D/od uorjrsodwodep urewop X-e-g dLo E Ev
(91-1="10)
reour] ‘g pue g ‘(9T-T=u) Ieourqns ‘T speoays w/u ssdin/o/od uorgsodwooop urewop X-e-g ddag 2102|| 10 30 vaorrom)
[79°09-25"07] ndndo aAR[s-10)sRUT ssds/su/ot [oA8[-mo] x-e-g dssd E_E.
Suu g ssaw/o/od 1ozl [1e 30 zewzop)
e/u e/u ‘oae[s-193sRUW] ‘'z ‘SSAN/D/DT T uorjisodwodep urewop X-e-d dssda
[opow A3ojodoy [oa3uo0d yoaesas A393ea3s
Lyiqeress Bupmue Sosd KOIFEOIEMUIIHON N S wy3a03[y we[qoxg sousasyey

64

e/u

uorjrsoduroo

(pg=>u) resuiprodns ANIS ‘¢ ‘spe21yy T Bux ‘'z ‘ssds/sy/O1 T -op urewop ‘g ‘[2A9[-MO[‘T X-e-g dv unp o] pue eden)
nandn
[69°0T-19°2] 'z ‘(p=u) weounqns ‘T ‘g ‘Arowowr pateys T e/u SsdN/0/0d w01y sodwodop urewrop X-e-d dsL [1102]| 1% 30 omrouawn)
[22°6-78°€] NdDID ®/u SSAIN/D/DT uorjrsodwooep urewop X-e-d a3 E ‘Te 9o relpaynog)
(Surssed a8essowr +
(gg=>u) reourjzodns Lrowsw poreys) prqiy e/u SSAN/D/DT uorjrsodwodsp urewop X-e-g 12130 ‘Te 30 oxudsLiog)
(uorjisodwooap
[e"g9-18°0] ndandn one[s-103sT v/u urewop-[eas[-mo[) PLAAY x-e-g dssr F1e 90 19PY)
[o1-2] T ‘(91-g=u) (seouess ndando
-UT USOMJD(SOLIBA) IBSUI| 10 IBDUI[qNS T ‘g ‘Alowewr peareys T e/u e/u [oAS]-MO] vasd a3
(op=>u) aeourqus Burssed oFessow ysow SSdN/su/0d uoryrsodwooep urewop vasd dLD
(PzoT=>u) 1eour PHqAY dae[s-193sEU SSds/su/01 [2A3[-20] vasd dro
[o o
e/u Azowswr peieys) priqiy 2019 SSdS/sH/0t1 [oAa]-mo[da Y10 E ‘e 39 1330yosog)
[g0°92-6'81] ndndn P01y SSdSs/su/01 [oad[-mo] da ad E E.
1210
(gg=>u) teaurqns A[3sowr Arowouwr pareys e/u sads/o/od yoress-1ynuw ‘dooo da ALD ‘a3 E Ev
(F9-p=u) reourqns speoIty o014 Ssds/su/01 [eA9[-m0] da ®/u % T2 30 ueL)
(ArowoW PoINqLIISIP "3Im Arowewr paInNqrIjsIp (uorjisodwooap urewr
A1qeqoad) (8z1-(8 10 T)=u) iesurqus ‘g ‘Arowrewr pereys T e/u sadm/sy/nd -op 4+ [eAd[-mol) Ppriqiy da Y10 E
- - - T TS T T T T T T T T T T T T T T T Rakgsaessew | gaas/su/ode yowwes-ynew T~ T T T T 77
(g1=u) resurqns Burssed oFessow ‘g ‘eo1y T ‘Ssds/su/0t T rdooo g ‘[ead[-mo[T da d0s E E.
(9gg-g=u) reauriqns Surssed oSessowt oAR[S-I9)sRW ssds/sd/ot [oAR]-MO] ada 10430 E Ev
ysowr
(v9-g=u) reour|qns Surssed oFussowr pojoouuod A[[ng Ssds/su/ot [oAs1-mo[Wd1 Jos 210 [12 30 souqonm)
(zg-g=u) aeaurqns Suissed o8essowt e/u SSAIN/D/DT uoryisodwodsp urewop X-e-g dOS E— ‘e 3o urqnry)
(gT=u) reouriqns Surssed oSessow oAr[s-109sBUL SSdIN/D/OT uorgrsodwrosep urewrop X-e-g dTIN ‘Te 30 sneurog-soSed)
e
e/u Surssed oFessowr) praiqiy 9919 Ssdn/o/od uorjrsodwodsp urewop xX-e-g JdOS ‘e 3@ 010Seply
e/u Surssed o8essowr oAR[sS-I9)seW SSAIN/D/0DT uorjisodwodep urewop X-e-gq JdTIN 60021 30 nY|
(Suta + oawls Lr
e/u Surssed ofessow -1ogsew) praqAy SSAIN/D/0d uorsodwosep urewop xX-e-g Y0
e/u Surssed o8essowr oAR[sS-I9)seU SSAIN/D/O1T uorjisodwodsep urewop X-e-gq ds.L
(Buwx + oners SSAN/D/DT
(F-g=u) S9OURISUI USOMID] SOLIBA Suissed o8essowt -199sRW) PrIqAY ‘SSAIN/D/od T uoryrsodwodsp urewop X-e-g dssr g_ leypnog pue 1eziry)
[opow A3ojodoy [oa3uo0d yoaesas A393ea3s
Lyiqeress wy3a03[y we[qoxg sousasyey
SurwwresSord — uUorEdIUNWIWOD 73 sseooag uorjezieered

65

(sunyjrioSye joexe) serpngs uoryezipyrered reuoryeinduro)) 9 g o[qe],

[0052-006]
'z ‘leg-8p] 1 :suorsiea wjlI0S[E OM) ndndn e/u SSds/sH/0t [9A3]-mO] da dLroD E
speoaiy) Suruuni jo -‘ou ofevioAv=Uu
‘(8gT>u>y) tesurqus ‘(y>u>T) Ieaur| speaI} ®/u SSAN/D/Dd uorjsodwooop urewop X-e-d PYI0 ‘ddd T10g|[[® 30 epriysg-uenfueg
(z1=u) tesurqns e/u oAr[s-19)seW SSds/s¥/01 uorjisodwodep urewop vaSd JdTIN €107 [1ousioy pue A10(sSsOY
ysow ‘g
(91=>u) resutiqns Lrowsw pareys ‘oar[s-193sEU T SSds/sy/D1 [oa9[-mo| da d31 ‘Te 30 prysey
T T T T T T T (o1=>u) aweurqns = Suissed oSessow | eav[s-tessewn ssds/su/ot T 7 asl-mol war wwo ‘e 30 wyonr
(8%0z-zg=u) resurqns Surssed oBessow e/u SSds/su/ot [9A9]-mO[NI dOs ‘Te 3o uiqnry
SSds/su/01
[zg'g1-22°01] "z ‘(g=u) resurqns T NdDID 'z ‘spesays ‘T e/u ‘e/u T [ead[-Mm0] ‘g ‘e/u T da dLD ‘Te je rewmnyy
(91=>u) 1eoury Surssed oSessow e/u SSds/su/0t [oAd[-mo] NI Y10 E ‘e 30 Suof]
(speotqy + o013 g SSdN/D/0d
(82 1-gg=u) 1eaurqns Surssed oFessowr) priqiy ‘oAr[s-I19jseW T ‘SSAIN/D/D1 T uorjisoduwodep urewop X-e-g REYiETe) Eg
[opow A3ojodoy [oa3uo0d yoaesas A393ea3s
Ajiiqereosg wy3rao3y we[qoag @dousasjey
Buruweadold —uUoEdIUNWWOD 73 ssedo0adg uorjezid[eIed

66

Liowew eia

(01=u) Iesurqns ALiowewr pareys uorped I unNuWuWod sadin/o/od yoaees-1pnuwr ‘dooo SI av E Ev
[68=>] nandn oae[s-199sEUL Ssds/su/0t [oad[-mo] SL dssd E soureg pue pisutdez))
(z=u) (seouess
-ur ueemyaq sarres) resui[radns 10 IeLUI] AINIS oAR[S-I9)sRU SSdS/sY/0D1 [oao[-moO] SL dssd E Ev
I L ndodo e o ssds/su/or [oA]-mo] SL 0130 E_E.
(veg-g=u) 1eouriqns ALiowow poreys oar[s-109sTUL SSds/su/0t [9a9]-mo] SL dssr E E. i
e/u spea1yy oAR[S-I9)sRW sads/sy/od yoaees-13nw ‘dood S JUA E E.
yoaeos
Surssed oSessowt sadmn/o/od -1pnw oarjeradood ‘g ‘uory
e/u ‘Arowewr poleys T QAR[S-I9)SRU 'z ‘sads/sM/ort T -tsodwodep urewop T Vs dYA E ‘1e 3o soued
(z61-vg=u) teouriqns Burssed ofessow e/u sad:/q/od yorees-mynur ~dood Vs dddg E Z}1Utey] PU® noT
oAe[s-103SBUW g yorees-1pnw "dood
[ov'692-¥¥ €] ndandon ‘pejoouuooun - sads/sd/od ‘g ‘yorees-ynw -depur ‘T Vs Y10 E REIEEICRICEEEY |
e/u speaaysy QAR[S-I9)sRU sads/sy/od yoress-rynuw ‘dooo Vs JdYUA E ‘e 30 Suep)|
e/u speoayy oAR[s-19)sEW sads/su/ond yoaeas-rynux -dood Vs JUA 910g| | 'T® 10 nIN
e/u Surssed o3essowr QAR[S-I93SRU SINS/SM/OT uorjisodwooep urewop Vs dssd 'YsIajo(
(zg-g=u) teauriqns ALrowew poreys e/u SSdSs/sH/01 [9A9[-MO] SNA dYA e e g,
(9=u) 1esurqus e/u aeys SSdN/D/Dd e/u SNA dJUA L10g|[1e1od.
|||||||||||| lervresol napao e/ " Tgsas/sw/or teasrmor sNa aua [otog|[e 30 oupon) |
e/u speaays aAe[s-10)sEWL SSdSs/sH/01 [9A9[-m0] SNA 12130 E ‘e 90 anodrepuessH)
(g=u) teouriqns speoayy oAR[s-I0}sRW SSds/su/0t [oAd[-mO] SNA Y10 E_ ‘e 30 ZOpUOUIIN
©/u Surssed ofessowr oa[s-109sEU SAdN/SU/OT uo131s0dwonsp urewop SNA a3 E A\ pue ueng)
sadin/o/od yoreas-ry
‘¢ ‘sads/o/pd v dooo ‘g fydawes-pnw
Surr'g ‘sads/n/od € ‘dood b ‘yorees-pynw
‘oAr[s-I9jsRW ‘§ ‘SSAIN/D/O1T N4 *dooo ‘¢ ‘uorjrsodwodep
e/u Burssed ofessow g ‘e/u g -1 ‘ssds/su/ot T urewop ‘g ‘[@Ad[-mO[T SNA dSIN E Srurer) pue praoprae(
|||||||||||||||||||||||||||||| (sspowoms) _____ ~~~ -~ -~ -~ -~ -~~~ =777/ 7~"7"77" "~~~ 7777~)
(g=u) iesurqns Surssed a3essowr [euoOr3021IPIq sadin/o/od yoreoss-13nuw ‘dood SNA dssd E ony pue 127
e/u e/u aae[s-19)sEBW SSdSs/sHu/01 [2a9[-mo| SNA dssr E e 3o ruTpzex,
(g=u) resuriqns speaay3 oae[s-109sEUL sads/sy/od yoress-pynuwt ~dopur Vs IS $10Z| [3oPny;
(g=u) tesurqns speaaysy aae[s-10)sEWL SSds/sy/0t1 [9A9[-m0] SL dSIN E sepny
sads/o/od Yoress-rnut
't ‘sad:/o/od At ‘dood 'z ‘yprees-pmw E ‘Te 39 Apeanirqr)
e/u ALrowsw pareys e/u ‘Ssds/sd/0t et ‘dooo qr ‘[eadl-mol eT Vs dssr
[opow A3ojodoy [oa3uo0d yoaesas A393ea3s
Ajiiqereosg wy3rao3y warqoad @ousa9joy
SurwweaS8oag uUoIjyEdIUNWWIOD) 7 ssedoag uorjezi[a[resed

67

(soTysLIMaRIOW Posk(UOTIN[OS-0[3UIS) SoTpngs morjpezijaered reuorpeinduo)) 4 g oqe],

(gg'‘g=u) reour Surssed oFessow oAr[s-109sBUL sasm/o/od yoreas-rynuwr "dooo SNA JUA
||||||||||||| (tet-¢'0 ndsap eaws-messew gsds/su/ot peastwer sx av
'/u g SSdN/0/0d uorjrsodurod
®/u g ‘aesurqns -1 e/u ‘oae[s-1o3sRUW T ‘'z ‘ssds/sy/o1 1 -op utewop ‘g ‘[9Ad[-MO[T SL 1210 E
SaAdn/o/o0dv
ysow “p ‘Sun ‘g ‘sadw/n/ode
‘oag[s-103sRW g ‘sadmn/o/ode
e/u Burssed oFessow ‘oar[s-193seW T ‘sads/sy/nd T yoress-inw ~dooo SNA dSSr A9 pue uIpAy)
dSL
€ ‘ddg
l6'61-9°0] "¢ ‘[eve-z'6g] ‘T ‘[9°8T-g"0] ‘T 0dDdn oav[s-109sEU SSds/su/0T Toaa[-Mmor SL g dav T [g10g[12 30 BuonT uea)
68 €T-¥1°1] ndandn oAg[s-19)sEW ssds/su/0t uoprsoduwodsp urewop SVHD Y10 E_E.
e/u e/u e/u SSds/su/0Ot [9Ad]-mO[SL dYA pue hwmhmnaommﬁ\é
(Lrowowr pareys + sadn/sy/ond g yoaeas-13nut ‘dood ‘g ¢
(01-z=u) seduejsur usomiaq AIeA S3[NSOIL Surssed oFessowr) praqiy oAR[s-I9)seW ‘T ‘SAadin/a/od 1 ‘gz ‘yoaees-iymuw ~dood T VS ds.L 'SAOIOE pueR BAOIRZET)
e/u Surssed oFessow oA®[s-109sEUW sadn/o/od yorees-1pnuwr *dooo SL dUA .Fom ['Te 30 uip
e/u Suissed o8essow oA[S-I9)sRW sads/o3/od uoryrsodwodsp urewop HSSO a3 ‘Ie 39 YrH
[9gg-ze=u) 1eoury/tesuriqns e/u e/u S¢dIN/s"/Dd yoaees-yynuwt -deput SYUD Y10
||||| (pozAeue sem wysuoSe wwgm .~~~ -~ -~ -~ -~~~ -~ = =-7T77~7"7"7~"~"~"7~7~77"77~" 7~~~ /"7~ "~ /"7~~~ —o—o—oo—T———~7
uo uorljewiojul ou) (QI-g=u) JIedUIqNs Surssed oSessow e/u SSdS/s¥/D1 [oAD[-MO] Vs dssda
(pozATeUue sem wyjrioS[e Yorgm
uo uorjewIojuUl ou) (QT-g=U) IeeuI[qns Burssed oBessow e/u SSds/su/01 [9A9]-mO[SL dssd ‘Te 30 ofezog
[9-g-2"1] ANnIs dAR[S-I9)sRW SSds/su/0t [9A9]-mO[Vs dssr ‘e 30 oxfozog
e/u Surssed o8essowr aAR[S-I9)sRW SAdN/o3M/0d yoress-1ynuw ‘dooo S.L dYUA ‘e 3o uIp
(0g-g=u) wourr'z ‘(0g-g>u) R
reourpradns T :SUOISI9A wW3}II0T[R OM} e/u e/u i/a/od yoaess-rpnw ~dopur SL dssr
T T T T T T T T G=w aweunans T T T T ndodo eaws-iessew ssdas/su/ot pasf-mor s dssaast
[L8'6€T- ¢T°1] nandon e/u SSdS/sH/01 [9A9]-mO[SL dssd
(08-0T=u) xeaurqns Suissed a8essowr e/u SSdSs/s¥/0t1 [oAS[-MO] [Sh JdJUA —nmm&wﬂsuwﬁz pue neapIoy
[7rog-z1°2] "2 ‘(p=u) rweur 1 Nndndon 'z ‘spesayy 1 e/u SSdIN/s31/0d yoress-yynuwr "dooo SL 12910 ET@ 3o eyesng
YoreoSs-T3[NU
[ozr=>] ndnd QAR[S-I9)sR SSds/su/0t ‘dooo g ‘[eadl-mol T SL dv g:a
[opow A3ojodoy [oa3uo0d yoaesas A393ea3s
Lyiqeress wy3a03[y we[qoxg sousasyey
SurwwresSord — uUorEdIUNWIWOD 79 ssed0ag uorjezieered

68

(yg=>u) reoury/resutiqns spea1qy SAB[S-Ia3sEI Ssds/sy/Dt [eAdT-MmO VHO Y10 E_ 18 39 10onuIply]
- T T T T T T gy T T T T T T T T T T T T T e T T m |
S9OURISUI PUR SWILI0S[R USOMID] SOLIRA speaayy poejoeuuod A[nj Sadmn/sy/od yorees-mnuw ‘dooo VHO dSIN ‘Ie 39 orosuoxio()
(g-p=u) yseuw
SOOURISUI PULR SWILIOT[E UOOMID(SOLIBA speaayy pojosuuod ANy sadn/sya/od yoress-13nuw ‘doood vD dSIN ‘1e 32 olosuorro()
(09g=u) xeauriqns Suissed a8essowr puas SSdIN/sy/od yoaees-13nuwt ‘dooo VHO 19310 E ‘e 30 oe)d))
(pT=>u) 1eeuriedns e /u oAR[s-I0jSRUI SSdn/su/nd yorees-13nw ‘dooo VIO 12730 E Ev
(Sutz 4 aaels (yoaeas-rpnua
(g=u) [81-¢] Surssed oBessow -19gsew) praqiy Sadmn/:/od *dood 4 [aad(-mo[) prIqhy osd Y30 LT02 3
IIIIIIIIIIIIIII mﬂ:l -0 IMEI_mmMQIWMMmmePﬂ -0 Iwnl_al -0 ImDIn:\M\mﬁMOM - Muul‘mmwn_ulﬁ:m “dooo T I<|U| - Iumﬂljm -~ TWHON_ ‘e 30 nI 1
[p1-¢71] ndandad faw[s-193sBW SSds/su/0t [eAST-MmOr VHO Y10 g SuryoIy] pue sLqe)
e/u speaaty oAR[S-I9)sRW sSsds/sy/ot [eAS[-MmO[vO 10410 E— ‘[e 30 OLIqOSSEBIA|
e/u Surssed o8essowr oAe[s-I9)seW SSAIN/SY/D1 uorjisodwodsep urewop o0sd dssr g Ieypnog pue Iezjiry
(12130
yoes woiy paje[
-os1) sysoux
pojoauuod
log-¢1] ndodn Ay reoaas Sadn/su/od yorees-fynur dooo ood ddga g?m 30 onry
(zg-g=u) teauriqns ALrowew poreys dAR[S-I19)sEW SSdSs/sH/01 [9A9[-MO] [elo) 4 dsSL ‘e 30 SeiejEnoqy
[gz-g] ndandan Saw[s-193sT SSds/su/0t [oAST-MmOr oDV dSL ZOTMOIDPUL G
e/u ndoHdd oAr[S-I93sBW SSds/sy/0t [9A8]-mO] ODV dSL ‘T8 30 ®II29)
(ysew
pojosuTod
Ay 4+ aaw[s
(8-g=u) aeourqus Surssed ofessowr -1ojsew) praqAy sadmn/su/od yorees-ynw dooo 00V dsaL E Fre 30 Suex)
(vg-g=u) reouriqns spuaay aaw[s-103sT Ssds/su/ot [oAd]-mo[oov dsi [etog|[12 30 uwerpen)
€ Cl s s 1
(91-g=u) 1eaury Azowswr peieys) priqiy e/u SSdSs/sy/0t [eA8]-MmO[0DV dSL E E.
[o'eg-90°0] 'q ‘[Lv'61-T] "® ndandan oae[s-104sRU SSdS/su/0t [2A0]-Mm0] ooV dsa €1 E.
[ez-9°0] ndodon ysow Ssds/sy/D1 [9A8]-mO[0DV dSdL E
Aqreo
-tweudp pajoof
-o8 sxoujaed
(gg-g=u) reaurqns Surssed o8essowr UOTPEOTUNTUUIOD SidIN/D/Dd yoreoss-mynuw ‘doood 0DV ds.L
e/u e/u Bupx SedIN/sH/0d yoress-rpnuw "dood 0oV dYA
[opow A3ojodoy [oa3uo0d yoaesas A393ea3s
Lyiqeress wy3a03[y we[qoxg sousasyey
SurwwresSord — uUorEdIUNWIWOD 79 ssed0ag uorjezieered

69

Kiowew eia

[2-182=>] ndonHdon uorjEdIUnUod SSdSs/sy/0t1 [eA8]-MmO[Oosd 19410 Suep pue Suny
©/u ndndn oae[s-103sTH SSds/su/0t [249]-Mm0] osd dLD
e/u ndHdd SAg[s-19)sEeUW Ssds/sy/D1 [eA8-MmO Oosd dLD
||||||||||||||| w/u_ Bussed ofessowr eae[s-esew SSAIN/SH/0d 1 uyoaees—iynuw eanyesedeod osd | wewso |
(8-z=u) 1esuyy e/u e/u ©/u e/u osd 12910 ‘Te 30 0812qoy
(8-g=u) 1eour| e/u e/u sadam/su/od yoaess-pmw dooo VD ESlETe) ‘Te 10 0310q0Y
(yoaeas-rpnua
(Pg=u) soouejsur usomjloq soLILA e/u aAr[S-I9jsew SSds/su/0t *dood + [aad]-mo[) prIqhy D dLD E—QDDJSOE pue :dmmﬁﬂﬂ<_v
(naoao +
Surssed oFessowr) priqiy (ea®[s-193sRW SSds/sy/0t [oA8[-MO]
e/u ‘Arowowt paaeys T + Suwn) prqdy 'z SSdW/sy/nd 1 ‘¢ ‘yorees-iynur "dood T v d44g Ao pue rowrwiT
||||||||||||||| e T T T T T T e T T T T T Tsuw” T T T saam/su/od T T T wawes-umnm dooo wp | wewo 0103][1e 30 oH) |
e/u ndndn dAR[S-I9)sRIW SSdS/syu/Ot [9Ad]-m0[VO dsL 910¢| | 1e 30 Suey|
(8-p=u) aesurjradns e/u oAR[S-I9)sRW SAadmn/sy/od yoaess-ipnuw -dood VO 10Y10 E ‘Ie 30 yapge[-nqy)
e/u e/u e/u sads/su/ond yorees-mynur ‘dood VO dSIN $T0g|[Te 30 nT
e/u Surssed s3essowr oAR[s-19)sRW sadin/sy/ond yoreoas-13nuw ‘dood VO 19930 9102/ 1% 3o Sueyy
|||||||||| (10g-9g=u) twour] Sumssed oSessow oaw[s-togsew SSdIN/Su/od | uorees-pnw -doos yo av Tetog|| e 3o unsor) |
e/u Surssed oa8essowr oAR[s-I9)seW SSdIN/sy/od yoress-1ynuw ‘dooo Vo dSIN 600T. _;d 19 oen
©/u
:(3uspuadapur) ‘g wyjios[e ‘(gg=u) Ies ysouwr SSdIN/sy/od yoaees-rpnuw -depurt
-urpredns :(uorjeaSi qjrm) T WYIoS[e woshs o[y NV pejoeuunod Aqny 'z ‘Ssd/su/pd 1 ‘¢ ‘yorees-iynur "dood T v Y30 EE
ysowr pajoou
e/u Surssed a8essowr -uod Ajwopues SSdIN/sy/od yoreoas-1ynuw ‘dood VO dssda E usyD pur eYsIaFa(])
e/u Surssed oSessowt prag sadmw/sya/od yoaees-13nw "dood vo av E—E.
A R ndodo | eaesaessewm ssas/su/ot Easfmor vo " Tassa G10g[[1% 30 Buenm) |
ysowr pajoou
e/u Surssed o8essowr -uod Ajwopues SSdIN/sy/od yoress-13nuw ‘dooo VO dssr E usy pue eysIaja(])
ysow pojoauumod
Apwopuex ‘9
‘ysow pajoauUU0d
Ay g ‘ysew
e/u Surssed o8essowr ‘p-'g ‘Surr g-'1 sadin/sy/ond yoreoss-13nuw ‘dood vO 1930 E usyD pue eYsIaa(])
s
(8g1=>u) reoury/reoutiqns Burssed ofessow posuI[-a[quop Sseda/q/nd yorees-rpnuw "dood vVAO 130
e/u Surssed s8essowr oAR[S-I9)sRW SSdIN/sy/od yoaeas-ynuw deoput VHO 1930
[opow A3ojodoy [oa3uo0d yoaesas A393ea3s
Lyiqeress Bupmue Sosd KOIFEOIEMUIIHON N S wy3a03[y we[qoxg sousasyey

70

(gg-1=u) 1eoUI] :g ouIyoRW ‘(gg-F=u)

Tesurqns ‘(g-T=u) dIesur] I dulyorw speaay)y e/u sadmn/sya/od yoreas-rynuwr "dooo vVaO dadg E o pue oiqaN)
(Lrowowr pareys + sadn/sy/ond g yoaeas-13nuut ‘dood ‘g ¢
(01-g=u) tesuriqns Surssed oFessowr) praqiy Surx ‘T ‘Sadmn/a/od 1 ‘g ‘yoaees-ipnuw ‘dood | v ds.L E 'SAOIOE pue eAOIRZET)
(Lrowewr pareys + sadm/syu/nd e yorees-1pnuwr *dood ‘g
(0T-z=u) seourjsur usamyaq A1es symser Furssed oFessowr) priqAy oav[s-1ojsEW g g ‘SAdIN/s/Od ‘T g ‘ysaees-ymm dooo T 00V JsL E exsAolog pue esoIezer)
(yoee speaaysy
9T=TW Y3im SOpou gg[-g =U) Iedurqns
‘(yoeo speaiyj F=wW [}IM SIPOU ZIG-TE (Lrowowr pareys +
=u) aieoaurqns ‘g ‘(8¥0¢-FgOI=u) Iee Surssed o8essowr) praqiy
—unqns ‘(z1g-gg=u) reour|qus/seour] | -z ‘Suissed ofessowr T oae[s-109sEUW sadm/su/od yoress-rynw dooo vD atd E sexsuiiz, pue sexsuuer
(¥201-8¢T=u) Ieaur[qns/reaur| Suissed o8essow oAR[S-I9)sRW SAdn/sy/od yoaess-rpnuw ‘dood vO dT1d €10¢| [SeSUI[IZ PUR SEYSURUET]
N e = R speoaqy vug s ssam/su/od T T T T wawos-pmw T T 7 T
-urqns ‘g ‘(gg-T=u) Ieourqus/aeour] -1 ‘g ‘Arowowr poreys T ‘oae[s-193seU T ‘'z ‘ssds/s¥/o1 1 rdepur g ‘[eadr-mor T [eled dav 010g| | 18 10 SuopSuo(
[o61 -z'64] ndndn e/u SAdIN/s¥/0d yoreas-rpnut -dood osd dd4g €10g|[Te 30 SuIq
[o61 -z'68] ndando e/u Sadin/syv/o0d yorees-nnuw -dood vd dddg €10¢| [1% 30 SuIq
[eT>] nandon e/u e/u e/u 0DV dYA TT0g||'Te 30 oSar(
(g1-g=u) suonouny spreWOUL] SSdIN/sy/Dd
usamiaq sarrea A[rerjuelsqns dnpeads jo ‘e ‘ssdin/syu/od ¢
(u 10a0 odors jo juowdoossp pue odLj) Burssed a3essowr oAr[s-I9jsewl ‘SSdN/su/nd T yoaees-13nu ‘dood osd dag EE
r-——~~"~>"~"~>~>"~>"~>">~>~~ "~~~ " &owew poaeys _______~~ -~~~ -~ -~~~ =-~"7=T7T¢7/7"7"">"""""*""""""“"*""7""7"7/7/~" 7" 7?7 7”7”7” 7" 7”7” 7” 7”7”7
(yoes speaayy g=w + Surssed aFessowr) priq
Yjim sepou g=u) Ieaurqns g ‘(y=ur) -Ay g ‘Arowewr pareys
reourqns 'z ‘(p=u) iteourqns T g ‘Suissed oSessowr ‘T oav[s-10gsTRU SAdw/o/>d yorees-ynu dooo vEOo JHA EE
i/sd/od Yoreas-1ynu
(9T-z=u) teourjrodns/1eaur| Burssed oSessow oAr[s-I03sEW ‘'z ‘ssds/s¥/o1 1 ‘depur ‘g ‘[eadr-mor T udss dssda EE
Sadn/syv/o0d Yoreos-T3nux
e/u e/u e/u ‘'z ‘ssds/sy/o1 1 ‘depur 'z ‘[eAd[-mOl T "dss 10Y10 E-w&u:o::d\/ pue w>or§$v~_v
onels
-199sewr ‘g ‘Aro
-wew BIA UOI} o/u/0d yoreoas-r3nw ‘dood ‘g
[e¥>] ndondn -edTUNWUIOD T T ‘SedN/s¥/OT T ‘uorjrsodurodop urewrop T osd 121730 EE
Kiowowr 1A
UoTyRDIUNWUIOD
g ‘oar[s-19)selr e/u g ‘SSds/sH/O1 e/u g
[ge-1] ndoHdd ‘c pue T ‘'z ‘ssds/s"/o1 1 ‘[2A9[-MO[g ‘[9AS[-mO] T Oosd ddad E ‘Te 9o zoydueg-eunser]
[opow A3ojodoy [oa3uo0d yoaesas A393ea3s
Lyiqeress Bupmue Sosd KOIFEOIEMUIIHON N S wy3a03[y we[qoxg sousasyey

71

(somysumoateiaw peseq-uorjendod) serpnys uorjezija[reied reuoneindwo)) :8°q 9[qR],

e/u e/u oA®[s-109sEUW SedN/su/nd yoreas-nnuw ~dood VO dadg ‘T 10 ofopiop-our[(e1y)
100U
e/u -uod8sIN ‘900z ydea Buissed ofessow sad:/o/od yorees-nynuw -dood VO dssd I
||||||||||||||| w/u spwerwy XISOJ ‘++0 speerwy sadw/o/od wwes-umw -dood y@o adg [600¢][1 30 0za)
sase/su/od yoress-ipnuwr ‘dood
‘€ ‘sasi/syu/od oz ‘g ‘yoaees-pnw ~dood ‘g
®/u ‘g ‘e/u g {(p=u) ieourqus ‘T ear(speaayy ‘sasi/su/nd T ‘yorees-ynur depur T ood dddg E
sads/sy/od yorees-rynuw
(z1-g=u) 1esurpzadns ‘g ‘(g ‘€ ‘sads/sy/od ‘depur ‘€ ‘yorees-ijmw
-g=u) txesur] ‘g ‘(gr-g=u) iedurqns T IdIN Buissed ofessow K4 ‘ssds/su/0T'1 ‘depur ‘g ‘[ead[-mor T ood dSIN TTOZ|[T8 10 d1aoprae(,
[g'gr-g1°€] ndnd e/u SAdN/:/Dd yoreas-rpnu ‘dood VHO dsdL 1T0g|[T8 10 o'y
[v8-62l ndando e/u Sadn/:/nd yorees-nnuw -dood 0DV dsL 110Z|[T8 30 o'yZ
T T T T T T T T T T T e T T T T T napao O saaw/i/od ~ T 7 woaeesyw dooo vo asz 7 [T10g|[1o 30 ovuz
[eg>] nandan ©/u SidN/i/0d yoaeos-mynw ‘depur ooV dsa (600 [nox]
e/u e/u e/u sadn/sy/nd yoreas-rpnu -dood VHO e/u 110g|[T8 10 10qoMm |
[ogze-¢z] nandn oAR[S-I9)sRW SSdSs/sHu/01 [9A9]-mO[VO YO TT0Z| | 1e 30 Suem
(g=u) 1esurqus ALrowow pareys oAg[s-Io3sRW SSdIN/D31/Dd uorjsodwooop urewop osd d14 800%| | 'Te 30 Surm|
r-—-————~~>~>~>"~>"""™""™""™""""™>"*">"*>">"*"*"*"*">"*""%4%%w _~~ ~ ~ ~ -~~~ ~""T""~"""™""f™T™"""*"""*"""™""™""*"™*"™""™>""“""*>"™>"™"">"""">""~>"~>“"~"7"7°7°7 i
®/u speary) pejoouucs A[[ny ssds/su/ot [eas[-mo] vD addg E.
(pejoouuooun)
REXETS) g
‘(3s1om-ooe[dar)
10130 qz
‘gsewr pojoou
(y=u) aeaurqns ‘g ‘(u -uoo A[[ng ey ./0/0d Yoaeas-rgnut
poyroadsun ‘1oylng fp=u) reouiqus T speaIyy ‘oar[s-19gsRT] ‘T fssds/su/O1 1 ‘dopur g ‘[eAe(-mol T ooV v E
Sadn/sy/nd Yoreos-Tynux
[1-0z-€°91] nando e/u ‘'z ‘ssds/su/o1 1 aarye1adood g ‘[aad]-mo['T VO Y10 19[8] pue 1ouTRg)
(zg=u) reour-qus ‘(9r=u) (oae[s-103sRW
1eaur[-qns/resul] ‘(g-p=u) 1eour| ‘(g=u) + Suw) prqdy
aesui[-todns/ieoul] ‘§ ‘v/u ‘g ‘e/u ‘g ‘g ‘oAr[s-lojsewr
‘(zg-9T=u) teourqus ‘(g-g=u) iesur ‘T Surssed oSessow 'z ‘Suum T sadam/sy/nd yoreas-rpnu -dood VaO d14 gg
[oo¥ - oz1] ndnd e/u SAdIN/sy¥/0d yoreas-inuw ~dood VHO a3 E_Eﬁﬁo:x pUE YEIUJOMON]
[opow A3ojodoy [oa3uo0d yoaesas A393ea3s
Ajiiqereosg wy3rao3y warqoad @ousa9joy
Buruweadold —uUoEdIUNWWOD 79 ssed0ag uorjezid[eIed

72

(Bur

(yoreos-1ynux -quip [y
[sz-91] ndandan ps ®/u -dooo + [ead[-mo]) PuUAAY + VD) WH EEXEre) 6002 1v 30 svameunp)
|| sz~~~ T T T T T T 77
e/u Surssed s8essowr Surx sadin/syu/od yoress-rynuw ‘dooo + vD) WH 1230 EE
(vs
e/u ndodo QAR[S-I9)SRI SSds/sy/01 [9A9[-m0] + vD) WH dsiL E
(vs
©/u ©/u o019 saan/su/od yorwos-pymu ‘doos + vO) IWH U0 E
(o13s1aney
Surnpoyos
(v9-g=u) 1esutiqns e/u dAR[S-I9)sRW sadmn/o/od yoreas-rpnu -dood + vD) WH dSIN E
(yoaeas
1e20] +
(91-z=u) 1eoury/iesurqus speaay3 oa[s-10)sRUI ssds/su/ot eas[-mol VD) WH BYIO E E.
(yoaeas
(Surssed o8essowr + reoo| +
®/u Arowdw paieys) pHqAy Burx Sadmn/sya/od yorees-pnw "dood yHO) IWH IS ‘Te 30 mouydewsaN)
(yoaeas
1e20] +
(Fg=u) seouBISUI UGOMID] SOLIRA Krowrowr poreys aAe[s-109SRUL SSdS/sM/0T [oao[-mop VHO) WH 31 ‘Te 30 uBYpIRAR])
(Lrowowr poaxeys + Sur
(v9 -ssed oSessow) plIqiy SedN/i/0d (yoeos
-9T=u) Iesurqns ‘g ‘(8-g=u) Ieaur] ‘g ‘g ‘Arowowr pareys'g ‘€ ‘ssds/syu/o1 'c yoreas-r3nwt "dood ‘g Teso[+
‘(¥9-9T=u) 1eourqns ‘(g-g=u) tesur ‘T ‘Burssed oSessow ‘T oAR[S-19)sEUW ‘ssds/s¥/ot ‘T {[oAS[-MO[‘g ‘[9Ad]-MO[T VHO) WH 12910 E
(qoawos
1es0] +
[9-€z-90°0] "q ‘[€0°8-2T°0] "® nando QAR[S-I9)sRW SSdSs/sHd/01 [eaa]-mop 0DV) WH dsL E
(vs
+ ooV q
sads/o/od Yoreas-1jnur ‘yoreoes [ed
‘T ‘sad:/o/ond cart dood ‘T ‘yoress-pymw -ol + 0DV ‘Te 39 Apeaniyr)
e/u KLrowouwr pareys e/u ‘ssds/s¥/ot ey ‘dood ‘qr ‘[aasl-mol el e) NH dssr
[opow A3ojodoy [oa3uo0d yoaesas AK3o3eays
Ajiiqereosg wy3rao3y warqoad @ousa9joy
Buruweadold —uUoEdIUNWWOD 79 ssed0ag uorjezid[eIed

73

(ndDad

(poyroads

[L'91-8°6] + speaiyy) puqiy g -un SwYlL
‘e ‘[pvr-0°L] 2 ((8-p=u) iveurqus ‘1 ‘NdOHID "¢ ‘spesayy 1 e/u SSdIN/sy/Dd uorjrsodwodep urewop -o8[e) NH dav Eg
T T T 7T 7T 7 7 (uomssea wyswes (fLsowsw poxeysf T~ T~ T~ T T T oo T oo T T T T T T T T T Gy T T T T T T T T |
-[e A[uo) (FgOT-8ZT=u) Ieoul[qus/reaury Surssed oSessow) praqAy oAR[s-19)sEW sadmw/sy/od yoaeas-rymux -dood + s1) WH dT14 TSEE:N pue mﬁm:_u:mq_v
:/s9/01 uorjrsodwodsp urewrop (s1 +
(0g-g=u) tesuriqns speoayy oAR[S-I9)sEW e ‘u/0/od T 'z ‘yoaees-pynw -depur T 0ODV) WH Y10 EE
(yoaeos [eo
-or sdo-g +
[z ve-g6] ndndn ®/u SSds/su/01 [PAd[-MOl VHO) IWH dsL msyns, pue ojowtng)
(uornjoas
[etpua1ozyip
(8-g=u) 1eoury Buissed oFessow oae[s-193sEU SSds/su/0t [2a0[-mo| + VSs) WH dad E
(vs
(¥-z=u) aesurqns Surssed s8essowr aAR[sS-I9)seW sadin/sy/nd yoress-rynuw ‘dooo + vD) WH dYUA E Ev
[1
Surreouue
poje[nuIIS
103 wyyLx
-o8re 103
e/u ‘g ‘(y9-g=u) Iesur] ‘T Suissed a8essowr aA®[S-I9)seUW SAdN/SY/DT uorjisodwodsp urewop -snp) NH dssda EE
(yueos0p
Juorpeds +
e/u Suissed o8essowt oAR[S-I9)sRW SSdIN/sy/od yorees-1pnw aarpeIadood OSd) WH 12410 ‘[e 30 oul[1eeysg)
(yoaeos
[eoo] poje
1091 +
(9gg-g=u) reouriqns Surssed oSessow oar[s-109sBUL SSdSs/su/01 [oad[-mo] SNA) WH dUA E ‘Te 30 uerneweIqng)
(sL
(¥g-g=u) teaurqns/ieaur| Buissed a8essaw oAr[s-I9)seU sadin/sy/nd yoaees-13nw deput + vD) WH dLo E ‘e 99 NnoiqeN uag)
(suryrzos
e Apoois
—+ yoaees
ysouwr Teo0] —+
e/u Lrowew pareys pojoauuod-A[[ny SAdn/o/od yoress-1pnw aaryeIadood vO) INH dSSda gg
[opow A3ojodoy [oa3uo0d yoaesas A393ea3s
Lyiqeress wy3a03[y we[qoxg sousasyey
SurwwresSord — uUorEdIUNWIWOD 79 ssed0ag uorjezieered

74

(sorysumateletr PrIqAY) sarpngs uoryeziprered Teuoryeinduio)) g SR,

(yoaeas
ureyyed 4
[16°€07-98°99] nandn oAg[s-1o3sRW SSds/su/0t [9Ad]-mO[ODV) WH dd4g
[e'8-g°¢] ndodo e/u SAdN/:/Dd yoreas-rpnu -dood WH dSdL
(ysew
+ prs :2ad
-omj}) I8yjo ‘g
‘oAr[s-I9)sBRUI (perroads
'z ‘(peyoouuod ®/u g ‘SSdS/SU/DT ®/u ‘g ‘[PAS['MO] -Un SWU3LL
(6-g=u) aesurqns Burssed a3essaw -un) JIaYyjo T 'z ‘sSadin/i/od T 'z ‘yoaees-iynwr -depur | -o8[e) IWH JdSIN
[opow A3ojodoy [oa3uo0d yoaesas A393ea3s
Ajiiqereosg SurmureiSord wOrEOIENWTION 29 sse00Ld ——— wy3rao3y we[qoag @dousasjey

()

e/u Suissed o8essow oAR[S-I9)sRW Ssds/su/ort [eAS[-MmO[HSd 102410 E:;a je sewon))
(sguose
snowouoy
-ne uo
poseq
poyjour)
e/u ndndan oAe[s-10)sRW e/u ®/u HO 12910 g ‘Te 30 dIpauLg
IIIIIIIIIIIIIII dﬂ:l T~ IDMUI&UI - Iw>M~mﬂume‘mIEI -TT T M\N -ttt - -~ I@ﬂ:l - M.mmImI - Ihﬁl:m - IE ‘[e 30 oIoIpouag 1
(ssooo0ad
uorjeZIIOpULRL
-orpsuney
® oprsur
uorjen
-wrs opre)
e/u speo1ys e/u e/u ®/u °3UON) HO JdYA HE
ysowr ‘g sadin/o/od yorees-nw ‘dood ‘g
(2=u) reourqus ‘g ‘(p=u) resurqns 1 Surssed oSessow ‘ose[s-zojsRM T ‘T 'SSdS/SM/DT T ‘worjisodwooop urewrop ‘| HSd 12710 E E.
(8-z=u) resurqns/1eaury speo1ysy e/u SSds/sy/D1 [9a8[-mo] HSd 12730 E_E.
e/u Surssed oa8essowr oAR[s-I9)seW sadin/o/od yoress-1ynuw ‘dooo HSd JdTIN E BIJOIYSIN PUR D03])
... Gup " T T T T
oures ELEY
e pazIel
-rexed
sorjsumay
-ejow [eIo
e/u Burssed o8essow oAr[s-I9)sRUT sadmn/syu/od yoaeoes-13nwt ‘dooo -A08) SIN av E ‘e 30 zo[RZUON-SOARYD))
(poysow
yoreas oArj
(yoaees-1ynux -erodooo
Arowewt BIA aarjeradood pue uornsod aA13eISey
e/u Lrowew pareys UOIYRIIUNTWUWIOD SAdn/od/od -wooep urewop) praqiy -ur) SN dYUA E Ev
(asso +
(p9-g8=u) reaurp Suissed ofessowt oA[S-I9)sRW SAdN/oO31/0d yoaess-r3nuw ‘dood VHSd) HIN JdYUA E E.
e/u Surssed oSessowt oAR[S-1038RW SSAIN/SH/D1T uorjisodwiodep urewWop Hsd ds.L E—Ev
(vao + (c10g|[T 30 oraslouesg)
e/u Arowswr pareys e/u SSdIN/sy/od uorjisodwodsp urewop X-e-g) HIN dTd
[opow A3ojodoy [oa3uo0d yoaesas A393ea3s
Lyiqeress Bupmue Sosd KOIFEOIEMUIIHON N S wy3a03[y we[qoxg sousasyey

76

(:suryrIogre

[OIROS-1)NUI PUR ‘SOTISLINOY LU ‘SOIISLINOY IO ‘So1)sLInel] oyloads-tuerqoid) serpngs uotryezio[rered reuoryeinduwoy) 07 g o[qeL

(vo
=+ yoaees

pooyioq

(ndodd + -ySeu 010y
e/u Arowewr pealieys) priqAy oAR[s-Io)seW sadin/syu/od yoreoss-mynuw ‘dooo -sAs) SIN 1230 E
(PTo1-T=u) s3msox poxiu :dnpoods
qeom {(FgOI-gg=u) teaurqns ‘(9r-g=u) (Lrowowr pareys + ysowr
aeaul]/resurqns :dnpooads aArjR[OI Surssed o3essowr) praqiAy peojosuuod A[[ny SSdIN/sy/Dd uorjisodwodep urewop HO dLo E
Sadm/sy/od yoxeds-rymw
[6v 12-¥2] ndando e/u ‘'z ‘ssds/sy/o1 1 dooo 'z ‘1eAdl-mor'T HO 12110 E 19[8] pue 1ouEg)
®/u speoIyy oAr[s-109sBUL SSdSs/su/01 [9ad[-mo] HSd 12710 “Te 30 on')
r-- -~ -~~"~""""™"""™>"™""™>"™"™"™>"™>"""™"™"7"77 (peoaqy e~~~ ~ -~~~ -~ -~~~ ~"7-7T7"7"""""""~"7~"7"77/" 7"~~~ """~ "~ "~~~/ ~/ oo~
pojuswsdwl ‘pajusrio
(g=u) resurqns -3qse)) Alowew poleys oAR[S-I9)sRW e/u e/u HSd ds.L
e/u Surssed oSessow Surx SsdIn/sy/0nd uorjrsodurodep urewrop HSd d1D
(u pajaodaaun) [g-g] e/u dAR[s-I9)sRW SSds/sy/0t [9A3]-mO] HSd dssd
[g1-2] nandon e/u SSAIN/SY/DT uorjisodwooep urewop HSd Y10
Surssed a3essowr
(z61-1g=u) 1eour ‘g ‘(9T-g=u) 1eaur ‘T ‘g ‘Arowewr pereys T QAR[S-I9)sRW SSdS/syu/0t [9Aa]-m0] HSd d14 E ‘Te 30 sexsurouer]
[opow A3ojodoy [oa3uo0d yoaesas A393ea3s
Ajiiqereosg SurmureiSord wOrEOIENWTION 29 sse00Ld ——— wy3rao3y we[qoag @dousasjey

(s

Appendix C. References of Appendix

Bozejko, W., 2012. On single-walk parallelization of the job shop problem solv-
ing algorithms. Computers & Operations Research 39, 2258-2264.

German Academic Association for Business Research (VHB), . VHB-
JOURQUALS3. http://vhbonline.org/vhbdyou/jourqual /vhb-jourqual-
3/teilrating-or/.

Ostermark, R., 2014. Solving difficult mixed integer and disjunctive non-linear
problems on single and parallel processors. Applied Soft Computing 24, 385—
405.

Ostermark, R., 2015. A parallel algorithm for optimizing the capital structure
contingent on maximum value at risk. Kybernetes 44, 384-405.

78

	Introduction
	Parallelization Framework
	Object of parallelization
	Algorithmic parallelization
	Computational parallelization
	Parallel performance metrics

	Scope and literature selection process
	Literature survey
	Meta analysis
	Problem types and parallelized algorithms

	Research directions
	Publication landscape and overall prospective research
	Object of parallelization
	Algorithmic parallelization and computational parallelization
	Performance of parallelization
	Presentation of studies

	Conclusion
	Acknowledgements
	Literature selection process
	Coding of computational parallelization studies
	References of Appendix

