
Demonstrating FOP4: A Flexible Platform to
Prototype NFV Offloading Scenarios

Daniele Moro∗, Manuel Peuster†, Holger Karl†, and Antonio Capone∗
∗Politecnico di Milano: {daniele.moro, antonio.capone}@polimi.it
†Paderborn University: {manuel.peuster, holger.karl}@upb.de

Abstract—Emulation platforms supporting Virtual Network
Functions (VNFs) allow developers to rapidly prototype network
services. None of the available platforms, however, supports
experimenting with programmable data planes to enable VNF
offloading. In this demonstration, we show FOP4, a flexible
platform that provides support for Docker-based VNFs, and
VNF offloading, by means of P4-enabled switches. The platform
provides interfaces to program the P4 devices and to deploy
network functions. We demonstrate FOP4 with two complex
example scenarios, demonstrating how developers can exploit
data plane programmability to implement network functions.

I. INTRODUCTION

Network Function Virtualization (NFV) aims to improve the
flexibility and manageability of networks. It transforms legacy
(hardware-based) network functions into software components
that can be executed on low-cost off-the-shelf servers using
virtualization technologies. Those Virtualized Network Func-
tions (VNFs) can be developed much faster than hardware
appliances and be rapidly prototyped in emulation-based plat-
forms, like Containernet [1]. However, the packet processing
performance of virtual machines (VMs) or containers is of-
ten limited and an interesting option is that of accelerating
it by offloading packet processing tasks to the data plane.
Programmable data planes [2], [3] allow to exploit network
devices to implement tasks different from the mere packet
forwarding. VNFs can be partially or even fully offloaded
directly to the network data plane. P4 [4] is the reference
programming language for network data planes and several use
cases of VNF offloading, exploiting P4, have been proposed
[5], [6]. However, the availability of prototyping platforms
to ease the realization of such scenarios is still limited and
existing prototyping platform lack support for offloading tech-
nologies [1], [7], [8].

In this demonstration, we show FOP4 [9], a proto-
typing platform that supports the execution of hybrid P4
and container-based VNFs. The proposed platform provides
support for P4 software switches and containerized VNFs
(Docker) combined with Mininet functionalities, such as sim-
ulated link delays or loss. With this platform, VNF and service
developers can implement and locally test hybrid, chained
network services consisting of both container-only VNFs as
well as VNFs that offload tasks to the P4-programmable data
plane.

During our demonstration, two scenarios of hybrid/acceler-
ated VNF deployments are shown. The first one is the hybrid
Intrusion Detection System (IDS) scenario that exploits the

programmable data plane to implement the load balancing
function, while the IDS is left as a Docker container. The
second one is an extended In-band Network Telemetry (INT)
scenario [10] in which we show how we can use both P4
switches as well as container-based VNFs to collect in-network
statistics.

II. THE FOP4 PROTOTYPING PLATFORM

The objective of our platform is to provide a rapid proto-
typing environment to implement VNF offloading use cases
without needing to deploy a real system. We decided to start
from a previous work of some of the authors, Containernet [8]
(a fork of the Mininet emulation platform), because it already
supports (Docker) container-based VNFs. FOP4 extends this
platform to support the execution of BMv2 (Behavioral Model
version 2) software switches together with Open vSwitch
(OVS) or other user-space switches. BMv21 is the reference
P4 software switch developed by the P4.org consortium.

FOP4 integrates the BMv2 P4 switch exploiting two dif-
ferent interfaces: A P4Runtime-based2 and a Thrift-based
interface. P4Runtime allows controlling the P4 switch using
the ONOS controller while the Thrift-based interface allows to
program and modify the switch configuration with a Command
Line Interface (CLI). Both interface options are supported by
FOP4 through a simple Python API which allows to add
P4 switches to the emulated scenarios using a single line
of Python code. Examples for this are, together with the
implementation of the two demonstration scenarios, publicly
available on GitHub3.

To be fully compliant with Containernet we also support
adding new interfaces at runtime to the P4 switch through
Containernet’s Python APIs. In this way VNFs can be added
even after the emulated network has been started (e.g., to scale
up a service). To simplify the development of complex VNF
offloading use cases, we also extend the MiniEdit GUI adding
support for the P4 BMv2 switch as we will show in the demo.

III. DEMONSTRATION

Our demo shows how developers can use FOP4 to quickly
prototype and run container-based VNFs, offloading some
tasks to the P4 data plane. The entire platform is installed on
a single computer on which the live demo will be executed.

1BMv2 repository: https://github.com/p4lang/behavioral-model
2P4Runtime repository: https://github.com/p4lang/PI
3FOP4 repository: https://github.com/ANTLab-polimi/FOP4

Manuel Peuster
PREPRINT! This work has been accepted for publication in IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), Dallas, USA. IEEE, 2019. 
Copyright © 2019 by IEEE. �



Ctrl.

IDS_OTHER.1IDS_HTTP.2IDS_HTTP.1

End Services

P4 SwitchFlow(s)

Fig. 1: Example architecture of scenario 1: Hybrid IDS im-
plemented as a combination of P4 switches and differently
configured IDS containers

A. Demonstration Scenarios

The demo uses two different real-world scenarios. The first
scenario is called hybrid IDS and is shown in Fig. 1. It
demonstrates how an IDS can use offloading technologies and
be partially implemented in the data plane using P4 while
keeping some parts of its functionality as normal software
components executed in containers. The main idea of this
scenario is to use the data plane as a smart load balancing
function that distributes traffic to a couple of container-based
IDS VNFs that do the actual rule matching. In contrast to
naive load balancing approaches, which equally distribute the
traffic among similar IDS instances, we use the data plane
to pre-classify the traffic and send flows to a particular IDS
instance. This allows us to optimize the rules in each of the
IDS instances for a certain kind of traffic. For example, some
IDS instance might be optimized to analyze HTTP traffic,
others to analyze incoming SSH connections. In this way, not
every IDS instances need to match the complete rule set and
the overall system load can be reduced.

The second scenario shows an extended In-band Network
Telemetry use case. It implements in-band network telemetry
scenario in which network telemetry information is not only
captured on data plane elements, i.e. the P4 switches, but
also from container-based legacy VNF implementations. This
allows to inject telemetry statistics coming from VNFs directly
into the stream of packets flowing in the network. The statistics
can be CPU and memory usage, timestamps etc. and they can
be leveraged, for example, to decide when to scale up or down
a Network Function. In this use case, P4 is used to implement
INT into the P4 switches, while the VNFs are implemented as
docker containers running a Python script to inject statistics
into the packets. This use case is presented using a deployment
of four P4 switches and two container-based VNFs.

B. Demonstration Steps

The following steps will be performed during the live demo:
Step 1 (development): Show and describe the used VNFs as

well as the used P4 programs.
Step 2 (composition): Use Containernet’s GUI and Python

APIs to compose the scenarios, e.g., shown in Fig. 1.
Step 3 (instantiation): Instantiate the scenarios on top of

FOP4, including the automatic deployment and config-
uration of container-based VNFs and P4 programs.

Step 4 (interaction): Use a web browser to access a video
streaming service through the deployed network service.

Step 5 (stressing): Use traffic generators to stress the scenario
and to validate them.

IV. CONCLUSION

We demonstrated FOP4 a new prototyping platform that
allows VNF developers to implement offloading use cases
exploiting programmable data planes via P4 enabled devices.
We demonstrate two examples of offloading use cases which
can be implemented in our framework exploiting both pro-
grammable network devices and Docker-based VNFs. FOP4
can be used as a prototyping platform by NFV researchers and
VNF developers that want to implement network functions
that exploit the programmability of the data plane without
deploying a costly physical testbed in the initial phase of
experimentation. FOP4 is released as open source software
and available on GitHub.

ACKNOWLEDGMENTS
This work has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No. H2020-ICT-
2016-2 761493 (5GTANGO), and the German Research Foundation (DFG)
within the Collaborative Research Centre “On-The-Fly Computing” (SFB
901).

REFERENCES

[1] M. Peuster, H. Karl, and S. van Rossem, “MeDICINE: Rapid Prototyp-
ing of Production-ready Network Services in Multi-PoP Environments,”
in 2016 IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN), 2016, pp. 148–153.

[2] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn,” ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 99–
110, 2013.

[3] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone, M. Spaziani, V. Br-
uschi, D. Sanvito, G. Siracusano, A. Capone, M. Honda et al., “Flow-
blaze: Stateful packet processing in hardware,” in 16th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 19).
USENIX Association, 2019.

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[5] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,”
in Proceedings of the Conference of the ACM Special Interest Group on
Data Communication. ACM, 2017, pp. 15–28.

[6] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“Netcache: Balancing key-value stores with fast in-network caching,” in
Proceedings of the 26th Symposium on Operating Systems Principles.
ACM, 2017, pp. 121–136.

[7] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010,
p. 19.

[8] M. Peuster, J. Kampmeyer, and H. Karl, “Containernet 2.0: A rapid
prototyping platform for hybrid service function chains,” in 2018 4th
IEEE Conference on Network Softwarization and Workshops (NetSoft),
June 2018, pp. 335–337.

[9] D. Moro, M. Peuster, H. Karl, and A. Capone, “FOP4: Function
Offloading Prototyping in Heterogeneous and Programmable Network
Scenarios,” in 2019 IEEE Conference on Network Function Virtualiza-
tion and Software Defined Networks (NFV-SDN), 2019.

[10] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker,
“In-band network telemetry via programmable dataplanes,” in ACM
SIGCOMM, 2015.


