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Abstract

In this paper we highlight the privacy risks entailed in deep neu-
ral network feature extraction for domestic activity monitoring.
We employ the baseline system proposed in the Task 5 of the
DCASE 2018 challenge and simulate a feature interception at-
tack by an eavesdropper who wants to perform speaker identifi-
cation. We then propose to reduce the aforementioned privacy
risks by introducing a variational information feature extraction
scheme that allows for good activity monitoring performance
while at the same time minimizing the information of the feature
representation, thus restricting speaker identification attempts.
We analyze the resulting model’s composite loss function and
the budget scaling factor used to control the balance between
the performance of the trusted and attacker tasks. It is empir-
ically demonstrated that the proposed method reduces speaker
identification privacy risks without significantly deprecating the
performance of domestic activity monitoring tasks.

Index Terms: privacy, variational information, adversarial at-
tack, feature interception, latent variable, mutual information,
deep neural networks

1. Introduction

The monitoring of domestic activities in the context of smart
home environments is gaining increasing interest, being fueled
by the surge in popularity of digital home assistants (e.g., Ama-
zon Echo, Google Home, etc.) and the growing need for Am-
bient Assisted Living (AAL) solutions [1]. The Detection and
Classification of Acoustic Scenes and Events (DCASE) chal-
lenge has promoted this field in Task 5 of its 2018 edition [2]
by providing an extensive database of domestic sounds derived
from the SINS dataset [3] and by asking participants to develop
algorithms for their classification. The dataset is based on an-
notated multi-channel and multi-node recordings from a person
living in a vacation home for one week, thus offering a highly
informative and spatial-cues-enabled perspective.

The solutions proposed by the challenge’s participants have
all employed machine learning (ML) approaches, more specif-
ically various deep neural network (DNN) architectures [4].
When considering the deployment of such solutions in real-
world distributed acoustic sensor network (ASN) scenarios,
e.g., where for network efficiency reasons the DNN-based fea-
ture extraction is implemented at sensor level and the classifica-
tion decision is centralized [5], we also have to take into account
the inherent privacy implications. In this regard, we envision a
case where the DNN-based feature representation is intercepted
during inference by a third-party attacker who wants to use it
for a more privacy-invasive task such as speaker identification.
Therefore, we aim to determine the resulting privacy risks and
we propose to tackle them by employing privacy-preserving

variational information feature extraction. This produces a
lossy information minimization and the effects thereof are then
analyzed w.r.t. domestic activity monitoring and speaker iden-
tification performance. Due to the intrinsic relation between
some of the speech-based domestic activity classes (e.g., social
activity) and the attacker’s task, this challenging scenario will
not have a trivial solution.

The remainder of this paper is organized as follows: We
first discuss the relation to prior work, we then describe the
privacy-preserving feature extraction model, followed by a de-
scription of the neural network architecture used, after which
we detail the experimental layout and the results, finalizing with
conclusions and ideas for future work.

2. Relation to prior work

The topic of privacy-preserving feature extraction was initially
investigated by the authors in [6], where generative adversar-
ial feature extraction was used in a conflicting goals scenario in
order to control the trade-off between gender recognition and
speaker identification. Although efficient, this method did not
lead to a generalized information minimization technique due
to its dependency on a specific attacker configuration. In the
same context of gender recognition vs. speaker identification
the authors have then proposed a solution inspired by variational
information autoencoders [7] where the encoding variable is a
compact data representation and where a reparametrization trick
[8] is used to allow stochastic sampling during backpropaga-
tion. Mutual information (MI) is further chosen as an informa-
tion regularization criterion for the loss function as supported
by works like [9] and [10], where it is successfully used to in-
crease network performance and robustness against adversar-
ial attacks in the testing domain. This solution has produced
positive results as indicated in [11] and we consider it to be a
suitable starting point for the more complex, domestic activity
monitoring vs. speaker identification scenario.

As far as the authors are aware, at the time of writing this
paper, there is no previous investigation on using variational in-
formation networks against adversarial attacks based on speaker
identification in the context of domestic activity monitoring.

3. Trust versus threat model
3.1. System description

The DCASE 2018 challenge offers a baseline system for Task
5 composed of two convolutional layers and one dense layer
intended to make task participation easier and to provide ref-
erence performance. By employing the taxonomy introduced
in [12] we will refer to this as the trust model and we will fur-
ther adapt it to our proposed variational information method and
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Figure 1: Flow chart of privacy-preserving feature extraction
for domestic activity monitoring vs. speaker identification.

distributed ASN scenario. We will then analyze the changes
in performance in comparison with the baseline performance
and with the performance of the speaker identification system.
Again employing the taxonomy introduced in [12], we will refer
to the latter as the threat model.

The trust and threat models are depicted in Fig.1 and are
described as follows. The trust model consists of a feature ex-
traction block f which transforms the low-level feature set X
into the privacy-preserving feature set Z. The latter is then for-
warded to the multilayer perceptron (MLP) based activity de-
tector a with the weights and biases parameters ¢, which in
turn estimates the domestic activity labels’ probabilities P(A).

The feature extractor block f comprises of a convolutional
neural network (CNN) based structure ¢ with weights and biases
parameters ®. which uses as input the low-level feature set X .
The CNN’s output is concomitantly passed to the dense layers p
and o which have the respective weights and biases parameters
®,, and ®,. The output of the o layer is multiplied with samples
from a ¢-dimensional standard normal distribution A/ (0, I) and
the result is then added to the output of the y layer, creating thus
the privacy-preserving feature set Z. The motivation behind this
stochastic encoding will be detailed in section 3.2.

The threat model, consisting of an MLP-based classifier s
with weights and biases parameters @, intercepts the privacy-
preserving feature set Z and uses it in order to estimate the
speaker labels’ probabilities P(S).

3.2. Training the trust model

In the proposed scenario the objective of the trust model is to
develop a feature representation that can further be used for do-
mestic activity monitoring but which, at the same time, when
intercepted by an attacker can offer little task-extraneous infor-
mation.

The objective’s first part can be separately expressed as
minimizing the cross-entropy between the activity labels’ true
P(A") and estimated P(A) probability distributions,

¢c,¢Tgla,¢a Eatpcaty[—logp(A)]. (1)

The objective’s second part can be separately handled by
minimizing the information in the privacy-preserving feature
representation Z and thus diminishing its discriminative char-
acteristics. As an information regularization criterion we mini-
mize the mutual information between the low-level and privacy-
preserving feature sets I(X; Z), as also supported by works like
[9, 10]. Even though this has the advantage of being a compre-
hensive data similarity measure, it does come with the disad-
vantage of being computationally demanding. A more com-
putationally practical solution is to find an MI upper bound
Imax(X;Z) > I(X; Z) and use this in the network training

process. In this regard we first formulate the entropy-based ex-
pression of MI:

I(X;Z)=H(Z)— H(Z|X) 2
= — /p(z) log p(z)dz + /]o(x7 z)logp(z|x)dzdz.

An analytical expression of H(Z|X) can be obtained by
employing a stochastic encoding mechanism as introduced by
[8]. For this we construct a normal-distributed encoding vari-
able z = o(c(z)) - € + p(c(z)), where € ~ N(0,I). This
forces the conditional distribution of z given the input variable
z to follow a Gaussian distribution:

p(zz) = N(p(c(x)), o (c(2)))- €)

Given that stochastic sampling from p(z|z) during backpropa-
gation is intractable we invoke a reparametrization trick [8] and
substitute it with sampling from z. The latter can be regarded
as a deterministic variable and its parameters ®,, and ®, from
layers ¢ and o can be updated during backpropagation.

In order to find an analytical expression for H(Z) we in-
troduce a variational distribution ¢(z) and, as also suggested by
[9], we assume it to be standard Gaussian N'(0, ). We then
use the Kullback-Leibler divergence’s property of always being
positive [13] in order to obtain an upper bound for H(Z):

f/p(z) log p(z)dz < f/p(z) log q(z)dz. 4)

Using (2) and (4) we get that the upperbound of [(X; Z) is

z|x
/p(x, z) log p(g(i)) dxdz = KL(p(z|z)|lq(2)), (5)
where K L is the Kullback-Leibler distance between the condi-
tional p(z|z) and variational ¢(z) distributions. We next define
the MI upper bound I,nq.(X; Z) > I(X; Z) as:

Inas (X5 Z) = KL(p(2|7)]|q(2))- 6

By minimizing I (X;Z) we can now reduce the depen-
dency between the low-level feature representation X and the
privacy-preserving feature representation Z.

Since both p(z|z) and ¢(z) are Gaussian distributions, the
analytical expression of their Kullback-Leibler distance is fur-
ther employed to obtain

Imex(X;2) = %(tr(zz) +,uzT,u,z —logdet(X,) — C), @)

where ¥, = diag(o(c(x))?) and . = p(c(z)).

Considering the earlier mentioned trust model’s objectives
of providing good activity monitoring performance, expressed
by (1) while at the same time reducing task-extraneous informa-
tion by minimizing Imqx (X; Z), the trust model’s loss function
to be minimized can be expressed as:

@C’q}}ltl,iql}m% E gt opiaty[—log p(A)] + Blmax(X; Z).  (8)
The intuitive explanation behind this formulation is that feature
extraction will be forced to initially discard MI between X and Z
that is irrelevant for domestic activity detection but not at a high
cost for the task’s performance. Similarly to [6] and [11], a bud-
get scaling factor 3 is introduced to control the balance between
how much domestic activity monitoring performance we wish
to renounce in favor of a less informative privacy-preserving
feature representation.
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Figure 2: Network architecture for privacy-preserving varia-
tional information feature extraction.

3.3. Training the threat model

The feature extractor f is employed to extract the privacy-
preserving feature representation Z thus simulating an intercep-
tion attack by the attacker s during trust model inference. The
goal of the attacker is to perform speaker identification using
the intercepted feature set Z. This is done by minimizing the
cross-entropy between the speaker labels’ true P(S") and esti-
mated P(S) probability distributions and only updating the ®
parameters:

rgiansth(St)[— log p(S)]. )

4. Network configuration
4.1. Low-level feature extractor

As indicated in the DCASE 2018 Task 5 baseline system [2],
the log mel-band energy (LMBE) representation of the sig-
nal z4(t) is used as network input and is obtained as follows:
The short-time Fourier transform (STFT) X (r, b) with win-
dow length Ly and step R is applied to x4(t), where x and
b denote the frequency bin and time frame index, respectively.
The obtained squared-magnitude spectrum is then mapped onto
the Mel scale [14], resulting in the Mel-spectrum X (k', b),
where k' = 0,1,..., K’ — 1 is the index of the Mel scale fre-
quency bin. Finally, by taking the logarithm of the absolute
Mel-spectrum we obtain the LMBE features,

Ximbe(k', b) = log | Xme (E', b)]. (10)

4.2. Privacy-preserving feature extractor

The architecture of the feature extractor f is depicted in Fig. 2
for K’ = 40, L; = 0.04s, Ry = 0.02s and a xs(t) length
of 10s. We use here the CNN-based c block from the DCASE
2018 Task 5 baseline system [2] which consists of two convo-
lutional layers. The first one is of size 501 x K’ containing 32
filters with a kernel size of K’ x 5 and stride 1, thus convolu-
tion is only performed over the time axis. Subsampling is then
performed by Max Pooling with a factor of 5. The second CNN
layer is of size 99 x 32 with 64 filters that have a kernel size of
3 x 32 and a stride of 1. Subsequently, this is subsampled us-
ing Global Max Pooling by a factor 97. After each CNN layer
Batch Normalization, ReLU activation and Dropout (20%) [15]
are used. We now introduce our proposed variational informa-
tion approach by passing the resulting output of size 1 x 64 to
the dense layers p and o, each containing 128 neurons. The out-
put of layer o is multiplied with samples from a (-dimensional
standard normal distribution A/(0, I') with ¢ = 128 and added

Set Activity Segments Sessions
Absence 18860 42
z Cooking 5124 13
g § Dishwashing 1424 10
g0 Eating 2308 13
S Other 2060 118
o '§ Social Activity 4944 21
A N Vacuum cleaning 972 9
38 Watching TV 18648 9
Working 18644 33
Set Distribution Segments Balance
WSI:
80% train égs g]?’/“fr’gu Avg. 87/spk. 551‘3322 q
20% test pr./group

Table 1: Division of DCASE 2018 and WSJ audio data into
training and testing sets.

to the output of layer p. The resulting privacy-preserving fea-
ture representation has the form 1 x 128.

4.3. Activity detector and speaker identifier

We perform activity detection and speaker identification for
each resulting privacy-preserving feature vector Z by using the
MLP architectures a and respectively s presented in Fig. 2.
Both MLP architectures consist of 64 fully connected nodes that
use ReLU activation functions, Dropout (20%) and a final layer
of 9 respectively 6 output nodes, on which we apply a Softmax
function. The number of output nodes corresponds to the total
number of domestic activity classes and respectively to the to-
tal number of speakers from our speaker identification pool. In
all training phases we employ the Adam optimizer [16] with a
learning rate of 0.0001. The activity detector’s configuration is
identical to the one proposed in the DCASE 2018 Task 5 base-
line system.

5. Experiments
5.1. Databases and settings

For domestic activity monitoring we use the DCASE 2018 Task
5 development set [2] which is a subset of the SINS dataset
[3]. The data split into training (65%) and testing (35%) files is
provided by the challenge’s baseline system [17] as well as the
arrangement into four folds. For ease of implementation and
considering that all folds contain the same files, differing only
in their train/test assignation, we have arbitrarily concentrated
in this work on fold number 3. The activities considered in this
experiment along with the total number of 10 s segments and
sessions for each activity class are shown in Table 1.

For simulating a speaker identification attack in a smart
home environment we select 108 speakers from the Wall Street
Journal (WSJ) corpus [18], of which 54 are male and 54 are fe-
male, and we arbitrarily group them into 18 groups where each
group is composed of 3 male and 3 female speakers. We then
arrange the data into 10 s segments in order to match the net-
work’s input shape requirements, thus obtaining an average of
87 segments/speaker. For each speaker we split the segments
into training (80%) and testing (20%). The aforementioned
specifications are also summarized in Table 1.

The accuracy metric for both domestic activity monitor-
ing and speaker identification performance is, as also used in
the DCASE 2018 challenge [2], the macro-averaged F;-score,



which is the mean of the class-wise F1-scores:

1 <& 2P(m)R(m)
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, where

TP(m)

_ TP(m)
)= TP(m)+ FP(m)
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(m (") = T By + FN(m)
with m being the domestic activity/speaker class, M the to-
tal number of activity/speaker classes and 7P (m) the number
of true-positives, F'P(m) the number of false-positives, and
F N (m) the number of false-negatives for class m.

5.2. Domestic activity monitoring

In order to obtain a reference level for domestic activity moni-
toring performance we first employ the original baseline system
downloaded from [17]. The system is implemented in Python,
and uses the DCASE UTIL library [19] for dataset handling and
low-level feature extraction and the Keras library [20] for neu-
ral network operations. We train the network on fold number 3
with the settings specified in 5.1 using a batch size of 256 input
segments for 400 epochs. Each 10 epochs the model is saved
and in the end the best performing one is chosen for testing.
The obtained macro-averaged reference F;-score is of 83.80%
and is shown in Fig. 3 under the indicator "Reference”. The
individual Fy-scores for each class are also indicated.

We then adapt the baseline system by adding the variational
information components as indicated in section 3 and we sys-
tematically vary the budget scaling factor 3 throughout this ex-
periment. For each value of 8 we train the network on fold
number 3 with the settings specified in 5.1, again using a batch
size of 256 input segments for 400 epochs. As previously, each
10 epochs the model is saved and in the end the best perform-
ing one is chosen for testing. The obtained macro-averaged F; -
scores along with the individual F;-scores for each class are
depicted in Fig. 3 under their corresponding 3 values.

5.3. Speaker identification attack

We next train the attacker part of our proposed system by con-
catenating the already trained feature extractor f with the at-
tacker architecture detailed in Fig. 2 for each value of 5. We
train on the WSJ dataset with the settings specified in section
5.1 using a batch size of 256 input segments for a maximum
of 1000 epochs or until interruption by a cross-entropy-based
early stopping function [21] that prevents overfitting. This ex-
periment is performed for 10 cross-validation sessions and the
macro-averaged Fi-scores for each 6-speakers group are aver-
aged across all 18 groups and the results are again averaged over
the 10 cross-validation sessions. The obtained results are de-
picted in Fig. 3 under the label " Attacker” for each correspond-
ing B value. The figure also shows a control line for random
guessing speaker identification Fq-score.

5.4. Discussion

Our first observation is that the feature set produced by the
baseline system, when intercepted by an attacker, allows for a
speaker identification Fy-score of 47.07%. When considering
the deployment to a smart-home environment this poses sub-
stantial privacy risks. Once we replace the deterministically-
produced baseline feature set with a stochastically-produced
feature representation the attacker’s performance drops to
29.40% while domestic activity performance has just an in-
significant drop in performance, resulting in an F;-score of
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Figure 3: The influence of the budget scaling factor [ on do-
mestic activity monitoring and speaker identification attacks.

83.12%. Note that at this point 5 = 0 thus no minimization
of Imae(X; Z) is yet performed and the drop in attacker per-
formance is only due to the stochastic sampling from N (0, I)
of the latent variable Z, hinting that a class-wise-generic feature
representation greatly reduces class-extraneous information.

Further on, we observe that by minimizing Imax(X; Z)
with 8 = 0.01 we obtain an even lower attacker F;-score of
19.09% which is now close to random guessing values. The loss
in activity monitoring performance is small, resulting in an F; -
score of 80.29%. When we continue to increase the value of 3,
thus increasing the weight assigned to minimizing Irmax (X; Z),
we observe that speaker identification performance keeps depre-
cating until random guessing values are reached but now the im-
pact on activity monitoring performance is significantly higher.
What is interesting to observe is that the performance of speech
related activities e.g., ”Social activity” is rather resilient to in-
creases of /3, pointing towards the possibility of further combin-
ing the current method with additional countermeasures specifi-
cally targeted at speaker identification such as adversarial train-
ing [6].

6. Conclusions and future work

We have highlighted the privacy risks entailed by DNN-based
feature representations in the context of a distributed ASN for
domestic activity monitoring. Empirical evidence was provided
to show that variational information feature extraction can be
successfully used to drastically reduce the effects of speaker
identification attacks on intercepted features without signifi-
cantly altering activity monitoring performance. For this, a
privacy-preserving latent feature representation along with a
general loss function were proposed and a budget scaling factor
was introduced and analyzed. In future work we aim to supple-
ment the information minimization measure with a specifically-
targeted attacker countermeasure such as adversarial training
and to also consider non-parametric MI estimation.
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