WEAKLY SUPERVISED SOUND ACTIVITY DETECTION AND EVENT CLASSIFICATION
IN ACOUSTIC SENSOR NETWORKS

Janek Ebbers, Lukas Drude,
Reinhold Haeb-Umbach

Paderborn University
Department of Communications Engineering
33098 Paderborn, Germany
{ebbers,drude,haeb} @nt.upb.de

ABSTRACT

In this paper we consider human daily activity recognition
using an acoustic sensor network (ASN) which consists of
nodes distributed in a home environment. Assuming that the
ASN is permanently recording, the vast majority of record-
ings is silence. Therefore, we propose to employ a compu-
tationally efficient two-stage sound recognition system, con-
sisting of an initial sound activity detection (SAD) and a sub-
sequent sound event classification (SEC), which is only acti-
vated once sound activity has been detected. We show how
a low-latency activity detector with high temporal resolution
can be trained from weak labels with low temporal resolu-
tion. We further demonstrate the advantage of using spatial
features for the subsequent event classification task.

Index Terms— acoustic sensor network, sound recognition

1. INTRODUCTION

Driven by the annual editions of the Detection and Classifi-
cation of Acoustic Scenes and Events (DCASE) Challenge,
sound recognition recently attracted increased interest not
only in the research community. Typical data sets for sound
recognition contain a collection of audio segments, which
contain one or more events to be recognized. For example,
the Google AudioSet [1] is a collection of 2M video clips
of 10s each. The goal is to classify which of the 527 event
classes are present in a clip.

While the AudioSet and similar datasets are certainly im-
portant to advance the state of the art, for many applications,
the task of annotating segments of audio is only part of the
challenge. In this contribution we are concerned with the use
of an ASN to monitor human daily activities in order to sup-
port smart-home or ambient assisted living (AAL) applica-
tions. Since the monitoring system should be always running,
for most of the time there will be no sound event of interest,
e.g., because of absence of the person from home.

For such a scenario it is reasonable to devise a two-stage
classification approach, where, in a first stage, a lightweight
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sound activity detector detects presence or absence of rele-
vant sound events, and only if relevant sound activity is de-
tected, the second stage is activated, which carries out the
sound event classification. Such an approach is also followed
in today’s speech-controlled digital home assistants, where a
comparatively small on-device voice activity detector listens
for the wake word (e.g., “Alexa”), and the cloud-based rec-
ognizer is only employed if the wake word has been detected
[2]. However, the concept of a wake word does not translate to
general audio. Furthermore, there are no large-scale data sets
available indicating on- and offsets of sounds at the desired
temporal resolution that can be used to train a sound activ-
ity detector. However, there are data sets indicating whether
there is activity or no activity in larger time segments, e.g.,
one minute, such as the SINS database [3] used in this study.

In this paper we show how a convolutional neural network
(CNN) [4] can be trained to make accurate SAD predictions
every 200 ms, given only these low-resolution labels. As soon
as activity is detected the detected sound is classified using
another (larger) CNN. It was shown in [5], that the employed
CNN architectures can be run on a Raspberry Pi 3 much faster
than real-time, which makes the proposed system feasible for
application in an ASN without the necessity of transmitting
signals to a central server. This and the rather small receptive
fields of the CNNs allow low-latency (<1s) detection and
classification compared to classifcation of longer time seg-
ments of, e.g., 10s [6].

Further, when using an ASN for daily human activity
monitoring, not only the spectral signature of a sound is
indicative of an event, but also its source location. This is
because certain sounds, e.g., cooking, occur only in certain
places. Another objective of this paper is thus to evaluate the
usefulness of spatial in addition to spectral features. Please
note that our source code is publicly available on github.'

The remainder of the paper is organized as follows. First,
the smart-home scenario is decribed in Sec. 2. After explain-
ing the feature extraction in Sec. 3, our proposed two-stage
recognition system is explained in Sec. 4 and Sec. 5. Exper-
iments are described in Sec. 6, and conclusions are drawn in
Sec. 7.

"https://github.com/fgnt/sins



2. SCENARIO

We consider a smart-home scenario, where an ASN is dis-
tributed in a single-person apartment. Such a scenario is cap-
tured in the SINS database [3]. It contains real-life recordings
from 12 sensor nodes distributed over several rooms taken
over a period of one week. Each sensor node is equipped
with a linear array of four microphones. One person lived in
the apartment for a continuous duration of one week and an-
notated his daily activities such as working, cooking, eating.
In this work, however, we only use the recordings of the seven
sensor nodes in the combined living room and kitchen area.

3. FEATURE EXTRACTION
First, we perform a short-time Fourier transform (STFT) with
60 ms frames and 20 ms hops on the provided 16 kHz audio
signals. For each frame we then extract 64 log-mel-band en-
ergy features [7] in the range of fi,;,=200 Hz to f,,x=8 kHz
yielding a feature map of shape 64 xT,, where T}, denotes the
number of frames in the nth signal.

For the SEC task we further experiment with different
spatial feature sets. The first set consists of inter-channel
phase differences (IPDs) [8] between microphones d and
d’, which are calculated from the STFT observations T,
where ¢ and f denote the time frame and frequency bin in-
dex, respectively, as follows: @4 a4+, = arg{Ta,¢,f Ty 4 s }-
Inspired by their efficiency in multi-channel deep cluster-
ing [9] and due to their well-defined range of [—1, 1], we here
decided to select sine and cosine IPD features.

The second set consists of coherence-based features. The
coherence between two channels is defined as the normalized
cross power spectral density (CPSD) ®4 4 ; ; between two
channels d and d’ [10, Eq. 2.17]. Here we use the magnitude
and the sine and cosine of its phase, where CPSDs are esti-
mated based on a few time frames. This features indicate, to
some degree, how close a particular sound event is [11].

The third spatial feature set employs the complex Wat-
son kernel-based Direction-of-Arrival (DoA) estimator [12].
Here, we calculate steering vectors wy, y corresponding to
K =17 candidate directions ranging from 10° to 170° (endfire
positions are biased [13]). The likelihood that an observation
X¢, ¢ originates from a certain direction & is obtained as:

D(Xe, 3 K, Wi f) = %e“‘“’:f"w‘i @))
where x; f = (z44,;d = 1,...,D)T is the vector of mi-
crophone signals, k is a concentration parameter and ¢(x) is
a normalization constant [14]. We obtain a feature map for
each of the K=17 candidate directions.

The spatial features are extracted for a pair of adjacent
microphones. However, classification scores of all pairs (with
four microphones there are three adjacent pairs) from all sen-
sor nodes may be fused (more details in Sec. 6). The extracted
spatial feature maps, which have the same dimensionality as
the STFT, are subsampled (at the maxima of the mel-filters)
to fit to the dimensionality of the log-mel-band energies. We

Table 1. CNN Architecture with output shapes of each block.
B, C and T denote the mini-batch size, the number of input
feature maps and the number of input frames, respectively.
Each ConvXd uses a kernel size of 3, a stride of 1 and in-
cludes BatchNorm [15], and ReLU. The parameter [ controls
the number of kernels in a layer.

Block Output shape
Feature Extraction BxCx64xT
2xConv2d(16-1) Bx16-1x64xT
Pool2d(2x2) Bx16-1x32x[T/2]
2xConv2d(32-) | Bx321x32x[T/2]
Pool2d(2x1) Bx32:1x16x[T/2]
2xConv2d(64-1) | Bx64-1x16x[T/2]
Pool2d(2x5) Bx64-1x8x[T/10]
Reshape Bx512:1x[T/10]
Conv1d(128-1) Bx1281x[T/10]
Linear(V) BxVx[T/10]

then stack the two log-mel spectrograms from the considered
microphone pair with the subsampled versions of the spatial
feature maps. Finally, we subtract the global mean of each
feature over time and then divide each feature map by its
global standard deviation. As the spatial signature depends on
the position of the sensor, we further stack a one-hot represen-
tation of the node index when using spatial features. Hence,
when, e.g., using IPDs as spatial features, we obtain a total of
C = 2 log-mel + 2 IPD + #nodes one-hot feature maps.

4. SOUND ACTIVITY DETECTION
In the given scenario, when an ASN is used in a home envi-
ronment to monitor daily activities, most of the time there is
actually no sound activity, e.g., because no one is at home. In
such a scenario it is beneficial to run a lightweight SAD and
only run the computationally more expensive SEC if sound
activity was detected.

Compared to common voice activity detection systems
there are two major challenges here. First, the relevant sounds
usually have a very low Signal-to-Noise Ratio (SNR). This is
especially true when the microphones used are of low quality,
which is frequently the case for such devices to limit costs.
Hence, it is difficult to use energy-based approaches [16] for
activity detection. Second, we do not have any training data
with (strong) labels, which indicate on- and offsets of sound
activity at frame-level resolution, which makes training of an
activity classification [17, 18] challenging. The given weak
labels only indicate activity within a certain time period with-
out providing the exact on- and offsets of the sound events.

Inspired by weakly labeled sound event detection [19], we
propose an SAD system that can be trained by only using the
information about presence or absence within longer time pe-
riods, which we refer to as sequences here. If a person is
present it is very likely that there are at least some sounds dur-
ing that sequence. If, on the other hand, the person is absent,
it is certain that there are no relevant sounds in that sequence.

For SAD we propose a rather small CNN consisting of



eight layers as outlined in Table 1 with [=1 and a single out-
put value (VV'=1). For this task, the input is the log-mel-band
energy feature map from a single microphone (C'=1) with-
out additional spatial feature maps. However, decisions of
multiple microphones and sensor nodes may be fused (more
details in Sec. 6). Due to pooling, the network makes pre-
dictions %, ,,, = 0 (CNN(X,, ,)) every tenth frame (200 ms)
with X, ,, denoting the input features in the receptive field of
the CNN at prediction step m of the nth sequence. Due to the
sigmoid function o(-), values between 0 and 1 are obtained
with a high value indicating sound activity. At test-time we
obtain binary decisions Z,, ,, by employing a decision bound-
ary at 0.5. As we only have sequence-level targets, we adopt
the training objective from [19]. A sequence-level score is

computed as a weighted average as follows:
M

211 - Z Wn,mgn,m Wlth UJn,m = ]e\j[{p(azn7nz)
m=1 2= exp(aZn i)

where M, is the number of predictions in the nth sequence.

While in [19] o was learned automatically, it is consid-
ered as a hyperparameter here that can be used to control how
aggressive the system is, i.e., to balance false positives and
missed hits. If we choose a=0, Eq. (2) becomes the arith-
metic mean of the individual scores and the network must
produce a high scores on average in order to output a high
sequence-level score. If a—00, Eq. (2) computes the maxi-
mum of the individual scores and the system needs only one
high score at a single time step to reach a high sequence-level
score. However, it also must not produce any single high
score, if it is to predict no activity.

As we do have binary sequence-level targets z,, with
zn=1 if the person is present and z,,=0 if the person is absent,
the model can now be trained using binary cross entropy:

L(Zn, 2n) = —znlog(Z,) — (1 — zp)log(l — 2,).  (3)

@)

5. SOUND EVENT CLASSIFICATION
After sound activity has been detected, the sound has to be
classified. Here we classify a sound by the acoustic scene it
belongs to such as working, cooking or eating, i.e., we con-
sider a multi-label classification problem. We use the CNN
outlined in Table 1 as classification network, this time with
[=4, V=#classes and C'=#feature maps:

y;,m =CNN(X,,m); ¥Ynm = softmax (y;’m)

with y,, ,, denoting the V-dimensional vector of classifica-
tion scores. The classification network has a total of 4.3 M
parameters and is 16 times larger than the SAD network.

To train the event classifier we only use those segments of
the training data where sound activity is detected. Assuming
the detected sounds originate from the person’s activity that is
to be classified, we adopt the weak labels y,, as strong labels
¥n,m at each prediction step m of the nth detected segment,
where y,, is a V-dimensional one-hot encoding of the ground
truth class label. Our training objective is then given by the
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cross-entropy between the predicted labels and target labels:
v

L(S’n,m» Yn,m) = - Z Yn,m,v log(gn,m,v) . (4)

v=1

6. EXPERIMENTS
For our experiments we use the recordings of the seven sen-
sor nodes in the combined living room and kitchen area of
the SINS Database [3] as explained in Sec. 2. We further
divide the seven sensor nodes into the two groups (1,3,7)
and (2,4, 6, 8), which will be used to investigate matched and
mismatched training and testing setups.

We randomly split the different sessions of the database
into §, ¢ and % for training, validation and evaluation, respec-
tively. We discarded a small fraction of the absence sessions
where the person is present in another room and is not sleep-
ing to not be affected by sounds originating from the other
rooms although the session is labeled as absence. We merged
the classes “phone calling” and “visit” into a single class “so-
cial activity” [6], as each has only very few occurrences. This
results in a total of eight classes (without absence).

The presented SAD system is trained using audio clips
from the sensors (1, 3, 7) with a maximum duration of 1 min,
i.e., if a session is longer than 1 min, which is usually the
case, it is split into smaller chunks. We then train the system
as explained in Sec. 4 to classify if the person is present or
absent during an audio clip. We train the system for 20k it-
erations using Adam [20] with a mini-batch size of 16 and a
learning rate of 3-10~%. Training is started with a=1 which is
linearly annealed to =2 during the first 10k iterations. The
best checkpoint is determined based on the F}-score on the
validation set. An example of an SAD of the trained system
is shown in Fig. 1.

A welcome byproduct of the channel-wise segmentation
is that it can be used for rough synchronization of the signals
from different nodes by correlating their SADs. Fig. 2 shows
the autocorrelation of a single SAD as well as the cross corre-



Table 2. SAD performance in terms of F}-Score [%] (high is
good [22]) for different SNRs and setups where m indicates
matched evaluation and f indicates decision fusion.

Setup SNR/dB
System m f -3 0 3 10
Oracle Thr. | v 575 70.8 793 91.6
Proposed | v/ 773 839 878 091.7
Oracle Thr. | v v | 66.1 76.6 83.7 93.1
Proposed | v v | 80.2 879 91.1 953
Oracle Thr. vV | 697 778 84.6 93.6
Proposed v | 83.0 881 90.7 933

lation between the SADs from two unsyncronized nodes. We
used this approach to align the signals from multiple nodes
enabling decision fusion at frame level both for SAD as well
as SEC evaluated later.

To quantitatively evaluate the system’s activity detec-
tion performance, we artificially generate test samples by
randomly mixing isolated sound events from the DCASE
2016 Challenge Task 2 [21] corpus into 20 s clips of absence
recordings from the SINS Database serving as background
noise. That way we know about the sounds’ ground truth
location in time which is required for evaluation purposes.
We evaluate for different SNRs by first normalizing the vari-
ance of the sound to the variance of the background noise and
then scaling the sound by +/SNR. We evaluate whether the
system detects activity within the known active range of the
sound, which would be counted as a true positive. Every other
detected segment in the clip is counted as a false positive.

As a simple baseline we consider a thresholding-based
approach where we sum the log-mel-band energy features in
windows of 200 ms to obtain scores with the same resolution
as the NN output. We then determine the optimal threshold on
the evaluation set, i.e., the same set that we report our scores
on, using a parameter sweep. Therefore, we refer to this base-
line as Oracle Thresholding.

We consider four setups here: matched evaluation on
nodes (1,3,7) with and without decision fusion and mis-
matched evaluation on nodes (2,4,6,8) with and without
decision fusion. For decision fusion, majority voting is ap-
plied at each time step using decisions from all microphones
from all nodes. In the “without fusion” setting we evaluate
the single-microphone decisions.

From the results shown in Table 2 it can be seen that our
proposed system outperforms the Oracle Thresholding in al-
most all setups. It can further be observed that SAD greatly
benefits from fusing decisions from multiple sensor nodes al-
lowing to also achieve high F-scores for low SNRs. It is
especially worth noting that the SAD performance for low
SNRs does not decrease in the mismatched setting but actu-
ally increases a bit. This can be explained by the decision fu-
sion of the channels from four rather than three sensor nodes.

Next, we evaluate the subsequent SEC. For this purpose

Table 3. SEC performance in terms of F;-Score [%] (high is
good [22]) for different features and setups where m indicates
matched training and f indicates decision fusion.

Setup

Features m | Fimin Fimax  F1mean
Log-Mel 36.2 98.7 75.5
Log-Mel v | 434 99.6 80.3
Log-Mel v /| 452 99.8 84.0
Log-Mel+IPD v /| 498 99.9 85.1
Log-Mel+Coh. v /| 492 99.9 85.9
Log-Mel+Watson | v/ v | 48.5 99.9 85.5

we first perform SAD on all datasets using all seven sensor
nodes. The resulting segments with sound activity are then
used to train and evaluate the classification system in the fol-
lowing. If a detected sound segment exceeds the maximum
duration of 4s, it is split into smaller chunks. We investigate
the following three questions: 1) Considering that our classi-
fier has a rather short receptive field of <1 s, how well can we
classify the daily activity based on the few sounds being ac-
tive therein? Note that performing classification with such a
small receptive field allows low-latency processing such that
a smart system can react much faster. 2) How much does
the classification benefit from fusing decisions from multiple
nodes? 3) How much does the classification benefit from us-
ing the spatial features proposed in Sec. 3?

The systems are trained for 100 k iterations using Adam
with a mini-batch size of 48 segments and a learning rate of
3 -107%. The system performance is measured in terms of
Fi mean Which is the mean per-class F}-score, i.e., we individ-
ually compute an F}-score for each of the eight events under
test and average these. The best checkpoint is determined
based on the performance on the validation set. Evaluation is
performed on the evaluation set using signals from the sensor
nodes (2,4, 6,8). Matched training is performed on the same
sensor nodes and mismatched training on the nodes (1,3, 7).

Results are shown in Table 3. It can be seen that perfor-
mance can be greatly improved by using decision fusion over
multiple sensor nodes as well as spatial features. Note that
spatial features depend on the sensor position and hence can
only be trained in a matched setup. While matched labeled
training is usually not available for a specific home environ-
ment we hypothesize that such a system may be trained us-
ing position-independent systems serving as teachers, which,
however, is beyond the scope of this work.

7. CONCLUSIONS

In this paper we proposed a two-stage sound recognition sys-
tem consisting of a sound activity detection and a sound event
classification system. For both systems we performed experi-
ments on realistic recordings and demonstrated their suitabil-
ity for sound recognition. We further showed that both sys-
tems benefit from an ASN by fusing decisions over multiple
nodes and using spatial features for classification.
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