
Paderborn University — Faculty EIM-I
Computer Engineering Group

Implementing a Real-time System on a Platform
FPGA operated with ReconOS

Master’s Thesis
Computer Engineering Group

Prof. Dr. M. Platzner

Department of Computer Science
Faculty of Electrical Engineering,

Computer Science and Mathematics
Paderborn University

submitted by
Christian Lienen

September 2019

Supervisors: Prof. Dr. M. Platzner
Lennart Clausing, M.Sc.

Examiners: Prof. Dr. M. Platzner
Prof. Dr. S. Hellebrand

Christian Lienen
Matriculation number: 7062779
Biekehöhe 5
33129 Delbrück

mailto:christianlienen@me.com
mailto:platzner@upb.de
mailto:lennart.clausing@uni-paderborn.de
mailto:platzner@upb.de
mailto:sybille.hellebrand@upb.de
mailto:christianlienen@me.com

Abstract

This thesis presents the development of an extended demonstrator based on an existing
Ball-on-Plate Stewart-platform. The demonstrator is a real-world example of a Stewart
platform, which allows the movement of a surface in six degrees of freedom. Due to the
presented extensions on the setup, three of these platforms are available. The resulting
demonstrator also enables the processing and output of an HDMI input signal as an HDMI
output signal. The goal of these enhancements is to create a heterogeneous set of different
tasks for real-time studies. A Xilinx Zynq-7000 Platform FPGA is used for the calculation
of the control and video processing, which offers programmable logic in addition to two
ARM Cortex-A9 processor cores. For the development of the FPGA design and the
software ReconOS is used, whose real-time behavior is improved by the extension of
priority-based scheduling. For the design of the real-time system, execution times of the
set of tasks are determined by measurements. Other measurements are performed on
the demonstrator that show the temporal behavior of different communication types and
memory accesses even when used in parallel. Different degrees of parallel processing are
implemented and examined regarding the run time.

Zusammenfassung

In der vorliegenden Masterarbeit wird die Entwicklung eines Demonstrators vorgestellt,
der auf der Basis eines vorhandenen Ball-on-Plate Demonstrators entwickelt wird. Dieser
Demonstrator basiert auf einer Stewart-Plattform, die die Bewegung einer Oberfläche in
sechs Freiheitsgraden ermöglicht. Durch die vorgestellte Erweiterung stehen insgesamt
drei dieser Plattformen zur Verfügung. Der erweiterte Demonstrator ermöglicht zudem
die Bearbeitung und Ausgabe eines HDMI-Eingangssignals als HDMI-Ausgangssignal.
Das Ziel dieser Erweiterungen ist die Schaffung einer heterogenen Menge an verschiedenen
Tasks für Echtzeituntersuchungen. Für die Berechnung der Regelung und der Videobear-
beitung wird ein Xilinx Zynq-7000 Platform FPGA eingesetzt, das neben zweier ARM
Cortex-A9 Prozessorkernen eine programmierbare Logik bietet. Für die Entwicklung
des FPGA Designs und der Software wird ReconOS eingesetzt, dessen Echtzeitverhal-
ten durch die Erweiterung um prioritätenbasiertes Scheduling verbessert wird. Für die
Auslegung der Regelung werden Bearbeitungszeiten durch Messungen ermittelt. An
dem Demonstrator werden Versuche durchgeführt, die das zeitliche Verhalten von ver-
schiedenen Kommunikationstypen und Speicherzugriffen auch bei paralleler Nutzung
darstellen. Verschiedene Grade von paralleler Abarbeitung werden implementiert und
auf die Laufzeit hin untersucht.

iii

Contents

List of Figures viii

List of Tables ix

List of Listings xi

1 Introduction 1
1.1 Problem Definition . 3
1.2 Aim of the Thesis . 3
1.3 Structure of the Thesis . 4

2 Background 5
2.1 Multitasking on FPGAs . 5
2.2 ReconOS . 6
2.3 Real-time Systems . 10
2.4 Ball on Plate Demonstrators . 14

3 Demonstrator 17
3.1 Mechanical and Electrical Extensions . 17

3.1.1 Hardware Modeling and Controller Design 18
3.2 Hardware and Software Implementation 26

3.2.1 Control Program . 28
3.2.2 Video Processing . 32
3.2.3 Remote Reconfiguration Server . 38

3.3 Control Loop Partial Reconfiguration . 40
3.4 Chapter Conclusion . 42

4 ReconOS Real-time Investigations 43
4.1 Real-time ReconOS based-on Linux . 43
4.2 Execution Time Measurement . 44
4.3 Communication and System Call Modeling 49
4.4 Resource Sharing . 54
4.5 Scheduling and Parallelism . 62
4.6 Chapter Conclusion . 68

5 Evaluation 69
5.1 ReconOS Real-time Improvements . 69
5.2 Implementation Evaluation . 71
5.3 Controller Evaluation . 75
5.4 Question Comparison . 76

v

6 Conclusion and Future Work 78
6.1 Conclusion . 78
6.2 Future Work . 79

Bibliography 84

Erklärung der Urheberschaft 85

vi

List of Figures

1.1 Zynq-7000 Architectural Overview, taken from [2] 2

2.1 ReconOS OSIF Infrastructure . 8
2.2 Sequence Diagram of the Hardware-Thread System Call, taken from [31] . 9
2.3 ReconOS Memory Interface Structure . 10
2.4 Simple Periodic Scheduling Example . 11
2.5 Ball-on-Plate Demonstrator, taken from [34] 15
2.6 Control Software Architecture, taken from [34] 16

3.1 Notations for the Stewart-Platform, taken from [34] 18
3.2 Rotation around x- and y-Axis . 21
3.3 Control Loop Model of the Demonstrator 22
3.4 Simulated Kalman Step Reponse . 24
3.5 Simulated Step Response to (0.2,0.2) . 25
3.6 AXI-Touch Controller Block . 26
3.7 AXI-Servo Controller Block . 27
3.8 Mapping of Control-Loop Functions to Threads 28
3.9 Video Processing Architecture . 33
3.10 Video Processing Driver Architecture . 34
3.11 Dataflow RGB2Gray Design . 36
3.12 Sobel operation for ARGB Images . 37
3.13 Schedule of the Reconfiguration Process for the Video Slot 39
3.14 Resulting Precedence Graph . 40
3.15 Reconfiguration Setup for Control Loop Threads 41

4.1 AXI Difference Measurement Timer Block 46
4.2 ReconOS Mailbox Model SW-Thread to SW-Thread 50
4.3 ReconOS Mailbox Model HW-Thread to HW-Thread 51
4.4 ReconOS Mailbox Model HW-Thread to SW-Thread 51
4.5 ReconOS Mailbox Model SW-Thread to HW-Thread 52
4.6 Setup for System Call Measurement . 52
4.7 ReconOS Mailbox Communication Times 53
4.8 Parallel Mailbox Access Setup . 55
4.9 Parallel Mailbox Put operated by up to 8 Threads 56
4.10 Parallel Mailbox Access Setup Execution Time 57
4.11 Parallel Memory Access Block Design . 59
4.12 Burst Access to the AXI Memory and Main Memory. Top: Time per

Access, Bottom: Bandwidth per Thread 60
4.13 Single Double Word Access to the AXI Memory and Main Memory. Top:

Time per Access, Bottom: Bandwidth per Thread 61

vii

4.14 Full Parallelism Scheduling (T: touch thread, C: control thread, I: inverse
thread, S: servo thread) . 63

4.15 Schedule with Reconfiguration in the Control and Inverse Slot (T: touch
thread, C: control thread, I: inverse thread, S: servo thread) 66

5.1 Cycle Time Period on a fully preemptive kernel / not full preemptive kernel
with real-time scheduling / without real-time scheduling 71

5.2 Resource utilization of the different implementations 72
5.3 Execution Time for the pure software implementation 74
5.4 Position of the Ball on the Surface with measured position Y, Kalman

estimated position X, control error e and resulting control value u 75

viii

List of Tables

3.1 AXI Touch Controller Register Description 26
3.2 AXI-Servo Controller Register Description 27

4.1 Difference Measurement Unit Register Description 47
4.2 Measured Execution Times . 49
4.3 Duration of the Reconfiguration . 49
4.4 Priorities for the pure Software Implementation 68

5.1 Measured mean execution times for the parallel implementation 73
5.2 Measured mean execution times for the reset implementation 74

ix

List of Listings

3.1 Ball-on-Plate Initialization Data Info Structure 29
3.2 Cycle Timer Thread . 30
3.3 Cycle Timer Wait Function Implementation 31
3.4 HMDI Input Buffer Thread . 34
3.5 HMDI Video Info Structure . 35
3.6 Remote Reconfiguration Request Request Loop 38

4.1 Typical Program Structure for Control Loop Threads 46
4.2 Software Environment for Execution Time Measurement 48

5.1 Cycle Timer Loop extended by Time Measurement 70

xi

1 Introduction

The general technical progress touches an ever-increasing part of our life. This devel-
opment requires energy-efficient embedded devices with a higher need of performance
and longer battery lifetimes due to increasing data volumes. Additionally, progresses in
machine learning accelerate this trend. For embedded systems that are often powered by
batteries or accumulators, the efficient use of available energy is particularly important.
To meet these properties, pure software based solutions executed on microcontrollers are
often not sufficient. Therefore, combinations of software and hardware execution are more
and more used, where subtasks of the problem are executed faster and more efficiently
in hardware.

In order to implement parts of the functionality in hardware, various approaches are
possible. Besides to the fix implementation in silicon as an Application Specific Integrated
Circuit (ASIC), functions can also be implemented using a Field Programmable Gate
Array (FPGA). The development of an ASIC is associated with high fixed costs and does
not offer the ability to change the design after the production.

In contrast to ASICs, FPGAs offer the advantage that the function can still be changed
after production and delivery to the costumer. FPGAs are a class of integrated circuits
which mainly consists of three basic components. The first group are standard logic blocks
based on look-up tables for combinatorial logic, flip-flops for registers and multiplexer for
data selection and the realization of logic functions. These standard blocks are connected
by a programmable interconnect. The third group of basic elements are input-output
blocks for the connection to the environment in the electrical circuit.

In addition to the described components, modern FPGAs have further units such as
transceivers for serial interfaces, block memory (BRAM) and dedicated units for arith-
metic operations, e.g. for digital signal processing (DSP-units). As a result, FPGA have
also been used for more advanced applications like as hardware accelerators for some
years now [18]. Initially, FPGAs were only used as a glue-logic. For the decomposition
of functionalities in software and hardware parts there are different approaches. One of
these approaches is the usage of ReconOS, which is described in the chapter 2.2.

While the functionality of the FPGA design is typically done in hardware description
languages like VHDL or Verilog, High-level Synthesis (HLS) approaches are increasingly
used to enable shorter development times and reusability of existing algorithm which are
developed for the usage in software.

Since FPGAs are more and more used as hardware accelerators, they are offered as system
on chip hybrids that contain fixed CPU cores in addition to reconfigurable logic. With the
Cyclone V SoC FPGAs architecture, for example, Intel offers FPGAs with an integrated
ARM Cortex-A9 multi-core processor. The abbreviation SoC stands for System-on-Chip,
which is typically an integration of processors, memory and other peripherals in one

1

integrated circuit. A similar architecture is also offered by Xilinx with the Zynq-7000
series.

Zynq-7000 SoC Data Sheet: Overview

DS190 (v1.11.1) July 2, 2018 www.xilinx.com
Product Specification 6

Figure 1 illustrates the functional blocks of the Zynq-7000 architecture. For more information on the functional blocks, see
UG585, Zynq-7000 SoC Technical Reference Manual.

X-Ref Target - Figure 1

Figure 1: Architectural Overview

2x USB

2x GigE

2x SD

Zynq-7000 SoC

I/O
Peripherals

IRQ

IRQ

EMIO

SelectIO
Resources

DMA 8
Channel

CoreSight
Components

Programmable Logic

DAP

DevC

SWDT

DMA
Sync

Notes:
1) Arrow direction shows control (master to slave)
2) Data flows in both directions: AXI 32-Bit/64-Bit, AXI 64-Bit, AXI 32-Bit, AHB 32-Bit, APB 32-Bit, Custom
3) Dashed line box indicates 2nd processor in dual-core devices

ACP

256K
SRAM

Application Processor Unit

TTC

System-
Level

Control
Regs

GigE

CAN

SD
SDIO

UART

GPIO

UART
CAN

I2C

SRAM/
NOR

ONFI 1.0
NAND

Processing System

Memory
Interfaces

Q-SPI
CTRL

USB

GigE

I2C

USB

SD
SDIO

SPI
SPI

Programmable Logic to
Memory Interconnect

MMU

FPU and NEON Engine

Snoop Controller, AWDT, TimerGIC

32 KB
I-Cache

ARM Cortex-A9
CPU

ARM Cortex-A9
CPU MMU

FPU and NEON Engine

Config
AES/
SHA

XADC
12-Bit ADC

Memory
Interfaces

512 KB L2 Cache & Controller

OCM
Interconnect

DDR2/3,
DDR3L,
LPDDR2

Controller

DS190_01_070218

32 KB
D-Cache

32 KB
I-Cache

32 KB
D-Cache

M
IO

Clock
Generation

Reset

Central
Interconnect

General-Purpose
Ports

High-Performance Ports

Figure 1.1: Zynq-7000 Architectural Overview, taken from [2]

An overview of the architecture of the Zynq-7000 platform is shown in figure 1.1. The
overall architecture is divided into the processing system (PS) and the programmable
logic (PL). The processing system contains two ARM Cortex-A9 cores with hardware
floating point units. The memory access is accelerated by the two-level cache architecture.
Through the Central Interconnect, the processors can access a set of MIO (Multi-Input-
Output) signals like USB, GPIO and other standard interfaces.

The access from and to the programmable logic is possible by a set of interfaces, which
provide different properties. For example, the ACP-interface (accelerator coherency port)
supplies cache coherent access to the memory. Other ports like the high-performance
ports allow faster access to the memory without coherency. The AXI-interface (Advanced
eXtensible Interface) is another standard port for the connection of peripheral-modules.
This interface is generalized in the figure 1.1 by general-purpose ports. Interrupt signals
allow the interruption of the processor by events occurred in the programmable logic. The
listed features make SoC FPGAs a flexible platform for hardware-software co designs.

The configuration of the programmable logic is done via the DevC (Device Configuration
Interface) interface which implements the PCAP (Processor Configuration Access Port)

2

protocol for the configuration. This interface is abstracted by the Linux kernel through
the /dev/xdevcfg device driver which can be used to read and write configuration files,
so called bitstreams. This also includes the dynamic partial reconfiguration, where parts
of the programmable logic are reconfigured during run time. The remaining parts of the
programmable logic continue to work uninfluenced during this time.

Additionally, many embedded systems are needed to meet deadlines, which are set by
the user or by the environment. For the reliable fulfillment of deadlines, the system
must provide a deterministic system behavior. These systems are categorized as real-
time systems. A classification of these systems is done either by the consequences after a
missed deadline or by the way the task is called up. The detailed description of real-time
system is presented in the background chapter 2.

1.1 Problem Definition

According to the project description for this thesis, the overall aim is the construction
of an real-time demonstrator by using the ReconOS operating system. This real-world
example should be based on an existing Ball-on-Plate demonstrator. The existing demon-
strator is described in the background chapter 2.4.

For further investigations, the demonstrator should provide a set of threads which consists
of periodic and non-periodic threads. These threads should also differ according to the
hardness of the real-time conditions. On the other hand, most of the tasks should be
implemented both in software and in hardware.

Besides the construction of the demonstrator, the following questions should be answered.
Most of these questions are demonstrator specific. However, approaches for the providing
of upper bounds for the execution times or the determination of overheads by system calls
can be answered generally.

Q1 How are tasks interfaced with sensors and actuators?

Q2 How to provide upper bounds for hardware and software task execution times?

Q3 How to model and determine the overheads posed by operating system calls and the
hardware/software communication in ReconOS?

Q4 How to deal with resources shared between tasks, in particular buses and memories?

Q5 What degree of parallelism can and should be used, and what are the resulting
scheduling and placement problems?

Q6 Is there a case for partial reconfiguration?

1.2 Aim of the Thesis

The overall goal of this thesis is the creation of a real-world example for a demonstra-
tor based on ReconOS. This demonstrator should provide a setup for investigations on
ReconOS, especially regarding the real-time behavior.

3

These extensions will allow the demonstrator to provide a set of tasks with different
characteristics regarding real-time requirements and scheduling behavior. This makes it
possible to answer the questions from the problem definition.

In summary, this work is intended to provide insights that can be used in later develop-
ments of real-time systems based on a hardware software design with ReconOS to assess
the system behavior. Additionally, the developed demonstrator can be used for further
investigations on ReconOS and real-time systems.

1.3 Structure of the Thesis

The structure of this thesis is as described in the following. After the introduction chapter
1, the needed background for the understanding of this thesis is presented. This includes
the ReconOS operating system and programming model, general real-time systems and
the current state of the existing Ball-on-Plate demonstrator, which is extended.

After that, the extensions are presented in chapter 3. This includes the mechanical and
electrical extensions but also changes on the control program and the video processing
units. Due to these extensions, the demonstrator can be used as an experimental setup
for following chapters.

Investigations regarding the real-time behavior are described in chapter 4. This contains
the enhancement of ReconOS regarding priority-based scheduling but also measurements
of the execution and communication times. The effect of parallel usage of the ReconOS
infrastructure is measured later in this chapter. Additionally, four possible schedules for
the execution of the threads are presented.

The following evaluation chapter 5 analyzes the implementations and the performance
of the demonstrator. For this purpose, the improved real-time capabilities are being
investigated. Additionally, the run times of the different implementations are shown.
The thesis finishes with the last chapter 6, which conclude the thesis and give an outlook
for future work.

4

2 Background

This chapter introduces the basic background, which is helpful for further reading. First,
multitasking on FPGAs is introduced, as this is made possible using partial reconfigu-
ration. After that, the ReconOS operating system is described, which is used for the
implementation of the demonstrator hardware and software design. An introduction into
the topic of real-time systems follows since their characteristics are considered in this
work.

A demonstrator is being developed for these investigations in combination with ReconOS.
This demonstrator is based on an already existing demonstrator, which has been described
in a previous thesis [34]. The essential properties and the function are summarized in
the last part of this chapter.

2.1 Multitasking on FPGAs

In the recent years, some procedures have been presented that enable multitasking on
FPGAs. The overall goal of multitasking on FPGAs is to use at least parts of the
FPGAs for different tasks concurrently. For this, dynamic (partially) reconfiguration
is used which allows to reconfigure parts of the FPGA during run time. This technique
enables to split large designs into smaller parts and execute them sequentially. During the
reconfiguration, the untouched parts of the FPGA can be executed without interruption.

As like multitasking on a CPU, a distinction is made here between preemptive and
cooperative multitasking. In cooperative multitasking, the task to be interrupted must
actively return the processing unit. The scheduler then decides to which thread the
processing unit is assigned based on a defined scheduling policy. If the currently active
thread has a state or context that is necessary for later reentrance, it must be saved by
the thread itself. This can be done for example in the global memory of the processing
system or in additional local memory, which is added for context saving. The context
contains the value of registers and local memory in the FPGA. Whereas in cooperative
multitasking the thread generally only must save the necessary part of the context, a
distinction is generally not possible in preemptive multitasking.

A more advanced multitasking procedure represents the preemptive multitasking on a
FPGA. In this case, the context of the processing must be able to be read from outside.
Therefore, different techniques are described. The approach of Readback, Scanpath and
Multi-Context FPGAs are presented in the following.

• Readback In the Readback approach, the same configuration interface which is
already used for the writing of the configuration data in the programmable logic, is
used to read the so called bitstream back in the processing system memory. This

5

approach is used for example by Simmler et al. [36] or Happe et al. [21]. The
readback includes not only the written bitstream but also the state of the registers
and the local memory in the programmable logic.

• Scanpath Another possibility for the saving and restoring of the FPGA context is
the usage of Scan-path registers. For example, this approach is used by Jovanovic
et al. in [25]. Jovanovic extends the classical n-bit register, which is a combination
of n-flip-flops to preemptive flip-flops. The difference comparing to the classical
register structure is the support of an additional mode of operation. This additional
mode connects the n-flip flops of the register to a shift register, which can be used
to shift the current value of register clockwise out of the register. The restoration
of the saved state can be done in the same way. The advantage of this approach is
that no further support by the FPGA is needed since the logic can be built with
standard logic elements. On the other hand, this approach requires additional logic.
However, the proposed paper does not describe how to deal with other components
like on-chip memory.

• Multi-Context FPGAs Another approach for the context switch in the FPGA
are multi-context FPGAs, which can contain different sets of configuration data.
An example architecture is proposed by Chong et al. in [13]. The biggest advantage
of this method is the fast context change, because the different configurations are
already written into the FPGA at the beginning. The disadvantage lies in the
permanent availability of all configurations and the resulting usage of resources. in
addition, storing elements such as registers and memories must be configured for
each context in parallel, which also results in an inefficient use of resources. The
availability of multi-context FPGA architectures is also very limited.

2.2 ReconOS

Due to the demand for more powerful and energy-efficient solutions for embedded sys-
tems, functional software parts must be moved from pure software implementations to
hardware/software co-designs. The results of this decomposition are functional software
and hardware parts, which have to communicate and synchronize with each other and
often with a operating system like Linux. In pure software systems, this communication
is widely standardized by the operating system, e.g. by the POSIX (Portable Operating
System Interface) standard. As opposed to that, hardware functions often use appli-
cation specific implementations without any standardization. This fact leads to longer
development times and more error sources during implementation.

In order to counter this issue, hardware functional units are partially modeled as hardware-
threads. However, they must be made accessible to the operating system, for which
various approaches have been developed in recent years [16].

The aim of these approaches is to reduce the productivity gap between the rising density of
logic and the slower increasing productivity of the development process. Approaches like
HThreads[5], R3TOS[24], FUSE[23] use an adopted Pthreads model for the abstraction
of the application dealing with the operating system [16].

6

The term Hthreads stands for the hybrid thread programming model for heterogeneous
processing units consisting of CPU and FPGA. Hthreads introduces a novel high-level
programming approach and includes also operating system and middleware abstraction
in hardware. The scheduling and dispatching of the system is done in hardware, which
leads to a minimal latency and a maximal performance on the CPU, since operating
system functions does not have to executed on it.

Other approaches like SPREAD[40] and RTSM[12] use the abstraction with delegated
threads, which represent the hardware application for the operating system.

SPREAD is specially developed for streaming applications, for example for hardware
encryption between two software threads [40]. Hardware threads can be chained by
streaming interfaces or to the multi-port memory controller, which allows access to the
global memory. The control of the hardware threads is done via a control path interface,
which is connected to the system bus of the CPU. SPREAD allows dynamic partially
reconfiguration, which enables the changing of the streaming architecture during run
time.

Another of these delegated thread-based approaches is ReconOS, which was proposed in
2007 [30] and is currently available in version 4.0. ReconOS combines a programming
model, a hardware environment and host operating system support services. It also
provides standardized communication and synchronizing mechanisms either for hardware-
to-hardware communication but also for hardware-to-software communication.

ReconOS Programming Model

ReconOS supports either pure software but also hardware threads, which are used as an
abstraction for a specific hardware functionality in the programmable logic. It is based
on the idea of delegated threads, in which a delegated thread represents a single hardware
thread in the operating system. Every interaction between a hardware thread and the
operating system is done via the delegated thread assigned to the hardware thread. This
enables the hardware thread to interact system-wide like a software thread through this
standard interface.

This allows ReconOS hardware threads the usage of standard primitives like mutexes
and semaphores for the communication and synchronization with other threads. Because
the delegated thread acts as a standard POSIX software thread, principally all other
standard system calls can be executed by the hardware thread. The standard system
calls, which are already implemented, are [4]:

• Mutex (Try)-Lock, Unlock

• Semaphore Post, Semaphore Wait

• Conditional Variable Wait, Signal, Broadcast

Additionally to the implemented standard system calls, there are some ReconOS specific
calls, which e.g. allow the hardware thread to get the address of initial data for process-
ing or to signal the exit of the thread. By the fact, that all ReconOS threads (hardware
and software) run within a shared memory space, standard systems calls are used to im-

7

plement a mailbox communication interface, which allows message-based communication
between all threads. For that, the operations (try)-get and (try)-put are implemented.

Each delegated thread has a table of resources that can be used to assign an object such
as a mailbox to a specific identifier. This identifier is propagated by an interface instead
of the real object. The identifier is therefore not system-wide compliant, but only in the
context of the specific hardware thread. This is one reason why the used bitstream must
be compatible with the current running ReconOS software application. Specially, this
must be considered if dynamically partial reconfiguration is used. The identifier of the
different threads must be consistent.

ReconOS Global Hardware Design

ReconOS allows both soft-CPU cores and hard-CPU cores for its operation. For example,
the current framework 4.0 supports the Xilinx Zynq platform with ARM Cortex-A9 CPU
but also the Xilinx Microblaze soft-CPU core architecture.

At application build time, the framework automatically generates a global hardware
design around the processor, which provides necessary functionalities for the hardware
threads. The global hardware design of ReconOS provides every hardware thread an in-
terface for operating system functions (OSIF, Operating System Interface) and for shared
memory access (MEMIF, Memory Interface). Additionally, other needed components like
reset controllers for the hardware threads and a configurable clock supply are also inserted
into the hardware architecture.

HTW 1

HTW n

FIFO

FIFO

OSIF
Ctrl

OSIF
INT
Ctrl

Processing
System
(PS)

DA

DA

AXI

INTC

Figure 2.1: ReconOS OSIF Infrastructure

The OSIF interface allows hardware threads to use the standard operating system func-
tions for communication and synchronization mechanisms. Figure 2.1 shows the inter-
connection between n-hardware threads and the processing system. Each of the hardware
threads is bidirectionally connected to the OSIF AXI-controller device via a FIFO (First
In - First Out) buffer. The "data available" (DA) output of the FIFO is connected to

8

the OSIF interrupt controller, which is connected to the interrupt input of the processing
system. Both the OSIF controller and the OSIF interrupt controller provide an AXI-slave
interface to get accessed by processing system.

If one or more hardware threads want to perform a communication through the OSIF
interface to the processing system, it sends the system call command and the necessary
data (e.g. a mailbox identifier) to its FIFO. The FIFO signals the OSIF interrupt con-
troller that a new request has been received and forwards the data to the OSIF controller.
The interrupt output of the OSIF interrupt controller is then set and an interrupt in the
processing system is triggered.

The process within the processing system is shown in the figure 2.2. As soon as the in-
terrupt is triggered in the processing system, the kernel driver reads the OSIF interrupt
controller and detects which thread triggered the interrupt. The kernel driver then un-
blocks the corresponding delegated thread and provides the received data to the delegated
thread. This thread executes the function which is mapped to the command in behalf of
the hardware thread. This execution may results in a block or in a direct return. The
result of the execution is then transmitted through the OSIF to the hardware thread.

OSIFOSIFHWTHWT CPUCPU

cmd + data

function call

return value

unblock +
return value

Figure 2.2: Sequence Diagram of the Hardware-Thread System Call, taken from [31]

Additionally, hardware threads can access the virtual address space of the running Re-
conOS application by the MEMIF interface. The structure of the Memory Interface is
shown in figure 2.3. In the figure, the presence of n hardware threads is assumed again.
For space reasons, the FIFOs between the hardware threads and the arbiter have been
omitted in the figure, as they are not necessary for understanding the function.

Since concurrent memory access from different hardware threads is possible, the MEMIF
arbiter must schedule the available memory bandwidth to the accessing hardware threads.

9

The scheduling policy is Round-Robin, which allocates the same communication time to
all memory accessing threads.

Since both software and hardware threads should be able to access the same virtual ad-
dress space, the requested addresses must be translated into physical addresses, which are
needed for the access in the main memory. Due to that, an MMU (Memory Management
Unit) is included into the interface.

The memory control unit (MEMIF CTRL) acts as master for the ACP-interface. Through
this interface, the memory control unit has a cache coherent access to the main memory
of the processing system but also to the rest of the physical address space. Therefore,
not only the main memory is accessible but also other physical address spaces like the
AXI peripheral interface of the processing system.

HTW 1

HTW n

MEMIF
Arbiter

MEMIF
MMU

MEMIF
CTRL

Processing
System
(PS)

ACP

Figure 2.3: ReconOS Memory Interface Structure

2.3 Real-time Systems

There are numerous definitions for real-time systems in literature. Some of these def-
initions aim at the presence of deadlines by which the processing should be completed
[29]. The consequences of missing such a deadline lead to a classification of real-time
behavior. If the deadline is missed, this will only lead to a loss of quality, for example
when decoding a video in a playback device, this is widely referred to as a soft real-time
system.

On the other hand, if missing this deadline can lead to catastrophic consequences, it is
a hard-real-time system. This is the case, for example, with the control of an aircraft
where a missing of the deadline could lead to a plane crash. A more precise definition of
the two categories is given by Reghenzani et al. in [33]. Provided a unknown distributed
random execution time X for a real-time system and a given deadline D, hard real-time
systems have to fulfill the condition from equation 2.1. The probability that the system
meets the required deadline must be one.

P (X ≤ D) = 1 (2.1)

Soft real-time systems have to fulfill this condition with an accepted probability p, which
is mainly a trade-off between costs and value (equation 2.2).

10

P (X ≤ D) ≥ p (2.2)

Besides the definition about the consequences of a missed deadline, real-time systems
can also be classified by the task triggering mechanism. In the field of reactive systems,
there exists mainly two different program paradigms: event-triggered systems and time-
triggered systems. Specially time-triggered systems are used during this thesis for the
control program. The possibility to reconfigure parts of the FPGA design through an
external event provides event-triggered behavior for the demonstrator.

Time-triggered systems only support interrupts by a central timer, which starts a new
execution session of the corresponding threads. In figure 2.4, a simple scheduling for a
timer triggered system is shown. The vertical arrow symbolizes the start of a new cycle
by the periodic timer. After the start of a new cycle, thread τ1, τ2 and τ3 are executed
sequentially. After the computation is done, the processor runs in an idle process or
powers down and waits for the next timer interrupt. If available, non-periodic non-real-
time tasks can also be executed during this time, whose reaction time is not critical for
the entire system.

τ 1,1 τ 2,1 τ 3,1 τ 1,1 τ 2,1 τ 3,1

Time
Trigger

Time
Trigger

Period P

t

Figure 2.4: Simple Periodic Scheduling Example

The temporal control structure of a time-triggered system is designed off-line. Therefore,
a task descriptor list (TDL) is generated, which includes the cyclic schedule of all threads
[28]. The dispatcher is called by the timer interrupt and starts the threads regarding the
TDL.

The criterion of scheduling feasibility is trivial in this case. The sum of worst-case
execution time must be less or equal than the period time P to fulfill the requirements
of hard real-time systems (equation 2.3). However, the determination of the worst-case
execution times is the challenging part of the designing of such systems.∑

k

WCET (τk) ≤ P (2.3)

Due to the good analyzability of time-triggered real time systems, they are often used
in safety-critical applications. Periodic timer triggered systems are also often used for
signal processing applications, where periodic sample times are important for the quality
of the data. However, time-triggered systems generate a considerable overhead because
of the polling of the sensor data.

11

On the other hand, more advanced timer triggered systems also allow task specific periods
instead of equal periods for all threads. In that case, checking whether a scheduling is
feasible or not is more challenging than for simple periodic tasks.

The second group of program paradigms is the class of event-triggered systems, which
schedule is based on events. These events are triggered by sensors or other tasks in the
system. Therefore, tasks are only executed if an event occurs. Schedulers that support
event-triggered threads require a dynamic scheduling strategy since the arrival of the
tasks is not known during design time [27].

Real-time Operating Systems

Many real-time systems work without an operating system. The application is pro-
grammed directly for a specific microcontroller on bare metal. However, this type of im-
plementation is more suitable for smaller systems, since the abstraction of the hardware
by the operating system can be omitted. On the other hand, the handling and imple-
mentation of multiple threads with different periods and event-based execution without
an underling operating system is a challenging task.

In general, there are different approaches to achieve real-time behavior in an operating
system. On the one hand, there are operating systems that have been designed as real-
time systems from the beginning. eCos or FreeRTOS are among these operating systems.

eCos (embedded configurable operating system) was designed for flexible configuration
and adaption to different embedded systems. It contains a hardware abstraction layer
(HAL), the eCOS kernel, an IO system and the standard C-library [38]. The kernel
was designed for minimum interrupt latency, low task switching latency, small memory
footprint and deterministic behavior.

Another real-time operating system is FreeRTOS, which was developed by Richard Barry
[20]. It provides a scheduler which supports both cooperative and preemptive scheduling
behavior, dynamic and static memory allocation and objects for message exchange and
synchronization.

On the other hand, there are various approaches to general purpose operating systems
like Windows and Linux to adopt real-time operating behavior. For example, some
commercial vendors rely on the approach of a timer triggered system for Windows, where
real-time tasks are cyclically triggered by the kernel timer. The remaining computing
time, which is not used for real-time tasks, is made available to the windows scheduler
[1].

For Linux, there are different approaches to ensure real-time behavior [35]. Two of these
approaches are the Xenomai framework and RTAI extension, which both use the Adeos
nanokernel. The nanokernel works between the hardware and the Linux kernel and acts
as an arbiter for the hardware functionalities [8]. The applications, which should have
real-time properties, are executed in parallel to the Linux kernel. Hardware interrupts
are forwarded from the Nanokernel to the target application by a pipeline mechanism.
The approach of RTAI is similar to that of Xenomai but offers the possibility to intercept
interrupt directly without the nanokernel. The main disadvantage of these approaches
is that the application must be adapted to the system architecture. For example, the

12

application must call special functions for synchronizing which are not compatible to the
POSIX standard.

This disadvantage is at the same time a motivation to harden the real-time behavior of
the standard Linux kernel. General purpose operating system like Linux are designed for
maximum average throughput, not for deterministic behavior [33].

The default Linux kernel supports different levels of preemptive behavior, which can be
selected at compile time:

• PREEMPT_NONE: Kernel functions may run without any interruption through user-
space applications for maximum throughput.

• PREEMPT_VOLUNTARY: Explicit preemptive points allow user-space applications the
interruption of kernel functions.

• PREEMPT: Except for spinlocks and some critical sections, preemption is always
allowed.

For realizing a more deterministic behavior, several improvements have been made over
the years. These changes are already supported by the PREEMPT compiler option. Some
of changes are presented in the following. A more detailed listing is proposed in [33].

• High-Resolution Timers In 2006, the high-resolution timer subsystem (HR-
timers) is introduced in the kernel sources by Gleixner and Niehaus [19]. Compared
to previous timer precision, HR-timers can archive resolutions in order of nanosec-
onds instead of milliseconds. The subsystem stores timer events in red-black-tree
structure, which enables fast access to the next expiring event. The nanosleep()
function used in this thesis is based on this timer subsystem.

• Priority Inheritance Priority Inheritance is a mechanism for the elimination of
priority inversion situations. Priority inversion can occur in situations where a
thread with a low priority uses a resource that is also requested by a thread with
higher priority. Since the high-priority thread has to wait in this case, a medium-
priority thread could displace the low-priority thread. This would result in the
medium-priority thread being executed preferentially compared to the high priority
thread. The Priority Inheritance mechanism assigns the high priority to the low
priority thread as long as it occupies the resource. On the other hand, this behavior
can lead to unbounded latency.

• Scheduler The state-of-the-art Linux Scheduler, the CFS (Completely Fair Sched-
uler) was introduced in 2007. The scheduler supports the default scheduling pol-
icy SCHED_OTHER and two important real-time scheduling policies SCHED_RR and
SCHED_FIFO. In 2010, the real-time scheduling policy SCHED_DEADLINE was added
to the mainline kernel, which is based on the earliest deadline first (EDF) scheduling
algorithm. The scheduler allows the assignment of priorities in the range of (1...99)
for real-time tasks. The priority of normal threads is controlled by the nice-value,
which is in the interval (−20...19)

Applying the real-time patch PREEMPT_RT expands the configuration options by the
option PREEMPT_FULL. The patch leads to the removing of most of the spinlocks in kernel
threads, which are not non-preemptive [33].

13

Finally, the question arises whether the patched changes on the kernel lead to more
reliable real-time system regarding the meeting of deadlines. For this, an unknown dis-
tributed runtime X is compared to a latency-improved runtime X ′. The implication, that
a lower expected value µ′ = E[X ′] compared to the previous expected value µ = E[X],
does not hold (equation 2.4)[33].

µ′ < µ; P (X ′ ≤ D) ≥ P (X ≤ D) (2.4)

Even for a smaller resulting variance of the distribution, the implication does not hold
(equation 2.5)[33].

µ′ < µ, σ < σ′ ; P (X ′ ≤ D) ≥ P (X ≤ D) (2.5)

Brown and Martin compare the real-time behavior of the standard Linux kernel, the
patched Linux kernel and the Xenomai co-kernel approach in [11]. In this paper, a
periodic test case in which an application has to trigger an output signal periodically and
a test case in which the application has to wait a random interval and toggle an output
signal afterwards.

The results of this test are that the co-kernel-based approach (Xenomai) still outperforms
a single kernel approach. Due to the results, Linux is classified as an 95% hard real-time
System, which accepts deadline misses with a probability of equal or less than 5 percent
[11].

The result of these experiments is that while the change allows sufficient real-time prop-
erties, it is less suitable for use as a hard-real-time system for safety-critical applications.
However, for the purposes of this work the real-time properties are sufficient.

2.4 Ball on Plate Demonstrators

Over the last few years, several demonstrators have been developed in which a ball can
be balanced on a surface (so called Ball-on-Plate). Bdoor et al. [9] describe a mechanical
system with two degrees of freedom, which can balance a ball on its surface. The position
of the ball is recognized trough vision detection and the two stepper motors are connected
to the platform.

On the other hand, there are some more advanced Ball on Plate implementations, which
use the Stewart-Platform [39] for platform moving. Most of the systems use a vision
feedback for the control loop. In this case, a camera is mounted over the platform and
the resulting video signal is used to detect the position of the ball on the platform.
This approach is used by Copot et al. [15], which use a fractional PID controller for the
position control. Yaovaja [41] use a fuzzy control-based approach for the position control.
Arshad et al. [6] use a classical PID-controller for this purpose. Bang and Lee [7] use a
touch-screen-based approach for the feedback of the balls position. The same approach
is used by Ruething [34].

14

The Ball-on-Plate demonstrator presented in the master’s thesis by Ruething is used
as basis for further extensions and is therefore summarized in the following. The term
Ball-on-Plate refers to the ability to balance a metal ball on its surface.

The demonstrator is a real-world implementation of a Stewart-platform, which was pre-
sented by D. Stewart in 1965 [39]. Due to the Stewart Platform, the surface of the
demonstrator can move the platform with six degrees of freedom. This are linear transla-
tions in x, y and z direction but also three rotations (pitch, roll and yaw). This makes the
platform ideal for applications such as flight simulators or telescopes. The demonstrator
is shown in figure 2.5.

Figure 2.5: Ball-on-Plate Demonstrator, taken from [34]

Since linear drives are either more expensive (electric linear motors) or impracticable
due to external auxiliary units (e.g. for hydraulic or pneumatic actors), the movements
are realized with servo motors in this implementation. The rotation of the servo motor
in combination with its leg and the rod substitutes the needed linear translation. The
corresponding rod is mounted on the end of the leg of the motor and the other side on
the platform. However, this replacement results in a more complex calculation of the
motor angle compared to a linear position.

In order to balance a ball, the position of the ball on the surface must be registered.
This demonstrator uses a resistive touchscreen on the surface of the platform. The
touch screen is connected to the touch-screen-controller, which can be read out through
a serial interface. This touch-screen-controller contains the analog-digital-conversion of
the electrical signals from the touchscreen and converts them into a digital signal. The
controller is also able to generate interrupts when the ball is placed on the surface.

15

The central control logic of the demonstrator is the Zedboard, a FPGA development
board containing the Xilinx Zynq-7020 FPGA with two ARM Cotex-A9 hard CPU cores.
This board executes ReconOS together with the Linux operating system and is mounted
under the demonstrator.

The software and FPGA design implementation combine hardware and software-threads
in the ReconOS framework. The architecture contains four different threads (Touch,
Control, Inverse, Servo), of which control and inverse are implemented in both software
and hardware. Touch and Servo are hardware-only implementations, because they must
communicate through external interfaces like SPI (Serial Peripheral Interface) or provide
the motor angle through pulse-width-modulation. An overview of the hardware software
architecture is shown in figure 2.6.

Touch

ADS7845 PmodCON3

Pos

Inverse

Cmd

ServoControl

Cmd

SCLK, MOSI, MISO, SSn

Touchscreen Servos

SRV0, ..., SRV5

Figure 2.6: Control Software Architecture, taken from [34]

The touch thread starts a new control cycle with the reading of the actual position of
the ball on the plate. This information is scaled and send to the Control Thread via the
Pos-mailbox.

The control thread implements the control algorithm and put the result six times in the
Cmd -mailbox, one for each servo motor. The control algorithm implements an adapted
PID-controller, which is not further considered. A new controller design is shown in
chapter 3.

The inverse thread, which can be instantiated six times for parallel execution or run
six times sequentially, transforms the value in the Cmd -mailbox, into the required servo
position and sends the data to the servo hardware thread, which gets the data and sets
the motor position.

The original control program also contains a self-awareness mechanism, which adapts
the cycle time to the dynamic off the ball. The regarding self-properties are power con-
sumption, ball position and the output of the PID-controller and processing performance.
These features are removed for further considerations, since self-awareness is not used in
this thesis.

16

3 Demonstrator

This chapter describes the construction of the demonstrator setup. As mentioned, the ex-
isting Ball on Plate demonstrator is used and extended during this thesis. The extension
leads to more workload for the control unit of the overall demonstrator and enables fur-
ther real-time investigations. The most visible extension is the construction of two more
Stewart-platforms with own touch-screen surfaces and six servo motors per platform.

Beside the mechanical extensions of the demonstrator, the existing FPGA development
board (Zedboard) is used to run the control algorithms for all three platforms. Ad-
ditionally, the demonstrator is extended by a video processing chain, which allows to
process and output incoming video data. For this processing, a two filter kernels are
implemented. For providing a event-triggered thread, the remote reconfiguration server
accepts requests for filter changing by requests through the network interface. For se-
quential computing on the FPGA, partial reconfiguration is enabled by the mechanism
described in sub chapter 3.3.

3.1 Mechanical and Electrical Extensions

The mechanical construction of the Ball-on-Plate platform is already described in the
background chapter 2.4. For the construction of two further platforms, this mechanical
construction was overtaken by the original platform except for a few smaller changes, such
as the usage of other materials. The old and new dimensions of the Stewart-platform are
shown in figure 3.1. The dimensions and the positions of the mountings e.g. of the legs
are needed for the inverse kinematics, which are described during this chapter.

The electrical connection between the platforms is done via plug-able interfaces. This
includes the connections for the servomotor control signals and the communication in-
terface for the touch controllers. Therefore, the original platform can be used in the
legacy mode without the extension. On the other hand, every platform has its own 5
Volt power supply for the servo motors, which is needed because of the significant power
consumption of the servo motors.

Besides that, the demonstrator is enabled to process video data between two HDMI
interfaces. Fortunately, the FPGA development board is already providing an HDMI
output interface, which can be used for this purpose. The interface is controlled by
the ADV7511 HDMI transmitter integrated circuit (IC) from Analog Devices, which
leads to less resource consumption into the FPGA design and less critical output timing
requirements due to lower output frequencies because of the parallel interface instead of
a serial interface.

For providing a HDMI input interface, the Zedboard is extended by an FMC-HDMI
input extension card. The FMC-Interface (FPGA Mezzanine Card) is a standardized

17

Yb

Xb

Ys1

Xs1

Csx = 3.3cmCsy = 6.9cm

Ys0

Xs0

Yp

Xp

J0 = (5.1, 4.4, 0)TJ1 = (-5.1, 4.4, 0)T

J5 = (6.4, 2.2, 0)TJ2 = (-6.4, 2.2, 0)T

J4 = (1.3, 6.6, 0)TJ3 = (-1.3, -6.6, 0)T

Zs1

Xs1

Ca = 2.0cm

Zs0

Xs0α

α

Cl = 11.5cm

Figure 3.1: Notations for the Stewart-Platform, taken from [34]

extension interface for FPGA development boards or other devices with reconfigurable
behavior. The HMDI-input-interface card provides two HDMI inputs. The first input is
driven by the HMDI receiver chip ADV7611 from Analog Devices, similar to the output
interface of the Zedboard. The second input interface provides only signal conditioning.
All other parts of the HDMI specification have to be implemented into the FPGA, which
results in a considerable task. Due to that, the first HDMI input port is used for the
implementation. Analog Devices provides FPGA IP-cores and software kernel drivers for
both HDMI transmitter and receiver circuits.

3.1.1 Hardware Modeling and Controller Design

For the controller design later this chapter, the dynamic system behavior of the demon-
strator must be modeled. The dynamic representation of the behavior is done in a
state-space model, which can be used for further considerations. The state-space model
is a set of linear first-order differential equations, which are a common representation
of dynamic systems in the field of control theory. The equations 3.1 and 3.2 show the
general form of a state-space model.

#̇»x = A · #»x +B · #»u (3.1)

18

#»y = C · #»x +D · #»u (3.2)

The first step of the hardware modeling is the determination of the matrices A, B, C
and D, which is presented in the following. A is the state-space matrix, B is the input
matrix, C is the output matrix and D the feed through matrix.

The motion of the ball on the plate can be described by the Euler-Lagrange equation,
where L is the difference between the kinetic Energy T and the potential Energy V [14].
q are the generalized coordinates of the observed system, in this case the ball coordinates
x and y.

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (3.3)

From this equation follow the two equations of translation, which finally describe the
system behavior. Through the approximation of the sine function with sin(φ) ≈ φ for
small angles φ, the non-linear system results in a linear differential equation system
(equation 3.4). In the equation, mb is the mass of ball, rb the radius of the ball and g
the gravitational acceleration.

(mb +
J

r2b
)ẍ1 +mb · g · sin(α) ≈ (mb +

J

r2b
)ẍ1 +mb · g · α = 0

(mb +
J

r2b
)ẍ2 +mb · g · sin(β) ≈ (mb +

J

r2b
)ẍ2 +mb · g · β = 0

(3.4)

After the substitution of J through the moment of intertia of a sphere J = 5
2mr

2, the
matrices A and B are:

A =

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,B = −5

7
· g ·

0 0
1 0
0 0
0 1

 (3.5)

The state vector #»x contains the position and the velocity in both directions on the
platform (equation 3.6).

#»x =

x
vx
y
vy

 (3.6)

The output matrix C determines the values of the system state, which can be measured
from outside of the system. Since the demonstrator enables the measurement of the
position vector and not the velocity, the resulting output matrix is:

CT =

1 0
0 0
0 1
0 0

 (3.7)

19

The last matrix of the model is D, which is set to D = 02×2, since the system has no
direct feed through. The state-space model for the demonstrator is used later during
this chapter for the design of the Kalman filter and for finding stable parameters for the
controller.

Inverse Kinematics

The Stewart-platform is controlled by the six angles #»γ = (γ0, γ1, ..., γ5) of the servo
motors. These angles are set by the control program. By the kinematic of the platform
J , the angle pair α and β are set for a given vector #»γ (equation 3.8).

(α, β) = J(#»γ) (3.8)

Unfortunately, the angle pair (α, β) cannot be modified directly from the control program.
This leads to the nonlinear system model in equation 3.9, since the control program can
only influence the vector #»γ .

#̇»x = A · #»x +B · J(#»γ) (3.9)

The controller, which is developed during this work, outputs the desired angle pair (α, β).
Therefore, the inverse kinematic J−1(α, β) is needed, that must meet the condition from
equation 3.10.

(α, β)
!

= J(J−1(α, β)) (3.10)

The inverse kinematic J−1(α, β) accepts the desired angle pair (α, β) and outputs the
needed angles for the Stewart-platform. Due to the usage of the inverse kinematic, the
non-linear system model is transformed into a linear system model again (equation 3.11).

#̇»x = A · #»x +B · J(J−1((α, β)T) = A · #»x +B · (α, β)T (3.11)

Another aspect of the mathematical description of the system behavior is the coordinate
transformation depending on the angles α and β. The angle α describes the rotation
around the y-axis and the angle β the rotation around the y-axis. The rotation is shown
in figure 3.2. Coordinates from the coordinate system rotated with α and β can be
transferred to the base coordinate system of the demonstrator by the sequential mul-
tiplication of two rotation matrices Rx(α), Ry(β) or just by the multiplication with
Rx,y(α, β), since the resulting rotation around the x-axis and y-axis is the product of
both rotation matrices (equation 3.14) [10].

Rx(α) =

 1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 (3.12)

Ry(β) =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

 (3.13)

20

α

β

Figure 3.2: Rotation around x- and y-Axis

Rx,y(α, β) = Rx(α) ·Ry(β) (3.14)

The rotation matrix from equation 3.14 is used in the calculations for the inverse kine-
matics to transform the positions of the rods in the base coordinate system of the demon-
strator.

Controller Design

The described system modeling is now used to design a position control for the ball.
The demonstrator’s existing controller worked with non-equidistant sampling times. In
order to enable a predictable processing of the control, a constant sampling interval is
implemented in this work. Thus, a controller design according to known methods can be
realized afterwards.

The system behavior including inverse kinematics is generally a double-integral behavior,
which is typically controlled by a PD-controller. Since the PD-controller has a strong
differential behavior, it reacts sensitively to noise and interference. Therefore, a Kalman
filter [26] is implemented in the controller, which provides an optimal position estimation
and reduces or even prevents noise and disturbances. State observers like the Kalman
filter can only be realized if the system to be observed fulfills the condition for observ-
ability. This condition is checked with an appropriate software and should be considered
as given in the following.

The difference between the reference position and the estimated position is then fed to
the PD-controller. There are extended methods for controller design, for example the
design by pole assignment [3]. Since the focus of this work is not on advanced controller
design, simpler iterative methods are used. The structure is shown in figure 3.3.

21

Controller Inverse System

Disturbances

Kalman

#»α
#»γ

#̂»x

−

#»w #»e
#»y

Figure 3.3: Control Loop Model of the Demonstrator

The Kalman filter calculates an optimal estimate for the position of the ball. For this,
two different steps are processed. However, first of all the matrices A and B have to
be discretized to calculate the filter. The zero-order hold estimation is based on the
approximation ẋ ≈ T−1A (xk+1 − xk) and leads to the following matrices Ad and Bd.

Ad = I +A · TA Bd = B · TA (3.15)

The resulting discrete model of the system is then given by equation 3.16. For the matrix
C, there are no changes due to the discretization.

#»xk+1 = Ad · #»xk +Bd · #»uk

#»y k = C · #»xk

(3.16)

In the first processing step of the Kalman filter, the state of the ball is predicted with
the input vector (α, β) (3.17). Furthermore, the error covariance matrix Pk−1 of the
last processing cycle is updated with the discrete state-space matrix and the covariance
matrix of the process noise Q (3.18).

#»xk|k−1 = Ad · #»xk−1 +Bd · (α, β)k−1 (3.17)

Pk|k−1 = AdPk−1A
T
d +Q (3.18)

In the second step of every processing cycle, the measured position of the ball is used to
correct the simulated filter position. The first part of that is to calculate the Kalman
gain (3.19), which is a measure for the effect of the measurement on the simulated state.
The variance of the measurement R influences the measurement inverse proportionality,
which supports the previous statement.

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +R)−1 (3.19)

22

The Kalman gain is then used to correct the system state #»xk and the error covariance
matrix Pk (equation 3.20 and 3.21).

#»xk = #»xk|k−1 +Kk(#»z k −Hkxk|k−1) (3.20)

Pk = (I −KkHk)Pk|k−1 (3.21)

The presented Kalman filter needs for the calculation of the gain matrix Kk an inverting
of the matrix expression (HkPk|k−1H

T
k +R). Algorithms for the calculation of inverse

matrices generate a considerable computational effort, which is why a related approach
is chosen in this thesis.

The mentioned approach of sequential Kalman filters is described in [37]. The sequential
Kalman filter splits the correction part with the r-dimensional vector #»z k measured values
into r single correction steps with one single measurement value zk,j each. This is possible
if and only if the covariance matrix variance of the measurement R is a diagonal matrix.
On other words, all measurements have to be independent from each other.

In the case of the Ball-on-Plate demonstrator, the measurement of the position compo-
nents x and y is assumed as statistical independent and equal which leads to the following
matrix structure for R.

R = σ2
(

1 0
0 1

)
, (3.22)

The constant factor σ2 is determined to 10 by iterative testing. The covariance matrix
of the process Q is also assumed as statistical independent. The factor q is set to 16.

Q = q ·

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (3.23)

Since the measurement errors are assumed as statistically independent, the correction
process of the Kalman filter is done sequentially [37]. Therefore, the following calculations
have to be done for i = 1..r. r is the dimension of the output vector #»y (r = 2).

Kik =
Pi−1,kH

T
ik

HikP
+
i−1,kH

T
ik +Rik

(3.24)

#»x+
ik = #»x+

i−1,k +Kik(yik −Hik
#»x+
i−1,k) (3.25)

P+
ik = (I −KikHik)P T

i−1,k (3.26)

After r iteration the resulting a priori estimation of the state and the error covariance
matrix is the result of the last iteration.

23

#»x+
k = #»x+

rk,P
+
k = P+

rk (3.27)

The simulated behavior of the Kalman filter is shown in figure 3.4. For the figures, the
step-response of the system model is predicted and corrected with the Kalman filter. The
unstable behavior of the controlled system is also visible. For the initialization of the
Kalman filter, the matrices are set to P0 = I and #»x0 = 0.

0 10 20 30 40 50 60
-12

-10

-8

-6

-4

-2

0

2

Cycles

P
os

iti
on

 [m
]

x1

Kalman

Ideal

Measured

0 10 20 30 40 50 60
-14

-12

-10

-8

-6

-4

-2

0

Cycles

V
el

oc
ity

 [m
/s

]

v1

Kalman

Ideal

0 10 20 30 40 50 60
-12

-10

-8

-6

-4

-2

0

2

Cycles

P
os

iti
on

 [m
]

x2

Kalman

Ideal

Measured

0 10 20 30 40 50 60
-14

-12

-10

-8

-6

-4

-2

0

Cycles

V
el

oc
ity

 [m
/s

]

v2

Kalman

Ideal

Figure 3.4: Simulated Kalman Step Reponse

After position estimating, the state-vector #»x is used for the calculation of the control
variables α and β. The controller is a PD-controller which reacts proportionally both to
the control deviation and to the derivative of it. The transfer function of the controller is
given in the equation 3.28 and equation 3.29 [32]. The constant TA is the sample period
of the discrete control system.

GR = b0 + b1 · z−1 (3.28)

b0 = KR(1 +
TV
TA

), b1 = −KR ·
TV
TA

(3.29)

24

The challenging part of the control design is to determine the constants KR and TV ,
such that the controller provides at least stability and sufficient stationary accuracy [17].
Other properties like damping of the control loop and dynamic behavior are second order
constraints.

A further limitation in the controller design are limits with regard to the control variable
#»u. The Ball-on-Plate platform from this work is limited to about 11 degrees for each
alpha and beta because of mechanical construction of the platform. Larger angles can
only be achieved in certain combinations with the other angle and are neglected for the
controller design.

Since basic methods for the parameter determination of controllers are not well applicable
for PD-controllers, the parameters are determined by trial and error. Therefore, the
parameters are set to KR = −0.08 and TV = 0.008/KR. The resulting step-response for
both directions is shown in the figure 3.5.

0 5 10 15 20
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

s

m

x1

Kalman

Ideal

0 5 10 15 20
-0.2

-0.15

-0.1

-0.05

0

0.05

s

ra
d

u1

beta

0 5 10 15 20
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

s

m

x2

Kalman

Ideal

0 5 10 15 20
-0.2

-0.15

-0.1

-0.05

0

0.05

s

ra
d

u2

alpha

Figure 3.5: Simulated Step Response to (0.2,0.2)

25

3.2 Hardware and Software Implementation

In the following, the investigations from the previous part are used to create a hardware
software co-design. In the first step, the hardware interfaces of the two threads servo and
touch are separated from the ReconOS thread. Instead, the interfaces are implemented
as AXI-modules. The advantage of this design decision is that the overall architecture
gains in flexibility due to memory-mapped access to the interfaces. Therefore, also pure
software-based control program implementations are possible. The control and inverse
thread contain the decomposition of the controller, Kalman filter and the inverse kine-
matic of the control loop.

AXI Touch Controller

The touch controller makes the position data of the ball available on the respective
demonstrator. The block symbol of the interface is shown in figure 3.6. The interface is
divided into the input pins on the left side and the output pins on the right side. The
registers are available through the AXI-interface, which also provide the clock for the
module. The SPI-interface is realized by the MISO (Master In - Slave Out), SCLK (SPI
Clock), MOSI (Master Out - Slave In) and the SS (Slave Select) signal. The interrupt
signal (IRQ) triggers the module if a contact on the screen is registered. For debugging
and real-time investigation purposes, the read interrupt pin (TC_READ_INT) is true
for one clock cycle if the AXI-master reads from the module.

Figure 3.6: AXI-Touch Controller Block

The register map of the module is shown in table 3.1. Each position register contains
a cycle counter, which increments after every update of the register. This information
allows the control program to check whether the data is new or old.

Table 3.1: AXI Touch Controller Register Description

Byte Offset Bit
31-28 27-24 23-20 19-16 15-12 11-8 7-4 3-0

0x00 Cycle Counter x Position
0x04 Cycle Counter y Position

26

AXI Servo Controller

Analogous to the AXI-touch controller, the servo controller is also available via the AXI-
interface and can be memory-mapped into the physical address space. The module pro-
vides six outputs with pulse-width modulation (PWM). The ratio between the duration
of power on and power off times is proportional to the requested angle for the motor.
The internal logic of each servo motor calculates the angle by this ratio. The AXI-master
can set this angle by setting the register of the motor. The value in the register is the
actual angle times ten. This results in a resolution of 0.1 · degree/inc. The register
map is shown in table 3.2. Analogous to the AXI-touch controller, the servo controller
module provides a signal which is true for one cycle if the sixth register is written by the
AXI-master (SERVO_WRITE_INT). The default values of the registers after reset are
900, which is equal to an angle of 90 degree.

Figure 3.7: AXI-Servo Controller Block

Table 3.2: AXI-Servo Controller Register Description

Byte Offset Bit
31-28 27-24 23-20 19-16 15-12 11-8 7-4 3-0

0x00 Servo 0 angle
0x04 Servo 1 angle
0x08 Servo 2 angle
0x0C Servo 3 angle
0x10 Servo 4 angle
0x14 Servo 5 angle

The address areas of both modules are integrated into the virtual memory area of the
ReconOS application via the Linux system function mmap(). This allows access by the
software threads as well as via the MEMIF-interface by the hardware threads.

However, during the implementation and test of the modules there were problems with
regarding cache coherence, since write accesses by hardware threads were only executed
sporadically. Due to that, caching is disabled on the ACP-port of the Zynq platform.
The configuration is done with the AWCACHE[3:0] and ARCACHE[3:0] signals of the port.
Both vectors are set to zero which solved the problem.

27

3.2.1 Control Program

The control program of the three Stewart-platforms consists of four threads per demon-
strator: touch, control, inverse and servo thread. The touch thread reads the input data
from the AXI-touch controller, scales the data and puts it into the mailbox for the control
thread.

The mapping of the control loop to the control thread and inverse thread is shown in
figure 3.8. The control thread uses the measured position of the ball and updates the
Kalman filter with this information. This includes also the preceding prediction of the
position. The difference of the reference position #̂»w and the Kalman estimated position
#̂»x = (x̂, ŷ) of the ball #̂»e is then used for the PD-controller, which calculates the desired
angle pair #»α = (α, β) for the actual control loop cycle.

The inverse thread uses the output value of the control thread for the calculation of the
desired angle γi for every servo motor. This is done by the inverse kinematic algorithm,
which was overtaken by the existing demonstrator in parts. The servo thread takes this
information, scales it and sets the desired pulse-pause ratio at the AXI-servo controller
through the AXI-interface.

Since this control loop is implemented as time-triggered system, the system requires
a periodic time base for the start of a new cycle. The reason for choosing the time-
triggered program paradigm for implementing is to enable equidistant sampling times for
the controllers. Therefore, a cycle timer thread is implemented. This thread broadcasts
a conditional variable, which starts the calculation of the control program.

Controller Inverse System

Disturbances

Kalman

#»α
#»γ

#̂»x

−

#»w #»e
#»y

Control Thread Inverse Thread

Figure 3.8: Mapping of Control-Loop Functions to Threads

The structure of the control loop is the same for all three platforms. For this reason, the
implementation of the functionality is instantiated three times. Each instance must be
provided with the information about the demonstrator concerned as well as the memory
areas for the input and output functions. For this a structure is created, whose address
is made available to the threads as ReconOS initialization data. The structure is shown
in listing 3.1.

28

Listing 3.1: Ball-on-Plate Initialization Data Info Structure

struct recobop_info {
// Offset +00
volatile uint32_t* pTouch;
// Offset +04
volatile uint32_t* pServo;
// Offset +08
volatile uint32_t demo_nr;
// Offset +12
volatile uint32_t* timerregister;
// Offset +16
volatile uint32_t* stackaddr_control;
// Offset +20
volatile uint32_t rc_flag_control;
// Offset +24
volatile uint32_t threadid_control;
// Offset +28
volatile uint32_t* stackaddr_inverse;
// Offset +32
volatile uint32_t rc_flag_inverse;
// Offset +36
volatile uint32_t threadid_inverse;
// Offset +40
volatile uint32_t* stackaddr_touch;
// Offset +44
volatile uint32_t rc_flag_touch;
// Offset +48
volatile uint32_t threadid_touch;
// Offset +52
volatile uint32_t* stackaddr_servo;
// Offset +56
volatile uint32_t rc_flag_servo;
// Offset +60
volatile uint32_t threadid_servo;

volatile int thread_count;
volatile struct reconos_thread *thread_p [4];

};

The first both elements of the structure contain pointers to the memory mapped AXI-
modules for the regarding servo and touch controller. The demonstrator number is used
for the hardware threads to get the corresponding mailboxes for data receiving and trans-
mission, since the mailbox identifier of the regarding thread can be calculate by the
mailbox of demonstrator 0 plus the demonstrator number.

The timer register entry points to the global timer of the ARM Cortex-A9 processor and
is used for running time measurement purposes. The next 12 entries are used for dynamic
reconfiguration, which is described later in this thesis. In general, the rc_flag_* vari-
ables signal the corresponding hardware thread, that the scheduler wants to reconfigure
the running slot. The stackaddr_* variable contains the address for the stack of the
hardware thread, which can be used to save the state of the thread after a request for
reconfiguration. In the last both entries, the pointer to the ReconOS threads of the cor-

29

responding platform are saved. The threadid_* entry assigns a unique id to the current
instance of the thread.

At the start time of the hardware ReconOS thread, it requests the initialization data
from the delegated thread first. After receiving the initialization data, it uses the memory
interface for accessing the needed information. This flexibility will be later used for faster
context switching compared to partially dynamic reconfiguration.

The calculations of the servo and the touch thread could certainly have been integrated
into the control or inverse thread. However, a larger amount of threads should be delib-
erately developed for later investigations.

Cycle Timer Thread

The cycle timer thread provides the time base for the control program. In principle, this
timer can either be instantiated for individual platforms or provide a common time base
for all platforms. The essential function of the timer is shown in the listing 3.2.

The function nanosleep(const struct timespec *req, struct timespec *rem) blocks
for the requested time defined in *req and returns 0 afterwards. The advantage of this
function compared to the usual usleep() function is the use of the high-resolution timer
for time measurement. This results in a lower deviation and higher accuracy of the period
time.

On the other hand, the software implementation of the cycle timer in contrast to the
hardware implementation with a trigger signal offers the advantage that this timer can
also be used as a time base for pure software implementations. The additional time
required in the function by handling mutual exclusion and signaling the condition variable
can be neglected for cycle times of several tens of milliseconds.

Listing 3.2: Cycle Timer Thread

void * cycle_timer_thread(void* arg)
{

t_cycle_timer * cycle_timer;
cycle_timer = (t_cycle_timer *)arg;

struct timespec tim;
tim.tv_sec = (cycle_timer ->period * 1000000) / 1000000000;
tim.tv_nsec = (cycle_timer ->period * 1000000) % 1000000000;

while (1)
{

pthread_mutex_lock(cycle_timer ->mutex);
pthread_cond_broadcast(cycle_timer ->cond);
pthread_mutex_unlock(cycle_timer ->mutex);
nanosleep (&tim , NULL);

}

}

30

All software threads that want to use the respective instance of the cycle timer as time
base can call the function cycle_timer_wait(t_cycle_timer * cycle_timer) at the
beginning of processing (shown in listing 3.3). ReconOS hardware threads can use the
functions for conditional wait and mutual exclusion, which are provided by the ReconOS
framework.

Listing 3.3: Cycle Timer Wait Function Implementation

void cycle_timer_wait(t_cycle_timer * cycle_timer)
{

pthread_mutex_lock(cycle_timer ->mutex);
pthread_cond_wait(cycle_timer ->cond , cycle_timer ->mutex);
pthread_mutex_unlock(cycle_timer ->mutex);

}

Touch Thread

In general, the touch thread must fulfill two different tasks. First, the thread has to start
a new control loop cycle for the overall platform. For this, it blocks for the condition
variable of the cycle timer. When a new cycle begins, the cycle timer releases the waiting
threads and blocks for the rest of the cycle. The touch thread unblocks and starts a
new memory access to the regarding AXI-touch module. For more advanced systems, it
would also possible to wait multiple cycle times by counting. This is one possibility to
enable different cycle times for the three platforms with one cycle timer.

On the other hand, the touch thread has to read the input data from the touch screen
AXI-interface controller. After reading, the data is scaled and put into the mailbox,
which is read by the control thread. The scaling of the position is done by the equation
3.30.

#»y ′ = 0.1166
[mm]
[Inc]

· #»y (3.30)

Control Thread

The control thread gets the scaled position data from the touch thread through mailbox
communication. The thread blocks for the corresponding mailbox and unblocks after the
put command by the touch thread. The position information and the last output value
of the control thread are used to calculate the sequential Kalman filter, which provides
a state estimation for the ball on the plate.

The position is used to calculate the PD-controller for both directions, x and y. The
results of the controllers are the angles α and β, which are put into the mailbox six times
concatenated with their corresponding servo identifier 1...6. Due to that, six independent
jobs are created for the inverse thread.

31

Inverse Thread

The inverse thread is responsible for the calculation of the inverse kinematic and the final
calculation of the required motor angles. For this, the positions of mounting of the motor
legs is transformed into the base coordinate systems. These positions are permanently
stored in the source code and are selected based on the received identifier.

Since the platform is rotated by the angles (α, β), the new resulting position of the
mounting is given by equation 3.31.

#»x ′m = Rx,y(α, β) · #»xm (3.31)

The following operations are taken from the previous work [34] and are described here
for the sake of completeness only. The mounting position of the rod is then transformed
into a coordinate system based on the regarding servo motor shaft. The distance between
the coordinate origin and the calculated position is the geometrical sum of the motor leg
and the rod, which is mounted on the platform compared to the implementation with
floating-point datatypes.

The last step of the calculation is the numerical solution of the motor angle depending on
the vector distance to the origin, since an analytical solution would require compute in-
tensive operations like arctan. The resulting angle is concatenated with the corresponding
servo identifier and queued into the mailbox for the servo thread.

For the software thread, the functionality is implemented using floating point operations.
In the hardware thread implementation, fixed point data types are used for a more
resource efficient implementation.

Servo Thread

The servo thread is the counterpart to the touch thread. It gets the angle of the in-
verse thread and writes the scaled angle into the corresponding register in the AXI-servo
module. The address of the register is calculated by the base-address provided by the
initialization data and the leg identifier. This operation is done six times per control loop
cycle. The scaling is done according to equation 3.32.

#»γ ′ = 10 · #»γ (3.32)

3.2.2 Video Processing

Additionally to described demonstrator and control loop extensions, a video processing
chain is added to the design. Thus, the setup can read video input data from the HDMI
input interface and write output video data to the HDMI output interface. The video
processing hardware architecture is shown in the block diagram in figure 3.9.

The HDMI input interface is connected to the HDMI Receiver IC, which converts the
serial HDMI data into a 16-bit parallel pixel signal. The pixel bus is coded in the YCrCb
4:2:2 format. The HDMI Receiver IP-Core converts the data in the ARGB-format with

32

HMDI
Receiver
IP-Core

VDMA
Controller

HMDI
Transceiver

IP-Core

VDMA
Controller

Processing System
(PS)

AXI
Lite

HP1 HP0

Zynq-7000 FPGA

HDMI
Transceiver

IC

I2CI2C

HDMI
Input

Interface

HDMI
Output

Interface

HDMI
Receiver

IC

Figure 3.9: Video Processing Architecture

8 bits per channel. From the output of this IP-core, the data is moved to the processing
system by a video direct memory access controller block (VDMA).

Analogously to the input side, the content of the frame buffer into the processing system
is moved by a second VDMA controller to the HDMI transmitter IP-core, which sends
the data through a parallel interface to the HDMI transmitter integrated circuit. Both
external integrated circuits get their configuration through an I2C-interface, which is
controlled by the kernel driver in the processing system.

For the connection of the VDMA controllers with the processing system, the AXI High
Performance Ports (HPx) of the Zynq are selected. These ports allow transfer rates up
to 1200 MBit/s into the main memory [22].

For a standardized access, both interfaces are controlled by the Linux kernel with the help
of device drivers provided by the chip vendor. The video driver architecture is shown in
figure 3.10. The standardized access via the framebuffer device \dev\fb0 for the output
device and the Video for Linux (V4L) \dev\video0 interface.

For the support by the Linux kernel, the devices are included into the Linux device tree,
which provides the hardware description for the kernel at startup. This information is

33

HDMI Input Driver HDMI Output Driver

HDMI Input Kernel Driver HDMI Output Kernel Driver

ReconOS
Video Processing Application

/dev/fb0

Buffer
Pointer
Request

Buffer
Pointer

Response Kernel Space

User Space

V4L API

Hardware

Mailbox
Address

Figure 3.10: Video Processing Driver Architecture

used to load the needed drivers and provides them memory addresses and input and
output assignments.

On the application side, there are two drivers in the user space. The HDMI input driver
configures the video input device for the access from the ReconOS application. For
allowing access from both software and hardware threads, a separate thread requests
frames from the HDMI input kernel driver. This thread is shown in listing 3.4.

Listing 3.4: HMDI Input Buffer Thread

void * hmdi_input_buffer_thread(void* arg)
{

t_hdmi_input * hdmi_input = (t_hdmi_input *)arg;
uint32_t * buffer;

while (1)
{

buffer = hdmi_input_request_new_buffer ();
MBOX_PUT(hdmi_input ->mb ,(uint32_t)buffer);

}

}

34

The thread requests a new buffer from the driver and puts the start address of this buffer
into the mailbox. This mailbox has a length of one, which means that the thread blocks
if there is another frame to process already in the mailbox. Due to that, the driver thread
adapts the processing rate of the consumer (e.g. Sobel filter thread) for the request of
new frames.

The userspace HDMI output driver does not need such a mechanism for processing.
However, it only provides an initialization function for the regarding framebuffer, which
should be written. Information about both input and output driver a included in the
t_video_info structure, which is provided for the processing thread through the Re-
conOS initialization data 3.5. Therefore, the thread is able to get information about the
location of the output buffer but also about mailbox for the input pointer and the width
and height of the input and output frame buffer. The third member volatile struct
reconos_thread *thread_p is the pointer to the processing thread itself.

Listing 3.5: HMDI Video Info Structure

typedef struct {
t_hdmi_input hdmi_input;
t_hdmi_output hdmi_output;
volatile struct reconos_thread *thread_p;

} t_video_info;

Both buffers have the same data structure regarding the image. The image is ordered
row-wise with 32 bits per pixel. The colors in the double word are ordered (A,R,G,B),
where A is the alpha channel byte and the most significant byte.

For video processing, two example functions are implemented in hardware and software.
These threads are implemented for the processing based on the video processing chain in
the ReconOS application.

RGB2Gray Thread

The RGB2Gray thread calculates the intensity of the image and outputs a gray image.
This very trivial image processing method calculates the intensity of the regarding pixel
with the average mode, which does not consider the different intensities of the colors.
The value of every output color channel is the average of the colors from the input pixel.
Since the gray values in the RGB-space are the values on the line defined by equation
3.33, the equation 3.34 determines the regarding gray value for every pixel. λ is the
intensity of the gray value in the range of 0..255 for 8 bit channels.

Gray(λ) = λ ·

 1
1
1

 (3.33)

Gi =
1

3
(I1 + I2 + I3), i = 1..3 (3.34)

35

In the software implementation, the input image is processed pixel by pixel with a for-loop
and the corresponding operation is performed for each pixel. The result of the averaging
is written into all three-color channels of the output pixel.

X R G B

+

* 1/3

X Gr Gr Gr

Figure 3.11: Dataflow RGB2Gray Design

For the hardware implementation, the input pixels are read from the main memory in
rows. Compared to reading the pixels individually, this method reduces communication
overheads while reading. After reading, the data flow graph from figure 3.11 is passed
through pixel by pixel. Afterwards, the calculated row of the output image is written
back to the corresponding position in the frame buffer.

Sobel Thread

The Sobel operator is used in image processing and realizes a first order derivative of an
image for both directions. Due to that, the image filter highlights differences in the input
images. Constant areas on the image are removed by the filter.

The filter operation consists of two convolution operations with two rotated filter masks.
The result of both operations is geometrical added. The masks are shown in 3.35. The
convolution operation of the image with the filter mask Sx highlights the differences
in the x-direction, and the convolution operation of the image with the filter mask Sy

highlights the differences in the y-direction.

The overall filter operation is show in equation 3.36. Since the input image is an RGB
image in the general case, the filter operation has to be done for every color channel
independently. The square root operation and the absolute is done elementwise on the
resulting matrix.

Sx =

 1 0 −1
2 0 −2
1 0 −1

 ,Sy =

 1 2 1
0 0 0
−1 −2 −1

 (3.35)

Since square root operations are computational and resource expensive, the approxima-
tion of adding absolute values is often used. This approximation is also used in this
implementation.

36

Gi =
√

(Sx ∗ Ii)2 + (Sy ∗ Ii)2 ≈ |(Sx ∗ Ii)|+ |(Sy ∗ Ii)|, i = 1..3 (3.36)

Like the other threads, the Sobel filter operation is implemented both as a software and
as a hardware ReconOS thread. Like the RGB2Gray processing, both implementations
get the input buffer address from the HMDI input driver and start the computation
afterwards. After that, the processing on the input buffer starts. The dataflow of the
Sobel operation is shown in figure 3.12.

0

Input Image

Output Image

0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

2 3 4 5

2 3 4 5

2 3 4 5

1 2 3 4

3 4 5 6

3 4 5 6

3 4 5 6

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

-8

Abs, +,
Scaling

Sx*Actual
Window -8 -8 -8 0 0 0 0

FF 8 8 8

0
Sy*Actual
Window

Actual Window
aRGB-Pixel

Figure 3.12: Sobel operation for ARGB Images

The processing of a new image starts with the prefetching of the first four rows of the
image in the local BRAM. The dimensions of the filter mask of 3× 3 leads to a require-
ment of at least three rows for prefetching. On the other hand, the computation of the
actual positions of the pixels in the local BRAM has to do many times. Because of this,
the buffer size is extended from three rows to four, because the resulting modulo oper-
ations (address = x mod 4) are more efficient in hardware compared to address = x
mod 3 operations. A calculation of the address modulo four only requires an exclusive
consideration of the lowest two bits of the result.

After that, the window slides over the first three rows. After reaching the end of the
row, the next row of the image is loaded from the main memory in the local block RAM
and the computation starts again at the beginning of the next row. Before starting, the
results of the last row have to be written back to the main memory.

37

The execution of the current image finishes after processing of the second-last row. The
borders of the image are written to zero, since the filter operation of this area is not
defined.

On the other hand, the results of the computation may exceed the value range of one
byte. To avoid this, the result of the computation is multiplied by the factor of 2−3

since the maximum possible value of an operation step is 23 · 28. To make the filter also
compatible with ARGB color spaces, the fourth byte in the output pixel is set to 255.
This sets the alpha channel to not transparent. The operation of the three-color channel
is done in parallel, which allows the filter to compute one pixel per loop iteration.

Since the hardware design is done in Vivado HLS, the software implementation is mainly
overtaken from the hardware implementation, except for the handling of the initial data.

3.2.3 Remote Reconfiguration Server

Since the demonstrator contains several time-triggered threads, it should also be enabled
to execute at least one event-triggered thread. For this purpose, a remote reconfiguration
server (RRS) is implemented.

Listing 3.6: Remote Reconfiguration Request Request Loop

while (!(reconf_server ->shutdown))
{

request = udp_get_new_request(reconf_server ->sockfd);

switch(request)
{

case RECONF_REQUEST_RGB2GRAY:
*(reconf_server ->rc_flag) = 1UL;
reconos_thread_suspend_block(reconf_server ->rt);
*(reconf_server ->rc_flag) = 0UL;
reconf_server_reconfigure(reconf_server ->

bitstreams [0], 0, 1);
reconos_thread_resume(reconf_server ->rt ,((int*)

act_hwslot)[0]);
break;

case RECONF_REQUEST_SOBEL:
*(reconf_server ->rc_flag) = 1UL;
reconos_thread_suspend_block(reconf_server ->rt);
*(reconf_server ->rc_flag) = 0UL;
reconfigure(reconf_server ->bitstreams [1], 0, 1);
reconos_thread_resume(reconf_server ->rt ,((int*)

act_hwslot)[0]);
break;

default:
printf("[RECONF SERVER] invalid request! \n ");
break;

}
}

38

In general, the remote reconfiguration server binds a socket for datagram-based commu-
nication through UDP (User Datagram Protocol) and waits in for a new request. The
loop for the request execution is shown in listing 3.6. When a new request arrives the
reconfiguration server, the partial reconfiguration of the video thread is started.

Before the reconfiguration, the actual running video thread has to be suspended from
the hardware slot. The pending reconfiguration is communicated to the thread via the
rc_flag, which the actual running thread polls once in each processing cycle. When
the thread recognizes the request, it sends a confirmation via the OSIF-interface to the
reconfiguration server. After that, the thread blocks and waits for reconfiguration. This
ensures that the thread is not in active communication via the OSIF-interface during
reconfiguration. This prevents an invalid system state of the delegated thread that would
result from the reconfiguration during communication.

After the reconfiguration, the thread is resumed, and the video processing is running
again. For faster reconfiguration, both filter kernel bitstreams are cached in the main
memory at the beginning. This prevents non-deterministic behavior through file system
accesses. The timing of the reconfiguration process is shown in figure 3.13.

Sobel

t

Video
Slot

t

Reconfig
Server

Sobel

Waiting for suspend Reconfiguration

RGB
2

Gr

RGB
2

Gr

Event

Sobel

1. Request
arrives

2.Sobel checks
RC flag and
suspends

3. Server starts
reconfiguration

4. RGB2Gr starts
execution

Figure 3.13: Schedule of the Reconfiguration Process for the Video Slot

For the request of a new reconfiguration, a client software is implemented. The com-
mand line tool allows the reconfiguration on any computer in the local network by the
arguments ./reconfig_client <ip> <port> <request>. The request definition is set
to rgb2gray for the RGB2Gray processing unit and sobel for the Sobel filter. Since
UDP-communication is a connection-less and unconfirmed communication, successful re-
configuration cannot be guaranteed from the client’s point of view.

Resulting Scheduling Constraints

Due to the described properties of the set of tasks, there are dependencies for the schedul-
ing algorithm. These dependencies are visualized in the precedence graph in figure 3.14.
The scheduling dependencies are results of the considerations during this chapter and
must kept in mind for the scheduling of the threads.

The constraints essentially affect the threads from the control loop, since only these have
data dependencies to other threads. On the other hand, the two threads for video editing

39

could also be combined to form longer processing chains, although this is not necessary
for correct functioning of the single threads.

The Remote Reconfiguration Server is the only thread, which provides event-triggered
behavior. In principle, the thread can occur at any time and then leads to an interruption
of the currently running video thread.

Servo
1

Inverse
1

ControlTouch

Servo
2

Inverse
2

Servo
3

Inverse
3

Inverse
4

Inverse
5

Inverse
6

Servo
4

Servo
5

Servo
6

RGB2G

Sobel

RRS

Figure 3.14: Resulting Precedence Graph

3.3 Control Loop Partial Reconfiguration

Partial dynamic reconfiguration allows to write the reconfiguration bitstream for only
parts of the whole FPGA during run time. The untouched configuration remains and
executes during the reconfiguration process.

Due to this technique, a behavior similar to software multi-threading on a CPU can be
achieved. Designated parts of the programmable logic are sequentially configured with
different bitstreams during run time.

This behavior is used for the control and the inverse thread during this work, the option
to use it for other threads is also provided. Due to the multitasking with reconfiguration,
the control thread and the inverse thread for all demonstrators are executed on only one
slot per thread-type, so that only two slots are needed instead of a total of six for the
two thread types.

40

In the background chapter 2, different approaches for multitasking on FPGAs are de-
scribed. For simplicity, the multitasking in this scenario is done in a cooperative way.
The architecture of the reconfiguration support is shown in figure 3.15.

Slot 0

Reconfig
Dispatcher

Reconfig Queues

Scheduler

1. Run Scheduling
every Cycle

2. Thread puts
Reconfiguration

Request

Slot 1

Reconfig
Dispatcher

4. Reconfigure

3. Dispatcher enqueues
next thread

RC
Flag

RC
Flag

Figure 3.15: Reconfiguration Setup for Control Loop Threads

In every control loop cycle, the scheduler fills the reconfiguration queue with threads,
which have to be executed during that cycle. The scheduling strategy is flexible. For the
purposes of this thesis, every thread is executed in every control loop cycle. On the other
hand, other scheduling strategies with different orders and execution frequencies can be
determined by the scheduler. The scheduler uses the existing cycle timer implementation
as time basis.

Each slot has access to a Reconfiguration Flag (RC Flag), which is polled after every
execution. When this flag is not null, the slot sends a reconfiguration request to the slot
specific dispatcher. The reconfiguration request is sent by mailbox communication. After
request sending, the thread blocks. The dispatcher enqueues the next waiting thread from
the queue and performs a reconfiguration on the slot. In case there is no new thread in
the queue, the delegated thread also blocks until the scheduler refills the queue.

41

Before performing a reconfiguration request, the thread must eventually save its actual
context for later calculations. For example the control thread must save the status
matrices of the Kalman filter and the PD-controller, since results from the previous cycle
are included in the calculation.

During reconfiguration, the dispatcher also has to change the pointer to the initialization
data for the thread. Due to the initialization structure, the starting thread has informa-
tion about the demonstrator and the memory locations of its servo and touch modules.
The initialization data also contains information about the location of the context which
has to be restored after reconfiguration by the thread itself.

For faster and more deterministic reconfiguration times, the bitstreams for the threads
are cached in the local main memory since the file system is often based on a network file
system. Therefore, non-deterministic times for the access of the bitstreams are negligible.

3.4 Chapter Conclusion

In this chapter, the extensions on the existing demonstrator are described. The most visi-
ble modification on the demonstrator is the addition of two platforms. The demonstrator
is extended by an HDMI expansion board with an input interface.

For the control of the platforms and the video processing, different threads are imple-
mented. The available threads can be divided into three classes: the threads from the
control loop represent a group of time-triggered threads that have to meet hard real-time
requirements. Missing the deadlines for the thread could lead to the loss of the ball on
the platform.

On the other hand, the threads for video processing represent a class of periodic time
triggered tasks that have to fulfill soft real-time requirements. Missing a deadline only
leads to a loss of output quality. The start time or period is determined by the system
itself through the execution time of the processing.

The last available class are the non-periodic tasks triggered by the remote reconfiguration
server. In general, these tasks can be classified to the group of event-triggered tasks, where
the event in this case is the arrival of a new request through UDP.

The partial reconfiguration for control loop threads enables multitasking for the threads
control and inverse. Therefore, resource-saving implementations in hardware are possible.
Additional to that case of partial reconfiguration, the remote reconfiguration server also
uses partial reconfiguration for the change of the filter kernel.

42

4 ReconOS Real-time Investigations

The implementation of the control software based on ReconOS described in the last chap-
ter contains many components whose real-time properties are not known or not reliable.
This includes for example the scheduling of the software threads or the latency of com-
munication via mailboxes. Therefore, the focus in this chapter will be on improving these
real-time properties and on measuring and modeling the behavior. First, modifications
on ReconOS are introduced, which ensure a more deterministic behavior. For archiving
better results, also changes on the Linux kernel are made.

In the next step, the execution times of the individual software and hardware threads
are determined. No formal proof is provided for this but rather the execution times are
measured several times in a defined test environment. Afterwards, remaining uncertain-
ties are determined and modeled in real-time system behavior. The following part of this
chapter deals with the question of communication times between threads and execution
times of other system calls from hardware and software threads.

The determination of execution times and communication times, including the effects
of parallel use, enables the prediction of execution times for complete schedules. The
estimation of execution times for exemplary schedules is carried out in the following part
of this chapter. The evaluation of these schedules is done in the following chapter 5.

4.1 Real-time ReconOS based-on Linux

By default, the Linux scheduling algorithm CFS (Completely Fair Scheduler) aims to
allocate the available CPU time to the threads depending on the already used CPU
time and the past waiting time (aging). This behavior should optimize the overall sys-
tem throughput and ensure a fair distribution of processor times for all threads. For a
time-triggered real-time system or real-time systems in general, this scheduling policy
is not sufficient, because of the fact that some threads are more critical for the system
functionality than others.

In the case of the demonstrator, the video processing thread is less time critical than
the control thread. Assuming a pure software implementation of all threads, the Linux
scheduler could preempt the control loop algorithms and run the video processing thread
instead. This behavior would lead to disturbances in the control loop and thus to the
loss of the ball.

The actual ReconOS framework does not allow priority assignment to pure software
threads or the delegated threads of the hardware threads. Therefore, all threads are
scheduled with the default SCHED_OTHER policy, which is described before. To avoid
waiting times for time critical threads, the scheduling policy of ReconOS is extended by

43

the option for real-time scheduling due to the SCHED_FIFO-policy. Due to that, a software
thread with a higher priority than the running thread is always allowed to interrupt them
and can be only interrupted by threads with a higher priority.

On the other hand, running threads with high priorities have to free the processor co-
operative. This increases the deterministic behavior and allows shorter cycle times but
brings the risk that threads can starve due to threads with higher priorities. Therefore,
an estimate of the execution time of the threads must be available at design time. An
alternative to the SCHED_FIFO scheduling policy of Linux is the SCHED_DEADLINE policy,
which is not considered during this thesis.

For both software threads and delegated threads, some extensions in the ReconOS frame-
work have been made. The changes affect the functions in ReconOS in which software
threads or delegated threads are started.

• Lock Memory The mlockall-function is used to lock the virtual address space
of the thread in the main memory. Therefore, memory pages are not allowed to be
moved to the hard disk due to swapping since page faults would lead to a highly
non-deterministic behavior.

• Scheduling Policy As already mentioned, the scheduling policy of threads is set
to SCHED_FIFO, which allows high priority threads always to interrupt threads with
lower priorities.

• Minimum Stack Size The minimum stack size is set to PTHREAD_STACK_MIN. For
software threads, this value may need to be increased if the stack size exceeds the
specified size.

• Priority Regarding the priority of the threads, there are two cases. First, the
priority for all delegated threads is set to 80. Delegated threads have usually short
execution times but are critical for the calling hardware thread to execute the
request with low latency. For all other threads, the priority can be set due to
a parameter in the thread creation function. The priority can be chosen in the
interval 1..79. For maintaining backward compatibility of non-real-time ReconOS
applications, a software thread with priority 0 can be set. Then all extensions
will be omitted, and the thread will be executed with the SCHED_OTHER scheduling
policy.

Additionally to the changes on the ReconOS framework, the PREEMPT_RT patch is
applied on the kernel sources. The Linux kernel version 4.14 is used for the improvements.
As already described in the background chapter, this further reduces the number of
uninterruptible parts in the Linux kernel. This results in a lower average latency.

4.2 Execution Time Measurement

For the design of a reliable time-triggered real-time system, the precondition for a fea-
sible scheduling has to be met (equation ??). Therefore, for ensuring the feasibility of

44

an existing schedule or for determining the minimal possible period P , the worst-case
execution times WCET of the taskset τk ∈ T have to be determined (equation 4.1).

∑
k

WCET (τk) ≤ P (4.1)

Modern processors have a considerable number of speculative and non-deterministic units
at their disposal to increase performance. These units make it difficult or even impossible
to determine the maximum execution time analytically. This mainly includes super
scalar processors with branch predictions, speculative execution, multiple cache levels
and dynamic scheduling.

However, since the used ARM Cortex-A9 processor supports these features except for
dynamic scheduling, the analytical determination of the worst-case execution is a chal-
lenging task. On the other hand, a worst-case execution time analysis would provide a
very pessimistic prediction, since for example performance gains due to speculative pro-
cessor features would be completely eliminated. Above all, the elimination of caches for
the analytical determination of worst-case execution times would lead to an unrealistic
estimate of the execution time.

Due to this, the measured execution times MET of the taskset is determined in a test
environment as an approximation for the worst-case times of the taskset WCET (τk) ≈
MET (τk). For the later design of a schedule based on these execution times, this fact
must be considered.

The measurement of the execution times of control loop hardware threads can provide
the true worst-case execution time, if there is no communication with other threads
or the with the processing system. In this case, the execution time is constant and
therefore deterministic. For hardware threads in the video processing chain, this is not
the case since these threads accesses memory not only in the beginning and the end of
the execution but also in every loop iteration.

The measurement of the execution times only considers the calculation of the output
values, not initial phase of the threads or the blocking time on mailbox or other synchro-
nization objectives. The mailbox communication at the beginning and at the end of the
processing, which occurs with most tasks, is modeled later on (Listing 4.1).

In addition, when measuring the execution times, it must be ensured that only the
execution time of the thread is measured. Overheads through the operating system and
other software parts have to be ignored. This problem only occurs with software threads,
not with hardware threads since they use their resources exclusively.

45

Listing 4.1: Typical Program Structure for Control Loop Threads

void THREAD ()
{

do_initialization ();

while (1)
{

input_data = MBOX_GET(mbox_input);
//Start measurement here
output_data = processing(input_data);
//End measurement here
MBOX_PUT(mbox_output , output_data);

}

}

Hardware

The standard IP-core library of the Xilinx toolchain contains an AXI-Interface timer
module, that provides capture inputs to latch the actual timer value into a register for
different trigger conditions. This capture function is implemented two times, but with
two different timers. Due to that, two captured values are not directly comparable, since
both timers are started asynchronously.

Therefore, a new difference measurement module is implemented for execution time mea-
surements (shown in figure 4.1). This timer provides four capture inputs, which triggers
the write operation of the actual timer value into the related register. Both the counter
register and the capture registers are accessible via the AXI interface. The register map
is shown in table 4.1.

Figure 4.1: AXI Difference Measurement Timer Block

46

Table 4.1: Difference Measurement Unit Register Description

Byte Offset Bit
31-28 27-24 23-20 19-16 15-12 11-8 7-4 3-0

0x00 Don’t Care
0x04 Timer Counter Register
0x08 Capture 0 Register
0x0C Capture 1 Register
0x10 Capture 2 Register
0x14 Capture 3 Register

In order to determine the execution time, the hardware threads set a binary output signal
for one clock cycle before and after processing. Both signals are connected to separate
capture channels of the difference measurement unit and can be read by the evaluation
software. Due to the clock supply with 100 MHz, the resulting theoretical resolution of
the capture inputs is 10 ns.

For example, the communication time between hardware and software threads, a software-
side capture is necessary for some measurements, which is made possible by the access to
the timer counter register. This measurement necessarily has a higher inaccuracy, since
the measurement result is falsified, among other things, by access via the AXI interface.
Therefore, the theoretical accuracy of 10 ns cannot be achieved with this measurement
method.

Software

For the measurement of the execution time of the software threads, the processing part of
the regarding thread is isolated into the function DUT(uint32_t * in, uint32_t * out)
of listing 4.2. The selection of the input data is important for a correct measurement,
since the number of loop iterations or branches depend on the input data. For the
measurement, input data which leads to maximal execution time should be used.

Conveniently, the execution time of none of the threads to be examined depends on the
input data. Therefore, random numbers can be used for the investigation of the execution
times.

For determining the current time, the Linux function clock() is used, which returns
the required processor time used by the program. The difference between two measured
values before and after the function then represents the computing time used.

Another aspect of the measurement is the execution time dependency on the cache hit
rate, especially on the first iteration of the measurement loop. Due to that, the mea-
surement is done several times, e.g. 10 times like in the listing. The measured time of
the last iteration is used as the reference value. All measurement setups are compiled
without compiler optimizations like the target ReconOS application.

47

Listing 4.2: Software Environment for Execution Time Measurement

#include <stdio.h>
#define N 10

int main()
{

double dStartTime;
double dEndTime;
uint32_t input data [100];
uint32_t output_data [100];

srand(time (0));

for(int j = 0; j < 100; j++)
{

input_data[j] = rand();
}
for (int i = 0; i < N; i++)
{

dStartTime = clock();
DUT(in, out);
dEndTime = clock ();
printf("Time: %d \n", dEndTime - dStartTime);

}
return 0;

}

For other software measurement purposes which require absolute time values, the global
timer of the ARM Cortex-A9 processor is used. Therefore, the address-space of the timer
is mapped into the virtual address-space of the application with mmap(). The global
timer is a 64-bit counter which is available in the private address space for each processor
core. The frequency of the timer is 333.33 MHz, that results in a theoretical resolution
of 3 ns. The main advantage of the usage of this timer is the fast access at capturing,
which only requires one memory access to the counter register of the timer.

Results

The results of the measurements in the different test environments are shown in table
4.2. Both the results for hardware and software threads are inserted.

As expected, the touch and the servo thread have minimum execution times, which
are only a few cycles in software and hardware. The thread inverse needs the longest
execution time of all control-loop threads. This is mainly due to the numerical solution
of the servo angle.

The Sobel filter benefits from the parallel processing by loop unrolling and can reach a
speedup of almost 7.5 compared to the non-optimized software implementation. Com-
pared to the optimized implementation, the filter benefits from the higher clock of the
processor. Since the RGB2Gray filter is not less compute intensive, the speedup compared
to the non-optimized implementation is lower here.

48

Table 4.2: Measured Execution Times
HW Implementation SW Implementation

Default Default Optimized
Servo < 0.001 ms 0.001 ms 0.001 ms
Control 0.030 ms 0.040 ms 0.017 ms
Inverse 0.196 ms 1.780 ms 1.430 ms
Touch < 0.001 ms 0.001 ms 0.001 ms
Sobel 127.390 ms 965.465 ms 53.0 ms
RGB2G 30.010 ms 58.810 ms 8.4 ms

For the software implementation, the program is also compiled with the optimization
level three and loop unrolling (-O3 -funroll-all-loops). In this case, the execution
times for the video filter software implementation is comparable or better than the hard-
ware implementation. Especially the RGB2GR-filter benefits from the faster memory
connection compared to the hardware implementation.

For later investigations, not only the execution times of the threads are required, but
also the duration of individual reconfiguration of slots. These are the slots for the control
loop (slot 3 and slot 4) and the slot 12 which is controlled by the remote reconfiguration
server. The results of the measurements are shown in the table 4.3. The values for the
reconfiguration also depend on the size of the block to be reconfigured, which is why these
values, like the other measured time values, are only valid for the current implementation.

Table 4.3: Duration of the Reconfiguration
Slot Time
Slot 3 37.5 ms
Slot 4 39.6 ms
Slot 12 37.9 ms

An execution time for the remote reconfiguration server independent from the time for
the reconfiguration cannot be determined, because the time strongly depends on the
current execution status of the video thread.

4.3 Communication and System Call Modeling

As mentioned in the last sub chapter, the mailbox communication between threads is
not considered in the execution time measurement, since the communication between
threads is expected as relevant more non-deterministic than the calculation parts. This
fact motivates the measurement and investigation of the timing behavior of such thread
activities.

Due to the fact that the needed time for the communication depends on various factors
within the whole system, the result is modeled as an unknown distributed random vari-
able. The related distributions are shown in histograms later. For real-time systems,
the most relevant result of such measurements would be the worst-case communication

49

time WCCT . The determination of this value without any uncertainty would require an
infinite number of measurements, which is not feasible.

For a weaker modeling of the timing behavior, the measurements are described by the
mean value of the time t̄C and the standard deviation s, which are shown in equation
4.2 and 4.3. For the estimation of the maximum latencies the maximum communication
time of the measurement is given by the value tCmax (equation 4.4).

t̄C =
1

N

N∑
i=1

ti (4.2)

s =

√√√√ 1

N − 1

N∑
i=1

(ti − t̄C)2 (4.3)

tCmax = max(ti) (4.4)

For the determination of communication times, five different measurement setups are
created. The setups differ in the type of threads and the type of communication. The
structure of this setups is described in the following. For a better comparison, the results
are summarized later in one plot.

Software-to-Software Communication

In the first measurement, the communication time between two software threads is in-
vestigated. Therefore, the first thread reads the actual timer value from the Cortex-A9
global timer and starts a new mailbox put operation. During that, the second thread
blocks on a mailbox get operation and waits for new data. When the operation unblocks
and the data is read, the second thread accesses the same timer register from the Cortex-
A9 timer and compares the value with the value from the second thread (Figure 4.2).
The difference between them is the needed time for the communication process. The
measurement is done about 50000 times.

SW
Thread 1

Mailbox
(t̄C , s, tCmax)

SW
Thread 2

A9
Timer

Figure 4.2: ReconOS Mailbox Model SW-Thread to SW-Thread

50

Hardware-to-Hardware Communication

The Difference Measurement Timer is used to measure the communication time between
two ReconOS hardware threads. For this purpose, the presented difference timer mea-
surement unit is used. The measurement is done in the same way as for the software
to software time, except for the timer. The first hardware thread sets the trigger signal
directly before it starts a mailbox put command through the OSIF-interface. After re-
ceiving the data by thread 2, its sets another signal. The difference between both capture
inputs is the time for the communication. The setup is shown in figure 4.3.

HW
Thread 1

Mailbox
(t̄C , s, tCmax)

HW
Thread 2

Difference
Measurement

Timer

Set
Signal

Set
Signal

Figure 4.3: ReconOS Mailbox Model HW-Thread to HW-Thread

Hardware-to-Software and Software-to-Hardware Communication

For the measurement of the communication time between hardware and software threads,
the assumption that the access time over AXI to the difference measurement unit is
negligible compared to the overall communication time has to be made. Therefore, the
duration can be measured due to the comparison of the capture input and a software
capture of the timer register, which is accessible by the software thread.

HW
Thread 1

Mailbox
(t̄C , s, tCmax)

SW
Thread 2

Difference
Measurement

Timer

Set
Signal

Access CNT Register
via AXI

Figure 4.4: ReconOS Mailbox Model HW-Thread to SW-Thread

The measurement of the communication time in the other direction is done in the same
way. The regarding setups are shown in figure 4.4 and figure 4.5.

51

SW
Thread 1

Mailbox
(t̄C , s, tCmax)

HW
Thread 2

Difference
Measurement

Timer

Access CNT Register
via AXI

Set
Signal

Figure 4.5: ReconOS Mailbox Model SW-Thread to HW-Thread

System Call Communication

This measurement setup is representative for all requests of a hardware thread that
only involves the thread that submits the request. This test-case automatically covers
measurements like semaphores, mutexes, mailboxes etc. where the resource is not used,
and the delegated thread is not blocked.

HW
Thread

Mailbox
(t̄C , s, tCmax)

Difference
Measurement

Timer

Set
Signal 1

Set
Signal 2

Figure 4.6: Setup for System Call Measurement

The intended setup is shown in the figure 4.6. The requesting hardware thread sets the
first signal and starts the mailbox request by the OSIF interface. After the request is
done and the response from the delegated thread has arrived, the hardware thread sets
the second signal. The time difference between the two signals is calculated later in the
software running on the processing system.

Results

The results of all the four measurement setups are shown in figure 4.7. Each measurement
is repeated 50000 times and the results are shown in the histogram. The values in the
legend of the figure are calculated according to equation 4.2, 4.3 and 4.4.

The results of the measurement show that a mailbox put operation has an average dura-
tion of 31.62 us. For this operation, the delegated thread is unblocked by the resulting
kernel interrupt and the message is inserted into the mailbox object by the delegated

52

0 20 40 60 80
0

0.05

0.1

0.15

0.2

Time [us]

P
ro

ba
bi

lit
y

Mailbox Communication Time

SW2SW Mean 16.70, SD 3.28, Max 48.65

HW2HW Mean 40.16, SD 4.46, Max 79.44

SW2HW Mean 16.02, SD 2.26, Max 46.15

HW2SW Mean 44.13, SD 4.39, Max 100.19

MBOX PUT Mean 31.62, SD 4.88, Max 74.87

Figure 4.7: ReconOS Mailbox Communication Times

thread. This process cannot be interrupted by another thread, since the delegated thread
is executed with a maximum priority of 80.

A mailbox communication between two software threads takes on average 16.7µs. The
combination of the two mentioned communications corresponds temporally but also func-
tionally to hardware to software communication. In this case, the delegated thread un-
blocks the corresponding software thread. The addition of both mean values corresponds
approximately to the time required for hardware to software communication.

The measurements indicate that communication from software to hardware generates
low latencies. For example, if the communication from a software thread to a hardware
thread is considered, this corresponds roughly to the latency of software to software
communication. A similar statement can be made about the difference between the
mailbox put operation and the hardware to hardware communication. The difference of
the mean values corresponds to the processing time of the second delegated thread.

53

4.4 Resource Sharing

In a ReconOS-based system, there are parts which are shared at least between the hard-
ware threads. Due to the limited number interfaces to the processing system and the
general requirement of serialization of memory accesses and interrupt triggers, the num-
ber and behavior of hardware threads has an influence on the whole ReconOS-system
and therefore for the run times of other thread in the system. Specially in for real-time
systems, these influences have to be considered at design time. This section deals with
these influences under different experiments and extends the results of the last section.

OSIF Communication

In the first experimental setup, the behavior of parallel mailbox access is investigated.
The system is shown in figure 4.8. Due to the setup, up to 8 hardware threads can be
started for a mailbox at the same time. For archiving exact same starting times, the
threads are connected to an AXI-GPIO IP-core, which output signal can be set by the
processing system. This will activate all hardware threads at the same time.

A conditional variable provided by the operating system is used for the triggering of
different numbers of software threads. Due to the limited number of processor cores, a
serialization of the processes is inevitable.

In the first test scenario, a mailbox put on an empty mailbox of up to 8 threads is
executed simultaneously. This scenario represents all system calls that are executed by
a hardware thread. In this case, an interrupt is triggered by the OSIF controller and
the kernel unblocks the corresponding delegated thread. The delegated thread executes
this call (in this case the Mailbox Put operation) and sends the return value back to the
hardware thread via the OSIF-interface.

54

HWT 1

Processing
System

INT
Ctrl

FIFO

HWT 3 FIFO

INT
Ctrl

HWT 2 FIFO

HWT 4

HWT 5

HWT 6

HWT 7

HWT 8

FIFO

FIFO

FIFO

FIFO

FIFO

AXI
GPIO

Trigger
Out

AXI

Difference
Measure-

ment
Unit

AXI

AXI

AXI

Start
Trigger
Stop

Start
Trigger
Stop

Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

DA

DA

DA

DA

DA

DA

DA

DA

AXI

Cap1

Cap2

Cap3

Cap4

Figure 4.8: Parallel Mailbox Access Setup

In the first test scenario, a mailbox put on an empty mailbox of up to 8 threads is
executed simultaneously. This scenario represents all system calls that are executed by
a hardware thread. In this case, an interrupt is triggered by the OSIF controller and
the kernel unblocks the corresponding delegated thread. The delegated thread executes
this call (in this case the Mailbox Put operation) and sends the return value back to the
hardware thread via the OSIF-interface.

55

0 2 4 6 8
0

50

100

150

200

250

300

350

Active Threads

T
im

e
[u

s]
Parallel Mailbox Put Communication

Mailbox Put: Mean and Standard Deviation

Mailbox Put: Max Value

Figure 4.9: Parallel Mailbox Put operated by up to 8 Threads

The results for the latency measurement are shown in figure 4.10. The plot shows an
approximately linear increase of the mean latency with the number of threads involved.
This also applies to the respective measured maximum value.

For the following test scenarios, a communication between two threads is considered.
For this, the point in time before the communication and the point in time after the
communication is measured once in each case. The difference of the measurements and
thus the elapsed time is shown in figure 4.10 for the different test scenarios.

The plot above shows that the communication time between two threads for hardware
to hardware communication increases circa linearly. This behavior also applies approxi-
mately to the communication between hardware to software.

This fact does not apply to the communication from a software thread to a hardware
thread. The time between the start of the communication and the arrival of the message
at the counterpart remains approximately constant. This is due to the serialization by

56

the limited number of processor cores, which becomes visible through the lower plot of
figure 4.10. The partial illustration shows the total duration of all threads of the entire
communication for the software to hardware communication. As expected, this time
increases almost linearly with the number of participants. The small increase from one
thread to two threads can be explained by the existing two processor cores of the Zynq,
which allow a true parallel execution.

0 2 4 6 8
0

100

200

300

400

Active Threads

T
im

e
[u

s]

Parallel Communication

0 2 4 6 8
0

100

200

300

400

500

Active Threads

T
im

e
[u

s]

Duration for SW2HW Communication

HW2HW

SW2SW

SW2HW

HW2SW

Duration SW2HW

Duration SW2HW per Thread

Figure 4.10: Parallel Mailbox Access Setup Execution Time

Memory Access

The next setup is constructed for the investigation of the memory access behavior in
parallel. Like the previous setup, all eight threads are triggered by the AXI GPIO
module. This leads to simultaneous starting times for all threads.

On the other hand, an additional AXI-memory block is added to the design. The reasons
for this are the AXI-Touch and AXI-Servo modules which are added to the design. Since

57

the control program needs to access them during run time, both AXI-modules must be
considered in these investigations. This block contains a block of 32 kByte local memory
and can be accessed by the AXI-interface. The address space of the block is mapped
onto the virtual address space of the ReconOS application. The overall setup design is
shown in figure 4.11.

The difference compared to the previous setup is the communication interface to the
processing system. In this experimental setup, the communication is done through the
memory interface, not the OSIF interface. For a memory access through the processing
system, all threads involved share the ReconOS memory subsystem, which is why the
behavior is of interest for parallel accesses.

The investigations should differentiate between two different test scenarios: burst memory
access and single access. The burst memory access investigations give insight into the
bandwidth distribution for parallel accesses. For this, a block of 32 kByte is transferred
from and to the hardware thread to the main memory or the AXI memory. Through the
Round-Robin scheduling policy of the arbiter of the memory interface, a linear increase
of the transfer time depending on the parallelism expected.

The results of the burst memory access are shown in figure 4.12. The figure shows both
the read and write access to the main memory (left) and the AXI-memory (right). The
results of the measurements are as expected. The transfer time for access to the main
memory increases linearly with the number of threads. The access to the AXI-memory
is slower than the access to the main memory due to the slower AXI interface.

In the second test case, single memory accesses are done on the main memory and
the AXI-memory. In order to load the memory system, this access is repeated several
thousand times by all threads. This ensures that the memories such as the FIFOs in the
memory subsystem are filled.

The results of the measurement are shown in figure 4.13. Like before, the results for the
main memory are shown on the left side and for the AXI-interface on the right side.

For the AXI-interface, the mean time for a single access on the memory increases linearly
with the parallelism both for write and read accesses. Therefore, the memory throughput
per thread decreases reciprocally. Read accesses are slower by the factor of two, since
the read access require a bidirectional communication compared to the unidirectional
communication of write access.

This is also valid for the access by a thread for the examinations at the main memory.
With increasing parallelism, the difference between the two access types decreases, which
is due to the optimizations by the main memory controller in the processing system.

58

HWT 1

Processing
System

MEMORY
SUBSYSTEM

(MEMIF,
MMU,
CTRL)

FIFO

HWT 3 FIFO

HWT 2 FIFO

HWT 4

HWT 5

HWT 6

HWT 7

HWT 8

FIFO

FIFO

FIFO

FIFO

FIFO

AXI
GPIO

Trigger
Out

AXI

Difference
Measure-

ment
Unit

AXI

Start
Trigger
Stop

Start
Trigger
Stop

Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

ACP

Cap1

Cap2

Cap3

Cap4

AXI

AXI
Memory

AXI Main Memory

Figure 4.11: Parallel Memory Access Block Design

59

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

Threads

B
an

dw
id

th
 [M

B
/s

]

Main Memory

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

Threads

B
an

dw
id

th
 [M

B
/s

]

AXI

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Threads

D
ur

at
io

n
[m

s]

Main Memory

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

Threads

D
ur

at
io

n
[m

s]

AXI

Write

Read

Write

Read

Write

Read

Write

Read

Figure 4.12: Burst Access to the AXI Memory and Main Memory. Top: Time per Access,
Bottom: Bandwidth per Thread

60

1 2 3 4 5 6 7 8
0

5

10

15

20

25

Threads

B
an

dw
itd

h
[M

B
/s

]

Main Memory

1 2 3 4 5 6 7 8
0

5

10

15

20

25

Threads

B
an

dw
itd

h
[M

B
/s

]

AXI

1 2 3 4 5 6 7 8
0

1

2

3

4

5

Threads

D
ur

at
io

n
[u

s]

Main Memory

1 2 3 4 5 6 7 8
0

1

2

3

4

5

Threads

D
ur

at
io

n
[u

s]

AXI

Write

Read

Write

Read

Write

Read

Write

Read

Figure 4.13: Single Double Word Access to the AXI Memory and Main Memory. Top:
Time per Access, Bottom: Bandwidth per Thread

61

4.5 Scheduling and Parallelism

This part investigates the question which degree of parallelism should be used for the
implementation. Generally, all tasks should be executed in hardware, if there are enough
resources available, because

• the size of the FPGA is fixed and due to the evaluation board, it is not changed to
a smaller type, even if in principle a smaller FPGA would be sufficient. Therefore,
a smaller FPGA design does not lead to a more cost-efficient implementation of the
overall demonstrator.

• in general, the execution on the FPGA is faster and more energy-efficient since
lower clock frequencies and higher parallelism are expected. The execution time
measurement shows that in all cases the hardware implementation is faster than
the regarding software implementation.

The disadvantages of a FPGA implementation in contrast to a software implementation,
such as the higher development costs, are omitted in this case, because the functions have
already been implemented in hardware. Besides that, the usage of high-level synthesis
allows shorter development times compared to classical hardware description languages
like VHDL (Very High-Speed Integrated Circuit Hardware Description Language).

During this sub chapter, four different approaches are presented. The first approach is
the pure parallel approach, which was already mentioned. The approach uses instances
of all hardware threads for all of the three demonstrators in parallel.

The second approach uses dynamic partial reconfiguration for multitasking on the FPGA.
The motivation for this approach is the investigation of dynamic reconfiguration in a
time-triggered system within the period.

The third approach uses the fact that the implementation of the threads is the same for
all three demonstrators. Therefore, every thread-type has only to be implemented once
and then reused multiple times during one period.

The last approach is the pure software implementation, which works without any hard-
ware threads. This implementation is made possible by the extensions on ReconOS
regarding priority-based scheduling, since the default scheduling policy would not allow
such systems.

Pure Hardware Approach

Fortunately, the entire design including both video processing threads can be imple-
mented in the FPGA without having to run parts of the control program in software
space constrained. Therefore, the placement problem contains the trivial solution of
being able to run all threads in hardware.

The chronological sequence of the operations for the first platform is shown in the figure
4.14. For all other of the three platforms the calculation takes place simultaneously and
in the same chronological order.

62

T
1

Period P

C
1

t

I
1
1

S
1
2

Time
Trigger

T
1

t

t

Slot 0

Slot 1

Slot 2

Slot 3

I
1
2

I
1
3

I
1
4

I
1
5

I
1
6

S
1
1

S
1
3

S
1
4

S
1
5

S
1
6

t

Time
Trigger

Figure 4.14: Full Parallelism Scheduling (T: touch thread, C: control thread, I: inverse
thread, S: servo thread)

Additionally to the control loop threads, the hardware video processing thread is in-
stantiated. Because of the parallel execution, the throughput of the video processing is
bounded by the execution time of the thread. Other limitations, e.g. the execution time
of the HDMI driver are neglected due to the parallel execution in software.

The gray gaps in the scheduling indicates the overheads, which are generated by the
communication via mailbox. The temporal behavior of system calls like mailbox commu-
nication and the execution times of the threads are based on the measurements in this
chapter.

The processing time of an overall control-loop cycle is the time between the reading of the
position data from the AXI-touch module and the writing of the last angle in the AXI-
servo module of the regarding demonstrator. The pure calculation time by the threads is
given by equation 4.5. The run time of the servo thread is taken into account only once,
because the processing usually runs at the same time as the much longer inverse thread.

tHWEXEC = 6 · tINV ERSE + tCONTROL + tTOUCH + tSERV O = 1208µs (4.5)

63

In addition, there are the times for mailbox communication, in which the changed be-
havior through parallel use must be taken into account. Therefore, the communication
between the inverse thread and the servo thread is de facto a double mailbox commu-
nication, because the inverse thread already makes a new request for new input data
shortly after the angle has been set. The point in time between the control threads and
the inverse thread is also assumed to be double communication, since the control thread
executes several mailbox-put operations in this case. According to the measured behavior
of sub chapter 4.4, the hardware-to-hardware executions take twice as long as a single
communication.

Therefore, the overall communication time is given by equation 4.6. The capital letter T
indicates the property as a random variable.

TCOMM = 2 · THW2HW · 6 + THW2HW · 2 = 14 · THW2HW (4.6)

This leads to the overall calculation time TPARALLEL of

TPARALLEL = tHWEXEC + TCOMM (4.7)

However, the presented calculations are only valid for one platform. In case the con-
trol program calculates for several platforms at the same time, a parallel use of the
OSIF-interface must be assumed. The communication time therefore increases approxi-
mately linearly with the number of platforms. Assuming a mean communication time of
T̄HW2HW = 44.14µs (shown in figure 4.7) for the mailbox communication, every addi-
tional platform contributes a communication overhead of 617, 96us for every platform.

According to the equation and the measured values from the models in these chapters, a
mean execution time of about tPARALLEL ≈ 1.83ms for a demonstrator results, whereby
the execution time increases in about 617, 96µs with each additional platform.

As already mentioned, the video processing throughput is bounded by the execution time
of the filter kernel and the communication time for the input frame pointer (equation 4.8).
Since the address is already in the mailbox at the time of request, the communication
time for a system call is considered instead of the communication time for software-to-
hardware communication. By using the measured values from table 4.2 and the figure
4.7, a mean value of TV = 127.7ms is determined for video processing by the Sobel-filter
and TV = 30.3ms for the RGB2GR-filter.

TV = TSY SCALL + tFILTER (4.8)

Since the communication time is a random variable in general, the usage of the mean
value for the period would lead to a deadline miss in most of the time. Therefore, an
accepted probability must be defined for the system design in which the deadline may be
exceeded. In the case of the control loop, no deadline misses should be accepted, which
is why much higher periods are used. As described in the background chapter, however,
the use of Linux as an operating system can also lead to unexpected latencies. Therefore,
even the use of the maximum values does not represent security for a hard real-time
system, as it is required for example for security relevant systems.

64

Reconfiguration Approach

For another application scenario, it is assumed that the controller application will run on a
different FPGA with limited resources. Therefore, the current implementation does not fit
in the actual FPGA type. The possibility of executing parts of the control loop in software
should also be ignored for the motivation of this approach. The problem results in the
need to execute hardware threads sequentially on the FPGA, which leads to the need
of dynamic reconfiguration of the FPGA, especially dynamic partially reconfiguration
(DPF). For the realization of the reconfiguration of the threads, the mechanisms described
in chapter 3.3 are used.

The reconfiguration should focus on the control and the inverse thread, because these
two thread types have the highest resource consumption of all threads in the control loop.
The low resource savings by reconfiguration of the servo or touch slots do not justify the
effort of a reconfiguration.

However, non-state-less threads like the control thread require additional memory to save
the context of the thread. This can be done either by additional local memory BRAM in
the FPGA but also by the usage of the main memory of the processing system. For the
reconfiguration case in this thesis, the main memory option is chosen. The threads to be
reconfigured are assigned a memory area via the initialization data, where they can store
or unload their context.

Since the time for the reconfiguration according to table 4.3 far exceeds the time for
the calculation of the control loop, the minimum period is limited by the sum of the
reconfiguration times. The execution of the hardware threads for the control loop can be
done during the reconfiguration.

Pmin = 3 · (trecon3 + trecon4) (4.9)

Furthermore, the remote reconfiguration server cannot be used in this implementation
for preserving Pmin, since reconfiguration by the server would cause the period to be
extended by another reconfiguration phase. If the reconfiguration server should still be
used, the period of the control program has to be extended by the time for reconfiguration
of slot 12.

P ′min = 3 · (trecon4 + trecon4) + trecon12 (4.10)

Since the reconfiguration cannot be interrupted in the existing implementation, a full
time slot must be kept in each period in which a possible reconfiguration of the video
filter would be carried out. The reconfiguration would always be done in the same phase
of the period, otherwise the sample accesses to the touch module and the write accesses
of the servo module would no longer be done equidistantly. The maximum latency in
this case for a reconfiguration request to the remote reconfiguration server would be
approximately 3 · (trecon3 + trecon4).

The execution of the control loops is partially overlapping. So, the processing of the next
cycle can already be started after the last reconfiguration.

65

The resulting schedule for the reconfiguration approach is shown in figure 4.15. For
reasons of readability, the standards in the schedule are partly distorted. In fact, the
phases of the reconfiguration dominate the schedule considerably more.

C
1

I
1
1

I
1
2

I
1
3

I
1
4

I
1
5

I
1
6

Reconfiguration

T
1

Period P

t

Time
Trigger

t

t

Slot 0

Slot 3

Slot 4

t

Time
Trigger

t

Slot 1
T
2

T
1

T
2

Reconfiguration

Reconfiguration
C
2

I
2
1

I
2
2

I
2
3

I
2
4

I
2
5

I
2
6

Reconfiguration

Reconfiguration
C
3

I
3
1

I
3
2

I
3
3

I
3
4

I
3
5

I
3
6

Reconfiguration

S
1
1

S
1
2

S
1
3

S
1
4

S
1
5

S
1
6

Slot 5

t

S
2
1

S
2
2

S
2
3

S
2
4

S
2
5

S
2
6

Slot 6

t

S
3
1

S
3
2

S
3
3

S
3
4

S
3
5

S
3
6

Slot 7

t

Slot 2
T
3

T
3

Figure 4.15: Schedule with Reconfiguration in the Control and Inverse Slot (T: touch
thread, C: control thread, I: inverse thread, S: servo thread)

66

Reset Approach

However, due to the poor utilization of the slots for the servo and touch threads in
particular, the question arises as to whether reserving resources really makes sense. An
alternative would be, for example, to reuse the corresponding slots for other threads by
partial reconfiguration. However, the reconfiguration of the slots for the touch and servo
thread, which are used only slightly in terms of time, is omitted here, since the overhead
in terms of time is in a bad relation to the resources saved due to the reconfiguration.

A more resource and time optimized scheduling uses the context-change mechanism,
which was also used for the partial reconfiguration, but without subsequent reconfigura-
tion. This approach avoids the long times for the reconfiguration of the slots.

For a context change in a slot the corresponding reset flag is set first. The RC-flag is
recognized by the thread and afterwards a request for the context change is set via the
mailbox. After that, the reset signal for the slot is set and the pointer to the initialization
data is changed. The reset signal is cleared, and the thread starts the processing.

The resulting overhead TCS for the context switch is shown in equation 4.11. The com-
munication time for the request TSW2HW and the communication time for request of the
initialization data TSY SCALL determine the main offset for this approach.

TCS = TSW2HW + TSY SCALL + TOTHERS (4.11)

The overhead added by reading and writing the context from main memory can be
neglected since the size of the context are only a few bytes. The low duration for memory
accesses in order of microseconds has been shown by the memory bandwidth experiments.
In addition to the mentioned values there are further overheads like setting and resetting
the reset signal etc. These values are summarized under TOTHERS .

Due to the overlapping execution of the control loop threads with the context-switch
mechanism, the processing time for each control loop is not extended due to the overhead
TCS . Therefore, the run time matches the processing time of a single platform at the full
parallel design.

tHWEXEC = 6 · tINV ERSE + tCONTROL + tTOUCH + tSERV O = 1208us (4.12)

TRESETAPPROACH = 14 · THW2HW + tHWEXEC (4.13)

Pure Software Implementation

In contrast to the fully parallel approach, which was presented before, a pure-software
based approach is discussed here. In contrast to the hardware approaches presented, a
pure software approach also requires reserve times for the operating system in the period.
This time includes, for example, computing time for the scheduler and context switching,
the network thread, etc. Additionally, CPU time is needed for the video processing as
well as for the kernel and userspace drivers for the video processing chain. Therefore,

67

the minimum period for the time-triggered system cannot be determined solely from the
execution times of the software threads.

This possibility for implementation is made possible by the enhancements to ReconOS
regarding priority-based scheduling. Without this change, it is not possible to classify
the threads according to priority. This allows threads with a long execution time but low
priority like video processing threads to displace the threads of the control loop.

The assignment of priorities for this implementation approach is done by deadline mono-
tonic scheduling. This scheduling policy assigns priority by its deadline inversely pro-
portional. The precedence graph described in 3.2.3 is used to determine the deadlines.
Priorities are assigned in increasing order from right to left starting at 75.

The resulting priorities are shown in table 4.4. Since all threads including the video
processing are running in software, the remote reconfiguration server is not considered
here. The Sobel and RGB2Gray are scheduled with the SCHED_OTHER policy since these
threads do not behave cooperatively.

Table 4.4: Priorities for the pure Software Implementation
Thread Priority
Delegated Threads 80
Cycle Timer 79
Touch 78
Control 77
Inverse 76
Servo 75
Sobel 0
RGB2Gray 0

4.6 Chapter Conclusion

In this chapter, investigations and improvements regarding the operating system and Re-
conOS are described. ReconOS is extended by the possibility for priority-based schedul-
ing. This feature enables the implementation of pure-software implementations.

For the providing of execution times of the threads, two measurement environments are
presented. They allow the measurement of the execution time of both hardware and
software threads.

Additionally, overheads due to system calls and the parallel usage of parts of the ReconOS
infrastructure are determined. Some of the gained insights are used in a later part of this
chapter to provide execution time estimations for the control loop threads. Therefore,
four different approaches are presented in which different degrees of parallelism are used
for the calculation of the control program.

68

5 Evaluation

This chapter will evaluate the results and compare them with the questions of the problem
definition. First, the changes to ReconOS and the used Linux kernel are evaluated by
the latency. For this, the wake-up time after the nanosleep function is measured due to
the global timer of the ARM Cortex-A9 cores.

Afterwards, a comparison of the different implementations based on the approaches from
the previous chapter is made. The implementation is evaluated based on the used re-
sources and the processing times. As described in chapter 3, the Kalman filter is used
for reducing noise and disturbances. The reaction of this filter to disturbances is shown
in the following part of this chapter.

Finally, a comparison is made with the questions that were mentioned in the introduction
to this work. Due to that, the completeness of the answers should be shown, but also an
overview and a reference to the detailed answers should be given.

5.1 ReconOS Real-time Improvements

The previous chapter 4.1 describes changes made to the Linux kernel and the ReconOS
framework used. The effect of these changes will be investigated in the following.

Since the control loop is designed as a time-triggered real-time system, disturbances in
the period of the cycle-timer effects the period of the data sampling of the whole system.
Therefore, the cycle-timer should provide a deterministic behavior with less deviations in
the cycle-time. This motivates investigations in the improvements by the changes which
have been made.

For the investigations, four different test cases are executed over five minutes of time.
The cycle time of the thread is set to 20 ms. In these test cases, the period of the
cycle timer thread is measured by the global timer of the ARM Cortex -A9 processor.
The resulting period is calculated by the difference of two-time captures. The listing 5.1
shows the modification which is made on the cycle timer thread for the measurement.
The test investigates not only the behavior of the nanoleep()-function but also the effect
to the pthread_mutex_lock, pthread_cond_broadcast and pthread_mutex_unlock in
combination with the nanosleep-function.

69

Listing 5.1: Cycle Timer Loop extended by Time Measurement

while (1)
{

pthread_mutex_lock(cycle_timer ->mutex);
pthread_cond_broadcast(cycle_timer ->cond);
pthread_mutex_unlock(cycle_timer ->mutex);

nanosleep (&tim , NULL);
// Capture actual timer value
a9timer_caputure(a9timer , &(log_cycle_timer.a9timer_capture),

A9TIMER_CAPTURE_START);
}

The four tests cases investigate different combinations of modifications that are made
during this thesis. This includes the combination of a Linux kernel which was modified
by the PREEMPT_RT patch and the origin Linux kernel without this modification.
On the other hand, the two scheduling strategies SCHED_FIFO and the default scheduling
policy SCHED_OTHER are tested.

For additional stressing of the system, the test program cyclictest is executed in the
background with four threads running. Cyclictest is part of the official Linux kernel
sources and is usually used to measure the latency of real-time threads. The general
approach is similar to the presented approach in the cycle timer thread modification.
In the test case for this thesis, the tool is running without real-time behavior, since the
purpose is only to generate a higher workload through additional periodic threads.

The results of the tests are shown in figure 5.1 in the histogram. For each test case, the
mean value, the standard deviation and the maximum measured value are given in the
legend of the figure.

As shown, the combination of the PREEMPT_RT patch together with the real-time
scheduling policy SCHED_FIFO leads to the best results in the test. For this test case, the
mean value, the standard deviation and the maximum value are the minimum of all test
cases. The test also shows small improvements due to the PREEMPT_RT regarding
the maximum latency of about 40 µs compared to the non-patched Linux kernel. On
the other hand, not using a real-time scheduling strategy leads to significantly higher
latencies (e.g. comparison of the first two test results). Not only the mean value of the
latencies increases without the changes on the scheduling policy, but also the deviation
of the latencies.

The essential insight from this measurement is the fact that only the change of the
scheduling policy results in significant changes on the real-time behavior. The deviation
of the cycle timer is not only smaller, but the cycle timer also reacts faster after returning
from the nanosleep function. The improvements through the patch are rather marginal.

70

20 20.02 20.04 20.06 20.08 20.1
0

0.02

0.04

0.06

0.08

Cycle Time [ms]

P
ro

ba
bi

lit
y

Cycle Timer Period

PREEMPT-RT SCHED-FIFO (Mean 20.0175, SD 0.0019, Max 20.0460)

PREEMPT-RT SCHED-OTHER	 (Mean 20.0793, SD 0.0114, Max 20.3815)

PREEMPT SCHED-OTHER	 (Mean 20.0666, SD 0.0077, Max 20.1381)

PREEMPT SCHED-FIFO	 (Mean 20.0185, SD 0.0045, Max 20.0881)

Figure 5.1: Cycle Time Period on a fully preemptive kernel / not full preemptive kernel
with real-time scheduling / without real-time scheduling

5.2 Implementation Evaluation

The evaluation of the different implementations is divided into two parts: the first part
compares the resource utilization of the four approaches. The second part shows the
resulting execution times of the implementations for each platform.

Resource Utilization

For the evaluation of the implementations, the utilization of the available resources used
is shown in figure 5.2. The comparison is limited to the number of used look-up tables
(LUT), distributed ram (LUTRAM), flip-flips (FF), block memory (BRAM) and digital
signal processing units (DSP). Other parts of the FPGA, e.g. the number of used input-
output pins, are not considered in this comparison since most of them are equal for
all implementations. All compared implementations contain the modules for the video

71

processing support, e.g. the direct memory units or the HDMI transceivers and receivers.
Of course, all implementations include the AXI-modules for the servo and touch interface
but also the ReconOS infrastructure.

As expected, the parallel implementation of all hardware threads consumes the most
resources for all types. This implementation is mainly bounded by the availability of
digital processing units which are almost completely used. Due to that, no more instances
of the most time-consuming threads are possible.

The two approaches (Reset-based implementation and DPR-based implementation), which
are based on sequential processing of the platforms, use approximately the same number
of resources. Differences are the result of different constraints due to the design flow of
the partial reconfiguration.

For the purely software-based approach, only the infrastructure for video processing and
the AXI-touch controller the AXI-servo controller is required. Therefore, this implemen-
tation allows the estimation of the resources needed for this infrastructure.

LUT LUTRAM FF BRAM DSP
0

20

40

60

80

100

Resource

%

Resource Utilization

Software-based Implementation

Reset-based Implementation

DPR-based Implementation

Parallel-based Implementation

Figure 5.2: Resource utilization of the different implementations

72

Full Parallel Implementation

For the evaluation of the execution time of the various implementations, the time between
reading the position from the touch module and writing the sixth angle into the servo
module is measured for each of the three platforms. The results of the processing time
measurements are shown in table 5.1.

Table 5.1: Measured mean execution times for the parallel implementation
Number of
Platforms

Platform 0 Platform 1 Platform 2

1 1.9887 ms - -
2 2.5837 ms 2.5859 ms -
3 3.3390 ms 3.3288 ms 3.3344 ms

As expected, the processing time of the control loops increases with the increasing number
of platforms. Since the processing of the algorithms completely takes place in parallel
in hardware, the increased processing time must be due to longer communication times
through the mailbox communication.

The increase of the average execution time of about 0.6 ms (two demonstrators com-
pared to one demonstrator) and about 0.75 ms (three demonstrators compared to two
demonstrators) fits the predicted orders of magnitude predicted in 4.5.

The execution time of the video filters is independent from the number of demonstra-
tors. The measured mean execution time for the Sobel-filter is 127.44 ms and for the
RGB2Gray-filter the mean execution time is 30.03 ms. In other words, the implementa-
tion allows frame rates of 7.9 frames per second for the Sobel-filter and 33.3 frames per
second for the RGB2Gray-filter.

Partial Reconfiguration Implementation

As already mentioned in the previous chapter, the approach of partial reconfiguration is
not suitable for the control of demonstrators. This is due to the long delay times caused
by the partial reconfiguration phases, which do not allow the control of an unstable
control system with double-integral behavior with the presented controller design. The
corresponding tests inevitably resulted in a loss of the ball.

The approach of partial reconfiguration during the period could be used for less dynamic
systems. This includes, for example, temperature control of objects with large time
constants.

Reset Approach Implementation

For the implementation based on the reset approach, processing times are expected that
are close to the measurement results for the full parallel approach in hardware for one

73

platform. The measured mean values in table 5.2 confirm this result. The processing
time remains constant even if the number of demonstrators involved is reduced.

Unlike the full parallel approach for processing, the processing times for this approach
must be partially added to obtain the total processing time for all platforms.

Table 5.2: Measured mean execution times for the reset implementation
Number of
Platforms

Platform 0 Platform 1 Platform 2

3 2.0012 ms 2.0059 ms 2.0956 ms

Pure Software Implementation

As already described in the previous chapter, the running time of the inverse thread
dominates the total running time of the control loop. the result of the running time
measurement reflects this result. In the histogram in figure 5.3 it becomes visible that
in most runs the processing time of all three demonstrators takes about 8.5 ms, which
corresponds almost exactly to six times the running time of the inverse thread.

6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

Execution Time [ms]

P
ro

ba
bi

lit
y

Pure Software Execution Time

Platform 0

Platform 1

Platform 2

Figure 5.3: Execution Time for the pure software implementation

In a significant number of cases, the runtime is about twice the value, circa 17 ms. In
this case, the inverse thread of another demonstrator was executed after scanning by the

74

touch thread and processing the control thread, resulting in a wait time of about 8.5 ms.
The probability of both events is different due to the dual-core processor architecture.
Two of the three demonstrators are processed directly, the remaining third must wait for
a free core.

5.3 Controller Evaluation

For the evaluation of the Kalman filter, the controller is given a reference value that
corresponds to a circular motion on the surface. The resulting controller values are
shown in figure 5.4.

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

mm

m
m

Y

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

mm

m
m

X

-10 -5 0 5 10 15
0

2

4

6

8

10

12

mm

m
m

e

-5 0 5 10 15
-10

-5

0

5

10

15

degree

dr
eg

ee

u

Figure 5.4: Position of the Ball on the Surface with measured position Y, Kalman esti-
mated position X, control error e and resulting control value u

Due to transmission problems, which are mainly caused by electromagnetic interference
caused by strong position changes of the servo motors in the transmission line to the touch
controller, the incoming position data may be incorrect. Also, an aging of the touch screen
or a loss of contact of the ball due to fast movements of the Stewart-platform are possible

75

sources of interference. The used PD-controller is very sensitive to these disturbances, as
these are often large gradients.

In the subplot Y in figure 5.4 such a disturbance can be observed. The used Kalman filter
reduces these disturbances which can be seen in the X subplot. Without this weakening
there would have been a loss of the ball due to a fast movement of the platform as a
reaction of the high gradient.

Moreover, the Kalman filter shows an overall filtering of the measured data, estimating
a smoother motion. This filtering therefore leads to a softer control behavior.

5.4 Question Comparison

As the last part of the evaluation of this thesis, a comparison is made with the prob-
lems and aims of this work. In this way, an explicit answer to all questions is given.
Additionally, the reader should be able to compare the results with the asked questions.

In general, the extend demonstrator provides a set of tasks with different properties re-
garding real-time constraints. The tasks of the control-loop have to be scheduled under
harder real-time constraints than the video processing threads. The remote reconfigura-
tion server contributes an event-trigger task to the set of tasks.

Q1 How are tasks interfaced with sensors and actuators?

The connection with sensors and actuators is described in the sub chapter 3.2
as AXI-touch module and AXI-servo module. The existing direct connection to
hardware threads has been replaced by an AXI modules, as this allows a more
flexible connection to the application. This enables, for example, pure software
solutions for the control software.

Q2 How to provide upper bounds for hardware and software task execution times?

Approximations for upper bounds for hardware and software execution times are
provided in the sub chapter 4.2. Since the analytical determination of the execution
time for software threads is hard because of the non-deterministic behavior of the
executing processor, the measured results are approximated as execution times.

Q3 How to model and determine the overheads posed by operating system calls and the
hardware/software communication in ReconOS?

Overheads due to operating system calls and hardware software communication
are analyzed in the real-time investigation chapter 4.3. Different setups are used to
measure the latency of system calls and inter-thread communication.

Q4 How to deal with resources shared between tasks, in particular buses and memories?

Parts in the ReconOS system which performance is influenced due to parallel usage,
are investigated in the sub chapter about resource sharing (4.4). The influence
of parallel inter-thread communication and parallel system calls on the run time
of these is investigated. After that, the influences of parallel memory access by
ReconOS-threads is determined. For this, the bandwidth but also the latency for
single word access is determined.

76

Q5 What degree of parallelism can and should be used, and what are the resulting
scheduling and placement problems?

In the subchapter 4.5, the question of the degree of parallelism is answered. in
general, a completely parallel processing in hardware is recommended for this im-
plementation, since the entire design can be accommodated in the FPGA. Never-
theless, the mentioned sub chapter also propose other degrees of parallelism that
might be useful for similar problems.

Q6 Is there a case for partial reconfiguration?

This thesis describes two application cases of partial reconfiguration. First, the
remote reconfiguration server uses this mechanism to replace the filter kernel after
a request. The corresponding description can be found in 3.2.3 in the demonstrator
chapter. As a second application, partial reconfiguration is used to examine a
reasonable degree of parallelism. The description can be found in the section 4.5.

77

6 Conclusion and Future Work

In the last chapter of this thesis, the results of this work are summarized, and a short
summary of the work steps is described. Afterwards, an outlook is given on further
possible work on and with this demonstrator as well as on the results achieved.

6.1 Conclusion

The demand for energy-efficient real-time systems as "enablers" for the increasing use
of technology of our everyday life requires on the one hand the use of combinations of
hardware and software and on the other hand an increase in productivity of the existing
development capacities. ReconOS with its programming model offers the possibility to
put hardware / software decomposition into practice.

The work presented here is based on the objective to build a real-world example for a
real-time ReconOS system. This demonstrator is based on an existing demonstrator,
which is extended for the purposes of this work.

The existing demonstrator is extended by two additional Stewart-platforms, which are
able to balance a ball on its surface. The position of the ball on the surface is recognized
by a touchscreen. All three platforms are controlled by one platform FPGA, which is
embedded in a FPGA development board. The Zedboard is also extended by a HDMI
input extension board, which provides physical support for receiving HDMI input signals.

After the practical part of this work, the control software for the demonstrator is designed.
This includes the software for the balancing of the balls but also digital image processing
with two different filter kernels. To enable video processing in the ReconOS framework,
userspace drivers for HDMI input and HDMI output are presented.

Since dynamically partial reconfiguration allows the usage of FPGA resources in time-
space, two mechanisms for multitasking on the programmable logic are described. This
includes the possibility to change parts of the control loop during run-time but also to
change the filter kernels. For the last option, a remote reconfiguration server accepts
network requests and initiate a reconfiguration on this request.

After demonstrator construction and implementation of the demonstrator hardware soft-
ware design, real-time investigations are described. This includes the extension of Re-
conOS by priority-based real-time scheduling but also the applying of the PREEMPT_RT
patch to the Linux kernel. In the following, execution times for the ReconOS threads
are provided and timings of inter-thread communication and system calls are investi-
gated. Since some ReconOS infrastructure is shared by the available hardware threads,
the influences of the parallel usage are determined by different measurement setups.

78

Due to the properties of the demonstrator, there are different possibilities for scheduling
and the parallel usage of FPGA resources to execute the control software. Four different
approaches are investigated in this thesis.

The evaluation chapter shows the improvement that could be archived due to the Real-
time modifications on ReconOS and Linux. Additionally, measurements on the four
approaches of parallelism are shown. Finally, the questions described in the problem
definition are compared with the results of this thesis.

The investigations in this thesis show that ReconOS based on Linux can be used for
time-triggered real-time applications. Improvements in the Linux kernel as well as in
ReconOS regarding the real-time scheduling allow the implementation of pure software
solutions as well as combinations of hardware and software functionalities.

For use on FPGAs with limited resources the presented approaches can be selected, where
hardware threads are executed sequentially on parts of the FPGA. For systems with more
stable behavior, dynamic partial reconfiguration can be used. For applications with short
cycle times, it is possible to use the approach presented here, in which the initialization
data is exchanged during a hardware reset.

By measuring the communication times between different thread types and the perfor-
mance effects due to parallel usage, the effects can be estimated and taken into account
for the later design of a time-triggered system based on ReconOS. This allows the usage
of ReconOS for future real-time implementations.

6.2 Future Work

The development and implementation of the Ball-on-Plate demonstrator can be used as
a platform for further investigation. This platform offers a playground for the imple-
mentation of real-time systems due to its mechanical structure and the functions already
been implemented.

In the background chapter, different approaches for providing real-time behavior are
described. While this work disregards the investigation of approaches with an additional
co-kernel, there would be room for further analyses. Also, the usage of non-Linux-based
systems together with the demonstrator is possible. One possible example would be the
real-time operating system FreeRTOS.

As a further focus for further work, an implementation from a time-triggered system to
a purely event-based system could take place. By the described structure of the control
software, time-triggered systems are mainly examined in this work.

79

Bibliography

[1] Real-time processing – the basis for pc control. http://www.pc-control.net/pdf/
special_25_years_pcc/products/pcc_special_0811_realtime_e.pdf. Accessed:
2018-08-19.

[2] Zynq-7000 soc data sheet: Overview. https://www.xilinx.com/support/
documentation/data_sheets/ds190-Zynq-7000-Overview.pdf. Accessed: 2018-
08-19.

[3] J. Ackermann. Entwurf durch Polvorgabe. At-Automatisierungstechnik, 25(1-
12):209–215, 1977.

[4] Andreas Agne, Marco Platzner, Christian Plessl, Markus Happe, and Enno Lübbers.
ReconOS. FPGAs for Software Programmers, 9(1):227–244, 2016.

[5] D. Andrews, W. Peck, J. Agron, K. Preston, E. Komp, M. Finley, and R. Sass.
hthreads: A Hardware/Software Co-Designed Multithreaded RTOS Kernel. pages
331–338, 2006.

[6] M. A. Arshad, M. M. Gulzar, J. K. Qureshi, A. Hayat, M. Shamir, F. Ahmed,
and S. Rasheed. Six degrees of freedom robotic testbed for control systems labora-
tory. In 2017 International Symposium on Recent Advances in Electrical Engineering
(RAEE), pages 1–6, Oct 2017.

[7] H. Bang and Y. S. Lee. Implementation of a ball and plate control system using
sliding mode control. IEEE Access, 6:32401–32408, 2018.

[8] A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A. Soppelsa, and C. Taliercio.
Performance comparison of vxworks, linux, rtai and xenomai in a hard real-time
application. In 2007 15th IEEE-NPSS Real-Time Conference, pages 1–5, April 2007.

[9] S. R. Bdoor, O. Ismail, M. R. Roman, and Y. Hendawi. Design and implementation
of a vision-based control for a ball and plate system. In 2016 2nd International
Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM),
pages 1–4, May 2016.

[10] Ilja N. Bronstein, Konstantin A. Semendjajew, Gerhard Musiol, and Heiner Muehlig.
Taschenbuch der Mathematik. Europa Lehrmittel Verlag, 9. edition, December 2013.

[11] Jeremy H. Brown. How fast is fast enough ? choosing between xenomai and linux
for real-time applications. 2010.

[12] George Charitopoulos, Iosif Koidis, Kyprianos Papadimitriou, and Dionisios Pnev-
matikatos. Hardware task scheduling for partially reconfigurable FPGAs. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), 9040:487–498, 2015.

81

http://www.pc-control.net/pdf/special_25_years_pcc/products/pcc_special_0811_realtime_e.pdf
http://www.pc-control.net/pdf/special_25_years_pcc/products/pcc_special_0811_realtime_e.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf

[13] W. Chong, S. Ogata, M. Hariyama, and M. Kameyama. Architecture of a multi-
context fpga using reconfigurable context memory. In 19th IEEE International Par-
allel and Distributed Processing Symposium, pages 7 pp.–, April 2005.

[14] Cosmin Copot, Yu Zhong, Clara Ionescu, and Robin De Keyser. Tuning fractional
pid controllers for a steward platform based on frequency domain and artificial in-
telligence methods. Central European Journal of Physics, 11, 04 2013.

[15] Cosmin Copot, Yu Zhong, Clara M. Ionescu, and Robin De Keyser. Tuning frac-
tional pid controllers for a steward platform based on frequency domain and artificial
intelligence methods. Central European Journal of Physics, 11(6):702–713, Jun 2013.

[16] Marcel Eckert, Dominik Meyer, Jan Haase, and Bernd Klauer. Operating System
Concepts for Reconfigurable Computing: Review and Survey. International Journal
of Reconfigurable Computing, 2016(December):1–11, 2016.

[17] Otto Foellinger. Regelungstechnik - Einfuehrung in die Methoden und ihre Anwen-
dung. VDE Verlag, 2013.

[18] S. Gilliland, J. Saniie, and F. M. Vallina. Implementation of elementary functions
for fpga compute accelerators. In 2016 IEEE International Conference on Electro
Information Technology (EIT), pages 0179–0182, May 2016.

[19] Thomas Gleixner and Douglas Niehaus. Hrtimers and beyond: Transforming the
linux time subsystems. In Proceedings of the Ottawa Linux Symposium, 2006.

[20] Fei Guan, Long Peng, Luc Perneel, and Martin Timmerman. Open source freertos
as a case study in real-time operating system evolution. Journal of Systems and
Software, 118:19 – 35, 2016.

[21] Markus Happe, Andreas Traber, and Ariane Keller. Preemptive hardware multi-
tasking in reconos. In Kentaro Sano, Dimitrios Soudris, Michael Hübner, and Pe-
dro C. Diniz, editors, Applied Reconfigurable Computing, pages 79–90, Cham, 2015.
Springer International Publishing.

[22] Xilinx Inc. Zynq-7000 soc technical reference manual. Online, 2018. UG585 (v1.12.2)
July 1, 2018.

[23] Aws Ismail and Lesley Shannon. FUSE: Front-end user framework for O/S ab-
straction of hardware accelerators. Proceedings - IEEE International Symposium
on Field-Programmable Custom Computing Machines, FCCM 2011, pages 170–177,
2011.

[24] Xabier Iturbe, Khaled Benkrid, Chuan Hong, Ali Ebrahim, Raul Torrego, Imanol
Martinez, Tughrul Arslan, and Jon Perez. R3TOS: A novel reliable reconfigurable
real-time operating system for highly adaptive, efficient, and dependable computing
on FPGAs. IEEE Transactions on Computers, 62(8):1542–1556, 2013.

[25] S. Jovanovic, C. Tanougast, and S. Weber. A hardware preemptive multitasking
mechanism based on scan-path register structure for FPGA-based reconfigurable
systems. Proceedings - 2007 NASA/ESA Conference on Adaptive Hardware and
Systems, AHS-2007, pages 358–364, 2007.

82

[26] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal
of Fluids Engineering, Transactions of the ASME, 82(1):35–45, 1960.

[27] H. Kopetz. Event-triggered versus time-triggered real-time systems. In Arthur
Karshmer and Jürgen Nehmer, editors, Operating Systems of the 90s and Beyond,
pages 86–101, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.

[28] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Appli-
cations. The Springer International Series in Engineering and Computer Science.
Springer US, 1997.

[29] Jane W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1st edition, 2000.

[30] Enno Lübbers and Marco Platzner. Reconos: An RTOS supporting hard- and soft-
ware threads. Proceedings - 2007 International Conference on Field Programmable
Logic and Applications, FPL, pages 441–446, 2007.

[31] Enno Lubbers and Marco Platzner. Communication and Synchronization in Multi-
threaded Reconfigurable Computing Systems. In Proceedings of the 8th International
Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA), Las
Vegas, July 2008, (July), 2008.

[32] H. Lutz and W. Wendt. Taschenbuch der Regelungstechnik: mit MATLAB und
Simulink. Edition Harri Deutsch. Verlag Europa-Lehrmittel, 2014.

[33] Federico Reghenzani, Giuseppe Massari, and William Fornaciari. The real-time linux
kernel: A survey on preempt_rt. ACM Comput. Surv., 52(1):18:1–18:36, February
2019.

[34] Christoph Rüthing. Self-adaptation in programmable automation controllers based
on hybrid multi-cores. Master’s thesis, Paderborn University, 2015.

[35] Claudio Scordino and Giuseppe Lipari. Linux and Real-Time: Current Approaches
and Future Opportunities. Anipla 2006, 2006.

[36] H. Simmler, L. Levinson, and R. Männer. Multitasking on FPGA Coprocessors.
pages 121–130, 2007.

[37] Dan Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Ap-
proaches. Wiley-Interscience, New York, NY, USA, 2006.

[38] W. Stallings. Operating Systems: Internals and Design Principles. Prentice Hall,
2012.

[39] D. Stewart. A platform with six degrees of freedom. Proceedings of the Institution
of Mechanical Engineers, 180(1):371–386, 1965.

[40] Ying Wang, Xuegong Zhou, Lingli Wang, Jian Yan, Wayne Luk, Chenglian Peng,
and Jiarong Tong. SPREAD: A streaming-based partially reconfigurable architecture
and programming model. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 21(12):2179–2192, 2013.

83

[41] K. Yaovaja. Ball balancing on a stewart platform using fuzzy supervisory pid vi-
sual servo control. In 2018 5th International Conference on Advanced Informatics:
Concept Theory and Applications (ICAICTA), pages 170–175, Aug 2018.

84

Erklärung der Urheberschaft

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbständig ver-
fasst und keine anderen als die angegebenen Quellen als Hilfsmittel benutzt sowie Zitate
kenntlich gemacht habe.

Ort, Datum Unterschrift

85

	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Problem Definition
	1.2 Aim of the Thesis
	1.3 Structure of the Thesis

	2 Background
	2.1 Multitasking on FPGAs
	2.2 ReconOS
	2.3 Real-time Systems
	2.4 Ball on Plate Demonstrators

	3 Demonstrator
	3.1 Mechanical and Electrical Extensions
	3.1.1 Hardware Modeling and Controller Design

	3.2 Hardware and Software Implementation
	3.2.1 Control Program
	3.2.2 Video Processing
	3.2.3 Remote Reconfiguration Server

	3.3 Control Loop Partial Reconfiguration
	3.4 Chapter Conclusion

	4 ReconOS Real-time Investigations
	4.1 Real-time ReconOS based-on Linux
	4.2 Execution Time Measurement
	4.3 Communication and System Call Modeling
	4.4 Resource Sharing
	4.5 Scheduling and Parallelism
	4.6 Chapter Conclusion

	5 Evaluation
	5.1 ReconOS Real-time Improvements
	5.2 Implementation Evaluation
	5.3 Controller Evaluation
	5.4 Question Comparison

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography
	Erklärung der Urheberschaft

