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Abstract—Network function virtualization (NFV) proposes
to replace physical middleboxes with more flexible virtual
network functions (VNFs). To dynamically adjust to ever-
changing traffic demands, VNFs have to be instantiated and
their allocated resources have to be adjusted on demand.
Deciding the amount of allocated resources is non-trivial.
Existing optimization approaches often assume fixed resource
requirements for each VNF instance. However, this can easily
lead to either waste of resources or bad service quality if too
many or too few resources are allocated.

To solve this problem, we train machine learning models
on real VNF data, containing measurements of performance
and resource requirements. For each VNF, the trained models
can then accurately predict the required resources to handle
a certain traffic load. We integrate these machine learning
models into an algorithm for joint VNF scaling and placement
and evaluate their impact on resulting VNF placements. Our
evaluation based on real-world data shows that using suitable
machine learning models effectively avoids over- and under-
allocation of resources, leading to up to 12 times lower resource
consumption and better service quality with up to 4.5 times
lower total delay than using standard fixed resource allocation.

I. INTRODUCTION

In network function virtualization (NFV), network ser-
vices consist of multiple interconnected virtual network
functions (VNFs), which can be scaled and placed at avail-
able points of presence (PoPs) on demand. Dynamically
scaling and placing such network services and VNFs is
non-trivial since it depends on various characteristics of
the network service, the underlying substrate network, as
well as the current service demand. Due to this complex-
ity and because service demands are constantly changing,
significant research effort focuses on designing algorithms
and optimization approaches to automate such dynamic
scaling and placement of network services according to the
current demand. In addition to the number and location of
VNF instances, these algorithms need to decide how many
resources to allocate to each instance.

Conventionally, each VNF is instantiated with a fixed
amount of resources that is pre-defined by the VNF devel-
oper and specified in the VNF descriptor. However, VNFs
typically do not require constant resources but need more or
less resources depending on the traffic load. Thus, allocating
a fixed amount of resources easily leads to either under- or
over-allocation of resources. In the case of under-allocation,
VNFs lack resources to process all packets, leading to
packet drops and reducing the service quality or even com-
pletely destroying the service functionality. Thus, operators

typically try to avoid under-allocation by allocating fixed,
high amounts of resources to each VNF instance. This, in
turn, leads to over-allocation, wasting resources, blocking
other VNFs from using these resources, and resulting in
unnecessary high costs.

To mitigate these issues and take appropriate resource
allocation decisions, an understanding of the relationship
between the load a VNF is supposed to handle, the re-
sources dedicated to it, and the resulting performance is
necessary – expressed in a so-called performance profile.
VNF performance profiling is an approach to measure such
performance with varying resource configurations [1]–[3].
The relationship between VNF performance and resource
requirements is often non-linear [4] and hard to extract from
raw measurement data, which can contain millions of data
points [5].

These properties make performance profiles ideal candi-
dates for machine learning, automatically deriving suitable,
accurate, and compact models from measurement data. We
compare machine learning approaches from different fami-
lies of regression algorithms (e.g., linear, tree-based, kernel-
based) as well as neural networks. For each approach, we
evaluate the prediction accuracy and ability to generalize
for predictions that lie between measured data points. Rather
than proposing a completely new VNF placement algorithm,
we focus on how to model and decide the amount of required
and allocated resources per VNF instance. The derived mod-
els can then be used inside existing or future VNF placement
algorithms to accurately predict resource requirements for
each VNF instance and allocate resources accordingly. This
machine learning-based dynamic resource allocation helps to
ensure good service quality while avoiding over- and under-
allocation. Overall, our contributions are three-fold:

• We design a modular workflow for deriving trained ma-
chine learning models from raw performance measure-
ments and for using them in VNF placement algorithms
to accurately predict VNF resource requirements.

• We use six different machine learning algorithms on
real-world VNF data to train and compare resulting
models for predicting VNF resource requirements.

• We integrate these models for resource prediction
and allocation into an existing VNF placement algo-
rithm [6]. We evaluate their impact on resulting VNF
placement quality and investigate potential trade-offs
regarding computational runtime.

After discussing related work in Sec. II, we provide a
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formal problem statement and motivate the importance of
accurate, dynamic resource allocation using an example
(Sec. III). In Sec. IV, we present our proposed workflow
leveraging machine learning for dynamic resource allocation
in VNF placement algorithms and evaluate it using real-
world data in Sec. V.

II. RELATED WORK

Significant research interest has been drawn to designing
novel algorithms and approaches that optimize automatic
scaling, placement, and resource allocation in NFV [7] –
both with and without machine learning.

A. Approaches without Machine Learning

Most existing VNF placement algorithms considers pre-
defined, fixed resource requirements per VNF instance [8]–
[12]. While these algorithms may use horizontal scaling, i.e.,
adding or removing VNF instances, to adjust to changing de-
mand, they completely neglect vertical scaling, i.e., dynami-
cally adjusting the allocated resources per VNF instance. As
mentioned before, pre-defined, fixed resource allocation can
easily lead to poor service quality or wasted resources.

Recent approaches [6], [13] improve this simplistic model
of fixed resource requirements by considering a linear
relationship between the VNF performance and required
resources. While this increases the flexibility of the model,
it requires proper parametrization, which is non-trivial, and
it may not be very realistic, since VNFs often do not have
a strictly linear relationship between allocated resources and
VNF performance [4].

To this end, Dräxler and Karl [4] propose the use of piece-
wise linear functions instead. A major drawback, especially
for highly non-linear functions, is that the approximation
with piece-wise linear functions either becomes increasingly
inaccurate or increasingly cumbersome as the function has
to be split in smaller and smaller pieces. Similarly, Eramo et
al. [14] use a quite complex model considering packet length,
flow data rate, and the traffic state (assuming cycle-stationary
traffic) to compute a realistic model for VNF performance
and resource requirements. Due to complex required a priori
knowledge (e.g., about the traffic states), such a model is
challenging to use.

Overall, most models for resource allocation that are used
in existing VNF placement algorithms are not very realistic.
In contrast, our machine learning approach learns accurate
models automatically and directly from real VNF perfor-
mance measurements, building on existing work on VNF
performance profiling [1]–[3]. Our work is complementary
to most research in VNF placement as the resulting trained
machine learning models can be integrated into existing
approaches with little overhead.

B. Approaches with Machine Learning

As one of the open challenges for machine learning in net-
working, Ayoubi et al. [15] mention the mapping from high-
level requirements to low-level configurations. Our work is
addressing this challenge by automatically mapping desired
VNF performance to required resource configurations.

Similarly, other machine learning-based approaches have
been used successfully in network management to predict
VNF processing delays [16] and traffic demands [17], [18].
Our approach is complementary and could be combined with
this related work.

Similar to our work, other authors have proposed to use
machine learning to predict VNF resource requirements [19],
[20]. Sembiring et al. [19] only rely on historical data but
do not take traffic load into account. Mijumbi et al. [20]
use graph neural networks to derive a model for VNF
resource requirements from the topology of sub-components
within a VNF. In contrast to our approach, theirs requires
insight into internals of each VNF. It also disregards that
different instances of the same VNF may process different
traffic loads and thus may have very different resource
requirements, limiting the accuracy of their model.

Most similar to our work, van Rossem et al. [21] use VNF
performance profiling and propose machine learning to learn
from VNF performance measurements. Compared to our
work, van Rossem et al. focus more on the process of VNF
performance profiling but also mention dynamic resource
allocation as potential, high-level use case. Complementing
and going beyond their work, we apply machine learning on
available VNF performance measurements and particularly
focus on integrating the trained models into VNF placement
algorithms for dynamic resource allocation. Additionally, we
evaluate the impact of different models on resulting VNF
placements.

III. PROBLEM STATEMENT

Our goal is to use machine learning to build useful
performance profiles, which accurately model and predict
VNF resource requirements. We then use these machine
learning models inside existing VNF placement algorithms
for improved dynamic resource allocation. These algorithms
– irrespective of which model for resource requirements
they use – dynamically scale, place, and allocate resources
to VNFs, solving the VNF placement problem defined in
Sec. III-A. Sec. III-B illustrates why it is crucial to allocate
VNF resource accurately and dynamically according to the
current traffic load rather than allocating pre-defined, fixed
amounts of resources. In the end, we intend to show that
using machine learning-based performance profiles results
in superior performance compared to using simpler models.

A. VNF Placement Problem

The main objective of VNF placement is to provide
network services to users by embedding them in the substrate
network according to the current user demand. In doing so,
VNF placement algorithms have to consider VNF resource
requirements, capacity limitations of the network, and should
minimize the resulting end-to-end delay by deploying VNF
instances close to their users. For completeness, we define
this problem more formally in the following meta-discourse,
largely in line with existing definitions of this problem [7].

The substrate network G = (V,L) is the underlying
compute network, in which the given network services
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Fig. 1: Example of true VNF resource requirements in
comparison to fixed and linear resource allocation.

should be deployed. Each node v ∈ V has a capacity of
rv ∈ R≥0, which may be zero. Here, we consider an abstract
resource type, which may correspond to available CPU or
memory.1 Similarly, each link l ∈ L has a capacity rl ∈ R≥0

(e.g., corresponding to the maximum data rate) and a delay
dl ∈ R≥0. We assume unlimited capacity and zero delay
for traffic sent between VNF instances on the same node.
Users (or other sources of traffic) are distributed across the
network where each user u ∈ U is located at a network node
v and requests a network service S with a data rate λu.

A network service S = (C,A) consists of multiple
components c ∈ C (i.e., VNFs), which are interconnected
by arcs (or often called virtual links) a ∈ A. VNFs can
be instantiated one or more times, where each instance of
VNF c is allocated a certain amount of resources rc ∈ R≥0

according to its resource requirements. In existing literature
(Sec. II), rc is typically assumed to be a pre-defined, fixed
value or a linear function rc(λ) of the traffic load λ (e.g.,
in byte/s). In Sec. III-B, we show that both assumptions are
problematic as they easily lead to over- or under-allocation.
In Sec. IV, we therefore propose to model and predict rc(λ)
using machine learning.

B. Why Accurate VNF Resource Allocation Matters

Instead of providing a new VNF placement algorithm,
we focus on how to model rc(λ), deciding the amount
of required and allocated resources per VNF instance. As
detailed in Sec. II, the most common approach is to assign
a pre-defined, fixed amount of resources to all instances of a
VNF. However, this neglects the fact that most VNFs require
more resources to process higher rates of traffic. Fig. 1
illustrates the problem using example data, which is similar
to the Nginx dataset in our evaluation (Sec. V-A2). Here, the
true resource requirements of the VNF increase superlinearly
with increasing traffic load. When assigning fixed resources
based on the maximum expected traffic (here, rc = 0.8), this
leads to severe over-allocation, i.e., far more resources being

1It is straight forward to extend this model to any number n of resource
types per node by using a vector rv ∈ Rn

≥0 instead.
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Fig. 2: Two example placement options depending on VNF
resource allocation. Severe over-allocation leads to place-
ment of VNFs at separate nodes and additional link delay.

allocated than are really required, which cannot be used by
other VNF instances.

Fig. 2 shows an example with two placement options of
two chained VNFs, depending on the resource allocation
model of Fig. 1. The true required resources rc(5) = 0.3
(gray) would allow placing both VNF instances close to
the user with low delay. However, when allocating fixed
resources rc = 0.8 (green) to each instance, they have to
be distributed over different nodes, leading to unnecessary
link delay and reduced service quality.

To avoid such severe over-allocation, some VNF place-
ment algorithms approximate VNF resource requirements as
a linear function of the traffic load that each VNF instance
has to process. In doing so, each VNF instance is assigned an
amount of resources that is directly proportional to its traffic
load. Fig. 1 shows a linear function that was determined
using linear regression on the true VNF data in this example.
The figure illustrates that such linear approximation can
effectively reduce the risk of over-allocation. However, for
traffic loads between 4.5 and 6.2, the linear function still
allocates slightly more resources than are really required.

Additionally, depending on which linear function is cho-
sen, the problem of under-allocation arises. In this example,
the linear function predicts less resources than are really
required for traffic loads below 4.5 and above 6.2. Con-
sequently, an algorithm using such a linear approximation
for resource dimensioning may allocate less resources to
VNF instances than they actually need. In the following,
we investigate how machine learning may help to accurately
predict VNF resource requirements by using more powerful
regression approaches that can be trained on real VNF data.

IV. MACHINE LEARNING FOR DYNAMIC VNF
RESOURCE ALLOCATION

To ensure that the allocated resources closely match the
real requirements of each VNF instance, we propose to use
performance profiles derived from measurement data using a
machine learning-based approach. We provide an overview
of the approach in Sec. IV-A and describe its details in
Sec. IV-B and IV-C.

A. Overview

Fig. 3 illustrates the workflow of our proposed overall
approach, which consists of four steps. It starts with profiling
a given VNF, testing it systematically with different resource
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Fig. 3: Modular workflow from raw VNF performance
measurements to machine learning-based VNF resource al-
location and placement.

configurations and measuring its corresponding performance
(step 1). In step 2, the resulting raw VNF performance
measurements are used to train machine learning models. In
doing so, these machine learning models learn to predict the
amount of resources a specific VNF requires to successfully
handle a given traffic load. The trained models generalize
the measured data such that predictions can be made for
traffic loads that lie between measured data points. The
accuracy of these predictions depends on how well the
model can generalize from the training data. In step 3,
the machine learning models are integrated into a VNF
placement algorithm, where they are used to predict the
resource requirements rc(λ) for an instance of a VNF c
that needs to process traffic load λ. Hence, in step 4,
these VNF placement algorithms can leverage the machine
learning models for accurate resource allocation, mitigating
the problem of over- and under-allocation (Sec. III-B).

The whole process from step 1 to 3 can be performed
offline in advance, e.g., directly after developing and publish-
ing a new VNF. While the process is time-consuming, it only
has to be performed once per VNF since trained machine
learning models can be saved and reused later. In step 4, the
VNF placement algorithm loads the trained machine learning
models for all requested VNFs and uses them to dynamically
decide the allocated resources of each placed VNF instance.
In contrast to training machine learning models, predicting
VNF resource requirements is very fast (less than 1 ms in
our evaluation) and can be done online.

The described process is modular in that all of the compo-
nents are freely exchangeable. In particular, it is not limited
to a specific kind of VNF, machine learning model, or VNF
placement algorithm (Fig. 3). Instead, VNF performance
profiling can automatically measure the performance of any
available VNF and the measurement results can be used for
training using any machine learning regression algorithm.
We suggest and compare candidate machine learning algo-
rithms in Sec. IV-B and V. Finally, the trained machine learn-
ing models can be integrated into existing VNF placement
algorithms with relatively little overhead.

To facilitate reproducibility, our trained machine learning
models, their integration into an existing VNF placement
algorithm, and all other code and data are publicly available

as open-source project [22].

B. Predicting VNF Resource Requirements
1) VNF Performance Profiling: VNF performance profil-

ing is the process of systematically testing a given VNF
under different resource (and other) configurations while
measuring its performance, e.g., in terms of max. sustainable
traffic load, when sending as much traffic as possible through
the VNF. Several authors have proposed how to automate
this process [1]–[3] and perform it effectively within lim-
ited time [23]. There is also a trend to open datasets of
community-created performance profiles [5].

Performance profiling leads to massive amounts of
raw measurements per VNF (typically millions of data
points [5]), reflecting the real behavior and dynamics of a
VNF. While these recorded datasets usually contain many,
potentially VNF-specific configuration parameters and mea-
surement metrics, for the purpose of VNF resource allo-
cation, we are only interested in metrics related to VNF
resource requirements and the corresponding performance.
Typically, various configurations of CPU time (in percent)
and memory (e.g., in MB) are tested per VNF, recording
performance in terms of max. sustainable traffic load (e.g.,
in Mbit/s). In addition, other parameters possibly affecting
VNF performance (e.g., configurable VNF thread count)
should be considered.

2) Training Machine Learning Models: For training ma-
chine learning models on VNF performance measurement
data, the dataset needs to be split into a feature set containing
the performance measurements (e.g., max. sustainable traffic
load) and a set of target values containing the resource
requirements. Due to possible errors in the performance
profiling process, some values may be missing in the dataset.
Since most machine learning models cannot deal with miss-
ing values, a common practice is to set these values to
the median of the corresponding feature. Additionally, it is
important to normalize or scale all features to values between
0 and 1, which helps ensure similar impact of features
with different value ranges and can significantly improve
convergence speed when training with gradient descent [24].
Finally, machine learning models can be trained minimiz-
ing their prediction error, e.g., using stochastic gradient
descent [25].

The trained machine learning models can be saved and
reused later without re-training. Similarly, the scaler used
for preprocessing the data can be saved and reused to ensure
consistent processing of any new data. We suggest to bundle
VNFs together with their trained machine learning models
and scalers in the VNF package or upload the trained models
in an online repository. In the VNF descriptor, additional
(optional) fields may reference the saved model and scaler
of each VNF such that the models can easily be retrieved
and used by a VNF placement algorithm.

3) Suitable Machine Learning Algorithms: Any machine
learning regression algorithm can be used for training models
on VNF performance measurements. Here, we present dif-
ferent families of candidate regression algorithms and asses
their suitability for performance profiles.
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a) Linear Regression: Linear regression is the simplest

regression technique and can only model linear dependencies
between features and target values (here, VNF performance
and resource requirements). There are numerous variations
of linear regression, e.g., ridge regression, which is a regular-
ized version of linear regression that works particularly well
with multiple correlated features (e.g., traffic load in bytes/s
and packets/s). Due to their simplicity, linear models are easy
and fast to train with few hyperparameters to tune. At the
same time, linear regression cannot approximate common
non-linear VNF data well.

b) Support Vector Regression (SVR): To avoid over-
fitting, SVR uses regularization to find the simplest, most
general function that, as far as possible, fits all training
data within a tolerance ε. Regularization strength C and
tolerance ε are hyperparameters that can be set according to
domain knowledge or tuned automatically (see Sec. IV-B4).
If configured appropriately, SVR’s regularization leads to
simple but not too simple models that generalize well to
new inputs. However, training time complexity is more than
quadratic with the number of samples, making it problematic
for very large VNF datasets.

c) Decision Trees: Decision trees perform regression
by breaking the dataset into smaller and smaller subsets
based on learned characteristics of the data. Decision trees
work well even on non-scaled data and prediction results are
easy to interpret since the decision trees can be visualized.
A major drawback of decision trees is that they easily overfit
and thus not generalize well to new data.

d) Ensemble Learning: Ensemble learning combines
multiple machine learning models and combines their pre-
dictions. This allows leveraging the benefits of different
models, controlling overfitting, and performing better than
any individual model. Popular ensemble learning methods
are random forest and gradient boosting, which both use
multiple decision trees.

e) Neural Networks: While there are many different
architectures of neural networks, the most common one is the
multi-layer perceptron (MLP), which consists of an input and
output layer with interconnected hidden layers in between.
Input values pass through the neural network layer by layer
(no recurrent layers). For each layer, they are multiplied by
learned weights and modified by an activation function to
produce the final prediction. When designed and configured
correctly, MLPs can learn complex, non-linear relationships
in data with no feature engineering. However, they usually
require lots of data and long training to work well.

Overall, each machine learning approach has advantages
and disadvantages. For VNF data with strong linear rela-
tionships, linear regression may suffice. For more complex
data, SVR, ensemble learning, or MLP are more suitable.
We further investigate these different approaches in our
evaluation (Sec. V).

4) Hyperparameter Tuning: Each machine learning
model has several hyperparameters (e.g., learning rate, batch
size, etc.), which can significantly impact the performance
of the model. The optimal hyperparameter setting can vary

from algorithm to algorithm and from dataset to dataset.
Hence, we propose tuning hyperparameters automatically us-
ing a combination of grid search and k-fold cross-validation.
In particular, this means testing each combination of possible
hyperparameter values within a given parameter space by
randomly splitting the VNF data into a training dataset and a
validation dataset (splits of 70%:30% are typical). The model
is then trained with the selected hyperparameter values on
the training set and evaluated on the validation set to avoid
over-estimation errors. This process is repeated k times
for each hyperparameter setting, averaging the resulting
validation errors. Finally, the hyperparameter setting with
the lowest validation error is chosen and the model can be
trained with these hyperparameters on the entire dataset.

Clearly, the size of k affects the total time for tuning
the hyperparameters. To reduce tuning time, especially for
large datasets, k should be chosen relatively small (e.g.,
k=5). If the space of hyperparameters is large, it is also
useful to randomly sample hyperparameter values rather than
performing an exhaustive grid search.

C. Integration with VNF Placement Algorithms

Having trained models for all VNFs of interest, they
can be integrated into an existing or new VNF placement
algorithm as follows. First of all, the VNF placement
algorithm needs load the trained and associated machine
learning model of each VNF into memory. To facilitate fast
predictions of VNF resource requirements without reloading,
all models should be loaded up front during the algorithm’s
initialization.

Then, the algorithm’s routine that decides the amount
of resources to allocate to a VNF instance needs to be
adjusted. Rather than returning a fixed, pre-defined value,
it should query the associated machine learning model of
the corresponding VNF. To predict the required resources
for each VNF instance, the algorithm needs to pass the
traffic rate that each instance has to handle as input to
the VNF’s trained machine learning model. Typical VNF
placement algorithms actively decide what traffic rate to
assign to each VNF instance and can directly use this rate
as input. Otherwise, they need to obtain the traffic rate from
a monitoring component. Loading and swapping different
machine learning models is simple and transparent to the rest
of the algorithm due to the consistent interface of common
machine learning models using the sklearn API [26].

As an example, we adjust the existing B-JointSP [6]
algorithm for joint VNF scaling, placement, and resource
allocation to use machine learning models for predicting
VNF resource requirements. Replacing its existing linear
function approximation with machine learning models only
required to change less than 100 lines of code. The adjusted
algorithm is available online on GitHub [22].

V. EVALUATION WITH REAL VNF DATA

To illustrate and evaluate our proposed machine learning-
based approach for dynamic resource allocation, we perform
an evaluation using VNF performance measurements of
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two real-world VNFs. In particular, we use performance
measurements of the Squid cache2 and the Nginx proxy3

from the SNDZoo [5]. Each of these datasets has 4.6 million
data points with a subset being performance measurements
under varying resource configurations.

In Sec. V-A, we use six different machine learning algo-
rithms to learn the relationship between VNF performance
(max. sustainable traffic load) and resource requirements
(CPU) from these datasets. We illustrate the importance
of hyperparameter tuning and compare their prediction ac-
curacy. In Sec. V-B and V-C, we use the adjusted VNF
placement algorithm described in Sec. IV-C with different
machine learning models to predict VNF resource require-
ments and allocate resources accordingly. We evaluate the
impact of these different models on the resulting VNF
placements and on algorithm runtime, using machines with
an Intel Xeon W-2145 CPU and 32 GB RAM.

A. VNF Performance Prediction

To find the most accurate machine learning algorithm for
learning from VNF performance measurements, we test and
compare six different algorithms from four different families
of machine learning approaches: Linear regression, SVR,
ensemble learning, and neural networks. Each of the used
algorithms is described in more detail in Sec. IV-B2. In
addition, we compare these machine learning models with
the common fixed model that always assigns a pre-defined,
fixed amount of resources to all VNF instances.

Before being able to train machine learning models,
the used measurement data has to be preprocessed (see
Sec. IV-B2). For faster processing and training, we filter
the data to a subset only containing relevant features, i.e.,
measurements of max. sustainable traffic load for varying
CPU configurations, by setting all non-resource related con-
figurations to fixed values. Additionally, we fill any missing
values and scale the features, here, the max. sustainable
traffic load, to a range of 0 to 1. Feature scaling is especially
crucial for neural networks but also for SVR. Without feature
scaling, our considered MLP neural network performs terri-
bly – leading to a prediction error that is roughly 150 times
worse than with feature scaling. For other machine learning
algorithms, e.g., linear regression or ensemble learning,
feature scaling only brings negligible benefits.

After preprocessing, we train and evaluate each machine
learning model using 5-fold cross validation as described
in Sec. IV-B. For each model, we optimize the loss in
terms of the root mean squared error (RMSE). The RMSE
averages all prediction errors with yi being the true target
value and ŷi the predicted value (here, required CPU):

RMSE =
√∑n

i=1
(ŷi−yi)2

n
1) Squid Cache VNF: Fig. 4 shows the RMSE of the

six machine learning models for the Squid cache dataset.
In addition to the six machine learning models, the figure
also shows the error for the currently prevailing model
of assigning fixed resources to each VNF instance (here,

2Squid Cache: http://www.squid-cache.org/ (accessed Nov 25, 2019)
3Nginx: https://www.nginx.com/ (accessed Nov 25, 2019)
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Fig. 4: RMSE of different machine learning models with de-
fault and tuned hyperparameters on the Squid VNF dataset.
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Fig. 5: Squid VNF performance measurements and predic-
tions of different machine learning models.

configured to 0.8 CPU). Each bar represents the average
RMSE of prediction on the validation set in 5-fold cross
validation with the standard deviation as error bars.

Not surprisingly, the fixed model does not approximate
the true resource requirements of the Squid cache well,
which leads to a very high average RMSE of around 0.4.
All machine learning models perform significantly better
(RMSE between 0.1 and 0.2). Fig. 4 also compares the
RMSE of all models with default hyperparameters and after
hyperparameter tuning as described in Sec. IV-B4. With
default hyperparameters, the linear models (linear and ridge
regression) perform best, but after hyperparameter tuning,
SVR has a lower average RMSE, closely followed by MLP.
SVR and MLP have many hyperparameters such that tuning
can improve their performance significantly. In contrast, the
simpler, linear models only have very few hyperparameters
and do not noticeably benefit from hyperparameter tuning.

As visualized in Fig. 5, the VNF performance measure-
ments of the Squid VNF show a strong linear relationship
between max. sustainable traffic load and CPU for most
measurements (up to 2000 kB/s), explaining the high ac-
curacy of linear models. Fig. 5 also shows the predictions
of some of the tuned and trained machine learning models
as well as the fixed model. In contrast to the fixed model,
all machine learning models fit the data quite well. While
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Fig. 6: RMSE of different machine learning models with de-
fault and tuned hyperparameters on the Nginx VNF dataset.
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Fig. 7: Nginx VNF performance measurements and predic-
tions of different machine learning models.

the linear model just fits a straight line, SVR uses a non-
linear function. Thanks to SVR’s regularization, the function
is quite smooth. Conversely, the gradient boosting model in-
creases its predictions stepwise, which is due to the decision
trees being used within the model, breaking the data into
different parts with similar prediction value.

2) Nginx Proxy VNF: Similar to the Squid VNF, we train
all machine learning models on the Nginx dataset, with and
without hyperparameter tuning, and show their RMSE in
Fig. 6. Again, hyperparameter tuning mostly improves the
performance of the more complex models, here SVR, MLP,
and gradient boosting. For Nginx, the two ensemble methods
(gradient boosting and random forest) perform better than all
other machine learning models.

As can be seen in Fig. 7, Nignx’ true required CPU
for increasing max. sustainable traffic load first increases
roughly linearly but then rises dramatically for traffic loads
above 2000 kB/s. While this is also visible for the Squid
cache (Fig. 5), it is much more pronounced in the Nginx
dataset. Due to this strong increase, the linear model cannot
fit the data as well as in the Squid dataset.

B. Impact on VNF Placement

The previous section revealed significant differences in
prediction accuracy between different machine learning
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Fig. 8: Total allocated CPU in VNF placements computed
with different models. Right: Close-up comparison.

models and, in particular, their remarkable advantage over a
fixed model. In this section, we evaluate the impact of dif-
ferent models when using them for dynamic VNF resource
allocation inside an existing VNF placement algorithm.

To evaluate the impact on VNF placement, we consider
the real-world Abilene network topology from Topology
Zoo [27] with unit compute capacity at each node. Further,
we consider three traffic sources with an increasing number
of flows leaving the sources, leading to growing traffic loads.
We assume a web-based network service consisting of the
Squid cache and the Nginx proxy chained together.

We use three variants of the adjusted VNF placement
algorithm with different models to predict VNF resource
requirements and allocate resources for Squid and Nginx,
respectively: In the first variant, we select the currently
prevailing fixed model with 0.8 CPU per VNF instance. In
the second, we choose the trained linear models for both
VNFs, which represent the best case that is achievable with
recent approaches using linear functions for rc(λ). In the
third variant, we use the best models from Sec. V-A, i.e.,
the trained SVR for predicting Squid’s resource require-
ments rSquid(λ) and gradient boosting for Nginx (rNginx(λ)).

We only know the true resource requirements of Squid and
Nginx for measurements in the two datasets but not their
true function rc(λ). Compared to other models, SVR and
gradient boosting achieved the smallest RMSE in Sec. V-A.
Thus, we assume SVR and gradient boosting to be closest to
the true resource requirements of the two VNFs, respectively,
with negligible over- or under-allocation.

1) Impact on Total Resource Allocation: Fig. 8 (left)
shows the total allocated CPU with increasing traffic load for
the three different algorithm variants. With more traffic to
process, placed VNF instances require more resources in to-
tal to properly handle the increasing traffic load. The amount
of allocated resources depends on the predicted resource
requirements rc(λ) of each model. The figure shows that
assigning a pre-defined, fixed amount of CPU resources to
each VNF instance leads to a huge amount of total allocated
resources that grows rapidly with increasing traffic load,
quickly filling up the network’s resource capacities. Here,
allocating a fixed amount of resources leads to up to 12 times
more allocated CPU resources than with SVR and gradient
boosting, signifying massive over-allocation.
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Fig. 9: Model impact on the number of VNF instances.
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Fig. 10: Model impact on the total delay.

Compared to the fixed model, the differences in total
allocated CPU are much smaller between linear approxi-
mation and the combined SVR and gradient boosting. Still,
Fig. 8 (right) shows that the total allocated CPU resources in
VNF placements with the linear models is up to 33% higher
or up to 69% lower than in VNF placements computed with
SVR and gradient boosting. Since the SVR and gradient
boosting models are more accurate than the linear models
(Se. V-A), this likely implies over- and under-allocation for
VNF placements computed with the linear models.

2) Impact on Number of VNF Instances: With more
allocated resources, more VNF instances are required to
balance the load across different network nodes. Fig. 9 shows
that this is most clearly visible for the case of fixed resource
allocation, where 2-3 times more instances are placed than
in the SVR and gradient boosting case. Again, the results
with the linear models and the combined SVR and gradient
boosting are quite similar with respect to the number of
placed VNF instances. For higher load, the slight CPU
over-allocation of the linear models compared to SVR and
gradient boosting adds up and leads to slightly more VNF
instances being placed.

3) Impact on Total Delay: Fig. 10 shows the total link
delay of the produced VNF placements. As before, VNF
placements with the fixed model lead to much worse results
and up to 4.5 times higher total delay than with SVR and
gradient boosting. Here, the higher total delay is caused by
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Fig. 11: Prediction and placement times for different models.

the higher number of VNF instances in the corresponding
placements. The more VNF instances are placed at different
nodes in the network, the more traffic has to be sent via links
between them, leading to higher total delay. Again, the linear
models and the SVR and gradient boosting models lead to
similar total delay for low traffic. For higher traffic, the total
delay with the linear models is up to 23% higher than with
SVR and gradient boosting due to more instances in the
VNF placement with linear approximation.

C. Runtime Analysis

In addition to prediction accuracy and resulting quality of
VNF placements, short computational runtime is important
to quickly react to changes in demand. While training and
hyperparameter tuning can be performed offline up front,
predictions with trained models may be frequently required
by VNF placement algorithms during online operation.

1) Time per Prediction: Fig. 11 (left) shows the mea-
sured time per prediction for each of the trained and tuned
models of Sec. V-A. The fixed model returns the same pre-
defined value instantly without any computation. Also all six
machine learning models make very fast predictions within
1 ms and, except for random forest, even within 0.1 ms.
Differences in prediction time reflect the complexity of the
models: The two simple linear models (linear and ridge
regression) are fastest and the two ensemble learning models
(gradient boosting and random forest) are slowest. Random
forest traverses multiple, possibly very deep, decision trees
for each prediction, which is relatively timely. While the gra-
dient boosting model uses the same number of decision trees,
it limits their depth to speed up predictions significantly.
Similarly, the MLP model uses a shallow neural network
(1x 128 hidden units), enabling fast predictions.

2) Placement Time: Using these models in our adjusted
VNF placement algorithm, Fig. 11 (right) shows the al-
gorithm’s runtime on a logarithmic scale. Evidently, the
roughly 10+ times higher prediction time of the random
forest model compared to other models also leads to much
higher algorithm runtimes of over 1 min. All other machine
learning models have comparable prediction times, leading
to largely similar algorithm runtimes between 1 s and 2 s.

Surprisingly, the algorithm runtimes with the fixed model
are higher than with many machine learning models, even
though it has almost zero prediction time. This is likely
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because the fixed model’s high over-allocation leads to many
VNF instances, which consequently results in additional
placement decisions that increase the algorithm’s runtime.
Hence, there is a trade-off between prediction time and
accuracy depending on a model’s complexity. However,
many machine learning models are accurate but still fast,
which clearly pays off in overall VNF placement quality
and even algorithm runtime.

VI. CONCLUSION

We show how machine learning can be used to auto-
matically learn from real VNF data, deriving models that
can accurately predict VNF resource requirements depending
on the traffic load. Using these models in VNF placement
algorithms can significantly impact the solution quality of
resulting VNF placements. Comparing six different machine
learning algorithms and a common fixed allocation model,
our evaluation using real-world data shows that choosing a
suitable model for dynamic resource allocation is crucial.
In particular, using fixed resource allocation can lead to
massive over-allocation of resources, high numbers of VNF
instances, and unnecessary high delay, potentially leading
to high costs and bad service quality. While linear ap-
proximation works fairly well in our evaluation, it is still
outperformed by more powerful approaches like SVR or
ensemble learning, which can predict the true VNF resource
requirements more accurately. In our evaluation, neural net-
works achieved good prediction accuracy but not superior to
SVR or ensemble learning, while being much more sensitive
to correct data preprocessing and hyperparameter tuning.

Overall, machine learning for dynamic resource allocation
can help save resources and improve service quality.
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