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HOMO band dispersion of crystalline rubrene: Effects of self-energy corrections
within the GW approximation
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We investigate the band dispersion and relevant electronic properties of rubrene single crystals within the
GW approximation. Due to the self-energy correction, the dispersion of the highest occupied molecular orbital
(HOMO) band increases by 0.10 eV compared to the dispersion of the Kohn-Sham eigenvalues within the
generalized gradient approximation, and the effective hole mass consequently decreases. The resulting value
of 0.90 times the electron rest mass along the �-Y direction in the Brillouin zone is closer to experimental
measurements than that obtained from density-functional theory. The enhanced bandwidth is explained in terms
of the intermolecular hybridization of the HOMO(Y) wave function along the stacking direction of the molecules.
Overall, our results support the bandlike interpretation of charge-carrier transport in rubrene.
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I. INTRODUCTION

The electronic properties of organic semiconductors have
attracted considerable attention in recent years because of their
relevance for light-emitting diodes, photovoltaic cells, field-
effect transistors, and other technological applications. They
are superior to the prevailing inorganic devices due to their
low power consumption, low-cost and large-area fabrication,
and flexibility.1

A detailed understanding of the charge-carrier transport
in organic semiconductors is of crucial importance for the
optimization of device performances. In contrast to the band
transport typically encountered in inorganic crystals, transport
in organic materials is often explained in the hopping or
polaronic picture, where the charge carriers are strongly
coupled to local lattice deformations. Experiments can, in
principle, distinguish between the two mechanisms, but to
clarify the intrinsic electronic properties without impurities or
lattice defects, single crystals of organic semiconductors must
be studied.

Charge-carrier transport in single crystals of rubrene
(5,6,11,12-tetraphenyltetracene) has been the focus of such
studies, which found a hole mobility of 40 cm2/V s, the
highest reported value among all organic semiconductors,2 and
also noted the strong anisotropy of the conductivity, which
reflects the underlying crystal structure.3–5 The experiments
furthermore pointed toward a bandlike transport, based on the
temperature dependence of the hole mobility and the Hall
effect.6–8

Recently, the dispersion of the highest occupied molecular
orbital (HOMO) band of rubrene was measured using angle-
resolved ultraviolet photoelectron spectroscopy (ARUPS).9 A
significant dispersion with a bandwidth of 0.4 eV along the
�-Y direction in the Brillouin zone, which corresponds to the
orientation of the molecular stacking, and almost no dispersion
along �-X were observed. These results are in agreement
with other photoemission studies10,11 as well as band-structure
calculations within density-functional theory (DFT).12–14 In
addition, the noticeably light effective mass deduced from the

ARUPS data, which was estimated to be 0.65 ± 0.1 of the
electron rest mass,9 provides further strong evidence in favor
of the band transport of the holes.

While the bandlike picture thus seems well-supported,
many theoretical investigations of transport in rubrene still
adhere to the polaron picture in order to explain the high
mobility and anisotropy of the hole transport, using semiclas-
sical dynamics and parameters obtained from first-principles
simulations of single molecules or dimers.15–17 If the electron-
phonon coupling indeed plays a significant role, as claimed
in these studies, then it should not only have a detectable
effect on the temperature dependence of the carrier mobility
and transport properties, but also modify the electronic
band structure. For example, in pentacene single crystals,
where the bandwidths obtained from DFT or from the GW

approximation for the electronic self-energy18 turn out to
be significantly smaller than experimentally observed,19–21

the inclusion of the electron-phonon coupling and energy
fluctuations by disorder are indispensable to reach quantitative
agreement with photoemission measurements.22

Although the reported DFT band structures12–14 appear
to reproduce the ARUPS data well without any electron-
phonon coupling in the case of rubrene, the Kohn-Sham
eigenvalues of DFT are known to differ systematically from
the actual quasiparticle energies, so that the good agreement
could be fortuitous. For a better understanding of the still
controversial mechanism of the carrier transport in rubrene,
more insight from higher-level first-principles electronic-
structure methods is hence necessary. Although there are
already calculations of the quasiparticle energy gap within
the GW approximation,23,24 no theoretical studies of the band
dispersion beyond DFT have been reported until now.

Here we investigate the band structure of rubrene single
crystals within the GW approximation. We find that the
HOMO band dispersion is enhanced due to the self-energy
correction, leading to a lighter effective hole mass compared
to the DFT value in good agreement with photoemission data.
From our results we conclude that the hole carrier transport
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FIG. 1. (Color online) Atomic structure of (a) isolated rubrene
molecules and (b) rubrene single crystals. The C and H atoms
are indicated by yellow and light blue spheres, respectively. In the
single crystal, the tilted long axes of the molecules are stacked along
the b direction.

along the �-Y direction is indeed bandlike, as experimentally
suggested.

II. COMPUTATIONAL METHOD

The atomic structure of rubrene is illustrated in Fig. 1.
The orthorhombic unit cell of the single crystal contains four
rubrene molecules, thereby comprising a total of 280 atoms, in
a herringbone-like stacked arrangement with the space-group
symmetry Cmca. We use the experimental lattice constants25

a = 14.1289 Å, b = 7.145 50 Å, and c = 26.7450 Å. This
choice deviates from the standard Cmca setting, where
the largest lattice parameter corresponds to a, in order to
facilitate a comparison with Ref. 9. The DFT calculations
are performed with the STATE code.26 We use norm-conserving
pseudopotentials,27 a plane-wave basis set with a cutoff energy
of 72 Ry, and the Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional.28 The Brillouin zone is sampled with
1 × 2 × 1 �-centered k points. The atomic positions inside the
unit cell are relaxed until the maximum force drops below a
threshold value of 0.08 nN. For this geometry optimization,
we additionally include a semiempirical treatment of the van
der Waals contribution to the total energy.29

We calculate the band structure along the path Z-�-Y-X-�,
where �-X corresponds to the a crystal axis and �-Y to the
b axis in real space. The effective masses are then obtained by
fitting the top of the HOMO band with parabolic functions.
For this purpose, we evaluate the band energies on a dense
mesh around � with a spacing of 0.027 and 0.028 Å−1 along
the �-Y and �-X directions, respectively.

Besides the DFT-PBE treatment, we also calculate more
accurate quasiparticle energies including self-energy correc-
tions within the non-self-consistent GW (G0W0) approxima-
tion, using the GW space-time code.30–32 Unlike traditional
reciprocal-space implementations, which typically restrict the
calculation of quasiparticle energies to the preselected global
k-point set, this real-space algorithm allows an easy evaluation
of self-energy corrections at arbitrary wave vectors, as is
required here to sample the band curvature. The same approach
was successfully used to determine the effective electron mass
in strained silicon, in good agreement with experiments.33,34

As in other G0W0 calculations for similar systems,23,24

the noninteracting Green function G0 is constructed here
with the PBE wave functions and eigenvalues. We apply
cutoff energies of 60 and 24 Ry for the static exchange and
the dynamical correlation self-energy, respectively. Instead of
plasmon-pole models, which are still widely used in practical
G0W0 calculations, especially for large systems,36 we evaluate
the full frequency dependence of the dielectric screening
function numerically within the random-phase approximation.
In the sum over states, we include 11 200 bands, which includes
all unoccupied bands up to about 145 eV above the Fermi level.
With these parameters, the HOMO bandwidth is converged to
within 0.02 eV.35 The lowest unoccupied molecular orbital
(LUMO) band converges more slowly, however: Its width
is converged only to within 0.1 eV with the same set of
parameters, which does not allow us to reliably estimate the
effective electron mass. Based on our convergence tests, we
further estimate that the band gap increases by about 0.1 eV if
the number of k points is doubled to 2 × 4 × 2.

III. RESULTS AND DISCUSSION

Figure 2 shows the band dispersions calculated within both
PBE and G0W0. In addition, Table I contains the numerical
values of the bandwidths, the energy gap, and the valence-band
splitting. The strong anisotropy of the dispersion along the
different principal axes in reciprocal space, which is linked
to the anisotropic mobility of the charge carriers observed
in experiments,3–5 is clearly visible. Quantitatively, the direct
band gap of 1.13 eV at � obtained within PBE agrees with
other calculations at the same level of theory.23,24 Likewise,
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FIG. 2. (Color online) PBE and G0W0 band structure of the eight
bands (HOMO−3 to LUMO+3) along Z-�-Y-X-� in the Brillouin
zone. The HOMO energy at � is set to zero. There are four pairs of
degenerate bands that originate from the two inequivalent molecule
pairs in adjacent ab planes separated by a distance c/2. The calculated
data points, indicated by symbols, are connected by lines to guide the
eye.
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TABLE I. HOMO and LUMO bandwidths WHOMO and WLUMO

along �-Y and �-X, direct band gap Eg(�), and valence-band splitting
�(�) in rubrene single crystals in eV.

PBE G0W0 References

WHOMO(�-Y) 0.42 0.52 0.4a

WHOMO(�-X) 0.08 0.10 <0.05a

WLUMO(�-Y) 0.18 0.23
WLUMO(�-X) 0.03 0.04
Eg(�) 1.13 2.34 2.5b

�(�) 0.16 0.20

aReference 9; ARUPS measurement.
bReference 24; G0W0.

the HOMO bandwidth of 0.42 eV along �-Y is in accordance
with previous density-functional results,12–14 as is the small but
finite bandwidth of 0.08 eV along �-X. Minor discrepancies
arise from differences in the computational procedures and
setups, such as the choice of exchange-correlation functional
or variations in the structural configuration. For example,
unlike in previous studies, we include here the van der Waals
interaction between the molecules when relaxing the atomic
positions inside the unit cell.

To obtain a more accurate band structure, we apply the
G0W0 approximation. The results are included in Fig. 2 and
Table I. The quasiparticle band gap of 2.34 eV is larger than
the PBE eigenvalue gap by 1.21 eV and in good agreement
with a recently reported value24 of 2.5 eV. On the other
hand, as already pointed out in Ref. 24, this is appreciably
smaller than the G0W0 band gap of 2.8 eV obtained for a
model unit cell with higher symmetry and reduced volume
that contains only two instead of four rubrene molecules.23 No
direct measurement of the fundamental band gap is available,
but our result is close to the optical gap of 2.2 eV deduced from
infrared transmission spectra,13 a related but slightly smaller
quantity that differs from the quasiparticle band gap only by
the exciton binding energy. Based on this optical gap and
our own calculated band gap of 2.34 eV, along with another
reported G0W0 result24 of 2.5 eV, the exciton binding energy
in rubrene can be estimated as 0.1–0.3 eV, slightly smaller
than the theoretical binding energy of 0.5 eV obtained from a
solution of the Bethe-Salpeter equation.23 Although the latter
result may be influenced by the different unit cell used in
Ref. 23, we note that a very similar value of about 0.5 eV was
also predicted for pentacene within the same framework.36

As a consequence, it may appear as if the band gap of
rubrene obtained in this work or in Ref. 24 was slightly
underestimated. The deviations are within the expected error
bar of a G0W0 calculation, however, which may amount to
a few tenths of an eV for a highly complex system such as
rubrene, as illustrated by our own convergence tests described
above. Small variations in the calculated band gaps may arise
from technical details, such as the use of pseudopotentials,
the treatment of the frequency dependence of the dielectric
function in the self-energy, or from the convergence with
respect to the plane-wave cutoff, the k-point sampling, and, in
particular, the number of unoccupied bands in the spectral sum.
Larger band gaps can also be obtained by using single-particle
wave functions and eigenvalues from hybrid functionals, or

by a partially self-consistent construction of the self-energy.36

However, it is not easy to apply such modifications in the case
of rubrene because of the large system size and the associated
high computational cost.

Although the important role of self-energy corrections for
an accurate quantitative description of the band structure is
beyond doubt, there are some other aspects of band-gap calcu-
lations within the G0W0 approximation that should be borne
in mind. As discussed in a recent study of bulk pentacene,36

for a proper comparison of the G0W0 bulk band gap of organic
solids with photoemission data, it may be necessary to take
physical effects such as the incomplete charge screening at the
surface, static and dynamical structural disorder, or the finite
experimental resolution, which influence all measurements but
are not reflected in the theoretical calculations, into account.
Furthermore, the electron-phonon coupling, which tends to
decrease the band gaps of semiconductors,37 may also be
significant. For the moment, we do not consider these issues
further. Instead, having confirmed that self-energy corrections
lead to a vastly improved band gap, we now proceed to
investigate the bandwidths.

The basic character of the dispersion is retained after
self-energy corrections within the G0W0 approximation are
included: The HOMO band exhibits a large dispersion along
�-Y and is almost flat along �-X. However, the calculated
bandwidth of 0.52 eV along �-Y is 0.10 eV larger than the
PBE value, while the dispersion along �-X also increases
slightly. This increase in the bandwidth due to the self-energy
correction is consistent with the results for pentacene single
crystals.19 The same systematic behavior was also reported for
solid C60 and a variety of inorganic insulators.38

Table II shows the relevant matrix elements of the PBE
exchange-correlation potential Vxc, the static exchange (�x),
and the dynamical correlation (�c) part of the self-energy as
well as the sum � = �x + �c for the HOMO and the LUMO
band energies at �, Y, and X. The difference � − Vxc amounts
to about 1.1 eV for all states in the LUMO band but is much
smaller for states in the HOMO band, so that the widening
of the band gap due to the G0W0 self-energy correction stems
almost entirely from an upward shift of the former. Upon closer
inspection, one finds that � − Vxc varies within the HOMO
band as a function of k between −0.13 eV at �, the top of
the band, and −0.23 eV at Y, the bottom of the band. Thus
the separation between the band edges grows, which leads to
an overall increase in the bandwidth. The magnitude of the

TABLE II. Contribution of the PBE exchange-correlation poten-
tial Vxc, static exchange �x, dynamical correlation �c, and the total
G0W0 self-energy � = �x + �c to the HOMO and LUMO band
energies at �, Y, and X in eV.

Vxc �x �c �

HOMO(�) −14.50 −15.10 0.47 −14.64
HOMO(Y) −13.91 −14.84 0.70 −14.14
HOMO(X) −14.37 −15.02 0.50 −14.52
LUMO(�) −13.67 −9.44 −3.14 −12.58
LUMO(Y) −13.81 −9.44 −3.24 −12.69
LUMO(X) −13.70 −9.46 −3.14 −12.60
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matrix elements at Y is also noticeably smaller than at the
other points.

The underlying reason for the observed behavior is the
different spatial nature of the orbitals for wave vectors across
the Brillouin zone. As a general rule, wave functions that
are more concentrated at the atomic positions, where the
electron density is highest, correspond to larger negative
matrix elements of local or semilocal exchange-correlation
potentials. As states at the bottom of a fully occupied valence

band are bonding linear combinations of atomic or molecular
orbitals with a large amplitude in the interjacent space, whereas
the states at the top of the band are antibonding linear
combinations with a node between the sites, exchange and
correlation strongly compress the band in DFT. Within the
G0W0 approximation, this effect is less pronounced due to the
nonlocal nature of the self-energy. Therefore, the quasiparticle
correction removes part of the excessive compression, thus
yielding increased bandwidths that are typically in better
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FIG. 3. (Color online) Isosurfaces of the HOMO wave function (real part) of (a) an isolated rubrene molecule as well as (b) HOMO(Y)
and (c) HOMO(�) in a single crystal. The atomic configuration and orientation in (a) are identical to the molecular units in the single crystal,
indicated by the black dashed circle in (b) and (c). The amplitude of the isosurfaces is ±7.14 Å−3/2, and different colors indicate the sign.
In addition, contour plots in the ab plane cutting through the orange dashed lines in (b) and (c), along which the largest concentration of
the isosurfaces is located, are displayed. The black solid lines mark the unit cell. Note that HOMO(Y), which is centered on one of the four
molecules in the unit cell, is degenerate with each of the HOMO−3(Y) to HOMO−1(Y) states, which are centered on the other three molecules
and exhibit a similar spatial distribution. Some of the isosurfaces in the left panels of (b) and (c) are truncated in order to avoid excessive
overlap and improve the visual clarity of the plots.
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FIG. 4. (Color online) Isosurfaces of the HOMO−1 wave func-
tion (real part) of (a) an isolated rubrene molecule as well as
(b) HOMO−1(Y) in a single crystal. See the explanation of Fig. 3 for
details.

agreement with experiments.38 In our case, both the PBE and
the G0W0 results are close to the measured value9–11 of 0.4 eV
for rubrene, however.

Figure 3 shows the isosurfaces of the HOMO band wave
functions at � and Y together with the HOMO of the
isolated rubrene molecule for comparison. As expected, the
wave function at �, illustrated in Fig. 3(c), features no
significant hybridization between the molecules because of
the antibonding out-of-phase superposition of the orbitals,
confirming that the wave function is concentrated at the
molecular sites. In contrast, the HOMO state at Y, displayed
in Fig. 3(b), exhibits strong hybridization as a result of the

TABLE III. Effective hole mass in rubrene single crystals
obtained from the HOMO band dispersion along �-Y and �-X relative
to the electron rest mass.

PBE G0W0 References

m∗
h/me (�-Y) 1.00 0.90 0.8 ± 0.1,a 0.65 ± 0.1b

m∗
h/me (�-X) 2.15 1.65 1.9 ± 0.3a

aReference 13; optical conductivity measurement.
bReference 9; ARUPS measurement.

bonding in-phase superposition, which leads to a lower con-
centration at individual molecules. The fact that the HOMO(�)
wave function is more concentrated at the molecular sites is
consistent both with the larger matrix elements of Vxc listed in
Table II and with the upward shift of 0.10 eV relative to the
HOMO(Y) state due to the self-energy correction. It is then
natural to assume that the hybridization of the HOMO(Y) wave
function over molecules stacked along the b axis also underlies
the observed conduction channel along this direction. An
equivalent spatial distribution is found for the HOMO−1(Y)
to HOMO−3(Y) states, which are degenerate with HOMO(Y)
but whose wave functions are each centered on another of the
four molecules in the unit cell; see Fig. 4 for HOMO−1(Y) as
an example.

Along �-X, the HOMO bandwidth calculated within G0W0

is 0.10 eV, marginally larger than the PBE value of 0.08 eV,
while experiments observed an essentially flat band with a
dispersion smaller than 0.05 eV.9 As the energy resolution
of the ARUPS measurement exceeds 0.1 eV, the predicted
finite bandwidth may suggest that factors absent in the present
calculation, such as thermal or polaron effects, could still play
a role, albeit on a small absolute scale. The splitting of the va-
lence bands at �, which results from the coupling between the
inequivalent molecules, is 0.16 eV at the PBE level, in agree-
ment with previous calculations12–14 and slightly enhanced
by 0.04 eV as a result of the self-energy correction. No
such splitting was observed in photoemission experiments.9–11

In addition to thermal effects at room temperature, which
weaken the coupling, final-state effects may be relevant for
this behavior, because the interaction of a localized molecular
state with the hole generated upon the emission of an electron
could affect the photoemission results, an aspect not explicitly
incorporated into the many-body treatment of the crystalline
states in this work.

We find that the G0W0 self-energy correction may be
approximated by a so-called “scissors” operator as previously
discussed in a similar study of pentacene.19,36 If the HOMO(�)
energy is set to zero as in Fig. 2, then our calculated HOMO
and LUMO band dispersions for rubrene are reproduced within
0.02 eV by εGW

nk = εPBE
nk × 1.21 for the HOMO, and by εGW

nk =
εPBE
nk × 1.17 + 1.02 eV for the LUMO band. While the stretch

factors are very similar to those for pentacene in Ref. 19, our
LUMO band shift is somewhat smaller.

Finally, Table III displays the effective hole masses relative
to the electron rest mass. The effective masses along �-X
and �-Y differ almost by a factor of 2, reflecting the highly
anisotropic carrier mobility. Our PBE results are similar to
the values given in another recent theoretical study14 of
the rubrene band structure that employed the B3LYP/6-31G
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exchange-correlation functional. As a consequence of the
enhanced dispersion and HOMO band curvature, the inclusion
of self-energy corrections in the G0W0 approximation leads to
smaller effective masses. The reduction amounts to more than
10% and brings the results closer to the measured values from
the optical conductivity13 and ARUPS9 measurements.

As explained above, the results presented in this work
are obtained using the experimental lattice constants25 rather
than optimized theoretical lattice parameters determined by a
total-energy minimization. Another theoretical work indicated
that the lattice constants optimized by using a first-principles
nonlocal van der Waals density functional39–41 are in agree-
ment with experiments with the deviations being within
1%, and the resulting band structure is similar to that at
the experimental lattice constants.42 This result supports the
validity of employing the experimental lattice constants. In
this context, we note that Ref. 14 found modest changes in the
effective masses when the lattice parameters were varied in
order to simulate thermal expansion. We would like to leave
it to future work to examine the effects of temperature at this
level of theory.

IV. CONCLUSIONS

In summary, we have calculated the quasiparticle band
structure of rubrene single crystals across the entire Brillouin
zone. Unlike in previous studies, self-energy corrections
within the G0W0 approximation were fully taken into account.
While the qualitative features of the band structure, such as
the large dispersion along �-Y and the almost nondispersive
behavior along �-X, are preserved, this yields a larger,

improved band gap and also enhances the dispersion of the
HOMO band by 0.10 eV relative to the DFT-PBE eigenvalues.
These findings were elucidated in terms of the different
spatial distribution of the HOMO wave functions at Y and
� on the molecular sites and the size of the corresponding
matrix elements of the self-energy correction. The enhanced
HOMO bandwidth obtained within G0W0 furthermore leads
to a reduced effective hole mass that improves the agreement
with the experimental data. Our results support the bandlike
picture of transport in rubrene, where the central features of
the electronic structure and carrier mobility are explained in
terms of purely electronic processes, and the coupling to lattice
deformations plays a minor role.
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the Quantum Theory of Materials group at the Forschungszen-
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A. Lindblad, N. Mårtensson, S. Svensson, P. Karlsson,

M. Lundvuist, T. Schmeiler, J. Pflaum, and N. Koch, J. Electron
Spectrosc. Relat. Phenom. 185, 55 (2012).

11Y. Nakayama, Y. Uragami, S. Machida, K. R. Koswattage,
D. Yoshimura, H. Setoyama, T. Okajima, K. Mase, and H. Ishii,
Appl. Phys. Express 5, 111601 (2012).

12D. A. da Silva Filho, E.-G. Kim, and J.-L. Brédas, Adv. Mater. 17,
1072 (2005).

13Z. Q. Li, V. Podzorov, N. Sai, M. C. Martin, M. E. Gershenson,
M. Di Ventra, and D. N. Basov, Phys. Rev. Lett. 99, 016403
(2007).

14Y. Li, V. Coropceanu, and J.-L. Brédas, J. Phys. Chem. Lett. 3, 3325
(2012).

15G. Nan, X. Yang, L. Wang, Z. Shuai, and Y. Zhao, Phys. Rev. B 79,
115203 (2009).

16S.-H. Wen, A. Li, J. Song, W.-Q. Deng, K.-L. Han,
and W. A. Goddard, III, J. Phys. Chem. B 113, 8813
(2009).

17H. Tamura, M. Tsukada, H. Ishii, N. Kobayashi, and K. Hirose,
Phys. Rev. B 86, 035208 (2012).

18L. Hedin, Phys. Rev. 139, A796 (1965).
19M. L. Tiago, J. E. Northrup, and S. G. Louie, Phys. Rev. B 67,

115212 (2003).
20K. Hummer and C. Ambrosch-Draxl, Phys. Rev. B 72, 205205

(2005).

115438-6

http://dx.doi.org/10.1038/nature02498
http://dx.doi.org/10.1063/1.2711393
http://dx.doi.org/10.1063/1.2711393
http://dx.doi.org/10.1126/science.1094196
http://dx.doi.org/10.1126/science.1094196
http://dx.doi.org/10.1016/j.synthmet.2007.02.004
http://dx.doi.org/10.1016/j.synthmet.2007.02.004
http://dx.doi.org/10.1002/adma.200702463
http://dx.doi.org/10.1002/adma.200702463
http://dx.doi.org/10.1103/PhysRevLett.93.086602
http://dx.doi.org/10.1103/PhysRevLett.93.086602
http://dx.doi.org/10.1103/PhysRevLett.95.226601
http://dx.doi.org/10.1103/PhysRevLett.95.226601
http://dx.doi.org/10.1143/JJAP.44.L1393
http://dx.doi.org/10.1103/PhysRevLett.104.156401
http://dx.doi.org/10.1103/PhysRevLett.104.156401
http://dx.doi.org/10.1016/j.elspec.2012.01.003
http://dx.doi.org/10.1016/j.elspec.2012.01.003
http://dx.doi.org/10.1143/APEX.5.111601
http://dx.doi.org/10.1002/adma.200401866
http://dx.doi.org/10.1002/adma.200401866
http://dx.doi.org/10.1103/PhysRevLett.99.016403
http://dx.doi.org/10.1103/PhysRevLett.99.016403
http://dx.doi.org/10.1021/jz301575u
http://dx.doi.org/10.1021/jz301575u
http://dx.doi.org/10.1103/PhysRevB.79.115203
http://dx.doi.org/10.1103/PhysRevB.79.115203
http://dx.doi.org/10.1021/jp900512s
http://dx.doi.org/10.1021/jp900512s
http://dx.doi.org/10.1103/PhysRevB.86.035208
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRevB.67.115212
http://dx.doi.org/10.1103/PhysRevB.67.115212
http://dx.doi.org/10.1103/PhysRevB.72.205205
http://dx.doi.org/10.1103/PhysRevB.72.205205


HOMO BAND DISPERSION OF CRYSTALLINE RUBRENE: . . . PHYSICAL REVIEW B 88, 115438 (2013)

21H. Kakuta, T. Hirahara, I. Matsuda, T. Nagao, S. Hasegawa,
N. Ueno, and K. Sakamoto, Phys. Rev. Lett. 98, 247601 (2007).
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