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Exchange-correlation kernels for excited states in solids
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The performance of several common approximations for the exchange-correlation kernel within time-
dependent density-functional theory is tested for elementary excitations in the homogeneous electron gas.
Although the adiabatic local-density approximation gives a reasonably good account of the plasmon dispersion,
systematic errors are pointed out and traced to the neglect of the wave-vector dependence. Kernels optimized
for atoms are found to perform poorly in extended systems due to an incorrect behavior in the long-wavelength
limit, leading to quantitative deviations that significantly exceed the experimental error bars for the plasmon
dispersion in the alkali metals.
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[. INTRODUCTION exchange-correlation kernel. Formally, the kernel is a func-
tional derivative of the exchange-correlation potential, evalu-
Exchange and correlation effects are crucial for underated at the unperturbed ground-state density, but as the exact
standing the properties of interacting many-electron systemgotential is unknown and must in practice be approximated
but notoriously difficult to implement accurately @b initio by a parametrization, independent expressions are often used
computational schemes. In the Kohn-Sham formulation ofor both quantities.
density-functional theory they are incorporated into the Chemical studies have repeatedly emphasized that an ac-
exchange-correlation potential, which is a functional of thecurate description of the exchange-correlation potential is
electron density but in practice is not known exactly excepiparticularly important for excited-state calculations of atoms
for simple model systems. Hence approximations such as thend molecules?%® Although the local-density and
local-density or generalized-gradient approximations argeneralized-gradient approximations often yield good total
needed. In many cases these yield accurate total energies agaergies, the corresponding potentials fail to capture the cor-
related ground-state quantitié$dowever, the development rect Coulomb-like asymptotic behavior and instead decay ex-
of experimental devices that allow, in principle, to track aponentially. As a result, many unoccupied states that really
single electron, and the emergence of new fields such ashould be bound are pushed to higher energies and merge
surface photochemistry place increasing emphasis on thgith the continuum. The accessible excitation spectrum is
study ofexcitedstates. Unfortunately its variational founda- then poorly rendered. Much effort is therefore invested into
tion prevents a straightforward application of the Kohn-better expressions for the exchange-correlation potential. In
Sham scheme to electronic excitations, for which numericomparison, the kernel is considered to be less important and
cally expensive Green-function techniques or, in case ofhe adiabatic local-density approximation is often chosen for
small systems, quantum-chemical methods were traditionallgonvenience.
employed. It is not clear whether these findings apply equally to
Time-dependent density-functional thebrgromises an  solids. First, the problem of possible unbound states becomes
appealing alternative. Originally designed to explore time-rrelevant in bulk materials. Second, nonlocal dynamic ex-
dependent phenomena, it was recently realized that it cachange and correlation effects, which are neglected in the
also be exploited to investigate optical excitations, whichadiabatic local-density approximation, naturally become
involve the creation of electron-hole pafrShese are to be more prominent in extended systems with delocalized wave
distinguished from photoemission states, which can bédunctions. For solids the errors introduced by approximations
determined by calculating the self-energy correction to théor the potential and the kernel could, therefore, be of similar
quasiparticle band structure, for instance, in tN  magnitude. However, although several new parametrizations
approximatior?. The optical excitation energies correspondfor the kernel were recently proposed in the literaft®!’
to the poles of the full linear density-response function thathese have not yet been systematically applied to solids, de-
can, in principle, be obtained exactly within time-dependentpite initial encouraging attemptdn fact, almost all calcu-
density-functional theory. This approach has since been agations reported so far, which focus either on the dielectric
plied to excited states not only in the context of quantumresponse of semiconductd’8 or the plasmon dispersion in
chemistry"®=® but also, more recently, in solid-state simple"*‘2and noblé® metals, employ the local-density ap-
physics’™*® The procedure starts from time-independentproximation both in the potential and the kernel. In contrast
ground-state properties, such as the Kohn-Sham orbitals and atoms, this approach seems to work reasonably well for
eigenvalues, which are conveniently obtained by convensolids, but improvements are still desirable.
tional means. However, besides static exchange and correla- In order to understand and quantify the error introduced
tion embodied in the exchange-correlation potentighamic by approximations to the kernel, more detailed studies for
effects due to the time-dependent perturbation must also bsolids are necessary. Lein and co-workisave recently
accounted for. The latter are described by the so-calledompared the correlation energy of the homogeneous elec-
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tron gas for different parametrizations, but the energy is arirom the static Kohn-Sham orbitals, and eigenvalues,, .
integrated quantity that principally reflects average weightThe symbolf, indicates the Fermi-occupation numbers and
distributions and is less sensitive to variations in the small- is a positive infinitesimal. The true density-density re-
scale structure of the kernel. However, the latter have a sigsponse function is obtained by relating it to the Kohn-Sham
nificant influence on the excitation spectrum, which is givensusceptibility through the chain rule for functional deriva-
by the position of poles in the linear density-response functives, which may be written in the form

tion. In this paper, we therefore concentrate on the dispersion

relations for the plasmon frequency and lifetime, assessing ] _— .

the performance of several kernels currently circulated in the j drM(r @) x (1) =X w). ()
literature. By applying them to the homogeneous electron

gas, where the exchange-correlation potential is a trivial con! e operator
stant, we are able to isolate the error due to the kernel and

make a systematic comparison. Indeed, we find that the M(r,r’;w)=5(r—r’)—J A3 xO(r,r"; w)

choice of parametrization plays an important role, and that

inappropriate kernels optimized for atoms give rise to quan- 1

titative deviations that significantly exceed the experimental ( + fXC(r",r';w)> (5)
error bars for the plasmon dispersion in the alkali metals. We [r"—r'|

related to the dielectric function and the exchange-

be extended to plasmons in real materials but generally appl Srrelation kernel is defined as

to excited states in solids that, like plasmons, are based o
charge rearrangements. A prominent example is charge-
transfer excitations in surface-adsorbate systems that occur P rt—t)
during photoinduced reactions. v

This paper is organized as follows. In Sec. Il we give an ] o
outline of our computational method. The kernels considered/here the functional derivative is evaluated at the unper-
here are listed in Sec. Ill, and in Sec. IV we present thdurbed ground-state density. _ _
numerical results together with a discussion. Finally, in Sec. The many-body density-density response function has

V we summarize our conclusions. Rydberg atomic units ar@oles at the exact excitation energies of the interacting elec-
used throughout. tron system. On the other hangf, has poles at the excitation

energies of the corresponding Kohn-Sham system, which are
in general different. Hence the singularities »fin Eq. (4)
must be canceled by zeroes of the operaorindependent
Within linear-response theory the true many-bodyOf the system characteristics and the nature of the excited
density-density response function is defined as states, this _pro_wdes a convenient starting point f(_)r calculat-
ing the excitation spectrum. For atoms it is possible to ex-
pand all quantities in a Laurent series around a particular
M (1 Kohn-Sham energy difference,—€,,, which leads to an
SVE(r t)’ explicit expression for low-order corrections to the transition
energy’ This procedure is not appropriate for solids, how-
where 6n(r,t) indicates the density change induced by anever, because in infinite systems the Kohn-Sham transition
external perturbatio@Ve{(r’,t’), and the functional deriva- energies form a continuufi. Although the resulting struc-
tive is evaluated at the static external potential correspondingure of y° can still be described in terms of effective poles,
to the unperturbed ground-state density. Likewise, the Kohnthese are located off the real axis and no longer correspond

believe that the findings presented in this paper cannot onlé

~OVE(r,t)

S oen(r ) ©

Il. COMPUTATIONAL METHOD

x(r,r'it—=t")=

Sham susceptibility to individual energy differences in the denominator of Eq.
(3). For the homogeneous electron gas, we therefore, deter-
sn(r,t) mine the plasmon dispersida(q) by a direct search for the
Xorrt—t)y=———, (2)  zeroes of
SV eff(r ’ 't r)

M(g,0)=1—x°(q,w + (g, w 7
describes the response of the associated noninteracting sys- (G.) x(@w)lvl@) (@.w)] @
tem with the same electron density due to a changén reciprocal space, which is also the most accurate proce-
SVEM(r 1)y =6Vo(r/ t')+ sVH(r' ,t')+ 8V*(r’,t') in the dure. The Fourier transform of the Coulomb potential is
effective potential, which includes the Hartree and exchanger (q) =47/q?, and the Kohn-Sham susceptibilif’ is given
correlation contributions. It can be calculated explicitly in analytically by the dynamic Lindhard functiéh.
frequency space according to In our implementation we generally calculate the zeroes
of M in the complex-frequency plane, which allows us to
* * / obtain both the plasmon dispersion and the corresponding
euNe, (N, (Mey () lifetimes. This approach requires the simultaneous solution
w—(€,—€,)+in of a set of two nonlinear equations for the real and the imagi-
(3)  nary part, for which we employ an iterative procedure. At

Xo(r,rs0)=22 (f,—f,)
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5 T T T T T T T T T T ' I ,/” I )I(?CPA: 0. (9)
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—————— satellite P

(b) The adiabatic local-density approximatférfALDA )
equals the long-wavelength limit

. ALpa = lim f15.(q,w=0) (10
q—0

i of the static exchange-correlation kernel of the homogeneous
electron gas. It is readily expressed in terms of the exchange-
correlation energy per particleys,,, as

2

ole=™ : . . . , o ,)&(I:_DA:F[nexﬁom(n)]- 11
0 025 05 075 ” 1 125 15 175 n
% Owing to its computational simplicity, the ALDA has be-

FIG. 1. At the border of the electron-hole pair continuum, indi- Come_' the standard approximation in time-dependgnt density-
cated by the shaded region, a crossing between the plasmon dispédnctional theory. It has already been employed in calcula-
sion and a satellite excitation occurs. tions of the plasmon dispersion for solits:*®

(c) In their original application of time-dependent density-
q=0 the classical plasma frequen%:(4wn)1/2 forms a  functional theory to gxcited states, Petersilka, Gossmann,
convenient starting point, while for finitq the previously ~and Gros$ (PGG derived an approximate exchange-only
calculated solution for a smaller wave vector is utilized. wekernel in the spirit of the optimized effective-potential
have confirmed that the iteration is stable and convergenfnethod-” This approach has the advantage that the corre-
Special attention must be paid 8(q)=1qg%+qke, how- sponding exchange potential has the proper Coulon_1b decay.
ever, where the structure of the excitation spectrum become&he kernel is constructed from the Kohn-Sham orbitals and
very complicated and a bifurcation occurs. This bifurcation,nénce only depends implicitly on the density. Designed for
illustrated in Fig. 1 for the random-phase approximation anémall atoms, the PGG formula is identical to the exact ex-
r<=4, wherer denotes the Wigner-Seitz radius, is due tochange kernel for two-electron systems but deviations are
the crossing of the plasmon dispersion with a satellite exci€xPected for extended systems. In particular, the frequency
tation. In order to discriminate between the principal reso-dependence of the exact exchange kernel, which, in prin-

nance and its satellite, we examine the spectral function ~Ciple, can also be calc_:ula_téﬂ,is ignored. In momentum
space the PGG kernel is given'fy

1
S(q,w)=— Im ) 3 2 1+

no(d) - M(Q,w) B ()= — —— 1 11+ 2Q%+ ——10Q)In Q

. 10k2 Q 11-Q]
on the real-frequency axis, where the plasmon peak can eas-
ily be identified as the dominant feature. 1

The imaginary part of)(q) reflects the finite lifetime of +(2Q*-10Q?)In|1— - ] (12

plasmons in the homogeneous electron gas. The most impor- Q

tant decay mechanism is scattering into electron-hole pairs, .
which dominates whenever energy and momentum conservé{‘f'th Q=a/Zke. .

tion allow the promotion of an electron into a previously (d) Burke,_Petersnka, and Grdés(BPG)_recently pro-
unoccupied state above the Fermi leffelThis region, po_sedahybnd formula that was shown_to improve the excl-
bounded by the two linegg?= qke, whereke denotes the tation spectra of s_mall atoms. It. conjblnes_ expressions for
Fermi wave vector, is shown shaded in Fig. 1. Real solution§ymmetric _and antisymmetric spin orientations from d|ffer-
for the plasmon energy, suggesting an infinite lifetime, onlyem approximations in a spin-density-functional formallsm.
exist for frequency-independent kernels outside the electror-2" the unpolarized homogeneous electron gas this kernel
hole pair continuum. This behavior, well known from the reduces to

random-phase approximation, constitutes a physically im-

. - L 1
gﬁgs&t;lsairgaa;rtlgglast stems from the neglect of more intri X (q)= E[féceem(Q)”L fXCLDA,n]- (13)
Il EXCHANGE-CORRELATION KERNELS (e) An essentially exact parametrization of the static

exchange-correlation kernel for the homogeneous electron
In this paper we have considered the following approxi-gas was given by Corradini, Del Sole, Onida, and Palufimo
mations for the exchange-correlation kernel. (CDOB), who used the Monte Carlo results of Moroni, Cep-
(@ In the random-phase approximatigRPA) all dy-  erley, and Senatofefor the static local-field facto6(q) =
namic exchange-correlation effects are ignored by setting —f*°(q)/v(q). Unlike the original data, the fit
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4 B 2 5 Y T : T U T T 1 T ¥ T 1 T
fEhod ) =— q_j CQ*+ _:22 + 01Q497BQ2 (14 -

with Q=g/kg is not restricted to metallic densities, because
it incorporates the known asymptotic limits for high and low
densities. The parameteass B, B, C, andg depend onm g and 3
are listed in Ref. 17. By construction, the CDOP kernel be- "
comes identical to the ALDA in the long-wavelength limit. G
(f) Finally we consider a parametrization of tbdgnamic
local-field factor of the homogeneous electron gas proposed
by Richardson and Ashcréft (RA), including the correc-
tions given in Ref. 18, which stems from the summation of
self-energy, exchange, and fluctuation terms in the diagram-
matic expansion of the polarization function. It satisfies 0
many important sum rules and includes exact asymptotic ex-
pressions for small and large wave vectors. At intermediate
wave vectors and frequencies it provides a realistic descrip- FIG. 2. Plasmon dispersion for the homogeneous electron gas at
tion of the position and magnitude of extrema, which arers=4, calculated with different approximations for the exchange-
related to the pair distribution function evaluated at zerocorrelation kernel. The electron-hole pair continuum and the result-
separation. Because of this careful derivation we believe thi#g nonzero imaginary part of the plasmon frequency in this regime
RA expression to be very close to the exact dynamicare also marked.
exchange-correlation kernel of the homogeneous electron ] . o
gas and give an accurate account of the plasmon dispersiofently contains the right long-wavelength limit of the kernel,
In the absence of experimental data, we therefore use the RRUt its neglect of the frequency dependence still introduces

results as a reference in order to assess the performance @ €rror in the parabolic term. By construction, the CDOP

wavelength limit and thus produces the same second-order
4 term. Being static approximations, the PGG and BPG func-
’é‘;(q,w)=——Z[GS(Q,U)+Gn(Q,U)] (15 tionals are also evaluated at=0 rather than the plasma
q frequency. However, they do not approach the correct long-
with Q=q/2ke andU=w/4k§ was originally given on the wavelength limit of thg homogeneoqs electrqn gas, and
imaginary-frequency axis, S0 we use a continuation to théherefore, _genprate a different parabolic coefficient. The RA
full complex plane. The local-field factofs describes Kernel, which incorporates the full frequency dependence, is
screened exchange, fluctuation, and self-energy effects in tt{3€ only parametrization that is formally exact beyond the
irreducible polarizability, whileG,, accounts for the change vial zeroth order. _ _
in occupation numbers due to correlation. The parametrized | N€ numerically calculated plasmon dispersions frfer
forms of both are listed in Ref. 26. =4 are shown in Fig. 2. As predicted, all curves start at the
Whenever the exchange-correlation energy is needed &i@ssical plasma frequency. For small wave vectors only a
an input, we use the parametrization by Perdew and Wang smallzspread of th_e results is obS(_arved, becaus_e the factor
of the Monte Carlo data by Ceperley and Ald&The pair-  9/10t¢ in Eq. (16) in general outweighs the contribution of

correlation function that enters the RA kernel is taken fromthe kernel. However, a slight downward shift compared to
the same authorS. the RPA is clearly visible for all nontrivial approximations

because dynamic exchange and correlation effects combine
to lower the energy of the electron system. The ALDA and
the CDOP formula produce curves that are initially very
Before presenting our numerical results we first discusslose to the RA result we use for reference, indicating that
what can be deduced from an analytic expansion of the plaghe neglected frequency dependence is of little consequence
mon dispersiorf)(q). By solvingM(q,Q(q))=0 up to sec- as long as the correct long-wavelength limit is reproduced.
ond order inq we obtain the seriés This point is emphasized by the relatively large deviation for
the static PGG kernel, which stems precisely from its incor-
5 4 rect behavior aty—0. The BPG curve, as expected, lies
a“+0(q") |, between the ALDA and PGG results.
(16) To demonstrate that these observations are representative,
in Fig. 3 we show the behavior of the plasmon energy over a
wherek+ indicates the Thomas-Fermi wave vector. As longlarge density range. The curves are calculated dpr
asf*® does not diverge, all curves should approach the clas=0.5q,, whereq, indicates the critical wave vector corre-
sical plasma frequency in the long-wavelength limit. Thesponding to the onset of damping due to electron-hole pair
kernel only introduces corrections beyond the RPA in secon@xcitations in the RPA. Note that the results are scaled in
order, where the elemefit°(0,w,) appears. The ALDA evi- units of the Fermi energy , which is itself a function of ;.

IV. RESULTS AND DISCUSSION

9 P0wy

1+
10K3, 8m

Q(q)=wp
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FIG. 3. Behavior of the plasmon energy as a function of the FIG. 4. Behavior of the plasmon energy in the region of
density evaluated at=0.5q, whereq, indicates the critical wave electron-hole pair excitations gt=1.2q_ .
vector corresponding to the onset of damping due to electron-hole

pair excitations in the RPA. Such multipair decay channels are ignored in the RPA and

The RPA and ALDA curves are practically indistinguishablerelat.ed.SChemeS' which _is ultimatgly the reason for their
on the scale of the figure. In the high-density limit all param-q_ua“tat'vely wrong behaylor. Mgrmln s modification _Of_ the
etrizations tend to the RPA result, which is the correct trengLindhard ldlelectrlc function avoids the problem of infinite
The deviation between the RA dispersion and the Otheln‘etlmes,3 but the correction based on relaxation times is
curves increases approximately linearly with introduced in a phenomenological manner that makes it un-
At larger wave vectors, where the parabolic expansior‘?“ita.ble forab initio .calgulations. In this §tudy qn_ly the dy-
(16) is no longer valid, the differences between the consigNamic RA parametrization correctly predicts a finite pIasmpn
ered approximations become more pronounced. The dispel?fetIme over the ent!re frequency range. I—_|owever, outside
sion resulting from the static ALDA kernel remains close to € €léctron-hole pair continuum the imaginary part of the
the RPA at very high energies, while the CDOP result begin®!2Smon energy is several orders of magnitude smaller than
to deviate slightly from the RA curve after the onset of theTrheaI parc; and hence BOt d|scerﬂ|ble n trl?DpCI)o;. .
damping in the electron-hole pair continuum. This discrep- . N gooh agreerrr:en(tj et\(/jveﬁn tde static RA plaramekt‘rl-
ancy must be attributed to the static nature of the cpogation on the one hand and the ynamic resu.t on the
kernel. Furthermore, it can be seen that the strong downwa ther, over a large wave vector and density interval indicates
shift of the exchange-only PGG formula leads to an everihat the frequency dependence of the kemel plays a weak

larger error in absolute terms than the underestimation of°'€ for the plasmon dispersion. In contrast, the significant

dynamic exchange and correlation effects in both the ALDAJISCrepancy between static approximations like ALDA that

and RPA. The hybrid BPG formula, which combines theCONtain the correct long-wavelength limit and others such as

PGG and ALDA parametrizations, profits from a partial can-PGG, which do not, suggests that a correct parametrization

cellation of errors but improves only marginally upon PGG.O_f the wave vector depenqlen(_:e is crucial. Similar conclu-

In Fig. 4 we again show the plasmon energy as a function ofions concerning the relative importance of the frequency

the density forg=1.2q and wave-vector dependence were recently also reported for
2.

the correlation energ$# This was not entirely surprising,

Due to decay into electron-hole pairs in the damped re- b f Ksi Is that th
gime, the plasmon energy acquires a nonzero imaginary pagpwever, ecause a frequency analyskeveals that the

also displayed in Fig. 2, whose inverse is proportional to th ominant contrlbutpn_to th_e Energy in any case comes from
lifetime. As a general rule we find that all kernels yield thethe Iov_v-frequen_cy limit, V.Vh'ch is, by design, contained cor-
same quality of approximation for the imaginary part as the)feCtly in all static approximations, : .

do for the real part of the plasmon energy. At small wave .TO emphas[ze the error that may arise frqm an inappro-
vectors, as discussed above, static kernels predictavanishil%'ate ker_nel, n F'_g' 5 we compare thgoretlcal results for
imaginary part, which corresponds to an unphysical infinite’ s~ 4-0 With experimental data for sodium from electron
lifetime. This artifact results from modelling® as a purely energy-loss spectroscopyThe theoretical curves have been

real quantity by evaluating it ab=0. In fact, the exact shifted rigidly to the experimental value qt=0 in order to

kernel has a finite imaginary part at nonzero frequenciesaccount for core-polarization effects not included in this

which for small wave vectors is related to the multipair Com_électron-gas treatmerit At small wave vectors the RA re-

g . sult is in excellent agreement with the experimental disper-
ponent of the susceptibilty according'to sion. Although the ALDA correctly reproduces the qualita-
w? tive features, its growing deviation from the theoretical
Im (g, w)~ = —[v(a)]*Im x™(q, ). (170  reference curve soon exceeds the experimental error bars and
wp becomes quite pronounced at intermediate wave vectors.
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2.5

| ; | : 1 plasmon dispersion of the homogeneous electron gas. First of
/ all, we have found that the influence of the kernel is indeed
e significant, giving rise to large differences between the cal-
i culated dispersion curves. The ALDA performs reasonably
well, although it underestimates dynamic exchange-
correlation effects embodied in the kernel and improves only
little upon the RPA. A better quantitative scheme is, there-
fore, desirable. In this respect our results, in particular, the
good agreement between the dynamic RA parametrization
and the static CDOP kernel, both of which are presumed to
be very accurate, suggest that the neglect of the frequency
dependence is of little consequence, giving rise to small de-
viations only at large wave vectors in the electron-hole pair
1.55 T I v S— I continuum. The error of the ALDA thus stems largely from
its local nature, and extensions should focus on a better de-
scription of the wave-vector dependence. The challenge of
FIG. 5. Calculated plasmon dispersion fQr=4.0 compared to  this task is illustrated by the fact that some of the explicitly
experimental data for sodium from electron energy-loss spectrosionlocal parametrizations we considered, notably PGG, ac-
copy(Ref._32). The theoretical curves have been shifted rigidly to tually lead to worse results although they are known to im-
the experimental value a§=0 in order to account for core- e excitation spectra in small atoms. This apparent para-
polarization effects not included in this electron-gas treatment. dox may be understood by the significance of the long-

This is even more obvious in the case of PGG. Furthermorewave'ength limit for the homogeneous electron gas, which

for small wave vectors this parametrization incorrectly pre_determlnes the Iead!ng order of the plasmon dispersion and is
dicts a negative dispersion that is not observed in Na, agontalngd correctly in the ALDA but not in the PGG kernel.
though negative dispersion does occur in heavier alkali met localized systems such as atoms, on the other hand, the
als, such as C¥ The reasons for this anomalous behaviorlong-wavelength limit is Ies_s relevant, whereas dynamic ex-
are still controversial®® Obviously, in such situations a change effects contained in the PGG kernel may play an
poor parametrization may become a serious obstacle for thénportant role. This lack of transferability should encourage
oretical interpretations. After the onset of damping due tospecific approximations for solids. The CDOP kernel, which
electron-hole pair excitations, the experimental dispersioiis derived from the homogeneous electron gas, seems a step
flattens slightly. As shown in Fig. 2, the theoretical resultsinto the right direction, although its performance for real
exhibit the same effect, but the unshifted RA and ALDA materials has not been fully explored yet. Finally, we dem-
curves only cross the border of the damped regime at largaernstrated that exchange-correlation kernels optimized for
critical wave vectors. Hence in Fig. 5 quantitative agreemensmall atoms may lead to quantitative, and occasionally quali-
cannot be expected for large wave vectors due to the differtative, deviations in the plasmon dispersion for solids that
ent physical situations. The PGG curve, on the other handsignificantly exceed the corresponding experimental error
lies below the RA result and consequently enters the dampegiars and may affect theoretical interpretations.

regime at a smaller critical wave vector, but the good agree-

ment with the experimental dispersion for large wave vectors

in Fig. 5 is clearly fortuitous. ACKNOWLEDGMENTS
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