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Exchange-correlation kernels for excited states in solids
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The performance of several common approximations for the exchange-correlation kernel within time-
dependent density-functional theory is tested for elementary excitations in the homogeneous electron gas.
Although the adiabatic local-density approximation gives a reasonably good account of the plasmon dispersion,
systematic errors are pointed out and traced to the neglect of the wave-vector dependence. Kernels optimized
for atoms are found to perform poorly in extended systems due to an incorrect behavior in the long-wavelength
limit, leading to quantitative deviations that significantly exceed the experimental error bars for the plasmon
dispersion in the alkali metals.
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I. INTRODUCTION

Exchange and correlation effects are crucial for und
standing the properties of interacting many-electron syst
but notoriously difficult to implement accurately inab initio
computational schemes. In the Kohn-Sham formulation
density-functional theory1 they are incorporated into th
exchange-correlation potential, which is a functional of t
electron density but in practice is not known exactly exc
for simple model systems. Hence approximations such as
local-density or generalized-gradient approximations
needed. In many cases these yield accurate total energie
related ground-state quantities.2 However, the developmen
of experimental devices that allow, in principle, to track
single electron, and the emergence of new fields such
surface photochemistry place increasing emphasis on
study ofexcitedstates. Unfortunately its variational found
tion prevents a straightforward application of the Koh
Sham scheme to electronic excitations, for which num
cally expensive Green-function techniques or, in case
small systems, quantum-chemical methods were tradition
employed.

Time-dependent density-functional theory3 promises an
appealing alternative. Originally designed to explore tim
dependent phenomena, it was recently realized that it
also be exploited to investigate optical excitations, wh
involve the creation of electron-hole pairs.4 These are to be
distinguished from photoemission states, which can
determined by calculating the self-energy correction to
quasiparticle band structure, for instance, in theGW
approximation.5 The optical excitation energies correspo
to the poles of the full linear density-response function t
can, in principle, be obtained exactly within time-depend
density-functional theory. This approach has since been
plied to excited states not only in the context of quant
chemistry4,6–8 but also, more recently, in solid-sta
physics.9–13 The procedure starts from time-independe
ground-state properties, such as the Kohn-Sham orbitals
eigenvalues, which are conveniently obtained by conv
tional means. However, besides static exchange and cor
tion embodied in the exchange-correlation potential,dynamic
effects due to the time-dependent perturbation must also
accounted for. The latter are described by the so-ca
0163-1829/2001/63~23!/235106~7!/$20.00 63 2351
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exchange-correlation kernel. Formally, the kernel is a fu
tional derivative of the exchange-correlation potential, eva
ated at the unperturbed ground-state density, but as the e
potential is unknown and must in practice be approxima
by a parametrization, independent expressions are often
for both quantities.

Chemical studies have repeatedly emphasized that an
curate description of the exchange-correlation potentia
particularly important for excited-state calculations of ato
and molecules.14–16 Although the local-density and
generalized-gradient approximations often yield good to
energies, the corresponding potentials fail to capture the
rect Coulomb-like asymptotic behavior and instead decay
ponentially. As a result, many unoccupied states that re
should be bound are pushed to higher energies and m
with the continuum. The accessible excitation spectrum
then poorly rendered. Much effort is therefore invested in
better expressions for the exchange-correlation potentia
comparison, the kernel is considered to be less important
the adiabatic local-density approximation is often chosen
convenience.

It is not clear whether these findings apply equally
solids. First, the problem of possible unbound states beco
irrelevant in bulk materials. Second, nonlocal dynamic e
change and correlation effects, which are neglected in
adiabatic local-density approximation, naturally becom
more prominent in extended systems with delocalized w
functions. For solids the errors introduced by approximatio
for the potential and the kernel could, therefore, be of sim
magnitude. However, although several new parametrizat
for the kernel were recently proposed in the literature,4,16,17

these have not yet been systematically applied to solids,
spite initial encouraging attempts.9 In fact, almost all calcu-
lations reported so far, which focus either on the dielec
response of semiconductors9,10 or the plasmon dispersion in
simple11,12 and noble13 metals, employ the local-density ap
proximation both in the potential and the kernel. In contr
to atoms, this approach seems to work reasonably well
solids, but improvements are still desirable.

In order to understand and quantify the error introduc
by approximations to the kernel, more detailed studies
solids are necessary. Lein and co-workers18 have recently
compared the correlation energy of the homogeneous e
©2001 The American Physical Society06-1
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tron gas for different parametrizations, but the energy is
integrated quantity that principally reflects average wei
distributions and is less sensitive to variations in the sm
scale structure of the kernel. However, the latter have a
nificant influence on the excitation spectrum, which is giv
by the position of poles in the linear density-response fu
tion. In this paper, we therefore concentrate on the disper
relations for the plasmon frequency and lifetime, assess
the performance of several kernels currently circulated in
literature. By applying them to the homogeneous elect
gas, where the exchange-correlation potential is a trivial c
stant, we are able to isolate the error due to the kernel
make a systematic comparison. Indeed, we find that
choice of parametrization plays an important role, and t
inappropriate kernels optimized for atoms give rise to qu
titative deviations that significantly exceed the experimen
error bars for the plasmon dispersion in the alkali metals.
believe that the findings presented in this paper cannot o
be extended to plasmons in real materials but generally a
to excited states in solids that, like plasmons, are based
charge rearrangements. A prominent example is cha
transfer excitations in surface-adsorbate systems that o
during photoinduced reactions.19

This paper is organized as follows. In Sec. II we give
outline of our computational method. The kernels conside
here are listed in Sec. III, and in Sec. IV we present
numerical results together with a discussion. Finally, in S
V we summarize our conclusions. Rydberg atomic units
used throughout.

II. COMPUTATIONAL METHOD

Within linear-response theory the true many-bo
density-density response function is defined as

x~r ,r 8;t2t8!5
dn~r ,t !

dVext~r 8,t8!
, ~1!

where dn(r ,t) indicates the density change induced by
external perturbationdVext(r 8,t8), and the functional deriva
tive is evaluated at the static external potential correspond
to the unperturbed ground-state density. Likewise, the Ko
Sham susceptibility

x0~r ,r 8;t2t8!5
dn~r ,t !

dV eff~r 8,t8!
, ~2!

describes the response of the associated noninteracting
tem with the same electron density due to a cha
dVeff(r 8,t8)5dVext(r 8,t8)1dVH(r 8,t8)1dVxc(r 8,t8) in the
effective potential, which includes the Hartree and exchan
correlation contributions. It can be calculated explicitly
frequency space according to

x0~r ,r 8;v!52(
n,n8

~ f n82 f n!
wn~r !wn8

* ~r !wn* ~r 8!wn8~r 8!

v2~en2en8!1 ih
~3!
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from the static Kohn-Sham orbitalswn and eigenvaluesen .
The symbolf n indicates the Fermi-occupation numbers a
h is a positive infinitesimal. The true density-density r
sponse function is obtained by relating it to the Kohn-Sh
susceptibility through the chain rule for functional deriv
tives, which may be written in the form

E d3r 9M ~r ,r 9;v!x~r 9,r 8;v!5x0~r ,r 8;v!. ~4!

The operator

M ~r ,r 8;v!5d~r2r 8!2E d3r 9x0~r ,r 9;v!

3S 1

ur 92r 8u
1 f xc~r 9,r 8;v!D ~5!

is related to the dielectric function and the exchang
correlation kernel is defined as

f xc~r ,r 8;t2t8!5
dVxc~r ,t !

dn~r 8,t8!
, ~6!

where the functional derivative is evaluated at the unp
turbed ground-state density.

The many-body density-density response function
poles at the exact excitation energies of the interacting e
tron system. On the other hand,x0 has poles at the excitatio
energies of the corresponding Kohn-Sham system, which
in general different. Hence the singularities ofx in Eq. ~4!
must be canceled by zeroes of the operatorM. Independent
of the system characteristics and the nature of the exc
states, this provides a convenient starting point for calcu
ing the excitation spectrum. For atoms it is possible to
pand all quantities in a Laurent series around a particu
Kohn-Sham energy differenceen2en8 , which leads to an
explicit expression for low-order corrections to the transiti
energy.4 This procedure is not appropriate for solids, ho
ever, because in infinite systems the Kohn-Sham transi
energies form a continuum.20 Although the resulting struc-
ture of x0 can still be described in terms of effective pole
these are located off the real axis and no longer corresp
to individual energy differences in the denominator of E
~3!. For the homogeneous electron gas, we therefore, de
mine the plasmon dispersionV(q) by a direct search for the
zeroes of

M ~q,v!512x0~q,v!@v~q!1 f xc~q,v!# ~7!

in reciprocal space, which is also the most accurate pro
dure. The Fourier transform of the Coulomb potential
v(q)54p/q2, and the Kohn-Sham susceptibilityx0 is given
analytically by the dynamic Lindhard function.21

In our implementation we generally calculate the zero
of M in the complex-frequency plane, which allows us
obtain both the plasmon dispersion and the correspond
lifetimes. This approach requires the simultaneous solu
of a set of two nonlinear equations for the real and the ima
nary part, for which we employ an iterative procedure.
6-2



e
en

m
n
n
to

xc
so

e

p
ir
rv
ly

on
nl
ro
e
im
tri

xi

g

ous
ge-

-
sity-
la-

y-
nn,
ly
al
rre-
cay.
nd
for
ex-
are
ncy
rin-

ci-
for
r-

m.
rnel

tic
tron
o
p-

di-
isp

EXCHANGE-CORRELATION KERNELS FOR EXCITED . . . PHYSICAL REVIEW B63 235106
q50 the classical plasma frequencyvp5(4pn)1/2 forms a
convenient starting point, while for finiteq the previously
calculated solution for a smaller wave vector is utilized. W
have confirmed that the iteration is stable and converg
Special attention must be paid atV(q)5 1

2 q21qkF , how-
ever, where the structure of the excitation spectrum beco
very complicated and a bifurcation occurs. This bifurcatio
illustrated in Fig. 1 for the random-phase approximation a
r s54, wherer s denotes the Wigner-Seitz radius, is due
the crossing of the plasmon dispersion with a satellite e
tation. In order to discriminate between the principal re
nance and its satellite, we examine the spectral function

S~q,v!52
1

nv~q!
Im

1

M ~q,v!
~8!

on the real-frequency axis, where the plasmon peak can
ily be identified as the dominant feature.

The imaginary part ofV(q) reflects the finite lifetime of
plasmons in the homogeneous electron gas. The most im
tant decay mechanism is scattering into electron-hole pa
which dominates whenever energy and momentum conse
tion allow the promotion of an electron into a previous
unoccupied state above the Fermi level.20 This region,
bounded by the two lines12 q26qkF , wherekF denotes the
Fermi wave vector, is shown shaded in Fig. 1. Real soluti
for the plasmon energy, suggesting an infinite lifetime, o
exist for frequency-independent kernels outside the elect
hole pair continuum. This behavior, well known from th
random-phase approximation, constitutes a physically
plausible artifact that stems from the neglect of more in
cate decay channels.

III. EXCHANGE-CORRELATION KERNELS

In this paper we have considered the following appro
mations for the exchange-correlation kernel.

~a! In the random-phase approximation~RPA! all dy-
namic exchange-correlation effects are ignored by settin

FIG. 1. At the border of the electron-hole pair continuum, in
cated by the shaded region, a crossing between the plasmon d
sion and a satellite excitation occurs.
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f RPA
xc 50. ~9!

~b! The adiabatic local-density approximation22 ~ALDA !
equals the long-wavelength limit

f ALDA
xc 5 lim

q→0
f hom

xc ~q,v50! ~10!

of the static exchange-correlation kernel of the homogene
electron gas. It is readily expressed in terms of the exchan
correlation energy per particle,ehom

xc , as

f ALDA
xc 5

d2

dn2
@ne hom

xc ~n!#. ~11!

Owing to its computational simplicity, the ALDA has be
come the standard approximation in time-dependent den
functional theory. It has already been employed in calcu
tions of the plasmon dispersion for solids.11–13

~c! In their original application of time-dependent densit
functional theory to excited states, Petersilka, Gossma
and Gross4 ~PGG! derived an approximate exchange-on
kernel in the spirit of the optimized effective-potenti
method.23 This approach has the advantage that the co
sponding exchange potential has the proper Coulomb de
The kernel is constructed from the Kohn-Sham orbitals a
hence only depends implicitly on the density. Designed
small atoms, the PGG formula is identical to the exact
change kernel for two-electron systems but deviations
expected for extended systems. In particular, the freque
dependence of the exact exchange kernel, which, in p
ciple, can also be calculated,24 is ignored. In momentum
space the PGG kernel is given by18

f PGG
xc ~q!52

3p

10kF
2 H 1112Q21S 2

Q
210QD ln

11Q

u12Qu

1~2Q4210Q2!lnU12
1

Q2UJ ~12!

with Q5q/2kF .
~d! Burke, Petersilka, and Gross16 ~BPG! recently pro-

posed a hybrid formula that was shown to improve the ex
tation spectra of small atoms. It combines expressions
symmetric and antisymmetric spin orientations from diffe
ent approximations in a spin-density-functional formalis
For the unpolarized homogeneous electron gas this ke
reduces to

f BPG
xc ~q!5

1

2
@ f PGG,↑↑

xc ~q!1 f ALDA, ↑↓
xc #. ~13!

~e! An essentially exact parametrization of the sta
exchange-correlation kernel for the homogeneous elec
gas was given by Corradini, Del Sole, Onida, and Palumm17

~CDOP!, who used the Monte Carlo results of Moroni, Ce
erley, and Senatore25 for the static local-field factorG(q)5
2 f xc(q)/v(q). Unlike the original data, the fit

er-
6-3
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TATARCZYK, SCHINDLMAYR, AND SCHEFFLER PHYSICAL REVIEW B63 235106
f CDOP
xc ~q!52

4p

q2 S CQ21
BQ2

g1Q2
1aQ4e2bQ2D ~14!

with Q5q/kF is not restricted to metallic densities, becau
it incorporates the known asymptotic limits for high and lo
densities. The parametersa, b, B, C, andg depend onr s and
are listed in Ref. 17. By construction, the CDOP kernel b
comes identical to the ALDA in the long-wavelength limit

~f! Finally we consider a parametrization of thedynamic
local-field factor of the homogeneous electron gas propo
by Richardson and Ashcroft26 ~RA!, including the correc-
tions given in Ref. 18, which stems from the summation
self-energy, exchange, and fluctuation terms in the diagr
matic expansion of the polarization function. It satisfi
many important sum rules and includes exact asymptotic
pressions for small and large wave vectors. At intermed
wave vectors and frequencies it provides a realistic desc
tion of the position and magnitude of extrema, which a
related to the pair distribution function evaluated at ze
separation. Because of this careful derivation we believe
RA expression to be very close to the exact dynam
exchange-correlation kernel of the homogeneous elec
gas and give an accurate account of the plasmon disper
In the absence of experimental data, we therefore use the
results as a reference in order to assess the performan
simpler approximations. The parametrization

f RA
xc ~q,v!52

4p

q2
@Gs~Q,U !1Gn~Q,U !# ~15!

with Q5q/2kF andU5v/4kF
2 was originally given on the

imaginary-frequency axis, so we use a continuation to
full complex plane. The local-field factorGs describes
screened exchange, fluctuation, and self-energy effects in
irreducible polarizability, whileGn accounts for the chang
in occupation numbers due to correlation. The parametri
forms of both are listed in Ref. 26.

Whenever the exchange-correlation energy is neede
an input, we use the parametrization by Perdew and Wa27

of the Monte Carlo data by Ceperley and Alder.28 The pair-
correlation function that enters the RA kernel is taken fro
the same authors.29

IV. RESULTS AND DISCUSSION

Before presenting our numerical results we first disc
what can be deduced from an analytic expansion of the p
mon dispersionV(q). By solvingM „q,V(q)…50 up to sec-
ond order inq we obtain the series2

V~q!5vpF11S 9

10kTF
2

1
f xc~0,vp!

8p D q21O~q4!G ,

~16!

wherekTF indicates the Thomas-Fermi wave vector. As lo
as f xc does not diverge, all curves should approach the c
sical plasma frequency in the long-wavelength limit. T
kernel only introduces corrections beyond the RPA in sec
order, where the elementf xc(0,vp) appears. The ALDA evi-
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dently contains the right long-wavelength limit of the kern
but its neglect of the frequency dependence still introdu
an error in the parabolic term. By construction, the CDO
formula becomes identical to the ALDA in the long
wavelength limit and thus produces the same second-o
term. Being static approximations, the PGG and BPG fu
tionals are also evaluated atv50 rather than the plasm
frequency. However, they do not approach the correct lo
wavelength limit of the homogeneous electron gas, a
therefore, generate a different parabolic coefficient. The
kernel, which incorporates the full frequency dependence
the only parametrization that is formally exact beyond t
trivial zeroth order.

The numerically calculated plasmon dispersions forr s
54 are shown in Fig. 2. As predicted, all curves start at
classical plasma frequency. For small wave vectors onl
small spread of the results is observed, because the fa
9/10kTF

2 in Eq. ~16! in general outweighs the contribution o
the kernel. However, a slight downward shift compared
the RPA is clearly visible for all nontrivial approximation
because dynamic exchange and correlation effects com
to lower the energy of the electron system. The ALDA a
the CDOP formula produce curves that are initially ve
close to the RA result we use for reference, indicating t
the neglected frequency dependence is of little conseque
as long as the correct long-wavelength limit is reproduc
This point is emphasized by the relatively large deviation
the static PGG kernel, which stems precisely from its inc
rect behavior atq→0. The BPG curve, as expected, lie
between the ALDA and PGG results.

To demonstrate that these observations are representa
in Fig. 3 we show the behavior of the plasmon energy ove
large density range. The curves are calculated forq
50.5qc , whereqc indicates the critical wave vector corre
sponding to the onset of damping due to electron-hole p
excitations in the RPA. Note that the results are scaled
units of the Fermi energyeF , which is itself a function ofr s .

FIG. 2. Plasmon dispersion for the homogeneous electron ga
r s54, calculated with different approximations for the exchang
correlation kernel. The electron-hole pair continuum and the res
ing nonzero imaginary part of the plasmon frequency in this reg
are also marked.
6-4
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EXCHANGE-CORRELATION KERNELS FOR EXCITED . . . PHYSICAL REVIEW B63 235106
The RPA and ALDA curves are practically indistinguishab
on the scale of the figure. In the high-density limit all para
etrizations tend to the RPA result, which is the correct tre
The deviation between the RA dispersion and the ot
curves increases approximately linearly withr s .

At larger wave vectors, where the parabolic expans
~16! is no longer valid, the differences between the cons
ered approximations become more pronounced. The dis
sion resulting from the static ALDA kernel remains close
the RPA at very high energies, while the CDOP result beg
to deviate slightly from the RA curve after the onset
damping in the electron-hole pair continuum. This discre
ancy must be attributed to the static nature of the CD
kernel. Furthermore, it can be seen that the strong downw
shift of the exchange-only PGG formula leads to an ev
larger error in absolute terms than the underestimation
dynamic exchange and correlation effects in both the ALD
and RPA. The hybrid BPG formula, which combines t
PGG and ALDA parametrizations, profits from a partial ca
cellation of errors but improves only marginally upon PG
In Fig. 4 we again show the plasmon energy as a function
the density forq51.2qc .

Due to decay into electron-hole pairs in the damped
gime, the plasmon energy acquires a nonzero imaginary
also displayed in Fig. 2, whose inverse is proportional to
lifetime. As a general rule we find that all kernels yield t
same quality of approximation for the imaginary part as th
do for the real part of the plasmon energy. At small wa
vectors, as discussed above, static kernels predict a vanis
imaginary part, which corresponds to an unphysical infin
lifetime. This artifact results from modellingf xc as a purely
real quantity by evaluating it atv50. In fact, the exact
kernel has a finite imaginary part at nonzero frequenc
which for small wave vectors is related to the multipair co
ponent of the susceptibility according to30

Im f xc~q,v!'2
v4

vp
4 @v~q!#2 Im xmp~q,v!. ~17!

FIG. 3. Behavior of the plasmon energy as a function of
density evaluated atq50.5qc , whereqc indicates the critical wave
vector corresponding to the onset of damping due to electron-
pair excitations in the RPA.
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Such multipair decay channels are ignored in the RPA
related schemes, which is ultimately the reason for th
qualitatively wrong behavior. Mermin’s modification of th
Lindhard dielectric function avoids the problem of infini
lifetimes,31 but the correction based on relaxation times
introduced in a phenomenological manner that makes it
suitable forab initio calculations. In this study only the dy
namic RA parametrization correctly predicts a finite plasm
lifetime over the entire frequency range. However, outs
the electron-hole pair continuum the imaginary part of t
plasmon energy is several orders of magnitude smaller t
the real part and hence not discernible in the plot.

The good agreement between the static CDOP param
zation on the one hand and the dynamic RA result on
other, over a large wave vector and density interval indica
that the frequency dependence of the kernel plays a w
role for the plasmon dispersion. In contrast, the signific
discrepancy between static approximations like ALDA th
contain the correct long-wavelength limit and others such
PGG, which do not, suggests that a correct parametriza
of the wave vector dependence is crucial. Similar conc
sions concerning the relative importance of the freque
and wave-vector dependence were recently also reported
the correlation energy.18 This was not entirely surprising
however, because a frequency analysis18 reveals that the
dominant contribution to the energy in any case comes fr
the low-frequency limit, which is, by design, contained co
rectly in all static approximations.

To emphasize the error that may arise from an inapp
priate kernel, in Fig. 5 we compare theoretical results
r s54.0 with experimental data for sodium from electro
energy-loss spectroscopy.32 The theoretical curves have bee
shifted rigidly to the experimental value atq50 in order to
account for core-polarization effects not included in th
electron-gas treatment.33 At small wave vectors the RA re
sult is in excellent agreement with the experimental disp
sion. Although the ALDA correctly reproduces the qualit
tive features, its growing deviation from the theoretic
reference curve soon exceeds the experimental error bars
becomes quite pronounced at intermediate wave vect

e

le

FIG. 4. Behavior of the plasmon energy in the region
electron-hole pair excitations atq51.2qc .
6-5
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TATARCZYK, SCHINDLMAYR, AND SCHEFFLER PHYSICAL REVIEW B63 235106
This is even more obvious in the case of PGG. Furtherm
for small wave vectors this parametrization incorrectly p
dicts a negative dispersion that is not observed in Na,
though negative dispersion does occur in heavier alkali m
als, such as Cs.32 The reasons for this anomalous behav
are still controversial.30,33 Obviously, in such situations
poor parametrization may become a serious obstacle for
oretical interpretations. After the onset of damping due
electron-hole pair excitations, the experimental dispers
flattens slightly. As shown in Fig. 2, the theoretical resu
exhibit the same effect, but the unshifted RA and ALD
curves only cross the border of the damped regime at la
critical wave vectors. Hence in Fig. 5 quantitative agreem
cannot be expected for large wave vectors due to the di
ent physical situations. The PGG curve, on the other ha
lies below the RA result and consequently enters the dam
regime at a smaller critical wave vector, but the good agr
ment with the experimental dispersion for large wave vec
in Fig. 5 is clearly fortuitous.

V. SUMMARY

In this paper we have tested several common approxi
tions for the exchange-correlation kernel by examining

FIG. 5. Calculated plasmon dispersion forr s54.0 compared to
experimental data for sodium from electron energy-loss spec
copy ~Ref. 32!. The theoretical curves have been shifted rigidly
the experimental value atq50 in order to account for core
polarization effects not included in this electron-gas treatment.
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plasmon dispersion of the homogeneous electron gas. Fir
all, we have found that the influence of the kernel is inde
significant, giving rise to large differences between the c
culated dispersion curves. The ALDA performs reasona
well, although it underestimates dynamic exchang
correlation effects embodied in the kernel and improves o
little upon the RPA. A better quantitative scheme is, the
fore, desirable. In this respect our results, in particular,
good agreement between the dynamic RA parametriza
and the static CDOP kernel, both of which are presumed
be very accurate, suggest that the neglect of the freque
dependence is of little consequence, giving rise to small
viations only at large wave vectors in the electron-hole p
continuum. The error of the ALDA thus stems largely fro
its local nature, and extensions should focus on a better
scription of the wave-vector dependence. The challenge
this task is illustrated by the fact that some of the explici
nonlocal parametrizations we considered, notably PGG,
tually lead to worse results although they are known to i
prove excitation spectra in small atoms. This apparent pa
dox may be understood by the significance of the lon
wavelength limit for the homogeneous electron gas, wh
determines the leading order of the plasmon dispersion an
contained correctly in the ALDA but not in the PGG kerne
In localized systems such as atoms, on the other hand,
long-wavelength limit is less relevant, whereas dynamic
change effects contained in the PGG kernel may play
important role. This lack of transferability should encoura
specific approximations for solids. The CDOP kernel, whi
is derived from the homogeneous electron gas, seems a
into the right direction, although its performance for re
materials has not been fully explored yet. Finally, we de
onstrated that exchange-correlation kernels optimized
small atoms may lead to quantitative, and occasionally qu
tative, deviations in the plasmon dispersion for solids th
significantly exceed the corresponding experimental er
bars and may affect theoretical interpretations.
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