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We present a general procedure for obtaining progressively more accurate functional expression
the electron self-energy by iterative solution of Hedin’s coupled equations. The iterative process star
from Hartree theory, which gives rise to theGW approximation, is continued further, and an explicit
formula for the vertex function from the second full cycle is given. Calculated excitation energies f
a Hubbard Hamiltonian demonstrate the convergence of the iterative process and provide further st
justification for theGW approximation. [S0031-9007(98)05360-5]
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Much of the modern theory of many-body effects in th
electronic structure of solids relies on a closed set of co
pled integral equations known as Hedin’s equations [
which connect the Green’s functionG of a system of inter-
acting electrons with the self-energy operatorS, the polar-
ization propagatorP, the dynamically screened Coulom
interactionW , and a vertex functionG. Simultaneously
solving Hedin’s equations for a specified external potent
in principle yields the exact Green’s function and quasipa
ticle excitation spectrum without the need of actually ca
culating the many-electron wave function. Unfortunatel
however, the relation between the quantities is not ju
purely numerical but involves nontrivial functional deriva
tives, so that an automated numerical solution is not fe
sible and approximate functional expressions with simp
dependences have to be considered instead. Most calc
tions of quasiparticle excitations in real materials empl
theGW approximation [1], which uses intermediate oper
tors from the first cycle of an iterative solution of Hedin’
equations starting from Hartree theory as a zeroth or
approximation. TheGW approximation neglects diagram
matic vertex corrections both in the polarization propaga
and the self-energy. Its theoretical foundation lies in t
assumption that sufficient convergence has been reac
after the initial cycle, but rigorous evidence has so far be
prevented by the inherent mathematical difficulties asso
ated with a continuation of the iterative process. Som
corroboration stems from the surprisingly good agreem
with experimental spectra for a wide range of semicondu
tors [2,3] and simple metals [4], while more recent studi
of transition metals and their oxides highlighted deficie
cies in the calculated spectra that clearly indicate a la
of convergence for materials with strong electronic corr
lation [5]. TheGW approximation has since often bee
reinterpreted as the first order term in an expansion of
exact self-energy in terms of the screened Coulomb int
action, and considerable effort has been spent to inclu
second order contributions. However, such attempts h
failed to produce a general improvement in numerical a
curacy due to far-reaching cancellation between the ad
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tional terms [6]. In this Letter, we return to the original
spirit of solving Hedin’s equations iteratively and presen
a scheme that generates progressively more accurate fu
tional expressions at arbitrary levels of iteration. Startin
from the Hartree theory, we obtain an explicit formula fo
the vertex function from the second full cycle, which mixes
certain diagrams of different orders in the screened inte
action. As exemplified for a Hubbard Hamiltonian, this
approach indeed yields convergent excitation energies b
yond theGW approximation.

In our notation, the initial zeroth order self-energy
and corresponding Green’s function are labeledSs0d and
Gs0d, respectively. The sequence in which the operato
are obtained during the first iterative cycle then star
with Gs1d, followed by Ps1d, W s1d, Ss1d, and finally Gs1d.
For two reasons the principal mathematical difficulty in
continuing this process towards convergence lies in th
calculation of the vertex function. First, it is defined only
implicitly through the Bethe-Salpeter equation

Gsn11ds1, 2; 3d ­ ds1, 2dds1, 3d

1
Z dSsnds1, 2d

dGsnds4, 5d
Gsnds4, 6d

3 Gsnds7, 5dGsn11ds6, 7; 3d ds4, 5, 6, 7d ,

(1)

with the labels1, 2, . . . each denoting a set of position,
time, and spin variables. While integral equations fo
other operators are readily solved by matrix inversio
in Fourier space, the convolutions in (1) cannot easil
be disentangled, so that the computational expense
prohibitive. Second, it contains the functional derivative
dSsndydGsnd, which is nontrivial because the Green’s
function Gsnd is not explicitly contained inSsnd but only
calculated from it by means of Dyson’s equation

Gsnds8, 9d ­ Gs0ds8, 9d 1
Z

Gs0ds8, 1d

3 DSsnds1, 2dGsnds2, 9d ds1, 2d , (2)
© 1998 The American Physical Society
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where DSsnd ­ Ssnd 2 Ss0d. A numerical treatment of
the vertex function becomes feasible only if the function
derivative is evaluated analytically, and if (1) can b
solved explicitly forGsn11d. In the following we present
a transformation that satisfies both requirements.

All operators relevant in this context contain as the
basic building block the zeroth order Green’s functio
Gs0d. We therefore start by applying the chain rule

dSsnds1, 2d
dGsnds4, 5d

­
Z dSsnds1, 2d

dGs0ds8, 9d
dGs0ds8, 9d
dGsnds4, 5d

ds8, 9d . (3)

The first functional derivative can in principle be evalu
ated at any level of iteration, so we focus on the seco
term. We perform the derivative of (2) with respect t
Gsnd, which yields an integral equation for the four-poin
operatordGs0dydGsnd as shown in diagrammatic form in
Fig. 1(a). This series can be summed using an expa
sion of Dyson’s equation in terms ofGsnd with alternat-
ing signs [Fig. 1(b)]. The explicit solution is given in
Fig. 1(c). Employing Dyson’s equation once more, w
can write this relation more concisely asZ dGs0ds8, 9d

dGsnds4, 5d
Gsnds4, 6dGsnds7, 5dds4, 5d

­ Gs0ds8, 6dGs0ds7, 9d 2
Z

Gs0ds8, 1dGs0ds2, 9d

3
dDSsnds1, 2d
dGsnds4, 5d

Gsnds4, 6dGsnds7, 5dds1, 2, 4, 5d ,

(4)

which still contains functional derivatives of the self
energies. Next we resubstituteDSsnd ­ Ssnd 2 Ss0d and

FIG. 1. The diagrammatic series (a) fordGs0dydGsnd can be
summed using an expansion of Dyson’s equation in the for
(b) and has the explicit solution (c). By adding the firs
two terms on the right-hand side of (d) and applying th
chain rule to the third, we obtain an integral equation (e) th
can be solved by relation to the Bethe-Salpeter equation
n ­ 0. Single and double line arrows indicate the Green
functionsGs0d andGsnd, respectively, the encircledS represents
the self-energy correctionDSsnd ­ Ssnd 2 Ss0d, and the shaded
semicircle the vertex functionGsn11d. Functional derivatives
are labeled explicitly.
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perform the integral with the vertex functionGsn11d as
required by the Bethe-Salpeter equation. These two st
yield the equation shown diagrammatically in Fig. 1(d
We simplify the sum of the first two terms on the righ
hand side using the relation (1) and rewrite the function
derivative in the third by applying the chain rule

dSs0ds1, 2d
dGsnds4, 5d

­
Z dSs0ds1, 2d

dGs0ds8, 9d
dGs0ds8, 9d
dGsnds4, 5d

ds8, 9d . (5)

In this way we finally obtain the integral equation show
in Fig. 1(e), which is closely related to the Bethe-Salpe
equation forn ­ 0. By comparison, we findZ

Gs0ds8, 6dGs0ds7, 9dGs1ds6, 7; 3dds6, 7d

­
Z dGs0ds8, 9d

dGsnds4, 5d
Gsnds4, 6dGsnds7, 5dGsn11ds6, 7; 3d

3 ds4, 5, 6, 7d . (6)

We can now use this identity [7] to sum the diagramma
series in (1) and rewrite it in the alternative form

Gsn11ds1, 2; 3d ­ ds1, 2dds1, 3d 1
Z dSsnds1,2d

dGs0ds4, 5d
Gs0ds4, 6d

3 Gs0ds7, 5dGs1ds6, 7; 3d ds4, 5, 6, 7d . (7)

This expression is remarkably similar to the original in
tegral equation, except that all operators butSsnd on the
right-hand side are replaced by their lowest order equiv
lents. While successive iterations dress each propag
with new sets of diagrams, the identity (6) indicates fa
reaching cancellation between the expansion terms fr
individual propagators, yielding a much simpler expre
sion for the vertex corrections than originally anticipate
The emergence of propagators from the lowest iterat
cycle reduces the numerical expense substantially, as
practice mean-field theories are used as a zeroth order
proximation. In this caseGs0d contains no satellite spec
trum but only a set of robust quasiparticle excitation
The transformation also satisfies our requirements fo
numerical treatment by giving an explicit definition fo
the vertex function and expressing the functional deriv
tive in a way that can be evaluated at higher orders.
the self-consistency limitn ! `, (7) implies a relation
between the exact self-energy and vertex function.

In condensed matter physics, iteration conventiona
starts from Hartree theory as a zeroth order approxim
tion, so thatSs0d ­ 0 and Gs0d ­ GH. Because of the
vanishing self-energy the functional derivative in (1)
identically zero, yielding a trivial vertex function. The
subsequent iteration generates theGW approximation

Ps1ds1, 2d ­ 2iGs0ds1, 2dGs0ds2, 1d , (8)

W s1ds1, 2d ­ ys1, 2d 1
Z

W s1ds1, 3d

3 Ps1ds3, 4dys4, 2dds3, 4d , (9)
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Ss1ds1, 2d ­ iGs0ds1, 2dW s1ds11, 2d , (10)

where in the last equation11 implies that a positive
infinitesimal is added to the time variable.y is the
bare Coulomb interaction. At this level the self-energ
is modeled as the product of the Green’s functionGs0d

and the screened interactionW s1d in the random phase
approximation (RPA). The functional form is reminiscen
of the Fock potential, but the electronic exchange includ
dynamic screening and so reaches beyond the limits
mean-field theories. Using this definition of the self
energy, it is easy to verify that its derivative with respec
to the zeroth order Green’s function is given by

dSs1ds1, 2d
dGs0ds4, 5d

­ ids1, 4dds2, 5dW s1ds1, 2d

1 Gs0ds1, 2d fW s1ds1, 5dW s1ds4, 2d

1 W s1ds1, 4dW s1ds5, 2dgGs0ds5, 4d . (11)

The corresponding vertex functionGs2d that underlies the
second iterative cycle is shown in diagrammatic form i
Fig. 2. This finite set of vertex corrections is distinct from
that obtained through expansion by orders of the screen
interaction in that it comprises selected terms which a
of zeroth, first, and second order inW s1d.

Although the self-energy (10) was obtained by iteratio
starting from Hartree theory, in practice it is more ofte
evaluated using a zeroth order Green’s functionGs0d ­
GDFT from a previous density-functional calculation with
Ss0d ­ V XC equal to the exchange-correlation potentia
Although this substitution violates the original spirit o
the iterative scheme, physical arguments suggest only
small deviation to the propagators properly derived fro
density-functional theory as a zeroth order approximatio
[2]. Since the form ofSs1d remains identical to that
considered before, its derivative is still given by (11)
The nontrivial first order vertexGs1d required to evaluate
(7) was derived in Ref. [8] and indeed found to hav
insignificant numerical impact on the band gap of silicon
It is probably also negligible in the second iteration o
such a calculation, so that the expression shown in Fig
may still be used forGs2d.

In the following we will supplement our discussion
with the numerical investigation of a system of strongl
correlated electrons that explores the effects of the ve
tex correctionGs2d. As the evaluation of higher order di-
agrams for real materials would demand computation
resources beyond the scope of the present study, we c

FIG. 2. Vertex correctionGs2d to theGW self-energy from the
second iterative cycle of Hedin’s equations. Single line arrow
and wiggly lines represent the zeroth order Green’s functio
Gs0d and the screened Coulomb interactionW s1d in the random
phase approximation, respectively.
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sider a two-dimensional square array of3 3 3 atoms de-
scribed by the Hubbard Hamiltonian

H ­
X
R,s

eRn̂Rs 2 t
X

kR,R0l,s
c

y
RscR0s 1 U

X
R

n̂R"n̂R# .

(12)

The model captures the essential physical features of
terials with strong electronic correlation such as the tran
tion metals, which are known to be inadequately describ
in the GW approximation [5], but is simple enough t
allow the calculation of full optical spectra rather tha
just individual matrix elements as in Refs. [6,8]. Her
c

y
Rs and cRs are the creation and annihilation oper

tors for an electron at siteR with spin s, and we de-
fine n̂Rs ­ c

y
RscRs . The notationkR, R0l implies a sum

over nearest neighbors only. This model was introduc
in Ref. [9] to compare variations of theGW approxima-
tion, and its performance within the first iterative cyc
of Hedin’s equations is thus well understood. The sing
band of the cluster can accommodate up to 18 electro
we consider a system of 16 electrons. The high fractio
band filling resembles that of thed orbitals in the late
transition metals. Although we use open boundary co
ditions, the on-site energieseR are chosen in such a way
as to yield uniform occupation numbers in the Hartr
approximation, as expected in infinite systems. For ref
ence, the on-site energy is2t for corner sites,t on edge
sites, and0 in the center of the cluster. We use mediu
interactionU ­ 4t and sett ­ 1.

In Fig. 3 we compare the exact screened interactionW
with its RPA counterpart from the first iteration of Hedin’
equations, in which the polarization propagator takes

FIG. 3. The exact screened interaction compared to the R
an expansion of the polarization to first order inW , and the
second iteration of Hedin’s equations. The latter yields mo
accurate plasmon energies and a qualitatively correct sate
spectrum. Inset: The shift in plasmon energies is due to
explicit vertex function and remains when the diagrams a
evaluated withGs0d rather thanGs1d, while the satellite peaks
result from internal dressed propagators.
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form (8), and with the second iteration. Here

Ps2ds1, 2d ­ 2i
Z

Gs1ds2, 3dGs1ds4, 2dGs2ds3, 4; 1d ds3, 4d .

(13)
As in Ref. [9], Gs1d was obtained from a shifted zeroth
order Green’s function in order to avoid problems wit
differing chemical potentials in the perturbation serie
The figure shows the diagonal matrix element for th
central site of the cluster, which because of the chos
geometry corresponds most closely to the screening
extended systems. Other matrix elements exhibit simi
behavior, and the displayed curves are thus representat
For comparison, we also show results from an expansi
of the polarization propagator beyond the RPA to firs
order in W s1d. This approach is qualitatively distinct in
that only the vertex function becomes dressed, while
the iterative scheme bothG and the internal propagators
G in (13) are simultaneously updated.

The exact screening is dominated by a pair of stron
plasmon peaks at 3 and just under 6 eV, but thr
satellites at higher energy can be identified. Whi
qualitatively acceptable, the RPA as a first approximatio
ignores the satellite spectrum and places the plasmons
high by about 1 eV. The latter deficiency is somewh
improved by the further expansion of the polarizatio
propagator, but the description of the satellites remai
poor and is not even qualitatively correct. This is in lin
with previous observations of far-reaching cancellatio
between the additional terms [6].

In comparison, the second iteration is more effective
shifting the plasmon energies, particularly for the lowe
peak, and also yields a better low-frequency limit fo
the static dielectric function. Furthermore, we observ
the emergence of a satellite spectrum that is in go
agreement with the exact curve concerning the numb
and position of features. Their exaggerated spect
weight can be traced to the satellites in theGW Green’s
function, which for this model are overestimated by
similar factor [9]. To isolate the effect of the vertex
function, we have also evaluated (13) usingGs0d rather
than Gs1d. The resultant dielectric function, displayed
in the inset in Fig. 3, retains the full shift in plasmon
energies but no satellites, which are due to the intern
dressed propagators. Incidentally, the graph also sho
part of the apparent plasmon spectral weight to ha
moved across the real axis. This incorrect analyt
structure is an unfortunate but common consequence
nontrivial vertex corrections and due to the occurrenc
of higher order poles inPs2d. The same effect is well
documented for the expansion in terms of the screen
Coulomb interaction [10], where it is also observed i
h
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the present calculation. However, we have confirmed t
the integral of the spectral function2ImW s2dsvdyp over
the positive half-axis is correctly greater than zero f
all diagonal matrix elements, and as intervals of negat
spectral weight are few and embedded between featu
with correct analytic behavior, they do not domina
convolutions in the later course of the iteration.

In summary, we have presented a scheme for the s
tematic construction of vertex corrections by the iter
tive solution of Hedin’s coupled equations, and we ha
given explicit formulas for the propagators beyond th
GW approximation. Numerical results for a model o
strongly correlated electrons indicate that this method n
only yields improved excitation energies but is also mo
powerful than a comparable expansion by orders of t
screened Coulomb interaction, in particular, by gener
ing a superior satellite spectrum. On a fundamental lev
these findings provide the first direct evidence of conve
gence of the iterative approach and thus give further th
retical justification for theGW approximation.

This work was supported by the Engineering an
Physical Sciences Research Council. One of the
thors (A. S.) acknowledges additional funding from th
Deutscher Akademischer Austauschdienst under its H
III scheme, the Studienstiftung des deutschen Volkes,
Gottlieb Daimler- und Karl Benz-Stiftung, and Pembrok
College Cambridge.

*Electronic address: as10031@phy.cam.ac.uk
†Electronic address: rwg3@york.ac.uk

[1] L. Hedin, Phys. Rev.139, A796 (1965).
[2] M. S. Hybertsen and S. G. Louie, Phys. Rev. Lett.55, 1418

(1985); Phys. Rev. B34, 5390 (1986).
[3] R. W. Godby, M. Schlüter, and L. J. Sham, Phys. Re

Lett. 56, 2415 (1986); Phys. Rev. B35, 4170 (1987);37,
10 159 (1988).

[4] J. E. Northrup, M. S. Hybertsen, and S. G. Louie, Phy
Rev. Lett.59, 819 (1987); Phys. Rev. B39, 8198 (1989).

[5] F. Aryasetiawan, Phys. Rev. B46, 13 051 (1992); Phys.
Rev. Lett.74, 3221 (1995).

[6] P. A. Bobbert and W. van Haeringen, Phys. Rev. B49,
10 326 (1994).

[7] There is an alternative method of proving (6) based
the identityGsn11d ­ 2dGsnd21 ydV, which can be shown
to satisfy (1).V here denotes the sum of the external an
Hartree potentials.

[8] R. Del Sole, L. Reining, and R. W. Godby, Phys. Rev.
49, 8024 (1994).

[9] C. Verdozzi, R. W. Godby, and S. Holloway, Phys. Re
Lett. 74, 2327 (1995).

[10] P. Minnhagen, J. Phys. C7, 3013 (1974);8, 1533 (1975).
1705


