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We present a general procedure for obtaining progressively more accurate functional expressions for
the electron self-energy by iterative solution of Hedin’s coupled equations. The iterative process starting
from Hartree theory, which gives rise to tli&% approximation, is continued further, and an explicit
formula for the vertex function from the second full cycle is given. Calculated excitation energies for
a Hubbard Hamiltonian demonstrate the convergence of the iterative process and provide further strong
justification for theGW approximation. [S0031-9007(98)05360-5]

PACS numbers: 71.15.—-m, 71.20.—b, 71.45.Gm

Much of the modern theory of many-body effects in thetional terms [6]. In this Letter, we return to the original
electronic structure of solids relies on a closed set of couspirit of solving Hedin’s equations iteratively and present
pled integral equations known as Hedin's equations [1]a scheme that generates progressively more accurate func-
which connect the Green'’s functi@n of a system of inter-  tional expressions at arbitrary levels of iteration. Starting
acting electrons with the self-energy operaigithe polar-  from the Hartree theory, we obtain an explicit formula for
ization propagatoP, the dynamically screened Coulomb the vertex function from the second full cycle, which mixes
interactionW, and a vertex functiod’. Simultaneously certain diagrams of different orders in the screened inter-
solving Hedin’s equations for a specified external potentiahction. As exemplified for a Hubbard Hamiltonian, this
in principle yields the exact Green'’s function and quasiparapproach indeed yields convergent excitation energies be-
ticle excitation spectrum without the need of actually cal-yond theGW approximation.
culating the many-electron wave function. Unfortunately, In our notation, the initial zeroth order self-energy
however, the relation between the quantities is not jusand corresponding Green’s function are labe¥# and
purely numerical but involves nontrivial functional deriva- G, respectively. The sequence in which the operators
tives, so that an automated numerical solution is not feaare obtained during the first iterative cycle then starts
sible and approximate functional expressions with simplewith 'V, followed by PV, w1 3 and finally GV,
dependences have to be considered instead. Most calculger two reasons the principal mathematical difficulty in
tions of quasiparticle excitations in real materials employcontinuing this process towards convergence lies in the
the GW approximation [1], which uses intermediate opera-calculation of the vertex function. First, it is defined only
tors from the first cycle of an iterative solution of Hedin’s implicitly through the Bethe-Salpeter equation
equations starting from Hartree theory as a zeroth order
approximation. Th& W approximation neglects diagram- T*1(1,2;3) = §(1,2)8(1,3)
matic vertex corrections both in the polarization propagator

and the self-energy. Its theoretical foundation lies in the MG(”)({ 6)

assumption that sufficient convergence has been reached 6GM(4,5)

after the initial cycle, but rigorous evidence has so far been x G"(7,5 " V(6,7,3)d(4,5,6,7),
prevented by the inherent mathematical difficulties associ- 1)

ated with a continuation of the iterative process. Some

corroboration stems from the surprisingly good agreemenwith the labelsl,2,... each denoting a set of position,
with experimental spectra for a wide range of semiconductime, and spin variables. While integral equations for
tors [2,3] and simple metals [4], while more recent studiether operators are readily solved by matrix inversion
of transition metals and their oxides highlighted deficien-in Fourier space, the convolutions in (1) cannot easily
cies in the calculated spectra that clearly indicate a lacke disentangled, so that the computational expense is
of convergence for materials with strong electronic correprohibitive. Second, it contains the functional derivative
lation [5]. TheGW approximation has since often been 8% /8G™, which is nontrivial because the Green’s
reinterpreted as the first order term in an expansion of théunction G is not explicitly contained i but only
exact self-energy in terms of the screened Coulomb intercalculated from it by means of Dyson’s equation

action, and considerable effort has been spent to include

second order contributions. However, such attempts have ~ G"(8,9) = G*(8,9) + fG(O)(S, 1)

failed to produce a general improvement in numerical ac-

curacy due to far-reaching cancellation between the addi- X AZW(1,2)G"(2,9)d(1,2), 2
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where AY" = 3 — 50 A numerical treatment of perform the integral with the vertex functioi”*! as

the vertex function becomes feasible only if the functionalrequired by the Bethe-Salpeter equation. These two steps

derivative is evaluated analytically, and if (1) can beyield the equation shown diagrammatically in Fig. 1(d).

solved explicitly forT'®*1_ In the following we present We simplify the sum of the first two terms on the right-

a transformation that satisfies both requirements. hand side using the relation (1) and rewrite the functional
All operators relevant in this context contain as theirderivative in the third by applying the chain rule

basic building block the zeroth order Green’s function

0 0 0
G, We therefore start by applying the chain rule 52E ))(1’2) — 52E0))(1’2) 5G: ))(879) 48,9). (5)
8G"(4,5) 8G0(8,9) 6G"(4,5) In this way we finally obtain the integral equation shown

The first functional derivative can in principle be evalu-in Fig. 1(e), which is closely related to the Bethe-Salpeter
ated at any level of iteration, so we focus on the secon@duation forn = 0. By comparison, we find

term. We perform the derivative of (2) with respect to

G, which yields an integral equation for the four-point fG(O)(&ﬁ)G(O)(I 9)I'(6,7;3)d(6,7)
operator6G?/6G™ as shown in diagrammatic form in

) ! . . (0)
Fig. 1(a). This series can be summed using an expan- _ [ 8G"(8.9) GM 4 6T 5T+(6.7: 3
sion of Dyson’s equation in terms @ with alternat- 8GM(4,5) “.6) 7.5) (6,7:3)
in_g signs [Fig. 1(Iq)]. The e,xplicit S(_)Iution is given in X d(4,5,6,7). (6)
Fig. 1(c). Employing Dyson’s equation once more, we
can write this relation more concisely as We can now use this identity [7] to sum the diagrammatic
5G0(8,9) series in (1) and rewrite it in the alternative form
SGT@ G"(4,6)G"(7,5)d(4,5) 53 (1,2)
’ reD(1,2:3) = 8(1,2)8(1,3) + | g5 G0@.6)
= G9(8,6)G(7,9) — ] GO(8,1)6(2,9) 8G04,5)
SASO(1.2) x G0(7,511(6,7;3)d(4,5,6,7). (7)
5G(4 ’5) G"(4.6)G"(7,5)d(1,2,4.5), This expression is remarkably similar to the original in-

(4) tegral equation, except that all operators Bt on the
right-hand side are replaced by their lowest order equiva-
lents. While successive iterations dress each propagator
with new sets of diagrams, the identity (6) indicates far-
reaching cancellation between the expansion terms from

which still contains functional derivatives of the self-
energies. Next we resubstituteS® = 3@ — 30 gnd

(a)8 3G© 4_ * _ <® _[eAZ™] 5G© individual propagators, yielding a much simpler expres-
9 3G® 5 . . ~18G® =5 3G sion for the vertex corrections than originally anticipated.
The emergence of propagators from the lowest iterative
b) >— = == — == + >CO=>C=> x cycle. reduces t_he nume(ical expense substantially, as in
practice mean-field theories are used as a zeroth order ap-
8rsgor4 . <3 =< SAT® proximation. In this cas&® contains no satellite spec-
© |sgm| = — - + — _|sc™ trum but only a set of robust quasiparticle excitations.
9 5 o > * > The transformation also satisfies our requirements for a
numerical treatment by giving an explicit definition for
(d)S SG("):%?’: _ 8}:(")%4_ 8):(‘)):% the vertex function and expressing the functional deriva-
el d3G™ QI tive in a way that can be evaluated at higher orders. In
the self-consistency limiz — o, (7) implies a relation
ST~ OTFST) OIS between the exact self-energy and vertex function.
(e) Si(,,) 3= + §E—(0) —5% % In condensed matter physics, iteration conventionally
3G 4 3G |16G 7 ;
9 starts from Hartree theory as a zeroth order approxima-

FIG. 1. The diagrammatic series (a) f6G/8G™ can be fion, SO that>® = 0 and G = GH. Because of the
summed using an expansion of Dyson’s equation in the formvanishing self-energy the functional derivative in (1) is
(b) and has the explicit solution (c). By adding the firstidentically zero, yielding a trivial vertex function. The

two terms on the right-hand side of (d) and applying thesyhsequent iteration generates €& approximation
chain rule to the third, we obtain an integral equation (e) that

can be solved by relation to the Bethe-Salpeter equation for PY(1,2) = -ic"(1,2)6"(2,1), (8)
n = 0. Single and double line arrows indicate the Green’s

functionsG© andG", respectively, the encirclell represents 1) 1)

the self-energy correction"”) = 3¢ — 3© and the shaded WH(1,2) = v(1,2) + ] wH(1,3)

semicircle the vertex functiod*!). Functional derivatives

are labeled explicitly. x PW(3,4)v(4,2)d(3,4), 9)
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sW(1,2) =ic20,2what,2), (10)  sider a two-dimensional square array3o 3 atoms de-

_ . o - scribed by the Hubbard Hamiltonian
where in the last equation™ implies that a positive

infinitesimal is added to the time variablev is the ~ H = > eriirg — 1 D ChoCrio + U ariig, -
bare Coulomb interaction. At this level the self-energy R0 RR),0 R

is modeled as the product of the Green’s functiGf? (12)
and the screened interactighi") in the random phase

approximation (RPA). The functional form is reminiscent | '® Model captures the essential physical features of ma-

of the Fock potential, but the electronic exchange includegerials with strong electronic correlation such as the transi-
dynamic screening and so reaches beyond the limits don metals, which are known to be |_nad_equately described
mean-field theories. Using this definition of the self-IN the GW approximation [5], but is simple enough to

energy, it is easy to verify that its derivative with respect?"ow th_e. calculatiqn of full optical' spectra rather than
to the zeroth order Green'’s function is given by just individual matrix elements as in Refs. [6,8]. Here,

cf;(, and cgr, are the creation and annihilation opera-

(1 . . .
W =i8(1,4)8(2,5w1(1,2) tors for an electron at sitR with spin o, and we de-
6G(4,5) fine ir, = c;r{(,cRU. The notation(R, R’) implies a sum
+ GO1,2) [(w(1,5wV@4,2) over nearest neighbors only. This model was introduced

in Ref. [9] to compare variations of th@W approxima-
tion, and its performance within the first iterative cycle
of Hedin’s equations is thus well understood. The single
band of the cluster can accommodate up to 18 electrons;
we consider a system of 16 electrons. The high fractional
baand filling resembles that of thé orbitals in the late
ransition metals. Although we use open boundary con-
ditions, the on-site energies; are chosen in such a way
as to yield uniform occupation numbers in the Hartree
approximation, as expected in infinite systems. For refer-

+ w1, 49wD(5,2)]1695,4). (11)

The corresponding vertex functidif? that underlies the
second iterative cycle is shown in diagrammatic form in
Fig. 2. This finite set of vertex corrections is distinct from
that obtained through expansion by orders of the screen
interaction in that it comprises selected terms which ar
of zeroth, first, and second order WV,

Although the self-energy (10) was obtained by iteration

starting from Hartree theory, in practice it is more Oﬂenence, the on-site energy 25 for comer sites; on edge

evaluated using a zeroth order Green's funcief} = sites, and) in the center of the cluster. We use medium
GPFT from a previous density-functional calculation with > ~>" '

30 = yXC equal to the exchange-correlation potential.'ntﬁ]r?:ﬁtlog(]w:C4ér§n§r:et?e:e)l(éct screened interackion
Although this substitution violates the original spirit of 9- P

the iterative scheme, physical arguments suggest only \gith its RPA counterpart from the first iteration of Hedin's

small deviation to the propagators properly derived fromequatlons, in which the polarization propagator takes the

density-functional theory as a zeroth order approximation
[2]. Since the form of3() remains identical to that

considered before, its derivative is still given by (11). 6.0 :
The nontrivial first order verteX' V) required to evaluate n — exact
(7) was derived in Ref. [8] and indeed found to have | o eR)Z)';nsionf
insignificant numerical impact on the band gap of silicon. M S RN iteration
It is probably also negligible in the second iteration of i i N
such a calculation, so that the expression shown in Fig. 2 - 4.0 r i o
; ) 1.0 ; :

may still be used fol"?. = i " oxact

In the following we will supplement our discussion & 5, | { £ [
with the numerical investigation of a system of strongly , §
correlated electrons that explores the effects of the ver- Y Eo.
tex correction?. As the evaluation of higher order di- 2.0 N !
agrams for real materials would demand computational —0-50 5 : 10 1‘5
resources beyond the scope of the present study, we con- 14 s - -

0 5

%=« + g + m 4 m FIG. 3. The exact screened interaction compared to the RPA,
an expansion of the polarization to first order W, and the
second iteration of Hedin’s equations. The latter yields more

FIG. 2. Vertex correction’® to theGW self-energy from the accurate plasmon energies and a qualitatively correct satellite
second iterative cycle of Hedin’s equations. Single line arrowsspectrum. Inset: The shift in plasmon energies is due to the
and wiggly lines represent the zeroth order Green’s functiorexplicit vertex function and remains when the diagrams are
G and the screened Coulomb interactiBft" in the random evaluated withG© rather thanG", while the satellite peaks

phase approximation, respectively. result from internal dressed propagators.
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form (8), and with the second iteration. Here the present calculation. However, we have confirmed that
@ 0 M @ the integral of the spectral functionImW®(w)/ 7 over
PP(1,2) = =i [GT(2,3)G7(4,2)"7(3,4,1)d(3,4). the positive half-axis is correctly greater than zero for

all diagonal matrix elements, and as intervals of negative

(13) spectral weight are few and embedded between features
As in Ref. [9], G was obtained from a shifted zeroth with correct analytic behavior, they do not dominate
order Green’s function in order to avoid problems with convolutions in the later course of the iteration.
differing chemical potentials in the perturbation series. |n summary, we have presented a scheme for the sys-
The figure shows the diagonal matrix element for thetematic construction of vertex corrections by the itera-
central site of the cluster, which because of the chosefive solution of Hedin’s coupled equations, and we have
geometry corresponds most closely to the screening igiven explicit formulas for the propagators beyond the
extended systems. Other matrix elements exhibit similaGw approximation. Numerical results for a model of
behavior, and the displayed curves are thus representativérongly correlated electrons indicate that this method not
For comparison, we also show results from an expansiobnly yields improved excitation energies but is also more
of the polarization propagator beyond the RPA to firstpowerful than a comparable expansion by orders of the
order in W, This approach is qualitatively distinct in screened Coulomb interaction, in particular, by generat-
that only the vertex function becomes dressed, while inng a superior satellite spectrum. On a fundamental level,
the iterative scheme bothi and the internal propagators these findings provide the first direct evidence of conver-
G in (13) are simultaneously updated. gence of the iterative approach and thus give further theo-

The exact screening is dominated by a pair of strongetical justification for theGW approximation.

plasmon peaks at 3 and just under 6 eV, but three This work was supported by the Engineering and
satellites at higher energy can be identified. Whilephysical Sciences Research Council. One of the au-
qualitatively acceptable, the RPA as a first approximationthors (A.S.) acknowledges additional funding from the
ignores the satellite spectrum and places the plasmons t@eutscher Akademischer Austauschdienst under its HSP
high by about 1 eV. The latter deficiency is somewhaf|| scheme, the Studienstiftung des deutschen Volkes, the

improved by the further expansion of the polarizationGottlieb Daimler- und Karl Benz-Stiftung, and Pembroke
propagator, but the description of the satellites remaingollege Cambridge.

poor and is not even qualitatively correct. This is in line
with previous observations of far-reaching cancellation
between the additional terms [6].
In comparison, the second iteration is more effective in
shifting the plasmon energies, particularly for the lower :EleCtroni.C address: as10031@phy.cam.ac.uk
peak, and also yields a better low-frequency limit for " E'e;'?gé)i'r‘]'Cp?}‘;‘iresz;lr‘é"g33%’8”(‘1-3%;)"
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