
Fakultät für Elektrotechnik, Informatik und Mathematik
Arbeitsgruppe Codes und Kryptographie

A Group Signature Scheme from Flexible Public Key
Signatures and Structure-Preserving Signatures on

Equivalence Classes

Bachelor’s Thesis
in Partial Fulfillment of the Requirements for the

Degree of

Bachelor of Science

by
Patrick Schürmann

submitted to:
Prof. Dr. Johannes Blömer

and
Prof. Dr. Christian Scheideler

Paderborn, October 22, 2020

Contents

1 Introduction 1

2 Current state of research 3
2.1 Our work . 8

3 Definitions and notation 9
3.1 Bilinear groups . 10
3.2 Group signature schemes . 11
3.3 Security of group signature schemes . 13
3.4 Signatures with flexible public keys . 17
3.5 Structure-preserving signatures on equivalence classes 24
3.6 An important equivalence relation . 26
3.7 Changes to original definitions . 27

3.7.1 Full-traceability definition by Bellare et al. 28
3.7.2 Full-anonymity definition by Backes et al. 29

4 Group signature by Backes et al. 31
4.1 Definition . 31
4.2 Correctness . 36
4.3 Changes to original work . 39

5 Security of group signature by Backes et al. 43
5.1 Full-traceability . 43
5.2 Full-anonymity . 55
5.3 Original approaches . 73

6 Future work 77

Bibliography 79

A Formal definition of game sequence for full-anonymity proof 81

iii

1 Introduction
Digital signatures are one of the most important primitives in modern cryptography,
since they are needed to ensure message integrity and authenticity which makes them
complementary to encryption schemes which preserve confidentiality of messages. How-
ever, if it comes to hiding the signers identity, regular digital signature schemes are
inadequate since they are constructed in a way that everyone in possession of the signers
public key can verify that a certain signature was produced by that very signer. This is
not always a desired property, because use cases where the signer of a message wants to
stay anonymous clearly exist, e.g. leaking secret information while ensuring its integrity
and authenticating it. This motivates the idea of signatures that provide the usual mes-
sage integrity as well as some level of authenticity but at the same time do not reveal
the signers identity.

An example of a primitive with these properties are the so-called ring signatures which
were first introduced by Rivest et al. [15]. It allows an user to choose any set of possible
signers that includes himself and sign any message using his own secret key and all
signers public keys. Since public keys are available to everybody who is willing to do a
bit of research, this means that a signature can be created without the help and therefore
without knowledge or approval of the signers from the chosen set. In addition, no specific
public key is needed to verify a given ring signature for a message, so the set of public
keys which are part of the signature is the only information about the signer that the
verifier has. This concludes that the original signer remains hidden among the set of
possible signers he chose. It must be stressed here that ring signatures do not require
any setup before signatures can be made (only the public keys used for signing must be
available in a public key infrastructure), so with the anonymity of the signer pointed
out above this yields that after a signature was created, there is no way to find out
who of the possible signers created that very signature. It is clear to see that use cases
exist where the signer’s anonymity needs to be revoked, for example consider a company
member leaking confidential information and authenticating it with a ring signature.
This motivates the idea of a primitive where a certain entity can efficiently compute the
identity of a signer who created a given signature for a given message. An example for
such a primitive are group signatures which were first introduced by Chaum and Van
Heyst [9].

In the setting of a group signature scheme, there exists a group of n members and
one group manager with every member having its own secret signing key. These keys,
alongside with the group public key and group manager secret key are generated by
the group manager in a separate setup phase. So in contrast to ring signatures, group
signature schemes need dedicated preparation and explicit creation of a group, therefore
every group member knows that all the others can produce signatures that the entire

1

1 Introduction

group can be accounted for. This implies a certain level of consent of every group member
for every signature another group member might produce.

Using the group signing algorithm and their personal secret key, all members can
produce a signature which can be checked for validity under the group public key. Thus,
if a valid message-signature-pair is seen, all someone can learn from it is that some
member of the group signed this message but not who did exactly. This gives signers
using the group signature algorithm anonymity among the group members (similiar level
of anonymity than granted by ring signatures) which regular digital signature schemes
cannot provide. Added to that, if a group member breaks down, all other group members
can nevertheless use the group signing algorithm to produce signatures, since just like
in a ring signature scheme, they can do so without the help of any other group member.
In contrast to ring signatures, an open algorithm which is part of the group signature
scheme allows the group manager to trace back signatures to their creator by returning
his identity on input a signature and the group manager secret key. This means that
if needed, the group manager can always revoke the anonymity of the signer of any
signature.

2

2 Current state of research

In this chapter, we will summarize the current state of research on group signatures,
signatures with flexible public key (SFPK) and structure-preserving signatures on equiv-
alence classes (SPS-EQ), which are the central primitives for our work in this thesis. We
will also explain the three different models of group signatures and give examples of
concrete group signature schemes. With that done we will cover the relevant security
notions for SFPK, SPS-EQ and group signature schemes. This chapter concludes with
a sketch of our contribution in this thesis (see Sect. 2.1).

Different models of group signatures Three different models of group signature schemes
exist which are static, partially dynamic and fully dynamic group signatures. The main
difference between these three models is the way the list of group members can change
over time as well as how the group authorities are split up into multiple entities. In
a static group signature scheme the number of members of the group does not change
so everything concerning the group is set up during the key generation by the group
manager. The formal state-of-the-art definition of this model was given by Bellare et al.
and can be found in [5] together with the respective attacker model and security defini-
tions. The formal model of partially dynamic group signature schemes was introduced
by Bellare, Shi and Zhang in [6]. In contrast to static group signature schemes, these
schemes allow for users to become a part of an already-existing group by executing the
join algorithm, which in general is a protocol with the two group authorities. One of
these authorities is responsible for key generation and the other one for the opening of
signatures. So we see that unlike in static group signature schemes, there is not only a
single group authority anymore, which allows for more fine-grained security notions for
partially dynamic group signature schemes with only one of the two tasks key generation
and opening being done maliciously. The third variant, the so-called fully dynamic group
signature schemes also allow revocation of group membership by the group authorities,
which makes them the group signature model that is most applicable in practice. The
formal state-of-the-art model for this was introduced by Bootle et al. in [8].

The static group signature scheme by Backes et al. Backes et al. [3] provided a
generic scheme for the construction of static group signature schemes which relies on a
new cryptographic primitive they also introduced, the so-called signatures with flexible
public keys (SFPK). We will refer to this scheme by gFPK-GS. SFPK itself is inde-
pendent from group signature schemes but can be used to further enhance anonymity
of group members in such a scheme. Backes et al. [3] combine SFPK with structure-
preserving-signatures on equivalence classes (SPS-EQ) originally presented by Slamanig

3

2 Current state of research

and Hanser [12] to define gFPK-GS. The basic idea of SFPK is to divide the key
space into the equivalence classes of an equivalence relation R and to have algorithms
ChgPKSFPK and ChgSKSFPK to change public and secret key to another representative of
the same equivalence class using some randomness r. If the same randomness r is used
to change both the public and secret key of a key pair, the key pair stays valid, meaning
that all signatures created with the altered secret key are valid under the altered public
key. Apart from unforgeablity notions, another security property called class-hiding is
relevant for signatures with flexible public key. Class-hiding means that given two dif-
ferent public keys, it is hard to tell whether these keys belong to the same class (thus
are related) or not. However, using the check-representative algorithm ChkRepSFPK, one
can easily verify whether a given public key pk is related to another public key pk′ whose
equivalence class is encoded by a trapdoor τ . ChkRepSFPK takes as input pk and τ .

Structure-preserving signatures on equivalence classes (SPS-EQ) is a primitive that is
complementary to the later-introduced signatures with flexible public key, more precisely,
instead of the key space, the message space is divided into equivalence classes. Using the
change representative algorithm ChgRepSPS on a message-signature-pair (m, σ), one can
easily obtain another representative of the same class as m and at the same time adjust
the signature σ so that the new message-signature-pair is valid under the same public
key as the original one. On the other hand, a class-hiding property that is analogous to
the one for SFPK is defined for SPS-EQ. It means that given two messages it is hard to
decide whether they belong to the same equivalence class of a relation R or not.

Each group member’s secret key in gFPK-GS consists of the SFPK key pair of that user
and a certificate for the public key from that key pair, which is an SPS-EQ signature.
To sign a message with gFPK-GS the user first randomizes his SFPK key pair using
ChgPKSFPK and ChgSKSFPK, obtaining a new representative of the equivalence class
of his original SFPK public key and a fitting SFPK secret key. He then computes a
new certificate for the new public key using ChgRepSPS from the SPS-EQ scheme. The
resulting signature is a signature of the message, the new public key and its certificate
under the new SFPK secret key.

For gFPK-GS to be secure in the static model of Bellare et al. [5], strong unforgeability
of the SFPK and unforgeability of the SPS-EQ (it must be stressed that even without
the word strong, these would be different notions), the respective class-hiding property
for both the SFPK and the SPS-EQ as well as perfect adaptation of signatures of the
SPS-EQ are required. According to Backes et al. [3], gFPK-GS has a shorter signature
size than the state-of-the-art scheme introduced by Libert et al. in [13] and can be
instantiated from standard assumptions.

Other examples of construction of group signatures When it comes to construction
of concrete group signature schemes, various alternatives to proceed exist. In [5], Bellare
et al. introduced a static group signature scheme that is based on public key encryption
and zero-knowledge proofs. When a group member signs a message using the group
sign algorithm, it first signs it alongside with identity information using a regular digital
signature scheme, then encrypts that signature using a public key encryption scheme and

4

the group public key and finally outputs the resulting ciphertext alongside with a zero-
knowledge proof that the ciphertext contains what it is supposed to do. In detail this
means that it proves knowledge of a certificate on the signers public key (created using
a secret key only known to the group manager during the setup phase, so knowledge of
this certificate can be seen as a proof of the signers identity and group membership) as
well as knowledge of a valid signature of the message to be signed under that very public
key. We refer to this type of group signature construction as sign-and-encrypt-and-prove
group signatures. We see that the encryption in above scheme is done in order to hide
the identity of the signer. It is noticeable that in the scheme gFPK-GS by Backes et al.
[3], the class-hiding property of the SFPK already makes a public key in a specific group
signature unlinkable to any group member, which means that no additional encryption
is needed.

The partially dynamic scheme proposed by Pointcheval and Sanders in [14], which is
based on randomizable signatures can be seen as a way to construct partially dynamic
group signature schemes which we will refer to as commit-and-prove group signatures.
To join a group in their scheme, a user commits himself on his secret key sk and obtains
a signature σ on sk by starting a protocol with the group manager in the course of which
he only reveals gsk and proves knowledge of sk. To sign a message using the group sign
algorithm, he randomizes the signature σ on sk to a new valid signature σ′ on sk and
then adds it to the actual signature together with a proof of knowledge for sk.

An example for a fully dynamic group signature is the scheme proposed by Backes et al.
in [4] which is based on SFPK and SPS-EQ like their static scheme from [3]. In [4], Backes
et al. addressed application scenarios where even group membership itself is confidential
information by introducing the security notion of membership privacy for fully dynamic
group signatures. The scheme they introduced in [4] is a generic construction for a
membership-private group signature scheme from standard assumptions. More details
on membership privacy as well as a sketch how the fully-dynamic scheme by Backes et
al. [4] works will be given in Chapter 6.

Security of signatures with flexible public key Apart from class-hiding, a suitable
unforgeability notion is needed for SFPK. We will be using the definition that was
introduced by Backes et al. in [3] which will be explained in the following paragraph.
In contrast to usual unforgeability definitions which consider adversaries that can make
only signing queries to a signing oracle O, the adversary A in the unforgeability game
for flexible public key signatures can also query what one might call a randomize-then-
sign-oracle, which takes as input a message m as well as randomness r and outputs a
signature of that message m under the secret key sk′ created from the original secret key
sk and randomness r using ChgSKSFPK.

At the beginning of the security game, a key pair (pk, sk) and a trapdoor τ for the
class of pk is generated. The adversary is given access to τ , pk as well as a signing and
a randomize-then-sign-oracle which both use sk and is required to output a public key
pk′, a message m∗ and a signature σ∗. A wins the game if and only if m∗ has never been
submitted to any of the oracles, σ∗ is a valid signature on m∗ under pk′ and pk′ belongs

5

2 Current state of research

to the same equivalence class as the original public key pk (which can be verified using
the trapdoor τ).

An SFPK scheme is called existentially unforgeable under chosen message attacks if all
probablistic polynomial-time adversaries A win the game described above with negligible
advantage. This means that it is not possible to efficiently compute a candidate forgery
for a key pair whose public key belongs to any representative of the equivalence class of
a given public key pk. A less strict version of this game leads to the definition of strong
existential unforgeability for SFPK. In the respective game, the adversary also wins if
he submits a distinct signature for a message that has been signed before.

Security of structure-preserving signatures on equivalence classes As already stated,
the class-hiding notion for SPS-EQ is quite analogous to that for SFPK, the only dif-
ference being that class-hiding for SPS-EQ considers messages instead of public keys.
Another security property of SPS-EQ is the so-called perfect adaptation of signatures
which is needed to prove security of gFPK-GS according to Backes et al. [3]. We will
use the definition of perfect adaptation of signatures by Backes et al. [3], which we
will explain alongside with an unforgeability definition for SPS-EQ by Slamanig et al.
[11] in the next paragraphs. It is important to mention here that the message space
in an SPS-EQ scheme is always required to be a set of vectors of group elements. The
security game for unforgeability of SPS-EQ according to [11] is very similar to that for
unforgeability of regular digital signature schemes. The adversary A is given the public
key pk of a key pair (pk, sk) as well as access to a signing oracle O that uses sk. He may
submit messages as signing queries to that oracle and eventually outputs a candidate
forgery (m∗, σ∗). In contrast to the unforgeability game for regular digital signatures,
the adversary also loses if m∗ belongs to the same class as one of his queries to O. So
in order to win the game, the adversary must produce a valid signature for a message
m∗ of a class that no message has been signed from by the signing oracle. Again, an
SPS-EQ scheme is called existentially unforgeable under chosen message attacks if the
probability of any probablistic polymial-time adversary winning above security game
is negligible. An SPS-EQ scheme is said to perfectly adapt signatures if for any valid
message-signature-pair (M , σ) created using a key pair (pk, sk), the pair (M r, Sign(M r,
sk)) has the same distribution as the pair ChgRepSPS(M , σ, r, pk) where r in the call
of ChgRepSPS is the randomness used to get a new representative of [M]R and adapting
the signature and pk is the public key the old pair is and the new one shall be valid un-
der. This implies that for any randomness r a new signature of the new representative
of [M]R obtained via r is indistinguishable from an adapted signature obtained using
ChgRepSPS. We see that this defines a non-trivial property of ChgRepSPS.

It is important to note that the SPS-EQ scheme presented by Hanser et al. in [12]
was later proven insecure, more precisely, an adaptive chosen message attack against its
existential unforgeability which was overlooked in the original work was given by Fuchs-
bauer in [10]. This issue was addressed by Slamanig et al. in [11] where they propose
a new SPS-EQ scheme which they then prove to be EUF-CMA secure. This means
that Backes et al. [3] cannot use the SPS-EQ scheme from [12] to securely instantiate

6

gFPK-GS in the model of Bellare et al. from [5], since the used SPS-EQ scheme has to
be existentially unforgeable to fulfill both full-traceability and full-anonymity [3].

Security of group signatures Bellare et al. stressed the need for strong and precise
security notions for static group signature schemes in [5], referring to the vast set of
informal and overlapping security definitions that existed before above publication. The
authors aimed at defining the two main security requirements for static group signa-
tures, namely traceability and anonymity in a way that they imply all of the above-
mentioned existing requirements (which also were intended to formalize traceability and
anonymity). The resulting definitions of full-anonymity and full-traceability from [5],
which allow for the above-mentioned implications, will be explained in Sect. 3.3. An
intuitive idea of anonymity for group signatures would be that it is infeasible to recover
a signer’s identity from a signature when not in possession of the group manager secret
key. However, the exact capabilities of an attacker attempting to break anonymity have
not been specified before [5], only informal definitions as e.g. in [1] were given. Bellare et
al. [5] consider an attacker A who needs to tell which one of two given signers produced
a signature on a given message. A also chooses both the message and the two possible
signers himself. Furthermore, he is given access to an opening oracle O, which returns
the identity of the originator of any signature it is queried for. A can submit arbitrary
signatures to O except for the one he needs to find the originator of.

Considering an adversary with access to an opening oracle captures the possibility that
someone who is attempting to break the anonymity of a signature might have obtained
information from previous openings he observed. In addition, the adversary A is given
the secret keys of all group members to also model the possibility that he colludes with
an arbitrary number of group members.

As already mentioned in the introduction (Chapter 1), anonymity of the user behind
any signature can be revoked at any time by the group manager using the group man-
ager secret key and the opening algorithm. In order for this to really deter users from
producing malicious signatures, it must be guaranteed that no one can forge a signature
that cannot be traced back to its originator at opening time. As for anonymity, only in-
formal descriptions of such a property were given up to [5], which did not exactly model
an attacker’s capabilities. Bellare et al. [5] consider an attacker A that has access to
the group manager secret key and can choose arbitrary many group members to collude
with, meaning that he gains access to their personal secret keys. The authors consider
A to break full traceability of a group signature scheme if he manages to output a forged
signature that cannot be traced to any of the group members he colluded with by the
open algorithm. It must be stressed that this attacker model of Bellare et al. considers
the possibility that the group manager secret key can be compromised as well as that
large parts of the group (even all other members) collude with one another, attempting
to blame a malicious signature on a non-colluded group member. The case of the entire
group working together to forge a signature that cannot be opened is covered as well.

7

2 Current state of research

2.1 Our work
In this thesis, we will look at the static group signature scheme presented by Backes
et al. in [3] and prove that it is secure in the group signature model presented by
Bellare et al. in [5]. As stated above, the construction by Backes et al. is based
on signatures with flexible public key (SFPK) and structure-preserving signatures on
equivalence classes (SPS-EQ), two primitives that can be seen as extensions to regular
digital signature schemes. Details on these primitives as well as formal definitions will
follow in Chapter 3, a detailed definition of the static group signature scheme by Backes
et al. from [3] can be found in Chapter 4. Backes et al. claim in their paper [3] that their
group signature scheme fulfills both the full-anonymity and full-traceability definition
established by Bellare et al. [5] and provide a high level proof of each of those two claims.
More precisely, they propose that both the used SFPK and SPS-EQ scheme need to be
existentially unforgeable under chosen-message attacks for their group signature scheme
to be fully-traceable. According to Backes et al. [3] their scheme is furthermore fully-
anonymous if the SFPK is strongly existentially unforgeable and class-hiding and the
SPS-EQ is existentially unforgeable and perfectly adapts signatures. We add a detailed
formal proof of the full-traceability and the full-anonymity of the group signature scheme
by Backes et al. [3] in Chapter 5. In Sect. 5.3 we will discuss the additions and changes
we made to the extended proof sketches for these security properties which Backes et al.
gave in [3].

8

3 Definitions and notation

In this chapter we formally introduce the concepts of group signatures, signatures with
flexible public key (SFPK) and structure-preserving signatures on equivalence classes
(SPS-EQ) as well as the respective security notions for these primitives. Before this,
we will define the important term of a bilinear group which most of the cryptographic
primitives covered in this thesis are based on. To start off, we need to clarify the basic
notation used in this thesis.

• By y←$A(x), we denote that the execution of the probablistic algorithm A on
input x yields result y.

• The set of all elements having positive probability of being output by algorithm A
on input x is denoted by [A(x)].

• If an algorithm in this thesis is not explicitly said to be probablistic, it is deter-
ministic.

• If algorithm A has access to oracle O, we denote this by a superscript, like AO.

• If we say that algorithm A is probablistic polynomial time (PPT), this means
that for any input x←$ {0, 1}∗, A(x) uses internal randomness and terminates in
polynomial time in the bitlength of x.

• r←$ S means that r is chosen uniformly at random from set S.

• 1G denotes the identity element in group G.

• [n] denotes the set {1, . . . , n}.

• If two elements m, n from a set M are in relation R, we denote this by mRn. If
m, n ∈M are not related via R, we denote this by m ��R n.

• By [m]R we denote the equivalence class of element m with respect to equivalence
relation R which is defined as [m]R := {n | m R n}. It is clear by definition that

m R n⇔ n ∈ [m]R (3.1)

holds. In this thesis we will use either one of these two notations depending on
which is more intuitive from the context.

• By coin we denote the set from which random values influencing the behavior of a
probablistic algorithm of an SFPK (Def. 3.14) or an SPS-EQ (Def. 3.21) scheme

9

3 Definitions and notation

are drawn. The set coin can depend on the message space and the equivalence
relation a scheme is defined over.

For completeness, the important notion of negligible functions will be formally intro-
duced in the following definition.
Definition 3.1 (negligible functions) A function f : N→ R is called negligible if

∀c > 0 : ∃n0 ∈ N : ∀n ≥ n0 : |f(n)| < 1
nc

(3.2)

Apart from the usual notions of negligible and polynomially-bounded functions, we
need negligibility of two-argument functions in this thesis. The following definition of
this property can be found in [5].
Definition 3.2 (nice functions, negl. two-argument functions) A function n :
N→ N is called nice if n is polynomially-bounded and n(k) is computable in polynomial
time for every k ∈ N. A two-argument function s : N× N→ R is negligible if for every
nice function n : N→ N sn is negligible, with sn being defined as

sn : N→ R, k 7→ s(k, n(k)) (3.3)

3.1 Bilinear groups
Since most of the cryptographic primitives covered in this thesis are based on bilinear
groups, a formal definition of this important object is given in the following section.
We will begin with the definition of bilinear maps since a bilinear map is part of every
bilinear group.
Definition 3.3 (bilinear map) Let G1,G2,GT be groups of prime order p with g1, g2
being generators of G1,G2. A bilinear map or pairing is an efficiently computable map-
ping e : G1 ×G2 → GT that fulfills the following conditions:

∀(g, h) ∈ G1 ×G2, (a, b) ∈ Z2
p : e(ga, hb) = e(g, h)a·b (3.4)

and
e(g1, g2) is a generator of GT (3.5)

The property defined via Eq. (3.4) is called bilinearity, the one defined with Eq. (3.5)
is non-degeneracy. Bilinearity basically means that a mapping is linear in both compo-
nents, non-degeneracy means that when evaluating a mapping for a pair of generators
for the respective groups, a generator for the image space group is returned. The follow-
ing remark justifies why we can assume the prime order groups in Def. 3.3 to contain
generators.
Remark 3.4 All prime order groups are cyclic. Therefore a generator exists for each of
them (more precisely, every element different from their identity element is a generator).

Proof. This directly follows from Lagrange’s theorem which yields that every element in

10

3.2 Group signature schemes

a prime order group must either be an identity element or a generator (because of the
only possible element orders being 1 and the group order p). With the fact that every
group contains exactly one identity element and a prime order group must contain more
than one element (since 1 is not a prime) we can conclude the claim.

Next we use Def. 3.3 and Rem. 3.4 to define the term bilinear group.
Definition 3.5 (bilinear group) A tuple BG = (p,G1,G2,GT , e, g1, g2) is called a
bilinear group if p is a prime, G1,G2,GT are groups of order p, e : G1 ×G2 → GT is a
bilinear map and gi is a generator of Gi.
Definition 3.6 (bilinear group generator) A bilinear group generator is a deter-
ministic polynomial-time algorithm BGGen that on input a security parameter λ outputs
a bilinear group BG = (p,G1,G2,GT , e, g1, g2) where p is a prime represented by λ bits.

With BGGen being a deterministic algorithm, it can be assumed that a group generated
with BGGen on input a public security parameter λ is publicly known. This will be useful
when it comes to the formal security proofs for gFPK-GS in Chapter 5.

3.2 Group signature schemes
The following definitions of group signature schemes and their correctness are based
on those given by Bellare et al. in [5]. Since the group signature scheme introduced
in [3] which we will analyze in this thesis is a static scheme, we will only define static
group signature schemes formally. Moreover, for simplicity in terminology, we omit the
word static when referring to static group signature schemes. We start with defining the
syntax of a group signature scheme.
Definition 3.7 (group signature scheme) A group signature scheme is a tuple GS =
(GKGen, GSign, GVf, Open) of polynomial-time algorithms as follows:

GKGen(λ, n) probablistic group key generation algorithm, on input a security parameter
λ and a group size n, it outputs (gpk, gmsk, gsk), where gpk is the group public
key, gmsk is the group manager secret key, gsk is a vector of n elements with gsk[i]
being the personal secret signing key of group member i

GSign(gsk[i], m) probablistic group signing algorithm, on input the secret signing key
gsk[i] of a group member i ∈ [n] and a message m, it outputs a signature of m
under gsk[i]

GVf(gpk, m, σ) deterministic verification algorithm, on input the group public key gpk,
a message m and a signature σ for m it returns 0 or 1

Open(gmsk, m, σ) deterministic open algorithm, on input the group manager secret key
gmsk, a message m and a signature σ for m it returns an identity i ∈ [n] or the
error symbol ⊥ /∈ [n]

• For simplicity, the set of identities in a group of size n is always assumed to be
[n].

11

3 Definitions and notation

• We call a signature σ a true signature if and only if ∃i ∈ [n], message m : σ ∈
[GSign(gsk[i], m)].

• Furthermore, we call a signature σ for a message m valid under gpk if and only if
GVf(gpk, m, σ) = 1. If the particular group public key is not important or implicitly
known then we will simply call such a signature valid.

• We say that a message-signature pair (m, σ) opens to identity i if Open(gmsk, m, σ) =
i. We call (m, σ) unopenable if Open(gmsk, m, σ) = ⊥ and (m, σ) is valid under
gpk. If the message is not important or obvious then we omit it in above terminol-
ogy and use the term unopenable signature or signature that opens to i.

Above definition only specifies which algorithms make up a group signature scheme
and gives names to important in- and outputs they have. To be able to work with group
signature schemes in both theory and practice, we need to define what it means for such
a scheme work correctly, which results in the following constraints:

• all true signatures must be valid under gpk

• Open must retrieve the identity of the signers of true signatures

A formalization of these requirements is the following definition.
Definition 3.8 ((perfect) correctness of a group signature scheme) Let GS =
(GKGen, GSign, GVf, Open) be a group signature scheme. Let λ ∈ N security parameter,
n ∈ N group size, , (gpk, gmsk, gsk)←$ GKGen(λ, n). GS is called (perfectly) correct if
for all i ∈ [n] and messages m the following conditions are fulfilled:

Pr[GVf(gpk, m, GSign(gsk[i], m)) = 1] = 1 (3.6)

and
Pr[Open(gmsk, m, GSign(gsk[i], m)) = i] = 1 (3.7)

It is possible to relax the above definition of perfect correctness to a certain extent,
such that schemes which have a negligible chance of failing to meet above requirements
are still considered correct. This results in the following definition of computational
correctness.
Definition 3.9 (computational correctness of a group signature scheme) Let
GS = (GKGen, GSign, GVf, Open) be a group signature scheme. Let λ ∈ N security param-
eter, n ∈ N group size, (gpk, gmsk, gsk)←$ GKGen(λ, n). GS is called (computationally)
correct if for all i ∈ [n] and messages m there exist negligible functions κ1, κ2 such that
the following conditions are fulfilled:

Pr[GVf(gpk, m, GSign(gsk[i], m)) = 1] = 1− κ1(λ) (3.8)

and
Pr[Open(gmsk, m, GSign(gsk[i], m)) = i] = 1− κ2(λ) (3.9)

12

3.3 Security of group signature schemes

It is plain to see that perfect correctness implies computational correctness (since the
zero function clearly is negligible). In Sect. 4.2 we will discuss under which assumptions
we can prove perfect and computational correctness of gFPK-GS.

3.3 Security of group signature schemes

The following definitions of the group signature security requirements full-anonymity and
full-traceability are based on the ones given in [5]. As stated in Chapter 2, these two
are the only relevant security properties for group signature security since all others are
implied by one of them. We will start with defining full-anonymity of a group signature
scheme. The idea of this security property is that an adversary not in possession of
the group manager secret key cannot efficiently determine the identity of the signer who
created a given group signature. This should hold even in the case that the adversary has
access to the personal secret keys of all group members. We see that hereby the case of
collusion with an arbitrary subset of the group members is captured. The formalization
chosen by Bellare et al. [5] describes the challenge for this adversary as a distinguishing
game where two different identities are chosen by the adversary and a group signature
is created with the key material for one of those identities.
Definition 3.10 (full-anonymity) Let λ ∈ N be a security parameter, n ∈ N group
size. We define the following security experiment for a group signature scheme GS =
(GKGen, GSign, GVf, Open) and an adversary A:

Expanon−b
GS,A (λ, n)

1 : (gpk, gmsk, gsk)←$ GKGen(λ, n)
2 : (St, i0, i1, m)←$AOpen(gmsk,·,·)(choose, gpk, gsk)
3 : σ←$ GSign(gsk[ib], m)
4 : d←$AOpen(gmsk,·,·)(guess, St, σ)
5 : if A did not query Open-oracle with (m, σ) in guess phase then return d

6 : else return 0

We define the advantage of A in breaking full-anonymity of GS as

Advanon
GS,A(λ, n) = |Pr[Expanon−0

GS,A (λ, n) = 1]− Pr[Expanon−1
GS,A (λ, n) = 1]| (3.10)

We say that GS is fully-anonymous if for all PPT-adversaries A Advanon
GS,A(λ, n) is neg-

ligible in λ.
Apart from minor notational changes, above definition is identical to the one that can

be found in [5]. Above security experiment is split in two phases, the choose-phase and
the guess-phase, indicated by the parameter passed to A. The parameter St A is passed
in the guess-phase holds state information from the choose-phase like for example the
queries A already made to it’s opening oracle. A is given access to an opening oracle
to model the fact that A can learn information from openings it observed that can

13

3 Definitions and notation

influence its choice of identities i0, i1 and message m as well as the guess d. A message-
signature pair (m̃, σ̃) that A submits to the open oracle is called an opening query. A
is of course not allowed to query the opening oracle for the challenge pair (m, σ) since
this would make the game entirely trivial. Note that if A queries its oracle for (m, σ)
nevertheless the experiment will always return 0, so the adversaries advantage would be
0 if he always did so. In the later proof of full-anonymity of gFPK-GS (see Thm. 5.3),
the bit guessing variant of above security game will be far more convenient than above
distinguishing game (a discussion of this can be found in Sect. 3.7). In the following
we will define the bit guessing game for full-anonymity and prove that both games lead
to equivalent security requirements, so every adversary with non-negligible advantage in
the distinguishing game also has non-negligible advantage in the bit guessing game and
vice versa.

Definition 3.11 (full-anonymity (bit guessing variant)) Let λ ∈ N be a security
parameter, n ∈ N group size. We define the following security experiment for a group
signature scheme GS = (GKGen, GSign, GVf, Open) and an adversary A:

Expanon∗
GS,A(λ, n)

1 : b←$ {0, 1}
2 : (gpk, gmsk, gsk)←$ GKGen(λ, n)
3 : (St, i0, i1, m)←$AOpen(gmsk,·,·)(choose, gpk, gsk)
4 : σ←$ GSign(gsk[ib], m)
5 : d←$AOpen(gmsk,·,·)(guess, St, σ)
6 : if A did not query Open-oracle with (m, σ) in guess phase then return d = b

7 : else return 0

We define the bit guessing advantage of A in breaking full-anonymity of GS as

Advanon∗
GS,A(λ, n) = |Pr[Expanon∗

GS,A(λ, n) = 1]− 1
2 | (3.11)

We say that GS is fully-anonymous (in the bit guessing variant) if for all PPT-adversaries
A Advanon∗

GS,A(λ, n) is negligible in λ.

The phases of the game, the input to adversary A in both of the phases as well as
the oracles A has access to are the same as in the distinguishing variant of the full-
anonymity game (Def. 3.10). Next we will formally state and prove the equivalence of
the two full-anonymity definitions.

Theorem 3.12 Let GS be a group signature scheme, λ ∈ N security parameter, n ∈ N
group size. For a PPT adversary A we have

Advanon
GS,A(λ, n) = 2 ·Advanon∗

GS,A(λ, n) (3.12)

This yields that GS is fully-anonymous if and only if GS is fully-anonymous in the bit
guessing variant.

14

3.3 Security of group signature schemes

Proof. The proof is analogous to the one of Theorem 2.10 in [7], where a corresponding
theorem was proven for semantic security of computational ciphers. Let Wb denote the
event that A outputs 1 in Expanon−b

GS,A (λ, n) for b ∈ {0, 1}. The probabilities considered
below are with respect to Expanon∗

GS,A(λ, n). If we condition on b = 0, all random vari-
ables computed throughout this experiment are exactly like they are in Expanon−0

GS,A (λ, n)
(analogous for b = 1). So with d denoting the output of A we get

Pr[d = 1 | b = 0] = Pr[W0] and Pr[d = 1 | b = 1] = Pr[W1]

Analyzing the winning probability of A in the bit guessing game yields

Pr[d = b] = Pr[d = 0 | b = 0] · Pr[b = 0] + Pr[d = 1 | b = 1] · Pr[b = 1]

= Pr[d = 0 | b = 0] · 1
2 + Pr[d = 1 | b = 1] · 1

2
=1

2(Pr[d = 0 | b = 0] + Pr[d = 1 | b = 1])

=1
2(1− Pr[d = 1 | b = 0] + Pr[d = 1 | b = 1])

=1
2(1− Pr[W0] + Pr[W1])

Inserting this into the definition of the bit guessing advantage yields

Advanon∗
GS,A(λ, n) =|Pr[d = b]− 1

2 |

=|12(1− Pr[W0] + Pr[W1])− 1
2 |

=|12(−Pr[W0] + Pr[W1])|

=1
2 | − Pr[W0] + Pr[W1]|

=1
2 |Pr[W0]− Pr[W1]|

=1
2Advanon

GS,A(λ, n)

which is equivalent to
Advanon

GS,A(λ, n) = 2 ·Advanon∗
GS,A(λ, n)

Since Advanon
GS,A(λ, n) is negligible if and only if 2 · Advanon∗

GS,A(λ, n) is negligible, we get
that GS is fully-anonymous if and only if GS is fully-anonymous in the bit guessing
variant.

The definition of full-anonymity used by Backes et al. in [3] is based on the definition
given by Bellare et al. in [5] but contains a major flaw with respect to advantage
definition which basically renders it useless for making any meaningful statement about

15

3 Definitions and notation

a group signature schemes security. A detailed description and discussion of said flaw
can be found in Sect. 3.7.2.

The other relevant security requirement for group signature schemes is full-traceability.
As already mentioned in the introductory chapters, the basic idea behind this definition
is that there shall be no efficient way to create a group signature that is traced back to
a user not involved in it’s creation at opening time.

Definition 3.13 (full-traceability) Let λ ∈ N be the security parameter, n ∈ N
group size. We define the following security experiment for a group signature scheme
GS = (GKGen, GSign, GVf, Open) and an adversary A:

Exptrace
GS,A(λ, n)

1 : (gpk, gmsk, gsk)←$ GKGen(λ, n)
2 : C = ∅
3 : St := (gpk, gmsk)
4 : St←$AGSign(gsk[·],·),OC(·)(choose, St)
5 : (m, σ)←$AGSign(gsk[·],·)(guess, St)
6 : if GVf(gpk, m, σ) = 0
7 : return 0
8 : if Open(gmsk, m, σ) = ⊥
9 : return 1

10 : if ∃i ∈ [n] : Open(gmsk, m, σ) = i ∧ i /∈ C ∧ i, m not queried by A to it’s oracle
11 : return 1
12 : else
13 : return 0

with OC(·) being an oracle as of the following:

OC(j)

1 : C := C ∪ {j}
2 : return gsk[j]

We define the advantage of A in breaking full-traceability of GS as

Advtrace
GS,A(λ, n) := Pr[Exptrace

GS,A(λ, n) = 1] (3.13)

We say that GS is fully-traceable if for all PPT-adversaries A Advtrace
GS,A(λ, n) is negligible

in λ.

St is a variable that stores state information over the course of the game, i.e. collusion
and signing queries made by A. Above game is split in two phases: the choose-phase
(or collusion phase) and the guess-phase. In the collusion phase the adversary can query
identities j ∈ [n] to the collusion oracle OC(·) which responds with the personal secret
key gsk[j] of group member j. We will call these queries collusion queries. This models

16

3.4 Signatures with flexible public keys

the adversary building up it’s set C of colluding group members by gaining access to
these group members’ secret keys. We will shortly refer to this set as the collusion set
of A. In the choose-phase, A also has access to a group sign oracle which on input an
identity j and a message m returns a signature of that message created by the j-th group
member. In the guess-phase, A computes his candidate forgery while having access to
the above-mentioned group sign oracle only. A wins the game if and only if he forged
a valid signature which opens to no identity contained in the collusion set C. Above
definition of full-traceability is basically identical to the one given by Bellare et al. in
[5], the only difference being how the process of the adversary constructing its collusion
set is described. In this thesis, we chose to introduce a collusion oracle which reveals the
corresponding secret key when queried with an identity. Despite this is only a notational
change, it allows for much easier description of reduction algorithms in Chapter 5. For
completeness, the original definition by Bellare et al. can be found in Sect. 3.7.1. Apart
from notational changes, Backes et al. [3] use the definition for full-traceability that was
established by Bellare et al. in [5].

3.4 Signatures with flexible public keys

In this section, the formal definitions of syntax and security of signatures with flexi-
ble public key (SFPK), the first central building block of the group signature scheme
gFPK-GS, and its security properties will be given. The original definitions were given
by Backes et al. in [3]. The basic idea behind SFPK is to divide the public key space
into equivalence classes of an equivalence relation R and make it possible to quickly ob-
tain a new valid key pair (pk′, sk′) from a given pair (pk, sk) such that pk′ ∈ [pk]R. The
relation R of a given SFPK scheme is implicitly defined by definition of that scheme,
the key space of an SFPK scheme is also defined implicitly by the output range of the
key generation algorithm KGenSFPK. An important security property of SFPK schemes
is the notion of class-hiding which means that it shall be computationally infeasible to
tell if two given SFPK public keys are related via relation R or not. We will start this
chapter with defining the syntax of an SFPK scheme.
Definition 3.14 (SFPK scheme) Let R be an equivalence relation. A signature
scheme with flexible public keys with equivalence relation R over the key space is a
tuple ΠSFPK=(KGenSFPK, TKGenSFPK, SignSFPK, ChkRepSFPK, ChgPKSFPK, ChgSKSFPK,
VfSFPK) of PPT-algorithms as follows:

KGenSFPK(λ, ω) probablistic key generation algorithm, takes as input the security param-
eter λ and randomness ω ←$ coin and outputs a key pair (pk, sk) consisting of a
public and a secret key

TKGenSFPK(λ, ω) probablistic key generation algorithm, takes as input the security pa-
rameter λ and randomness ω ←$ coin and outputs a key pair (pk, sk) consisting
of a public and a secret key and a trapdoor τ for the class [pk]R of pk

17

3 Definitions and notation

SignSFPK(sk, m) probablistic signing algorithm, takes as input a secret key sk and a mes-
sage m, outputs a signature σ for m

ChkRepSFPK(τ, pk) on input a trapdoor τ for the equivalence class w.r.t R of a public key
pk′ and a public key pk, this algorithm returns 0 or 1

ChgPKSFPK(pk, r) on input a public key pk and randomness r←$ coin, this algorithm
returns a public key pk′. We call pk′ ← ChgPKSFPK(pk, r) a randomized version of
pk.

ChgSKSFPK(sk, r) on input a secret key sk and randomness r, this algorithm returns a
randomized secret key sk′

VfSFPK(pk, m, σ) on input a public key pk, a message m and a candidate signature σ for
m, this algorithm returns 0 or 1

For an SFPK scheme to work correctly, the following constraints must be fulfilled:

• key pairs generated using TKGenSFPK are computationally indistinguishable from
those generated using KGenSFPK

• randomizing both the public key and the secret key of a key pair using the same
randomness in ChgPKSFPK, ChgSKSFPK respectively always yields a valid key pair

• ChkRepSFPK tells whether a given public key pk′ is in the equivalence class of a
public key pk (using a trapdoor τ for the class [pk]R)

• ChgPKSFPK returns a different representative of the equivalence class of the input
public key

Above conditions are formalized in the following definition.
Definition 3.15 (correct SFPK scheme) A signature scheme with flexible public keys
ΠSFPK = (KGenSFPK, TKGenSFPK, SignSFPK, ChkRepSFPK, ChgPKSFPK, ChgSKSFPK, VfSFPK)
with equivalence relation R over the key space is correct if the following conditions are
fulfilled for any λ ∈ N, key-changing randomness r←$ coin, key-generation randomness
ω←$ coin:

• common distribution of first two entries of (pk, sk)← KGenSFPK(λ, ω), (pk, sk, τ)←
TKGenSFPK(λ, ω) is identical

• for all key pairs (pk, sk)←$ KGenSFPK(λ, ω), pk′ = ChgPKSFPK(pk, r),
sk′ = ChgSKSFPK(sk, r) we have

Pr[VfSFPK(pk, m, SignSFPK(sk, m)) = 1] = 1 (3.14)

and
Pr[VfSFPK(pk′, m, SignSFPK(sk′, m)) = 1] = 1 (3.15)

18

3.4 Signatures with flexible public keys

• for all (sk, pk, τ)←$ TKGenSFPK(λ, ω) and all public keys pk′ we have

ChkRepSFPK(τ, pk′) = 1⇔ pk′ ∈ [pk]R (3.16)

• for all public keys pk we have

ChgPKSFPK(pk, r) =: pk′ ∈ [pk]R (3.17)

with pk′ 6= pk.

Note that even in a correct SFPK scheme, not every other representative of the equiv-
alence class of a public key pk has to be obtainable via ChgPKSFPK, so in formulas we
have

{pk′ | ∃r ∈ coin : pk′ = ChgPKSFPK(pk, r)} ⊆ [pk]R (3.18)

As far as we know, all existing instantiations of SFPK can be instantiated using bilinear
groups of type 3. The equivalence relation which ΠSFPK is defined over is left arbitrary in
above definition. A discussion about restrictions to the used equivalence relation when
it comes to practical use of SFPK schemes can be found in Sect. 3.6.

In the following, we will formally define security for SFPK schemes. The first impor-
tant security notion for SFPK schemes is the notion of class-hiding. As stated in the
introduction, the basic idea behind this security property is that without the respective
trapdoor, there should be no efficient way to tell whether two given public keys are
related or not. This is formalized as a bit guessing game where the adversary has to tell
which of two public keys is related to the challenge public key. For that, it is given access
to the two public keys potentially related to the challenge key and the corresponding
secret keys. The secret key corresponding to the challenge public key cannot be accessed
directly but the adversary can query messages to a signing oracle which uses that secret
key. In the game in below definition, which was introduced by the inventors of SFPK in
[3], the adversary is given access to the randomness ω0, ω1 which was used to generate
the two key pairs. Depending on the particular SFPK, the adversary might learn addi-
tional information about the key pairs from this, for example the discrete logarithm of
their components in a scheme which uses powers of a certain generator of a prime order
group as keys.

Definition 3.16 (class-hiding SFPK) Let λ ∈ N be the security parameter. For an
SFPK scheme
ΠSFPK = (KGenSFPK, TKGenSFPK, SignSFPK, ChkRepSFPK, ChgPKSFPK, ChgSKSFPK, VfSFPK)
and an adversary A we define the following security experiment:

19

3 Definitions and notation

Expc−h−sfpk∗

ΠSFPK,A (λ)

1 : ω0, ω1←$ coin
2 : for i ∈ {0, 1}
3 : (pki, ski)←$ KGenSFPK(λ, ωi)
4 : b←$ {0, 1}
5 : r←$ coin
6 : sk′ ← ChgSKSFPK(skb, r)
7 : pk′ ← ChgPKSFPK(pkb, r)
8 : b̂←$AO1(sk′,·)(ω0, ω1, pk′)
9 : return b = b̂

with O1(sk′, ·) being an oracle as of the following:

O1(sk′, m)

1 : return SignSFPK(sk′, m)

We define the advantage of A in breaking the class-hiding property of ΠSFPK as

Advc-h-sfpk∗

ΠSFPK,A (λ) := |Pr[Expc−h−sfpk∗

ΠSFPK,A (λ) = 1]− 1
2 | (3.19)

We call ΠSFPK class-hiding if for all PPT adversaries A Advc-h-sfpk∗

ΠSFPK,A (λ) is negligible in
λ.

Analogous to the issue with our full-anonymity definition (Def. 3.10), there is the
possibility of defining class-hiding via a distinguishing game. This leads to a completely
equivalent understanding of class-hiding but at the same time is way more convenient (see
Sect. 3.7) for the proof of the full-anonymity of gFPK-GS (Thm. 5.3). For completeness,
the formal definition of class-hiding as a distinguishing game is given in the following.
Proving equivalence of the two definitions can be done analogous to the respective proof
for full-anonymity (Thm. 3.12 in this thesis).

Definition 3.17 (class-hiding SFPK (distinguishing variant)) Let λ ∈ N be the
security parameter. For an SFPK scheme
ΠSFPK = (KGenSFPK, TKGenSFPK, SignSFPK, ChkRepSFPK, ChgPKSFPK, ChgSKSFPK, VfSFPK)
and an adversary A we define the following security experiment:

20

3.4 Signatures with flexible public keys

Expc−h−sfpk−b
ΠSFPK,A (λ)

1 : ω0, ω1←$ coin
2 : for i ∈ {0, 1}
3 : (pki, ski)←$ KGenSFPK(λ, ωi)
4 : r←$ coin
5 : sk′ ← ChgSKSFPK(skb, r)
6 : pk′ ← ChgPKSFPK(pkb, r)
7 : Q := ∅
8 : b̂←$AO1(sk′,·)(ω0, ω1, pk′)
9 : return b̂

with O1(sk′, m) being an oracle as of the following:

O1(sk′, m)

1 : return SignSFPK(sk′, m)

We define the distinguishing advantage of A in breaking the class-hiding property of
ΠSFPK as

Advc-h-sfpk
ΠSFPK,A(λ) := |Pr[Expc−h−sfpk−0

ΠSFPK,A (λ) = 1]− Pr[Expc−h−sfpk−1
ΠSFPK,A (λ) = 1]| (3.20)

We call ΠSFPK class-hiding (in the distinguishing variant) if for all PPT adversaries A
Advc-h-sfpk

ΠSFPK,A(λ) is negligible in λ.
Analogous to the bit guessing variant of class-hiding, it is important that A is given

access to the randomness used to create the two key pairs instead of the key pairs only
since the randomness might reveal additional information about the key pair generated
from it, depending on the SFPK. Next we formally state the equivalence of the two
class-hiding definitions for completeness.
Theorem 3.18 Let ΠSFPK be an SFPK scheme, λ ∈ N security parameter. For a PPT
adversary A we have

Advc-h-sfpk
ΠSFPK,A(λ) = 2 ·Advc-h-sfpk∗

ΠSFPK,A (λ) (3.21)

This yields that ΠSFPK is class-hiding if and only if GS is class-hiding in the distinguish-
ing variant.

Proof. The proof is analogous to the proof of Thm. 3.12.

Existential unforgeability under chosen-message attacks (in short EUF-CMA) is a
standard security requirement for digital signature schemes, basically meaning that if
not in possession of the secret key sk of a key pair (pk, sk), no one should be able to
create a signature that is valid under pk. This classic version of EUF-CMA needs an
adaption to allow for meaningful statements about the security of an SFPK scheme,
because an adversary who forges a signature which is valid under a different public
key pk′ ∈ [ChgPKSFPK(pk, r)] (a different representative of [pk]) might also be a threat

21

3 Definitions and notation

since pk′ can be found related to pk using ChkRepSFPK. These reasonings result in the
following two unforgeability definitions for SFPK. We will start with defining the strong
unforgeability variant.

Definition 3.19 (sEUF-CMA for SFPK) Let λ ∈ N be a security parameter. For
an SFPK scheme
ΠSFPK = (KGenSFPK, TKGenSFPK, SignSFPK, ChkRepSFPK, ChgPKSFPK, ChgSKSFPK, VfSFPK)
and an adversary A we define the following security experiment:

Expseuf−sfpk
ΠSFPK,A (λ)

1 : ω←$ coin
2 : (pk, sk, τ)←$ TKGenSFPK(λ, ω)
3 : Q := ∅
4 : (pk′, m∗, σ∗)←$AO1(sk,·),O2(sk,·,·)(pk, τ)
5 : if (m∗, σ∗) ∈ Q

6 : return 0
7 : return ChkRepSFPK(τ, pk′) = 1 ∧ Vf(pk′, m∗, σ∗) = 1

with O1 and O2 being oracles as of the following:

O1(sk, m)

1 : σ←$ SignSFPK(sk, m)
2 : Q := Q ∪ {(m, σ)}
3 : return σ

O2(sk, m, r)

1 : sk′←$ ChgSKSFPK(sk, r)
2 : σ←$ SignSFPK(sk′, m)
3 : Q := Q ∪ {(m, σ)}
4 : return σ

We define the advantage of A in breaking the strong existential unforgeability under
chosen message attacks of ΠSFPK as

Advseuf−sfpk
ΠSFPK,A (λ) := Pr[Expseuf−sfpk

ΠSFPK,A (λ) = 1] (3.22)

We say that ΠSFPK is strongly existentially unforgeable under chosen-message attacks
(or in short sEUF-CMA) if for all PPT adversaries A Advseuf−sfpk

ΠSFPK,A (λ) is negligible in λ.

O1 is a standard signing oracle, returning a signature of the submitted message under
the secret key sk it is instantiated with. O2 is what one might call a randomize-then-sign
oracle which first randomizes its secret key with a given randomness before producing a
signature for the submitted message. So an adversary against unforgeability of an SFPK
scheme is given the possibility to observe signatures made using any secret key related
to the challenge secret key.

22

3.4 Signatures with flexible public keys

Note that according to above definition, an adversary A who forges a different sig-
nature for a message submitted to one of the oracles O1 and O2 is considered to be an
equally severe threat to the unforgeability of an SFPK scheme ΠSFPK as an adversary
who manages to sign a new message. However, there might be situations where it suffices
to exclude the existence of the second type of adversaries. This motivates the following
weaker unforgeability definition for SFPK.
Definition 3.20 ((weak) EUF-CMA for SFPK) Let λ ∈ N be a security parameter.
For an SFPK scheme
ΠSFPK = (KGenSFPK, TKGenSFPK, SignSFPK, ChkRepSFPK, ChgPKSFPK, ChgSKSFPK, VfSFPK)
and an adversary A we define the security experiment Expeuf−sfpk

ΠSFPK,A(λ) which proceeds ex-
actly like Expseuf−sfpk

ΠSFPK,A (λ) from Def. 3.19, only line 5 is replaced by

if ∃(m, ·) ∈ Q : m = m∗

We define the advantage of A in breaking the existential unforgeability under chosen
message attacks of ΠSFPK as

Adveuf−sfpk
ΠSFPK,A (λ) := Pr[Expeuf−sfpk

ΠSFPK,A(λ) = 1] (3.23)

We say that ΠSFPK is existentially unforgeable under chosen-message attacks or in short
EUF-CMA if for all PPT adversaries A Adveuf−sfpk

ΠSFPK,A (λ) is negligible in λ.
Next we will briefly cover how SFPK works in the multi-user setting. Here it is

possible to have a setup phase before the actual key generation in which a common
reference string is generated from the security parameter as ρ←$ CRSGen(λ). This is
a value which is part of every user’s public key and implicitly input to all algorithms
of the SFPK scheme. The common reference string usually contains public parameters
that should be the same for all users. Therefore the exact definition of it and the
common reference string generation algorithm CRSGen is dependent on the concrete
SFPK scheme. Whether the common reference string is generated by a trusted third
party generally plays a significant role when it comes to defining security of SFPK
schemes. The definitions of class-hiding (Def. 3.17) and weak (Def. 3.20) and strong
unforgeability (Def. 3.19) used in this thesis (which are based on the definitions given
by the inventors of SFPK in [3]) are all made under the implicit assumption that the
common reference string is generated by a trusted third party. However, as pointed out
by Backes et al. in [3], it is possible to define those three security notions under the
assumption that the common reference string is generated by an untrusted party (those
security notions get the prefix "malicious", i.e. malicious class-hiding). Despite this,
common reference strings will be ignored in this thesis for simplicity since they are not
used in the reductions in the proofs of full-traceability and full-anonymity of gFPK-GS
(see Thm. 5.2, Thm. 5.3) in which we prerequisite security properties of SFPK schemes
in the non-malicious setup from below definitions. This follows from the fact that the
respective proofs for full-traceability and full-anonymity of gFPK-GS will be completely
analogous in the case that the setup of the SFPK used to instantiate gFPK-GS is not
trusted, the only difference being that the common reference string is generated by the

23

3 Definitions and notation

adversary attacking an SFPK security property during the reduction (instead of being
generated by the challenger of the security game for this security property like in the
trusted version).

3.5 Structure-preserving signatures on equivalence classes
In this section we formally define the second major building block of the group signature
gFPK-GS (Sect. 4.1), which is structure-preserving signatures on equivalence classes (in
short SPS-EQ). An SPS-EQ scheme is defined over a fixed equivalence relation R which
partitions its message space into equivalence classes. Given a valid message-signature
pair (m, σ) created using such a scheme one can easily obtain a valid signature σ′ on
another representative m′ of the equivalence class [m]R of m with respect to relation
R. So we see that the general idea of SPS-EQ is similar to the one behind SFPK
with the difference that instead of the key space the message space is divided into
equivalence classes. The following definitions for its syntax and unforgeability were
originally presented by Fuchsbauer et al. in [11]. The definition of perfect adaptation
of signatures (Def. 3.24) used here was given by Backes et al. and can be found as
Definition 12 in [3]. We will start by giving the definition of the syntax of SPS-EQ
schemes.
Definition 3.21 (SPS-EQ scheme) Let l ∈ N, l > 1, R be an equivalence relation.
A structure preserving signature scheme on equivalence classes with vector length l and
equivalence relation R over the message space (in short SPS-EQ with vector length l and
relation R) is a tuple ΠSPS = (BGGenSPS, KGenSPS, SignSPS, ChgRepSPS, VfySPS, VKeySPS)
of PPT algorithms as follows:

BGGenSPS(λ) bilinear group generator (see Def. 3.6). The message space of ΠSPS is
either defined as Gl

1 or Gl
2 for the prime order groups G1, G2 in the output BG :=

(p, G1, G2, GT , e, g1, g2) of BGGenSPS.

KGenSPS(BG, l) probablistic key generation algorithm, on input a bilinear group BG and
the vector length l it outputs a key pair (pk, sk)

SignSPS(sk, m) probablistic signing algorithm, takes as input a secret key sk and a mes-
sage m and outputs a signature σ for m

ChgRepSPS(m, σ, r, pk) probablistic algorithm which on input a message m ∈ [m]R ⊆ Gl
i,

a signature σ for m, randomness r←$ coin and a public key pk outputs an updated
message-signature pair (m′, σ′) such that m′ ∈ [m]R and (m′, σ′) is valid under pk.
(m′, σ′) is called a randomized version of (m, σ)

VfySPS(pk, m, σ) deterministic algorithm, takes as input a message m ∈ [m]R ⊆ Gl
i, a

signature σ and a public key pk and outputs 0 or 1

VKeySPS(pk, sk) deterministic algorithm, takes as input a public key pk and a secret key
sk and returns 1 if (pk, sk) is a valid key pair, 0 otherwise

24

3.5 Structure-preserving signatures on equivalence classes

For an SPS-EQ scheme to work correctly, all key pairs output by KGenSPS and all
signatures generated by SignSPS must be valid. Furthermore, if we randomize a message-
signature pair (obtained using SignSPS) using ChgRepSPS we must be sure to get another
valid message-signature pair. These requirements result in the following definition.

Definition 3.22 (correct SPS-EQ scheme) Let l ∈ N, l > 1, λ ∈ N,
BG = (p, G1, G2, GT , e, g1, g2)←$ BGGenSPS(λ). Let R be an equivalence relation. An
SPS-EQ scheme
ΠSPS = (BGGenSPS, KGenSPS, SignSPS, ChgRepSPS, VfySPS, VKeySPS) with relation R and
vector length l is correct if the following conditions are fulfilled:

• for all (pk, sk)←$ KGenSPS(BG, l) we have

VKeySPS(pk, sk) = 1 (3.24)

• for all (pk, sk)←$ KGenSPS(BG, l), messages m ∈ Gl
i

Pr[VfySPS(m, SignSPS(sk, m), pk) = 1] = 1 (3.25)

holds

• for all (pk, sk)←$ KGenSPS(BG, l), messages m ∈ Gl
i, r ∈ coin we have

Pr[VfySPS(ChgRepSPS(m, SignSPS(sk, m), r, pk), pk) = 1] = 1 (3.26)

As far as we know, all existing instantiations of SPS-EQ are based on bilinear groups
of type 3. The equivalence relation which ΠSPS is defined over is left arbitrary in above
definition. A discussion about restrictions to the used equivalence relation when it comes
to practical use of SPS-EQ schemes can be found in Sect. 3.6. If the relation R is obvious
or not important we omit it in the name and simply call this primitive SPS-EQ.

Next we will define the relevant security properties for SPS-EQ, starting with existen-
tial unforgeability. Similar to SFPK, an adaptation of the classic unforgeability notion
of digital signatures is needed for SPS-EQ schemes. This follows from the fact that using
ChgRepSPS, everyone can obtain new valid message signature pairs from a given one. We
see that for a correct SPS-EQ scheme and any message-signature pair (m′, σ′) obtained
from a given pair (m, σ) using ChgRepSPS we have m′ ∈ [m]. So the only task that can
still be computationally infeasible is signing a message from a class that has not been
signed before. These considerations are formalized in the following definition.

Definition 3.23 (EUF-CMA for SPS-EQ) Let l ∈ N, l > 1, λ ∈ N. For an SPS-EQ
scheme ΠSPS = (BGGenSPS, KGenSPS, SignSPS, ChgRepSPS, VfySPS, VKeySPS) with relation
R and vector length l and an adversary A we define the following security experiment:

25

3 Definitions and notation

Expeuf−sps
ΠSPS,A (λ)

1 : BG := BGGenSPS(λ)
2 : (pk, sk)←$ KGenSPS(BG, l)
3 : Q := ∅
4 : (m∗, σ∗)←$AO(sk,·)(pk)
5 : return (∀m ∈ Q : [m∗]R 6= [m]R) ∧ Vf(m∗, σ∗, pk) = 1

with O being an oracle as of the following:

O(sk, m)

1 : σ←$ SignSPS(sk, m)
2 : Q := Q ∪ {m}
3 : return σ

We define the advantage of A in breaking the EUF-CMA of ΠSPS as

Adveuf−sps
ΠSPS,A (λ) = Pr[Expeuf−sps

ΠSPS,A (λ) = 1] (3.27)

We say that ΠSPS is existentially unforgeable under chosen-message attacks (in short
EUF-CMA) if for all PPT adversaries A Expeuf−sps

ΠSPS,A (λ) is negligible in λ.
In the above security experiment the adversary is given access to a straightforward

signing oracle O which produces signatures on messages it is queried for using the chal-
lenge secret key sk. As already stated before Def. 3.23, two ways of obtaining a new
SPS-EQ message-signature pair exist: signing a message using SignSPS and randomizing
an existing pair using ChgRepSPS. Whether the results of these computations can be
distinguished efficiently cannot be answered from the SPS-EQ definition alone which
justifies the following definition:
Definition 3.24 (perfect adaptation of signatures) Let l ∈ N, l > 1, λ ∈ N, BG =
(p, G1, G2, GT , e, g1, g2)← BGGenSPS(λ). An SPS-EQ scheme
ΠSPS = (BGGenSPS, KGenSPS, SignSPS, ChgRepSPS, VfySPS, VKeySPS) with relation R and
vector length l perfectly adapts signatures if for all (pk, sk, m, σ, r)
where VKeySPS(pk, sk) = 1, m ∈ Gl

i, r ∈ coin and VfySPS(m, σ, pk) = 1 the distributions
of

(mr, Sign(sk, mr)) and ChgRepSPS(m, σ, r, pk)

are identical. mr in above expression denotes another representative of the equivalence
class of m which was obtained using randomness r.

3.6 An important equivalence relation

According to Backes et al. [3], existing implementations of SPS-EQ schemes are over
the following relation Rexp. It does not become clear in [3] whether there exist SFPK
schemes over a different relation than Rexp, since both SFPK schemes the authors present

26

3.7 Changes to original definitions

in Chapter 5 of their paper are clearly over Rexp (this can be seen easily in the respective
ChgPKSFPK algorithms) but it is not explicitly stated in [3] that this has to be the case
for all SFPK schemes. So whether there exist relations R 6= Rexp to instantiate SFPK or
SPS-EQ schemes with remains an open question. This is the reason why the definitions
of SFPK (Def. 3.14), SPS-EQ (Def. 3.21) and gFPK-GS (Def. 4.1) are given for arbitrary
equivalence relations in this thesis. In the following we will give the formal definition of
Rexp and convince ourselves that it in fact is an equivalence relation.
Definition 3.25 Let G be a group of prime order p, let l ∈ N. We define the relation
Rexp on Gl as

Rexp := {(M, N) ∈ (Gl)2 | ∃r ∈ Z∗
p : M r = N}

The group operation in above definition is component-wise, i.e.

M r := (M r
1 , . . . , M r

l)

for M := (M1, . . . , Ml). If Rexp is used to instantiate an SFPK or SPS-EQ scheme,
the set of the random values influencing the behavior of the probablistic algorithms
ChgPKSFPK, ChgSKSFPK (for SFPK) and chgrep (for SPS-EQ) is implicitly set to Z∗

p.
The proof of Rexp being an equivalence relation is straight application of definitions and
therefore only sketched in this thesis.
Lemma 3.26 Rexp from Def. 3.25 is an equivalence relation.

Proof. Reflexivity follows from the fact that an identity element 1Z∗
p
∈ Z∗

p exists. Ex-
istence of inverse elements for every r ∈ Z∗

p yields symmetry of Rexp, using the fact
that

gp = g|G| = 1G

for any g ∈ G. Since Z∗
p is complete with respect to multiplication, transitivity of Rexp

is also fulfilled.

3.7 Changes to original definitions

In this section, all differences regarding the definitions and findings in this thesis with
respect to the original work of the creators of SFPK [3] and SPS-EQ [11] and group
signature security [5] will be listed and discussed. To start off, we list minor additions
to the above mentioned definitions:

• When defining (perfect) correctness of a group signature (done in Def. 3.8 in this
thesis) like in [5], we must require that the probabilities that a signature created
with GSign is valid is 1 (instead of requiring validity of GSign(gsk[i], m) like done in
[5]). This is because GSign is a probablistic algorithm and therefore GSign(gsk[i], m)
is not a well-defined value, since the exact randomness used in this call of the
algorithm is not fixed. The same holds for the second requirement for perfect
correctness of group signature schemes (see Eq. (3.7)), so the probability of Open

27

3 Definitions and notation

retrieving the identity of the signer who created a given true signature must as
well be 1.

• For reasons of convenience in the proof of gFPK-GS’s full-anonymity (Thm. 5.3),
full-anonymity is defined via a bit guessing game in Def. 3.11 in this thesis (the
original definition by Bellare et al. in [5] requires the adversary to distinguish
experiments). This change is helpful since the computational indistinguishability
of the games in the game sequence is easier to prove with them being bit guessing
games. Also for convenience in the proof of Thm. 5.3 we defined class-hiding via
distinguishing experiments (see Def. 3.17), in contrast to [3] where it was defined
as a bit guessing game. This helps proving that the full-anonymity game from
Def. 3.10 can be made independent of the hidden bit using a game hop.

3.7.1 Full-traceability definition by Bellare et al.

Next we will give the original definition of full-traceability by Bellare et al. [5] for
completeness. The definition used for the proof of the full-traceability of gFPK-GS in
this thesis (see Thm. 5.2) can be found under Def. 3.13. Def. 3.13 is preferred over
below definition of full-traceability since the way the construction of the collusion set C
is described is more compact.
Definition 3.27 Let λ ∈ N be the security parameter, n ∈ N group size. We define the
following security experiment for a group signature scheme
GS = (GKGen, GSign, GVf, Open) and an adversary A:

Exptrace
GS,A(λ, n)

1 : (gpk, gmsk, gsk)←$ GKGen(λ, n)
2 : St := (gmsk, gpk)
3 : C = ∅, K := ε, Cont = true
4 : while Cont = true do
5 : (Cont, St, j)←$AGSign(gsk[·],·)(choose, St, K)
6 : if Cont
7 : C := C ∪ {j}
8 : K := gsk[j]
9 : (m, σ)←$AGSign(gsk[·],·)(guess, St)

10 : if GVf(gpk, m, σ) = 0
11 : return 0
12 : if Open(gmsk, m, σ) = ⊥
13 : return 1
14 : if ∃i ∈ [n] : Open(gmsk, m, σ) = i ∧ i /∈ C ∧ i, m not queried by A to it’s oracle
15 : return 1
16 : else
17 : return 0

28

3.7 Changes to original definitions

We define the advantage of A in breaking full-traceability of GS as

Advtrace
GS,A(λ, n) := Pr[Exptrace

GS,A(λ, n) = 1] (3.28)

We say that GS is fully-traceable if for all PPT-adversaries A Advtrace
GS,A(λ, n) is negligible

in λ.

We see that the while-loop in lines 4 to 8 in above security game implements giving
A access to an oracle answering identities with the respective personal secret keys like
the oracle OC(·) in Def. 3.13. While the adversary indicates that it will submit more
collusion queries (Cont = true), the answer gsk[j] to the queried identity j output by
A is saved in the variable K which is input to A before waiting for A’s next query.
When modeling the collusion oracle access via a while-loop (as in above Def. 3.27),
the tuple of random variables A sees throughout the experiment becomes unnecessarily
complex since the variables K and St are potentially rewritten several times throughout
the experiment. This is why we defined an additional collusion oracle OC(·) in the full-
traceability definition in this thesis (see Def. 3.13). We see that this obviously gives the
adversary the freedom to interleave signing and collusion queries in any way it wants
to, however, since both oracles OC(·) and GSign from our full-traceability definition
(Def. 3.13) are non-interactive algorithms, any interleaving of collusion and signing oracle
queries possible in Def. 3.13 can be simulated by the while-loop in above definition,
meaning these two full-traceability definitions are equivalent.

3.7.2 Full-anonymity definition by Backes et al.

In this section, we are going to take a look at the definition of full anonymity that was
used by Backes et al. in [3]. More precisely, we will point out that the combination of
how the security game and advantage are defined in this definition basically renders the
definition useless for meaningful statements about a schemes’ security. To start off, the
formal definition of full-anonymity used by Backes et al. will be given. It can be found
as Definition 19 in [3].

Definition 3.28 ((broken) full-anonymity) Let λ ∈ N be a security parameter, n ∈ N
group size. We define the following security experiment for a group signature scheme
GS = (GKGen, GSign, GVf, Open) and an adversary A:

29

3 Definitions and notation

Expanon−b
GS,A (λ, n)

1 : (gpk, gmsk, gsk)←$ GKGen(λ, n)
2 : Q := ∅
3 : (St, i0, i1, m)←$AOpen(gmsk,·,·)(gpk, gsk)
4 : σ←$ GSign(gsk[ib], m)
5 : b̂←$AO(gmsk,·,·)(St, σ)
6 : if (m, σ) ∈ Q then return 0
7 : else return b̂ = b

with O being an oracle as of the following:

O(gmsk, m, σ)

1 : Q := Q ∪ {(m, σ)}
2 : return Open(gmsk, m, σ)

We define the advantage of A in breaking full-anonymity of GS as

Advanon
GS,A(λ, n) = |Pr[Expanon−0

GS,A (λ, n) = 1]− Pr[Expanon−1
GS,A (λ, n) = 1]| (3.29)

We say that GS is fully-anonymous if for all PPT-adversaries A Advanon
GS,A(λ, n) is neg-

ligible in λ.
The boolean value the experiment Expanon−b

GS,A (λ, n) returns shall be interpreted as a bit
for convenience, with 1 corresponding to true, 0 corresponding to false. As well as in the
adapted version of the full-anonymity definition by Bellare et al. [5] which can be found
as Def. 3.11 in this thesis, the adversary is given access to the personal secret keys of all
group members and an open oracle. This oracle will answer message-signature pairs with
the identity of the signer which created the signature. The problem that basically renders
above definition entirely useless emerges from the combination of how the adversaries
advantage and the return value of the above experiment Expanon−b

GS,A (λ, n) are defined.
We see that the experiment returns 1 if and only if A guesses the hidden bit b correctly,
therefore wins the experiment. The adversary’s advantage is furthermore defined as
the absolute difference between it’s winning probabilities in the cases b = 0, b = 1. So
this means that an adversary A that always wins the game has the smallest possible
advantage, which corresponds to considering this adversary the least possible threat to
the full-anonymity of GS. It is plain to see that such an adversary in fact is the most
severe threat to the full-anonymity of GS one can come up with in a theoretical setting,
so this conveys a major flaw in the full-anonymity definition from [3].

30

4 Group signature by Backes et al.

In this chapter we will introduce the static group signature scheme gFPK-GS presented
by Backes et al. in [3] which we refer to as gFPK-GS. It can be found as Scheme 2 in
the original paper [3]. After the formal definition of gFPK-GS we will discuss suitable
prerequisites for gFPK-GS to be correct and then prove it’s correctness. We will also
examine to what extent signatures produced with gFPK-GS are randomizable. At the
end of the chapter, a list of all changes regarding the original definition of gFPK-GS [3]
which we build on will be given.

4.1 Definition

First we will provide the formal definition of gFPK-GS. The signatures created with
gFPK-GS all contain an SFPK signature valid under a fresh randomized version of an
SFPK public key belonging to the originator of the signature. This randomized SFPK
public key is also included in the gFPK-GS-signature. The third part is an SPS-EQ
certificate for that SFPK public key. Before continuing with the formal definition, a more
detailed explanation of the in-and outputs of the four algorithms making up gFPK-GS
will be given. In gFPK-GS, the key generation comprises the generation of an SFPK key
pair for each user and SPS-EQ certificates for the public key in each pair. The public
key needed to check these certificates for validity will be part of the group public key.
Above SFPK key pairs are generated using TKGenSFPK, the trapdoors generated in the
process are needed to open group signatures and therefore part of the group manager
secret key. For signing a message a user first randomizes its SFPK key pair and the
certificate, then he concatenates the new public key and the new certificate with the
message to sign and signs this string using the new SFPK secret key. The resulting
signature consists of that SFPK signature as well as the new public key and the SPS-
EQ certificate for it. Therefore a group signature’s validity is checked by validating
the contained certificate and SFPK signature. Hereby the SFPK signature is checked
for validity under the public key contained in the group signature. Opening of true
signatures (Def. 3.7) is done by simply checking whether there is a group member’s
SFPK public key whose equivalence class contains the public key which is part of the
signature to open. Therefore it is very important that ChgPKSFPK is required to really
output a different representative of a class, otherwise there might be signatures which
can be opened trivially by just comparing the public key in the signature to all in the
gsk[i]. For invalid group signatures, Open will always fail and return the error symbol
⊥.

If the particular SFPK and SPS-EQ ΠSFPK and ΠSPS used to instantiate gFPK-GSΠSFPK,ΠSPS

31

4 Group signature by Backes et al.

are arbitrary and not important, we will omit them in the identifier and simply write
gFPK-GS, as done in the first chapters. Note that for gFPK-GS to work correctly, the
equivalence relations of the used SFPK and SPS-EQ must fulfill a certain constraint
which we will call compatibility of equivalence relations. A formal definition of this
property can be found in Def. 4.2 below the following definition of gFPK-GS.

Definition 4.1 (gFPK-GSΠSFPK,ΠSPS) Let l ∈ N, l > 1, R, R′ be compatible equivalence
relations, λ ∈ N security parameter, n ∈ N,
ΠSPS = (BGGenSPS, KGenSPS, SignSPS, ChgRepSPS, VfySPS, VKeySPS) be an SPS-EQ scheme
with relation R and vector length l,
ΠSFPK = (KGenSFPK, TKGenSFPK, SignSFPK, ChkRepSFPK, ChgPKSFPK, ChgSKSFPK, VfSFPK)
be an SFPK scheme with relation R′ over the key space. We define the group signature
scheme gFPK-GSΠSFPK,ΠSPS = (GKGen, Sign, GVf, Open) as of the following:

GKGen(λ, n)

1 : BG := BGGenSPS(λ)
2 : (pkSPS, skSPS)←$ KGenSPS(BG, l)
3 : for i ∈ [n]
4 : ωi←$ coin
5 : (pki, ski, τi)←$ TKGenSFPK(λ, ωi)
6 : σ

(i)
SPS←$ SignSPS(skSPS, pki)

7 : gpk := (BG, pkSPS)
8 : gmsk := ((pki, τi))n

i=1

9 : for i ∈ [n]
10 : gsk[i] := (pki, ski, σ

(i)
SPS)

11 : gsk := (gsk[i])n
i=1

12 : return (gpk, gmsk, gsk)
GSign(gsk[i], m)

1 : parse gsk[i] := (pki, ski, σ
(i)
SPS)

2 : r←$ coin
3 : pk′

i←$ ChgPKSFPK(pki, r)
4 : sk′

i←$ ChgSKSFPK(ski, r)

5 : (pk′
i, σ

(i)
SPS

′
)←$ ChgRepSPS(pki, σ

(i)
SPS, r, pkSPS)

6 : M := m||σ(i)
SPS

′
||pk′

i

7 : σ0←$ SignSFPK(sk′
i, M)

8 : return σGS = (pk′
i, σ0, σ

(i)
SPS

′
)

32

4.1 Definition

GVf(gpk, m, σGS)

1 : parse σGS = (pk′, σ0, σ′
SPS)

2 : parse gpk = (BG, pkSPS)
3 : if VfySPS(pk′, σ′

SPS, pkSPS) = 0
4 : return 0
5 : M := m||σ′

SPS||pk′

6 : return VfSFPK(pk′, M, σ0)

Open(gmsk, m, σGS)

1 : parse σGS = (pk′, σ0, σ′
SPS)

2 : parse gmsk = ((pki, τi))n
i=1

3 : if GVf(gpk, m, σGS) = 0
4 : return ⊥
5 : if @i ∈ [n] : ChkRepSFPK(τi, pk′) = 1
6 : return ⊥
7 : else
8 : return i

For gFPK-GS to work, the key space of the SFPK must fit the message space of the
SPS-EQ. It clearly is sufficient if the two spaces are equal but it is an open question
whether the existence of a bijective mapping fulfilling certain constraints (e.g. an iso-
morphism) between them is also sufficient. Furthermore, compatibility of the relations
which the SFPK and SPS-EQ are defined over is needed in order to ensure that when
using ChgRepSPS in GSign to adapt the SFPK public key and the SPS-EQ certificate
for it, the obtained public key is the same as the one obtained earlier from the explicit
public key randomization using ChgPKSFPK. We will formalize this requirement in the
following definition.
Definition 4.2 (compatible equivalence relations) Let R, R′ be equivalence rela-
tions, λ ∈ N security parameter,
ΠSPS = (BGGenSPS, KGenSPS, SignSPS, ChgRepSPS, VfySPS, VKeySPS) be an SPS-EQ scheme
with relation R and vector length l ∈ N, l > 1,
ΠSFPK = (KGenSFPK, TKGenSFPK, SignSFPK, ChkRepSFPK, ChgPKSFPK, ChgSKSFPK, VfSFPK)
be an SFPK scheme with relation R′ over the key space. We call R, R′ compatible if for
all

• λ ∈ N

• BG←$ BGGenSPS(λ)

• (pk, sk)←$ KGenSFPK(λ, ω)

• (pkSPS, skSPS)←$ KGenSPS(BG, l)

• σSPS←$ SignSPS(pk, skSPS)

33

4 Group signature by Backes et al.

• r ∈ coin

we have

∀pk1←$ ChgPKSFPK(pk, r), (pk2, σ′
SPS)←$ ChgRepSPS(pk, σSPS, r, pkSPS) : pk1 = pk2

(4.1)
Note that for any equivalence relation R it is possible to define ChgPKSFPK and

ChgRepSPS in a way that R is compatible with itself according to Def. 4.2.
Next we will address an important issue concerning the relation of the SFPK public

keys generated during GKGen. For gFPK-GS to work correctly, all SFPK public keys
that are part of the personal secret keys of the group members need to be in different
equivalence classes, therefore pairwise unrelated. More precisely, if this was not the
case, gFPK-GS cannot be perfectly correct. This is because if there exist i, j ∈ [n]
such that i 6= j and pki is related to pkj (w.L.o.G. i < j), Open would trace back all
signatures created using gsk[j] back to user i since Open stops once it found a public key
pk related to the one in the signature and returns the identity of the user whose personal
secret key contains this public key pk. This behaviour violates the second requirement
of group signature correctness (Eq. (3.7) in Def. 3.8). A formalization of this remark is
the following lemma:
Lemma 4.3 Let l ∈ N, l > 1, R, R′ be compatible equivalence relations, λ ∈ N security
parameter, n ∈ N, ΠSPS = (BGGenSPS, KGenSPS, SignSPS, ChgRepSPS, VfySPS, VKeySPS) be
an SPS-EQ scheme with relation R and vector length l,
ΠSFPK = (KGenSFPK, TKGenSFPK, SignSFPK, ChkRepSFPK, ChgPKSFPK, ChgSKSFPK, VfSFPK)
be an SFPK scheme with relation R′ over the key space. Let
(gpk, gmsk, gsk)←$ GKGen(λ, n), gsk = ((pkd, skd, σ

(d)
SPS))n

d=1. If there exist i, j ∈ [n] such
that

i 6= j ∧ pki R′ pkj

then gFPK-GSΠSFPK,ΠSPS is not perfectly correct.

Proof. Proof by contradiction, assume that gFPK-GSΠSFPK,ΠSPS is perfectly correct. With-
out loss of generality we can assume i < j (proof is analogous with roles of i and
j flipped otherwise). Let m message, σ = (pk∗, σ∗

0, σ∗
SPS)←$ GSign(gsk[j], m). Since

gFPK-GSΠSFPK,ΠSPS is perfectly correct, Open(gmsk, m, σ) = j must hold. But since Open
checks the public keys in the personal secret key vector in ascending order, it will check
for pk∗ ∈ [pki]R′ before checking pk∗ ∈ [pkj]R′ . pki R′ pkj yields [pki]R′ = [pkj]R′ , so
since pk∗ ∈ [pkj]R′ by correctness of ΠSFPK (Eq. (3.17)) and definition of GSign (Def. 4.1),
we get pk∗ ∈ [pki]R′ and therefore Open(gmsk, m, σ) = i. All in all we get

i = Open(gmsk, m, σ) = j

which is a contradiction to the assumption that i 6= j.

So we see that if two users’ SFPK public keys are related, gFPK-GS cannot be per-
fectly correct. This means that if we want to prove perfect correctness of gFPK-GS, we

34

4.1 Definition

need to assume that all the SFPK public keys in the personal secret keys are pairwise
unrelated. However, an open question is whether computational correctness (Def. 3.9)
of gFPK-GSΠSFPK,ΠSPS can be proven without any further assumptions on the relation R
ΠSFPK is defined over as well as the key generation algorithm KGenSFPK of ΠSFPK. The
crucial task here is to estimate the likelihood of two SFPK public keys from different
personal secret keys being related when generating the key material during setup. This
question will be answered in Sect. 4.2.

Next we discuss how the internal randomness of GSign influences the creation of sig-
natures with gFPK-GS. As an outcome of this discussion we obtain a formal definition
of a connection between different group signatures for the same message created by the
same user. This will be very useful in the formal proof of full-anonymity of gFPK-GS
in Thm. 5.3. We see that a group signature for a message m created by user i using
gFPK-GS is fully determined by

• m

• the randomness r explicitly drawn in GSign to randomize the public key in the
personal secret key of user i

• the internal randomness used in the SignSFPK call inside GSign

So even if we fix a message m and user i, there can still be different outcomes of GSign
when this user signs this message. Yet all the signatures that can possibly be produced
when GSign is called on this input contain public keys from the same equivalence class,
each with a valid SPS-EQ certificate and a valid SFPK signature. So we see that
randomizing the SFPK public key differently alters all three components of the resulting
group signature. But even if the message m, the signer identity i and the randomness r
drawn in GSign are all three fixed, there can be different outcomes when calling GSign
multiple times, depending on the internal randomness of SignSFPK. These considerations
are formalized in the following definition.
Definition 4.4 Let gFPK-GSΠSFPK,ΠSPS be defined like in Def. 4.1 with R being the re-
lation ΠSFPK is defined over. Let m be a message, i ∈ [n] a user,
σ := (pk, σ0, σSPS)←$ GSign(gsk[i], m) with pk being an SFPK public key,
VfySPS(pk, σSPS, pkSPS) = 1 ,σ0←$ SignSFPK(sk, m||σSPS||pk) and sk being a correspond-
ing SFPK secret key to pk. We call a valid signature σ∗ = (pk∗, σ∗

0, σ∗
SPS) a randomized

version of σ if and only if

• pk R pk∗

• σ 6= σ∗

Note that the two triples σ, σ∗ are considered distinct if they differ in at least one
component. It is easy to see that all signatures for a fixed message that a fixed user
creates are randomized versions of each other (except for the case that the SignSFPK call
inside GSign uses the same randomness twice). As it can be seen in Def. 4.1, a triple
σ∗ = (pk∗, σ∗

0, σ∗
SPS) is a valid group signature for a message m with respect to gFPK-GS

35

4 Group signature by Backes et al.

if the GVf-algorithm of gFPK-GS returns 1 when called upon input (m, σ∗) and the
group public key which is the case if and only if

VfySPS(pk∗, σ∗
SPS, pkSPS) = 1

and
VfSFPK(pk∗, M∗, σ∗

0) = 1

hold, with M∗ := m||σ∗
SPS||pk∗. It is important to notice that in Def. 4.4, the case of

pk = pk∗ ∧ σSPS = σ∗
SPS ∧ σ0 6= σ∗

0

can occur, so when randomizing a signature σ := (pk, σ0, σSPS) for a message m made
with gFPK-GS, it is sufficient to replace the contained SFPK signature σ0 with a distinct
valid SFPK signature for m||σSPS||pk. This correlates to using the same input and
internal randomness twice for GSign but altering the internal randomness of the SignSFPK-
call. On the other hand, we see that when randomizing a gFPK-GS-signature created
by user i, it is inevitable to avoid computing an SFPK signature with the SFPK secret
key ski which is part of the personal secret key gsk[i] of user i. This is because the
SFPK signature σ0 needs to be replaced in any case when randomizing a signature σ.
So this yields that if the SFPK scheme ΠSFPK used to instantiate gFPK-GSΠSFPK,ΠSPS is
existentially unforgeable, no one except user i itself can randomize a gFPK-GS-signature
created by user i.

4.2 Correctness

In the following we will discuss under which assumptions gFPK-GS can be perfect
and computationally correct. Because of the discussion in Sect. 4.1 which resulted in
Lem. 4.3, we assume for the proof of perfect correctness that all SFPK public keys in
the users’ personal secret keys are pairwise unrelated. Despite being a more or less sim-
ple computation under this prerequisite, proving its perfect correctness helps a lot with
getting familiar with gFPK-GS.
Theorem 4.5 Let l ∈ N, l > 1, R, R′ be compatible equivalence relations, λ ∈ N secu-
rity parameter, ΠSPS = (BGGenSPS, KGenSPS, SignSPS, ChgRepSPS, VfySPS, VKeySPS) be a
correct SPS-EQ scheme with relation R and vector length l,
ΠSFPK = (KGenSFPK, TKGenSFPK, SignSFPK, ChkRepSFPK, ChgPKSFPK, ChgSKSFPK, VfSFPK)
be a correct SFPK scheme with relation R′ over the key space. Furthermore we assume
that for all n, i, j ∈ N, (·, ·, gsk)←$ GKGen(λ, n) with gsk = ((pkd, skd, σ

(d)
SPS))n

d=1 we have

pki ��R
′ pkj

Then gFPK-GSΠSFPK,ΠSPS is a perfectly correct group signature scheme.

Proof. Let

36

4.2 Correctness

• n ∈ N group size

• BG := (p, G1, G2, GT , e, g1, g2) := BGGenSPS(λ)

• (pkSPS, skSPS)←$ KGenSPS(BG, l)

• ∀i ∈ [n] :
– ωi←$ coin
– (pki, ski, τi)←$ TKGenSFPK(λ, ωi)

– σ
(i)
SPS←$ SignSPS(skSPS, pki)

• gpk := (BG, pkSPS) be the group public key

• gmsk := ((τi, pki))n
i=1 the group manager secret key

• gsk[i] := (pki, ski, σ
(i)
SPS) as the i-th group member’s personal secret key (for all

identities i ∈ [n])

To prove perfect correctness of gFPK-GSΠSFPK,ΠSPS according to Def. 3.8, we need to
prove that for all i ∈ [n], messages m

Pr[GVf(gpk, m, GSign(gsk[i])) = 1] = 1

and
Pr[Open(gmsk, m, GSign(gsk[i], m)) = i] = 1

We start with proving the first equation. Let

• i ∈ [n]

• m arbitrary message

• r ∈ coin internal randomness of GSign used for key randomization and certificate
adaption.

• pk′
i←$ ChgPKSFPK(pki, r) randomized public key

• sk′
i←$ ChgSKSFPK(ski, r) adapted secret key

• (pk′′
i , σ

(i)
SPS

′
)←$ ChgRepSPS(pki, σ

(i)
SPS, r, pkSPS)) the randomized public key with an

adapted certificate (due to compatibility of the equivalence relations, the resulting
public key is equal to the randomized one from above, so we get pk′

i = pk′′
i)

• M := m||σ(i)
SPS

′
||pk′

i

• σ0←$ SignSFPK(sk′
i, M) the resulting SFPK-signature

• σ←$ GSign(gsk[i], m) := (pk′
i, σ0, σ

(i)
SPS

′
) the resulting group signature

37

4 Group signature by Backes et al.

We see that

Pr[GVf(gpk, m, GSign(gsk[i], m)) = 1] = 1
gpk,σ⇔ Pr[GVf((BG, pkSPS), m, (pk′

i, σ0, σ
(i)
SPS

′
)) = 1] = 1

GVf⇔ Pr[VfSFPK(pk′
i, M, σ0) = 1] = 1 ∧ Pr[VfySPS(pk′

i, σ
(i)
SPS

′
, pkSPS) = 1] = 1

⇔Pr[VfySPS(pk′
i, σ

(i)
SPS

′
, pkSPS) = 1] = 1

⇔1 = 1

which proves the first equation (Eq. (3.6)). The last equivalence comes from the fact
that (pk′

i, σ
(i)
SPS

′
)←$ ChgRepSPS(pki, σ

(i)
SPS, r, pkSPS) so because ΠSPS is a correct SPS-EQ

scheme, Eq. (3.26) holds which yields that (pk′
i, σ

(i)
SPS

′
) is a valid message-signature pair

under pkSPS so we get above equivalence. The second last equivalence holds because of
the correctness of ΠSFPK, since σ0 is a signature created using sk′

i and (pk′
i, sk′

i) is a key
pair created by randomizing both parts of the valid key pair (pki, ski) using the same
randomness r. So in formulas we have σ0←$ SignSFPK(sk′

i, M), pk′
i←$ ChgPKSFPK(pki, r),

sk′
i←$ ChgSKSFPK(ski, r), since ΠSFPK is correct we can use Eq. (3.15) to argue

VfSFPK(pk′
i, M, σ0) = 1 which yields above equivalence. We continue to prove the second

equation (Eq. (3.7)). We see that

Pr[Open(gmsk, m, GSign(gsk[i], m)) = i]

= Pr[Open(((τi, pki))n
i=1, m, (pk′

i, σ0, σ
(i)
SPS

′
)) = i]

=1

holds, which proves the second equation (Eq. (3.7)). The last equality deserves some
words. For Open to return an identity in the first place, GVf(gpk, m, GSign(gsk[i], m)) = 1
must hold. Because we already proved Eq. (3.6) for gFPK-GSΠSFPK,ΠSPS , this is ful-
filled and the only thing left to argue (by definition of Open in Def. 4.1) is therefore
ChkRepSFPK(τi, pk′

i) = 1.
Since ΠSFPK is correct this is equivalent to pk′

i ∈ [pki]R′ (Eq. (3.16)). By definition we
have pk′

i←$ ChgPKSFPK(pki, r), so since ΠSFPK is correct (Eq. (3.17)) this means pk′
i ∈

[pki]R′ . Since pk′
i is in no other equivalence class [pkj]R′ for j 6= i (because we assumed all

SFPK public keys in the personal secret keys to be pairwise unrelated), we get the desired
equality. Since we proved both Eq. (3.6) and Eq. (3.7) for gFPK-GSΠSFPK,ΠSPS , this
means that gFPK-GSΠSFPK,ΠSPS is a perfectly correct group signature scheme according
to Def. 3.8 under the assumption that all SFPK public keys in the users’ personal secret
keys are pairwise unrelated.

Computational correctness Computational correctness of gFPK-GSΠSFPK,ΠSPS (see Def. 3.9)
is heavily dependent on the equivalence relation which the SFPK scheme ΠSFPK is de-
fined over as well as the key generation algorithm TKGenSFPK of ΠSFPK. To formally

38

4.3 Changes to original work

prove computational correctness of gFPK-GS according to Def. 3.9, we need to prove

Pr[GVf(gpk, m, GSign(gsk[i])) = 1] = 1− κ1(λ)

and
Pr[Open(gmsk, m, GSign(gsk[i], m)) = i] = 1− κ2(λ)

for κ1, κ2 being negligible functions in the security parameter λ and all other variables
being defined as in the theorem for perfect correctness of gFPK-GS (see Thm. 4.5).
We see that since gFPK-GS fulfills the first requirement for group signature correctness
(Eq. (3.6)) without the assumption that all SFPK public keys in the personal secret
keys are pairwise unrelated, it also fulfills the first requirement of computational cor-
rectness (Eq. (3.8)) with κ1 = 0 (zero function, mapping all inputs to 0). However,
it cannot be formally proven or ruled out that gFPK-GSΠSFPK,ΠSPS fulfills the second
of above requirements for computational correctness. This is because the probabil-
ity p

gFPK-GSΠSFPK,ΠSPS
keys−rel of GKGen outputting two personal secret keys containing related

SFPK public keys can vary dependent on the concrete SFPK scheme ΠSFPK used for the
instantiation of gFPK-GSΠSFPK,ΠSPS , more precisely, depending on the key generation al-
gorithm TKGenSFPK of ΠSFPK as well as the equivalence relation R that ΠSFPK is defined
over. So p

gFPK-GSΠSFPK,ΠSPS
keys−rel cannot be computed in the general case, even if we fix the

equivalence relation ΠSFPK is defined over to Rexp.
A trivial approach to fix the issue with the possibly related SFPK public keys is to

execute TKGenSFPK during GKGen of gFPK-GS until it has output n SFPK key pairs
containing public keys that are pairwise unrelated. However, if GKGen was changed like
this, its running time could not be estimated properly, since p

gFPK-GSΠSFPK,ΠSPS
keys−rel is still not

computable in the general case and therefore we cannot estimate the number of times
TKGenSFPK will be executed during GKGen. It might not even be guaranteed that this
changed version of GKGen terminates since the key space of ΠSFPK and the equivalence
relation R ΠSFPK is defined over could be defined in a way that n pairwise unrelated
SFPK public keys do not even exist. However, the probability of GKGen exceeding
polynomial running time must be negligible by definition (see Def. 3.7). This means
that if we changed GKGen of gFPK-GSΠSFPK,ΠSPS (Def. 4.1) in the way sketched above,
gFPK-GSΠSFPK,ΠSPS would no longer be a group signature scheme according to Def. 3.7.

So all in all, in Sect. 4.2 we proved perfect correctness of gFPK-GS under the assump-
tion that all SFPK public keys contained in the personal secret keys output by GKGen are
pairwise unrelated. Computational correctness according to Def. 3.9 cannot be proven
formally for the generic construction by Backes et al. [3] (Def. 4.1 in this thesis) and
must therefore be proven individually for concrete instantiations of gFPK-GS.

4.3 Changes to original work

In this section, all differences regarding the original definition of gFPK-GS that was
given in [3] will be listed and discussed. Note that [2] is an extended version of [3] in

39

4 Group signature by Backes et al.

which some additions to the original work in [3] are made which we will also cover in
this section.

• The correctness proof for gFPK-GS was omitted in [3], a high-level proof sketch
was added in [2]. A detailed correctness proof for gFPK-GS can be found under
Thm. 4.5 in this thesis.

• Backes et al. did not mention in [3] that the SFPK public keys in all users’ personal
secret keys must be pairwise unrelated for gFPK-GS to be perfectly correct (see
Lem. 4.3 in this thesis). So the version of gFPK-GS presented as Scheme 2 in
[3] is not perfectly correct without further assumptions. The proof of perfect
correctness in this thesis (see Thm. 4.5) therefore additionally assumes that all
SFPK public keys in the personal secret keys are in pairwise distinct equivalence
classes. Proving computational correctness of the generic construction gFPK-GS
according to Def. 3.9 is not possible, since the probability p

gFPK-GSΠSFPK,ΠSPS
keys−rel of

GKGen outputting two personal secret keys with related SFPK public keys cannot
be estimated without knowledge of the concrete SFPK scheme ΠSFPK used to
instantiate gFPK-GS (see paragraph "Computational correctness" in Sect. 4.2 for
details).

• The notion of compatibility of equivalence relations (Def. 4.2 in this thesis) was
not formally introduced in [3]. In the introduction of their paper, the authors men-
tioned that the relations the schemes ΠSFPK, ΠSPS used to instantiate gFPK-GS
are defined over need to be compatible, but what this term exactly means was
not explained. We cannot assume without loss of generality that ChgPKSFPK and
ChgRepSPS will always yield the same public key when called with the same ran-
domness and SFPK public key (which is seen as a message by ChgRepSPS in this use
case) or do so with high probability. This behaviour of ChgPKSFPK and ChgRepSPS
is a requirement for gFPK-GS to be perfectly correct. For gFPK-GS to be compu-
tationally correct according to Def. 3.9, above behaviour must at least be achieved
with high probability. One might call this requirement computational compatibility.
However, since computational correctness of gFPK-GSΠSFPK,ΠSPS cannot be proven
without specifying ΠSFPK and ΠSPS (and is therefore not proven in this work, see
paragraph on computational correctness in Sect. 4.2 for details), computational
compatibility is not defined formally in this thesis.

A formal definition of compatibility of equivalence relations similar to the one in
this thesis (Def. 4.2) is still missing in [2], although in the sketch of the correct-
ness proof for gFPK-GS (Theorem 3 in [2]), the equivalence relations of the SFPK
and SPS-EQ are said to fulfill the property which was called compatibility in this
thesis. However, the authors argue this using the implicit prerequisite that both
schemes are instantiated with the same equivalence relation while the compati-
bility definition in this thesis also captures the possibility that their relations are
different.

40

4.3 Changes to original work

• In the group key generation algorithm of Scheme 2 in [3] (which we refer to as
gFPK-GS), it is denoted that the execution of BGGen is probablistic with internal
randomness. But according to the authors’ definition of bilinear group generators
(Definition 2 in [3]), BGGen is a deterministic algorithm.

41

5 Security of group signature by Backes et
al.

In this section, full proof of the full-traceability and full-anonymity of gFPK-GS under
the prerequisites named by Backes et al. [3] will be given. The authors gave the game
sequences they used in their proofs as well as a high-level view on the arguments needed
for a formal proof. This can both be found in the appendix of their paper. A discussion
of their approaches can be found in Sect. 5.3. Before beginning with the actual proofs,
we are going to define two terms that will help us a lot when it comes to arguing that a
specific security game is simulated correctly to an adversary in a reduction.
Definition 5.1 (view, correctly distributed) The tuple that contains all random
variables an adversary is input during a security game in order of appearance is called
the view of that adversary. We say that a random variable that is input to an adversary
in a simulation of a security game during a reduction is correctly distributed if it is
identically distributed as in the respective security game.

Note that according to above terminology the view of an adversary is a random variable
itself. So when simulating security games (as done in a reduction, for example), we
always need to prove that the view of the adversary the game is simulated for is correctly
distributed.

5.1 Full-traceability
We will start with proving full-traceability of gFPK-GS. The following theorem can be
found as Theorem 3 in the original paper [3]. In the following we will adjust it to the
notation used in this thesis. Before the formal proof a short intuition of the general idea
of it will be given. Note that the approach of the proof in this thesis is different from
the one chosen in [3] which is based on a sequence of games.
Theorem 5.2 Let R, R′ be compatible equivalence relations (Def. 4.2), λ ∈ N security
parameter, n ∈ N group size, l ∈ N, l > 1. Let
ΠSPS = (BGGenSPS, KGenSPS, SignSPS, ChgRepSPS, VfySPS, VKeySPS) be an SPS-EQ scheme
with relation R and vector length l,
ΠSFPK = (KGenSFPK, TKGenSFPK, SignSFPK, ChkRepSFPK, ChgPKSFPK, ChgSKSFPK, VfSFPK)
be an SFPK scheme with relation R′ over the key space. Furthermore let ΠSFPK be ex-
istentially unforgeable (Def. 3.20), ΠSPS be existentially unforgeable (Def. 3.23). Then
gFPK-GSΠSFPK,ΠSPS (Def. 4.1) is fully-traceable according to Def. 3.13.

The unforgeability of ΠSFPK and ΠSPS are seperated in the formulation of theorem 5.1
because despite they share the same name, these are different security properties.

43

5 Security of group signature by Backes et al.

Proof. Let us first outline the proof. Two ways to win the full-traceability experiment
from Def. 3.13 exist which directly emerge from the definition: an adversary that wins
must either have output an unopenable signature or a signature that opens to an identity
which is not part of its collusion set. In case that an adversary manages to forge a
valid and unopenable group signature, the public key and the certificate in this group
signature can be used to break existential unforgeability of the SPS-EQ scheme. This
is because then the public key contained in the group signature is not related to any
of the group members public keys while the group signature contains a valid SPS-EQ
certificate for it. On the other hand, if the forgery opens to an identity i ∈ [n], it can
be used to create a forgery for the SPFK key pair in the i-th user’s personal secret key
gsk[i], therefore breaking the SFPK unforgeability. So in this case the basic idea of the
reduction is to embed the challenge key pair into the group secret key vector as one of
the group members key pairs. In the following we do the case distinction sketched above
and therefore describe the construction of two adversaries, for every execution of an
algorithm breaking full-traceability, exactly one of them has non-negligible advantage.
Formally this means we need to prove

∃ PPT adversary A : Advtrace
gFPK-GSΠSFPK,ΠSPS ,A(λ, n) not negligible

⇒∃ PPT adversary B : Adveuf−sfpk
ΠSFPK,B (λ) not negligible

∨∃ PPT adversary D : Adveuf−sps
ΠSPS,D (λ) not negligible

which is equivalent to proving

∃ PPT adversary A : Advtrace
gFPK-GSΠSFPK,ΠSPS ,A(λ, n) not negligible

⇒∃ PPT adversary B, PPT adversary D : Adveuf−sfpk
ΠSFPK,B (λ) or Adveuf−sps

ΠSPS,D (λ) not negligible

So in the following, two adversaries B,D will be constructed from an adversary A which
has non-negligible advantage in breaking full-traceability of gFPK-GSΠSFPK,ΠSPS . B will
be able to break the existential unforgeability of ΠSFPK (with non-negligible advantage)
in the case that the forgery output by A opens to an identity k ∈ [n]. D will be able to
break the existential unforgeability of ΠSPS (also with non-negligible advantage) under
the prerequisite that the forgery output by A is unopenable. Since A must either output
a forgery that opens to an identity or is unopenable, we see that the construction of
adversaries B,D as above allows for proving the above reformulation of the contraposition
of Thm. 5.2.

Next we construct an adversary B breaking unforgeability of ΠSFPK from an adversary
A breaking full-traceability of gFPK-GSΠSFPK,ΠSPS whose forgery opens to an identity
k ∈ [n]. On input (pk, τ) with (pk, sk, τ) ← TKGenSFPK(λ, ω),ω ∈ coin like in the
unforgeability game from Def. 3.20, B works as follows:

1. B sets up the traceability challenge for A, performing the following steps:

a) B samples an identity i ∈ [n] and initializes the collusion set as C := ∅

44

5.1 Full-traceability

b) B generates the bilinear group BG ← BGGen(λ) and an SPS-EQ key pair
(pkSPS, skSPS)←$ KGenSPS(BG, l). Note that since BGGen is deterministic (see
Def. 3.6) and λ publicly known, BG can be regarded a publicly known value.

c) for all identities j ∈ [n], j 6= i, B generates the personal secret key and a
trapdoor as follows

i. B draws random coins ωj←$ coin
ii. B generates an SFPK key pair with a trapdoor by computing

(pkj , skj , τj)←$ TKGenSFPK(λ, ωj)
iii. B creates a certificate by signing the generated SFPK public key like

σ
(j)
SPS←$ SignSPS(skSPS, pkj)

iv. B defines the personal secret key of group member j as
gsk[j]←$ (pkj , skj , σ

(j)
SPS)

d) B defines pki := pk, τi := τ and creates a fresh certificate
σ

(i)
SPS←$ SignSPS(skSPS, pki) for pk. Note that this implicitly sets ski := sk,

where sk is the SFPK secret key from the SFPK unforgeability challenge for
B. This means that we can see the personal secret key of group member i as
fully defined, although B cannot access sk

e) B defines the group public key as gpk := (BG, pkSPS)
f) B defines the group manager secret key as gmsk := ((τj , pkj))n

j=1

g) B defines the group secret key vector as gsk := (gsk[j])n
j=1

2. B starts A on input (choose, St) with St := (gpk, gmsk) and answers A’s oracle
queries in the choose-phase as follows:
collusion query : if A sends an identity j ∈ [n], B adds j to the collusion set C

(C := C ∪ {j}) and answers with gsk[j]. It is plain to see that in the case
j = i, B must abort the game (since B cannot access ski = sk which is part
of gsk[i]), we will discuss the details below.

signing query : when receiving a signing query from A (consisting of an identity
j ∈ [n] and a message m), B performs the following steps:
a) B draws randomness r←$ coin
b) B randomizes pkj like pk′

j←$ ChgPKSFPK(pkj , r) and adapts the corre-
sponding certificate by computing
(pk′

j , σ
(j)
SPS

′
)←$ ChgRepSPS(pkj , σ

(j)
SPS, r, pkSPS)

c) B defines M := m||σ(j)
SPS

′
||pk′

j

d) for creating the required SFPK signature, two cases exist:
j = i B uses its own oracle (which uses ski) to generate the SFPK signa-

ture, more precisely it submits (M, r) to the randomize-then-sign ora-
cle and obtains σ0←$ SignSFPK(sk′, m) where sk′←$ ChgSKSFPK(sk, r).

45

5 Security of group signature by Backes et al.

This results in (M, σ0) being added to the set Q of query-answer tu-
ples of the oracle.

j 6= i B obtains the required SFPK signature by computing
σ0←$ SignSFPK(sk′

j , M) where sk′
j←$ ChgSKSFPK(skj , r)

e) B puts together the answer to A’s query as σ := (pk′
j , σ0, σ

(j)
SPS) and

returns it
Eventually, A halts and outputs state information St

3. B starts A on input (guess, St) and answers A’s signing queries like in the choose-
phase

4. when A eventually outputs a forgery (m∗, σ∗), B will create his candidate forgery
for ΠSFPK as follows:

a) B parses σ∗ := (pk∗, σ∗
0, σ∗

SPS)
b) B defines M∗ := m∗||σ∗

SPS||pk∗

c) B outputs (pk∗, M∗, σ∗
0)

The values choose and guess are constants indicating the current phase of the full-
traceability game. In the first step, B basically performs a slightly adapted version of
GKGen: generation of gsk[i] is just rearranging the values input to B, only the SPS-EQ
certificate for the public key needs to generated manually. All other personal secret keys
are generated according to the definition of GKGen. Answering the collusion queries then
is straightforward except for the case j = i, which will be dealt with in the later analysis.
In short, if A wins and B is lucky with guessing i, A will never query i in the collusion
phase. This follows from the fact that A creates a forgery that opens to an identity
k ∈ [n] so there is at least one identity which he cannot have queried when he wins the
game. For answering signing queries for identities j 6= i, B can simply perform the GSign
algorithm since it is in possession of all gsk[j]. For j = i, B partly also executes GSign,
but since ski is not known to B, it must use its own signing oracle to obtain the required
SFPK signature. In the last step B must recover the message the SFPK signature in A’s
forgery was made for before it outputs that message and signature as it’s own forgery,
together with the public key from the group signature output by A.

We now need to argue that B is a PPT adversary and that the full-traceability exper-
iment is simulated correctly for A in above reduction. With that done, it is possible to
analyze Adveuf−sfpk

ΠSFPK,B (λ). We see that B obviously is a PPT adversary since

• A is a PPT adversary

• all algorithms used in the construction of B are PPT-algorithms by definition (since
they are part of either ΠSFPK, ΠSPS or gFPK-GSΠSFPK,ΠSPS (the only exception
is BGGen which is a bilinear group generator and therefore a polynomial time
algorithm by definition)), namely

– KGenSPS

46

5.1 Full-traceability

– TKGenSFPK

– SignSPS

– ChgPKSFPK

– ChgSKSFPK

– ChgRepSPS

– GSign

• sending messages and all other basic operations B performs can obviously be done
using PPT-algorithms

If A queries i during collusion set construction, B obviously cannot return gsk[i]. This
is because by defining pki := pk, B implicitly set ski := sk, which is the secret key
generated by the challenger, a value B cannot access. So the strongest statement with
respect to simulation of the full-traceability experiment for A we can hope to prove is
that B simulates the full-traceability experiment correctly for A if A does not choose
user i to be part of it’s collusion set C. In the advantage analysis for B, it will turn
out that this indeed is already sufficient for B to win Expeuf−sfpk

ΠSFPK,B (λ) with non-negligible
advantage, therefore breaking existential unforgeability of ΠSFPK. This follows from the
fact that in order to be able to win the full-traceability game according to Def. 3.13
with a forgery that opens to an identity k ∈ [n], A cannot have the collusion set C = [n]
which means that A cannot choose all users to be part of its collusion set C.

Claim If A does not query i in collusion phase then B simulates the full-traceability
experiment correctly to A.

When proving this claim in the following, we will make use of the terminology for
security game simulations established in Def. 5.1. The view of A in the full-traceability
experiment from Def. 3.13 is a tuple with the following structure:

V = (gmsk, gpk, C, (md, jd, σd)q1
d=1, St, (md, jd, σd)q2

d=q1+1)

with

• gmsk, gpk being a group manager secret key and a group public key generated
using GKGen

• C ⊆ [n] being the collusion set of the adversary A

• St being state information about the course of the game that A is input at the
beginning of the guess-phase

• for every d ∈ [q2], md is a message, jd is an identity and σd is a gFPK-GS-signature
for md created by user jd

47

5 Security of group signature by Backes et al.

• q1 is the number of signing queries A submitted during the collusion phase, q2 is
the total number of signing queries A submitted throughout course of the entire
experiment with both q1, q2 being polynomials in λ

Note that no variable in the view of A is directly influenced by other variables in A’s
view (meaning that if a variable in A’s view is computed from other random variables
A sees, fresh individual randomness is used in the computation), which means that
all random variables in A’s view can be considered independent. This means that for
showing that A’s view is correctly distributed, it suffices to show that every individual
variable it contains is correctly distributed. So in the following we will take a look at
the distribution of all random variables from A’s view in the simulation of the full-
traceability game in above reduction and argue that all of them are distributed like in
the full-traceability experiment from Def. 3.13:

• gmsk is obviously correctly distributed since for j 6= i the j-th entry of gmsk is
generated using TKGenSFPK by B and the i-th entry is generated using TKGenSFPK
by the challenger.

• gpk is correctly distributed since BG is a bilinear group and pkSPS is an SPS-EQ
public key generated using KGenSPS as required.

• For any j 6= i: gsk[j] is a personal secret key containing an SFPK key pair
(pkj , skj)←$ TKGenSFPK(λ, ωj) and a SPS-EQ-certificate σ

(j)
SPS←$ SignSPS(skSPS, pkj)

of pkj as required (note that by the assumption in above claim, A must never be
given access to gsk[i]). Furthermore we see that the answers gsk[j] are part of the
same group secret key gsk which was generated by B during step 1 of the reduc-
tion when it simulated the group key generation algorithm GKGen of gFPK-GS.
Therefore all of B’s answers to A’s collusion queries are correctly distributed.

• Consider both phases where A submits queries to the signing oracle (which B needs
to simulate for A). We will take a look at how B creates its answer σd to a signing
query (md, jd) from A:

jd 6= i B effectively returns GSign(gsk[jd], md) (clear to see, it does all steps part of
GSign for this input) as the oracle’s answer, as required in the definition of
the full-traceability experiment

jd = i B uses its randomize-then-sign oracle to simulate an execution of GSign for
parameters gsk[i] and md. Note that as stated in the first step of above
reduction, ski is implicitly set to the secret key sk which the signing oracle
uses that B can access.

So we see that the answer to the query made by A is correctly distributed in both
cases.

• St obviously is correctly distributed since it is computed by A as required

48

5.1 Full-traceability

Since all random variables from A’s view are independent and correctly distributed (and
therefore A’s view in the simulation is also correctly distributed), we proved the above
claim, so B simulates the full-traceability game correctly for A if i is not queried by A
during the collusion phase.

For the later advantage analysis of B, we will make use of the fact that we can very
well analyze Adveuf−sfpk

ΠSFPK,B (λ) in comparison to Advtrace
gFPK-GSΠSFPK,ΠSPS ,A(λ, n) in case that

i is the identity A’s forgery opens to. We will formally define this event in the next
paragraphs. Consider the following equivalence relation on the set of adversaries against
full-traceability of gFPK-GSΠSFPK,ΠSPS : two adversaries A,A′ are called equivalent if they
output message signature pairs (mA, σA), (mA′ , σA′) such that Open(gmsk, mA, σA) =
Open(gmsk, mA′ , σA′) on input (gpk, gmsk). We see that this obviously induces an equiv-
alence relation and the set of equivalence classes of which is

{Ak | k ∈ [n]}

where
Ak := {A | A outputs (m, σ) with Open(gpk, m, σ) = k}

When the initial input for A in above reduction algorithm B has been computed, the
unique k such that A ∈ Ak is determined (k exists because of our assumption for this
case, uniqueness is clear to see). We define the event good as the event that i = k holds.
Since k can be considered fixed at the time i is drawn, we see that

Pr[good] = Pr[i = k] = 1
n

holds.

We are now going to prove that Adveuf−sfpk
ΠSFPK,B (λ) is not negligible. We see that

Adveuf−sfpk
ΠSFPK,B (λ)

= Pr[Expeuf−sfpk
ΠSFPK,B (λ) = 1]

= Pr[Expeuf−sfpk
ΠSFPK,B (λ) = 1 | good] · Pr[good] + Pr[Expeuf−sfpk

ΠSFPK,B (λ) = 1 | ¯good] · Pr[¯good]

≥Pr[Expeuf−sfpk
ΠSFPK,B (λ) = 1 | good] · Pr[good]

= Pr[Expeuf−sfpk
ΠSFPK,B (λ) = 1 | good] · 1

n

≥Pr[Exptrace
gFPK-GSΠSFPK,ΠSPS ,A(λ, n) = 1] · 1

n

=Advtrace
gFPK-GSΠSFPK,ΠSPS ,A(λ, n) · 1

n

Since Advtrace
gFPK-GSΠSFPK,ΠSPS ,A(λ, n) is not negligible in λ and n by assumption in the

contraposition of Thm. 5.2 and 1
n is not negligible in λ (if it were, this would mean that

n is superpolynomial in λ, but then GKGen from Def. 4.1 could not be a PPT algorithm)

49

5 Security of group signature by Backes et al.

we get that Advtrace
gFPK-GSΠSFPK,ΠSPS ,A(λ, n) · 1

n is not negligible in λ. Since

Adveuf−sfpk
ΠSFPK,B (λ) ≥ Advtrace

gFPK-GSΠSFPK,ΠSPS ,A(λ, n) · 1
n

this yields that Adveuf−sfpk
ΠSFPK,B (λ) is not negligible in λ, so ΠSFPK is not EUF-CMA secure.

To prove the last inequality, we prove

Exptrace
gFPK-GSΠSFPK,ΠSPS ,A(λ, n) = 1 ∧ good⇒ Expeuf−sfpk

ΠSFPK,B (λ) = 1 (5.1)

with good denoting the event that i = k holds (for the identity i drawn uniformly at
random by B and the identity k that the forgery which A outputs opens to). This
basically means that if A wins the full-traceability game for gFPK-GSΠSFPK,ΠSPS and
the good-event occurs, then B wins the existential unforgeability game for ΠSFPK. Let
(m∗, σ∗) be the forgery output by A, with σ∗ = (pk∗, σ∗

0, σ∗
SPS) and

Open(gmsk, m∗, σ∗) = k ∈ [n], k /∈ C. Note that k /∈ C holds by definition of traceability
because of Exptrace

gFPK-GSΠSFPK,ΠSPS ,A(λ, n) = 1. Furthermore let M∗ := m∗||σ∗
SPS||pk∗. We

see that

Exptrace
gFPK-GSΠSFPK,ΠSPS ,A(λ, n) = 1 ∧ good

⇔GVf(gpk, m∗, σ∗) = 1 ∧ Open(gmsk, m∗, σ∗) = k ∧ k /∈ C ∧ good
⇔GVf(gpk, m∗, σ∗) = 1 ∧ Open(gmsk, m∗, σ∗) = i ∧ i /∈ C

GVf⇒VfSFPK(pk∗, M∗, σ∗
0) = 1 ∧ Open(gmsk, m∗, σ∗) = i ∧ i /∈ C

⇒ChkRepSFPK(τ, pk∗) = 1 ∧ VfSFPK(pk∗, M∗, σ∗
0) = 1

⇒Expeuf−sfpk
ΠSFPK,B (λ) = 1

The second last implication holds since we have

Open(gmsk, m∗, σ∗) = i

⇒pk∗ ∈ [pki]R′
pki=pk= [pk]R′

⇒ChkRepSFPK(τ, pk∗) = 1

Note that in the last step in above computation we use that τ is the trapdoor for the
class [pk]R′ of pk. The last implication in the proof of Eq. (5.1) holds by definition of
the winning condition of existential unforgeability game Expeuf−sfpk

gFPK-GSΠSFPK,ΠSPS ,B(λ) from
Def. 3.20, but we need to clarify that B indeed outputs a forgery for a message that
was not signed before (meaning not queried by B to its signing or randomize-then-sign
oracle). We see that
• (pk∗, M∗, σ∗

0) is the triple output by B

• M∗ /∈ Q (with Q denoting the set of all messages B queried to its signing and
randomize-then-sign oracle) holds since

50

5.1 Full-traceability

– if M∗ = m∗||σ∗
SPS||pk∗ ∈ Q we get that A submitted (i, m∗) to B as a signing

oracle query

– this is because B only queries its SFPK signing oracle once with m||σ(i)
SPS

′
||pk′

i

for each query i, m A submits to its group signing oracle, with pk′
i being a

randomized version of the SFPK public key pki from the i-th user’s personal
secret key gsk[i] and i being the identity chosen uniformly at random by B at
the beginning of the reduction.

– so if M∗ = m∗||σ∗
SPS||pk∗ ∈ Q, we get with pk∗ ∈ [pki]R′ that B queried

(M∗, ·) to one of its signing oracles to answer the signing query (i, m∗) made
by A

– so since m∗ is the message A outputs a forgery for, the fact that A queried
(i, m∗) to its group signing oracle implies Exptrace

gFPK-GSΠSFPK,ΠSPS ,A(λ, n) = 0
contradicting the assumption that Exptrace

gFPK-GSΠSFPK,ΠSPS ,A(λ, n) = 1 holds

So we constructed a PPT adversary B which has non-negligible advantage in breaking
existential unforgeability of ΠSFPK when it has access to a PPT adversary A that has
non-negligible advantage in breaking full-traceability of gFPK-GSΠSFPK,ΠSPS and outputs
a forgery that opens to an identity k ∈ [n].

In the following, a PPT adversary D which has non-negligible advantage in breaking
existential unforgeability of ΠSPS will be constructed from an adversary A that has non-
negligible advantage in breaking full-traceability of gFPK-GSΠSFPK,ΠSPS and outputs an
unopenable forgery.

On input (pk) with BG←$ BGGenSPS(λ), (pk, sk)←$ KGenSPS(BG, l) as in the SPS-EQ
unforgeability experiment from Def. 3.23, D behaves as follows:

1. D sets up the traceability challenge for A, performing the following steps:
a) D computes BG ←$ BGGenSPS(λ). Note that since the bilinear group gener-

ator BGGenSPS is a deterministic algorithm (see Def. 3.6), D can obtain the
same group that was used to generate the input to D.

b) for all identities j ∈ [n], D generates the personal secret key and a trapdoor
as follows:

i. D draws random coins ωj ∈ coin
ii. D generates an SFPK key pair with a trapdoor by

(pkj , skj , τj)←$ TKGenSFPK(λ, ωj)
iii. D queries pkj to its signing oracle O, obtaining a certificate

σ
(j)
SPS←$ SignSPS(pkj , sk) for the j-th public key. This results in pkj being

added to the set Q of messages queried to the oracle.
iv. D defines the personal secret key of the j-th group member as

gsk[j] := (pkj , skj , σ
(j)
SPS)

c) D defines the group public key as gpk := (BG, pk)

51

5 Security of group signature by Backes et al.

d) D defines the group manager secret key as gmsk := ((τj , pkj))n
j=1

e) D defines the group secret key vector as gsk := (gsk[j])n
j=1

2. D starts A on input (choose, St) with St := (gpk, gmsk) and answers A’s queries in
the choose-phase as follows:
collusion query : if A sends an identity j ∈ [n], D adds j to the collusion set C by

C := C ∪ {j} and returns gsk[j]
signing query : if A sends an identity j and a message m, D computes and returns

σ←$ GSign(gsk[j], m).
Eventually A halts and outputs state information St.

3. D starts A on input (guess, St) and answers A’s signing queries just like in the
choose-phase

4. when A eventually outputs a forgery (m∗, σ∗), D will create his candidate forgery
for ΠSFPK as follows:

a) D parses σ∗ := (pk∗, σ∗
0, σ∗

SPS)
b) D outputs (pk∗, σ∗

SPS)

The values choose and guess are constants indicating the current phase of the full-
traceability game. In the first step, D basically performs GKGen with the only difference
that the certificates for the public keys in the users’ personal secret keys are computed
using the signing oracle. Answering the collusion and signing queries throughout the
experiment is straightforward since D has all information needed and does not have
to query any oracle. Eventually D outputs the randomized public key and adapted
certificate from A’s forgery as his own forgery.

We see that D obviously is a PPT adversary since

• A is a PPT adversary

• all algorithms used in the construction of D are PPT-algorithms by definition (since
they are part of either ΠSFPK or gFPK-GSΠSFPK,ΠSPS), namely

– BGGenSPS

– TKGenSFPK

– GSign

• sending messages and all other basic operations D performs can obviously be done
using PPT algorithms

When proving that D simulates the full-traceability experiment correctly to A, we will
again make use of the terminology introduced in Def. 5.1. The view of A is a tuple

V = (gmsk, gpk, C, (md, jd, σd)q1
d=1, St, (md, jd, σd)q2

d=q1+1)

with

52

5.1 Full-traceability

• gmsk, gpk being a group manager secret key and a group public key generated
using GKGen

• C ⊆ [n] being the collusion set of the adversary A

• St being state information about the course of the game that A is input at the
beginning of the guess-phase

• for every d ∈ [q2], md is a message, jd is an identity and σd is a gFPK-GS-signature
of md created by user jd

• q1 is the number of signing queries A submitted during the collusion phase, q2 is
the total number of signing queries A submitted throughout course of the entire
experiment with both q1, q2 being polynomials in λ

For proving that the simulation of the full-traceability game is correct, we will take a
look at all random variables that are contained in A’s view and argue that all of them
are distributed like in the full-traceability experiment from Def. 3.13. Looking at the
individual random variables again is sufficient (like in the first reduction in this proof)
as they can be considered independent since fresh randomness is used when computing
a random variable in A’s view from others. We see that

• gmsk is obviously correctly distributed since all public keys and trapdoors it con-
tains are generated using TKGenSFPK as required

• gpk obviously is correctly distributed since pk is an SPS-EQ public key and BG is
a bilinear group

• gsk is correctly distributed since all pkj , skj are created using TKGenSFPK and all
σ

(j)
SPS are created using the signing oracle which uses the secret key sk corresponding

to the public key pk from gpk

• St is obviously correctly distributed since it is computed by A as required

• D’s responses to A’s signing oracle queries (jd, md) are obviously correctly dis-
tributed since they are created using GSign and the respective personal secret key
gsk[jd] just as required in the full-traceability experiment (Def. 3.13)

• since gsk is correctly distributed, D’s answers to A’s queries in the collusion phase
are also correctly distributed

Since all random variables A sees are correctly distributed, we proved above claim, so
D simulates the full-traceability game correctly for A.

To analyze D’s advantage in breaking existential unforgeability of ΠSPS, we prove the
following implication:

Exptrace
gFPK-GSΠSFPK,ΠSPS ,A(λ, n) = 1⇒ Expeuf−sps

ΠSPS,D (λ) = 1 (5.2)

53

5 Security of group signature by Backes et al.

which basically means that if A wins the full-traceability game for gFPK-GSΠSFPK,ΠSPS
then D wins the unforgeability game for ΠSPS. Let (m∗, σ∗) be the forgery output by A,
with σ∗ = (pk∗, σ∗

0, σ∗
SPS) and Open(gmsk, m∗, σ∗) = ⊥ /∈ [n]. We see that

Exptrace
gFPK-GSΠSFPK,ΠSPS ,A(λ, n) = 1

⇒GVf(gpk, m∗, σ∗) = 1 ∧ Open(gmsk, m∗, σ∗) = ⊥
⇒VfySPS(pk∗, σ∗

SPS, pk) = 1 ∧ @i ∈ [n] : ChkRepSFPK(τi, pk∗) = 1
⇒VfySPS(pk∗, σ∗

SPS, pk) = 1 ∧ ∀p̃k ∈ Q : pk∗ /∈ [p̃k]R
⇒Expeuf−sps

ΠSPS,D (λ) = 1

with Q denoting the set of all messages D queried to its SPS-EQ signing oracle over the
course of the game. So with Eq. (5.2) we get

Adveuf−sps
ΠSPS,D (λ)

= Pr[Expeuf−sps
ΠSPS,D (λ) = 1]

≥Pr[Exptrace
gFPK-GSΠSFPK,ΠSPS ,A(λ, n) = 1]

=Advtrace
gFPK-GSΠSFPK,ΠSPS ,A(λ, n)

which yields that since Advtrace
gFPK-GSΠSFPK,ΠSPS ,A(λ, n) is not negligible, Adveuf−sps

ΠSPS,D (λ) is
also not negligible, so ΠSPS is not EUF-CMA secure.

The third last implication in the proof of Eq. (5.2) holds since (m∗, σ∗) is valid and
unopenable, so the certificate for the public key pk∗ in σ∗ must be valid under the SPS-
EQ public key pk; furthermore no personal secret key gsk[i] which contains a public key
related to pk∗ exists. The second last implication holds since the public keys pkj from
the personal secret keys of the group members are the only messages D ever submitted
to its signing oracle which yields

∀p̃k ∈ Q : pk∗ /∈ [p̃k]R

So we constructed a PPT adversary D which has non-negligible advantage in breaking
existential unforgeability of ΠSPS when it has access to a PPT adversary A that has
non-negligible advantage in breaking full-traceability of gFPK-GSΠSFPK,ΠSPS and outputs
an unopenable forgery.

All in all, given a PPT adversary A against full-traceability of gFPK-GSΠSFPK,ΠSPS
which has non negligible advantage Advtrace

gFPK-GSΠSFPK,ΠSPS ,A(λ, n), we constructed two

PPT adversaries B,D such that either Adveuf−sfpk
ΠSFPK,B (λ) or Adveuf−sps

ΠSPS,D (λ) is not negligible
which means that we proved Thm. 5.2 by contraposition.

54

5.2 Full-anonymity

5.2 Full-anonymity

In this section will give proof of full-anonymity of gFPK-GS under the prerequisites
named by Backes et al. [3]. The following theorem can be found as Theorem 4 in [3].
In the following we will first adjust it to the notation used in this thesis and then give
a short sketch of the general idea behind the proof.

Theorem 5.3 Let R, R′ be compatible equivalence relations (Def. 4.2), λ ∈ N security
parameter, n ∈ N group size, l ∈ N, l > 1. Let
ΠSPS = (BGGenSPS, KGenSPS, SignSPS, ChgRepSPS, VfySPS, VKeySPS) be an SPS-EQ scheme
with relation R and vector length l,
ΠSFPK = (KGenSFPK, TKGenSFPK, SignSFPK, ChkRepSFPK, ChgPKSFPK, ChgSKSFPK, VfSFPK)
be an SFPK scheme with relation R′ over the key space. Furthermore let ΠSFPK be
strongly existentially unforgeable (Def. 3.19) and class-hiding (Def. 3.17), let ΠSPS per-
fectly adapt signatures (Def. 3.24) and be existentially unforgeable (Def. 3.23). Then
gFPK-GSΠSFPK,ΠSPS is fully-anonymous.

Proof. We will use an approach based on a sequence of games G0, . . . , G5 where G0
is the original full-anonymity experiment from Def. 3.10. To prove full-anonymity of
gFPK-GSΠSFPK,ΠSPS according to Def. 3.10 we will consider an arbitrary PPT adversary
A and use Si to denote the event that A wins in Gi, meaning that its output b̃ is equal
to the hidden bit b. It is sufficient to upper-bound Pr[S0] to 1

2 + κ(λ) for a negligible
function κ, for that we will use and analyze the game sequence G0, . . . , G5. As a first
step, we will find an upper bound for Pr[S0] which is dependent on Pr[S5]. The idea
behind this is that the sequence of games is constructed in a way that G5 is independent
of the hidden bit b, which makes it possible to precisely upper-bound Pr[S5].

Sequence of games In the following we will define the sequence of games used in this
proof. A formal description of all of its games can be found in Appendix A, detailed
pseudocode for G5 with all changes highlighted will also be given later in this proof.
To make it easier to understand the changes made in the games when reading through
below description, the pseudocode of G0, which is the full-anonymity bit guessing game
from Def. 3.11 for gFPK-GS, will be given before describing the game sequence.

55

5 Security of group signature by Backes et al.

G0(λ)

1 : b←$ {0, 1}
2 : BG := BGGenSPS(λ)
3 : (pkSPS, skSPS)←$ KGenSPS(BG, l)
4 : for j ∈ [n]
5 : ωj ←$ coin
6 : (pkj , skj , τj)←$ TKGenSFPK(λ, ωj)

7 : σ
(j)
SPS←$ SignSPS(skSPS, pkj)

8 : gpk := (BG, pkSPS)
9 : gmsk := ((pkj , τj))n

j=1

10 : for j ∈ [n]
11 : gsk[j] := (pkj , skj , σ

(j)
SPS)

12 : gsk := (gsk[j])n
j=1

13 : (St, i0, i1, m)←$AOpen(gmsk,·,·)(choose, gpk, gsk)
14 : parse gsk[ib] := (pkib

, skib
, σ

(ib)
SPS)

15 : r←$ coin
16 : pk′

ib
←$ ChgPKSFPK(pkib

, r)
17 : sk′

ib
←$ ChgPKSFPK(skib

, r)

18 : (pk′
ib

, σ
(ib)
SPS

′
)←$ ChgRepSPS(pkib

, σ
(ib)
SPS, r, pkSPS)

19 : M := m||σ(ib)
SPS

′
||pk′

ib

20 : σ0←$ SignSFPK(sk′
ib

, M)

21 : σch := (pk′
ib

, σ0, σ
(ib)
SPS

′
)

22 : b̃←$AOpen(gmsk,·,·)(guess, St, σch)
23 : if A did not query Open-oracle with (m, σch) in guess phase
24 : then return b̃ = b

25 : else return 0
Next we will informally define the rest of the game sequence (for a formal definition
with all changes marked in the pseudocode see Appendix A).

G0: regular full-anonymity game (bit-guessing variant from Def. 3.11)

G1: G0 but when creating the challenge signature σch, the contained public key
pk′←$ ChgPKSFPK(pk, r) is manually signed using SignSPS to create the required
certificate σ′

SPS instead of using ChgRepSPS

G2: G1 but an identity i ∈ [n] is chosen uniformly at random and the game is aborted if
i 6= ib

G3: G2 but the game is aborted if A submits an unopenable query (means Open returns
⊥ for that pair) to the opening oracle

56

5.2 Full-anonymity

G4: G3 but when generating the personal secret key gsk[i] for user i, KGenSFPK is used
instead of TKGenSFPK to generate the required SFPK key pair (pki, ski). Further-
more, the Open-algorithm of gFPK-GSΠSFPK,ΠSPS is adapted as seen below.

G5: G4 but the public key pk′ (and therefore also certificate σ′
SPS) in the challenge sig-

nature σch is replaced by a random one.

Aborting in the case that i 6= ib from G2 onwards is not necessary and only makes the
proof more convenient. This is because from G3 onwards, the identity which must be
used in the creation of the challenge signature is now known before A submits two iden-
tities and a message. So we can make changes on the personal secret key generation
for a identity i without having to analyze the cases that A’s choice of i0, i1 forces us to
create the challenge signature for a different identity than i. The change between G3
and G4 is needed to finally be able to do the last game hop which makes the game inde-
pendent of the hidden bit b. We will point out where we make use of this change when
we later reduce distinguishing G4 and G5 to breaking class-hiding of ΠSFPK. Because of
the change in G4, no trapdoor is generated for the SFPK public key pki in the personal
secret key gsk[i] of user i. Therefore, opening of signatures must be done differently from
G4 onwards since Open from gFPK-GSΠSFPK,ΠSPS requires trapdoors for all the SFPK in
the users personal secret keys to work correctly. To open a signature queried to the
opening oracle in G4 and G5, we will make use of the fact that every queried signature
must open to an identity k ∈ [n] and cannot be unopenable (due to the change in G3).
So if the public key pk′ in a specific group signature (pk′, ·, ·) cannot be found related to
an SFPK public key in any users personal secret key using the n− 1 trapdoors in gmsk,
this signature must therefore open to the identity i for which the personal secret key
was generated differently. Formally we can define a modified Open-algorithm Open′ as
follows and prove that Open′ will return the same result as the original Open for every
input triple (gmsk, m, σ).

Open′(gmsk, m, σGS)

1 : parse σGS = (pk′, σ0, σ′
SPS)

2 : parse gmsk = ((pkj , τj))n
j=1

3 : if GVf(gpk, m, σGS) = 0
4 : return 0
5 : if @j ∈ [n] \ {i} : ChkRepSFPK(τj , pk′) = 1
6 : return i

7 : else
8 : return j

We see that for every j ∈ [n] \ {i}, we get

Open(gmsk, m, σGS) = Open′(gmsk, m, σGS)

57

5 Security of group signature by Backes et al.

trivially for every group manager secret key gmsk generated using GKGen and message-
signature pair (m, σGS). If Open(gmsk, m, σGS) = i holds (with σGS = (pk′, σ0, σ′

SPS)),
we see that by construction of Open

Open(gmsk, m, σGS) = i

⇒ChkRepSFPK(τi, pk′) = 1
⇒@j ∈ [n] \ {i} : ChkRepSFPK(τj , pk′) = 1
⇒Open′(gmsk, m, σGS) = i

holds, the third implication comes from the fact that for gFPK-GSΠSFPK,ΠSPS to be cor-
rect, all SFPK public keys contained in the users personal secret keys must be pairwise
unrelated (see Lem. 4.3). So since Open and Open′ always return the same result when
called with the same input, they can be considered equal as functions. We will therefore
always write Open instead of Open′ for simplicity.

Two things are important to note about the change in G5: First, random public key
does not necessarily mean uniformly random but that we can choose the distribution of
pk′. So this basically the freedom of choosing any distribution for pk′ that is convenient
in a certain context. The change in G1 is a crucial requirement to do so, since it allows
us to create a fresh SPS-EQ certificate for pk′ (which is needed since pk′ is not related
to any key generated during GKGen, therefore we cannot obtain a SPS-EQ certificate for
pk′ using ChgRepSPS). Second, the challenge signature in G5 is independent of the bit b
drawn at the beginning of the experiment. We will make use of this important fact later
in the proof. Despite all games from above game sequence can be found in Appendix A,
we will give a formal definition of G5 here for convenience and mark all changes with the
number of the game they first occur in.

58

5.2 Full-anonymity

G5(λ)

1 : b←$ {0, 1}
2 : i←$ [n] // G2-change

3 : BG := BGGenSPS(λ)
4 : (pkSPS, skSPS)←$ KGenSPS(BG, l)
5 : for j ∈ [n]
6 : ωj ←$ coin
7 : if j 6= i // G4-change

8 : (pkj , skj , τj)←$ TKGenSFPK(λ, ωj)
9 : else // G4-change

10 : (pkj , skj)←$ TKGenSFPK(λ, ωj) // G4-change

11 : σ
(j)
SPS←$ SignSPS(skSPS, pkj)

12 : gpk := (BG, pkSPS)
13 : gmsk := ((pkj , τj))n

j=1

14 : for j ∈ [n]
15 : gsk[j] := (pkj , skj , σ

(j)
SPS)

16 : gsk := (gsk[j])n
j=1

17 : (St, i0, i1, m)←$AOpen(gmsk,·,·)(choose, gpk, gsk)
18 : if i 6= ib // G2-change

19 : abort // G2-change

20 : ω←$ coin // G5-change

21 : (pk, sk)←$ KGenSFPK(λ, ω) // G5-change

22 : r←$ coin
23 : pk′←$ ChgPKSFPK(pk, r) // G5-change

24 : sk′←$ ChgPKSFPK(sk, r) // G5-change

25 : σ′
SPS←$ SignSPS(pk′, skSPS) // G1-change, G5-change

26 : M := m||σ′
SPS||pk′ // G5-change

27 : σ0←$ SignSFPK(sk′, M)
28 : σch := (pk′, σ0, σ′

SPS) // G5-change

29 : b̃←$AOpen(gmsk,·,·)(guess, St, σch)
30 : if A queried (m∗, σ∗) with Open(gmsk, m∗, σ∗) = ⊥ // G3-change

31 : abort // G3-change

32 : if A did not query Open-oracle with (m, σch) in guess phase
33 : then return b̃ = b

34 : else return 0

Next we establish a relation between Pr[Sj], Pr[Sj+1] for j ∈ {0, . . . , 4}. Sj denotes
the event that A wins in Gj , which means that b̃ = b holds, so the adversary guesses the
hidden bit correctly.

59

5 Security of group signature by Backes et al.

From game 0 to game 1 In G1, the way to compute SPS-EQ in the challenge sig-
nature is changed. We see that all random variables computed throughout the course
of G0, G1 are computed the same way in both G0, G1, except for the certificate σ′

SPS for
the randomized public key in the challenge signature (see pseudocode of the two games
in Appendix A). It is computed as (·, c0)←$ ChgRepSPS(pkib

, σ
(ib)
SPS, r, pkSPS) in G0 and

as c1←$ SignSPS(pk′
ib

, skSPS) in G1. However, since ΠSPS perfectly adapts signatures we
have that c0, c1 are identically distributed which proves our claim. So we see that the
output b̃ of A is therefore also identically distributed in G0, G1, which yields

Pr[S0] = Pr[S1]

From game 1 to game 2 We will continue with G1, G2, so we need to relate Pr[S1] and
Pr[S2]. In G2, an identity i is drawn uniformly at random and the game is aborted if i
does not match the challenge identity ib. We see that all random variables needed for
determining ib are independent of i, so ib also is independent of i. Therefore we get

Pr[i = ib] = 1
n

Furthermore it is important to note that the events S1 that A wins G1 and the event
i = ib that the challenge identity is guessed correctly are obviously independent. With
this we get

Pr[S2] = Pr[S1 ∧ i = ib]
= Pr[S1] · Pr[i = ib]

= Pr[S1] · 1
n

From game 2 to game 3 In G3, we abort if A submits a message-signature pair to
the opening oracle for which Open returns ⊥. Let F denote the event that A submits
such an unopenable oracle query, this means that over the course of G2 or G3, A submits
(m̃, σ̃) such that Open(gmsk, m̃, σ̃) = ⊥. Let σ̃ = (p̃k, σ̃0, ˜σSPS). If (m̃, σ̃) is unopenable,
this means that

∀j ∈ [n] : p̃k /∈ [pkj]R′

where pkj is the SFPK public key contained in the personal secret key of user j. Since
these pkj are the only messages that A has observed SPS-EQ signatures for and ˜σSPS is a
valid SPS-EQ for p̃k, (p̃k, ˜σSPS) is a valid forgery for the SPS-EQ key pair (pkSPS, skSPS).
Thus A can be seen as an adversary breaking existential unforgeability of ΠSPS since

• the tuple (p̃k, ˜σSPS) allows A to win the existential unforgeability game for ΠSPS
for the SPS-EQ key pair (pkSPS, skSPS) that is distributed like in the unforgeability
game for SPS-EQ from Def. 3.23

• (p̃k, ˜σSPS) is easy to construct from the unopenable query (m̃, σ̃ = (p̃k, σ̃0, ˜σSPS))
which A outputs throughout the course of the game

60

5.2 Full-anonymity

Furthermore F can be seen as the event that A wins the existential unforgeability game
for ΠSPS and challenge (pkSPS). Together with the prerequisited existential unforgeability
of ΠSPS and the Difference Lemma (Lem. 5.4) we get

|Pr[S2]− Pr[S3]| ≤ Pr[F]

= Adveuf−sps
ΠSPS,A (λ)

≤ κ(λ)

for a negligible function κ. The first inequality comes directly from the Difference Lemma
since

S2 ∧ F⇔ S3 ∧ F

is plain to see (G2 and G3 proceed identically if F does not occur so all random variables
computed throughout G2, G3 are computed identically in both of the games, this means
that the distribution of A’s output and A’s winning probability must also be the same in
both games). The second equality holds since A wins the unforgeability game for ΠSPS
if and only if F occurs. The last inequality holds since ΠSPS in existentially unforgeable.

From game 3 to game 4 Next we analyze G3 and G4 and prove that they are perfectly
indistinguishable. So we need to prove that all random variables computed throughout
the course of the two games are identically distributed in both G3 and G4. G4 changes
the way the SFPK public key in the personal secret key gsk[i] for the identity i drawn
uniformly at random is computed. We easily see that all random variables computed
throughout the course of the two games are computed the same way except for the
SFPK key pair in the personal secret key of user i (see pseudocode of the two games in
Appendix A), which is computed as

(pk3, sk3, ·)←$ TKGenSFPK(λ, ωi)

in G3 and as
(pk4, sk4)←$ KGenSFPK(λ, ωi)

in G4. Correctness of ΠSFPK (Def. 3.15) yields that the distribution of (pk3, sk3), (pk4, sk4)
is identical which proves our claim. So we see that the output b̃ of A is also identically
distributed in G3 and G4, which yields

Pr[S3] = Pr[S4]

From game 4 to game 5 Next we analyze G4 and G5 and prove that they are also
computationally indistinguishable. In G5, the SFPK public key pk′

ib
in the challenge

signature σch is replaced by a random SFPK public key pk′. For that we prove the
distribution of the output b̃ of any PPT adversary D does not differ significantly between
G4 and G5. Let Wj denote the event that D outputs 1 in Gj for j ∈ {4, 5}. To prove our
claim by contrapositon, we assume that D can distinguish the two games, so |Pr[W4]−

61

5 Security of group signature by Backes et al.

Pr[W5]| is not negligible. From D we construct an adversary E breaking class-hiding
of ΠSFPK. The basic idea of the reduction of distinguishing G4 and G5 to class-hiding
is that if E is in class-hiding experiment 0, it simulates G4 to D, if E is in class-hiding
experiment 1, it simulates G5. The critical point is that E does not need to know
whether it is in case b = 0 or b = 1 to do so. First we need to define the input for E in
the class-hiding experiment (Def. 3.17). Let ω0, ω1←$ coin, (pkj , skj)←$ KGenSFPK(λ, ωj)
for j ∈ {0, 1}, r ∈ coin, sk′ ← ChgSKSFPK(sk, r), pk′ ← ChgPKSFPK(pk, r) as in the class-
hiding experiment from Def. 3.17. On input ω0, ω1, pk′, E works as follows:

1. E draws i←$ [n] and sets up the game for D as follows:
a) E generates an SPS-EQ key pair (pkSPS, skSPS)←$ KGenSPS(BG, l)
b) for j ∈ [n], E generates the personal secret key of user j as follows:

i. ωj←$ coin
ii. E generates (pkj , skj , τj)←$ TKGenSFPK(λ, ωj) if j 6= i, otherwise it gen-

erates (pki, ski)←$ KGenSFPK(λ, ω0)

iii. E creates a certificate for pkj as σ
(j)
SPS←$ SignSPS(skSPS, pkj)

iv. E defines gsk[j] := (pkj , skj , σ
(j)
SPS)

c) E defines gpk := (pkSPS, BG) with BG← BGGen(λ)
d) E defines gmsk := ((pkj , τj))n

j=1,j 6=i

e) E defines gsk := (gsk[j])n
j=1

2. E starts D on input (choose, gpk, gsk). When D submits state information St, two
identities i0, i1 and a message m, E proceeds as follows to create the challenge
signature σch for D:

a) E computes σ′
SPS←$ SignSPS(skSPS, pk′)

b) E defines M := m||σ′
SPS||pk′ and submits M to it’s own SFPK signing oracle,

which uses the secret key sk′. Eventually E obtains σ0←$ SignSFPK(sk′, M).
c) E defines σch := (pk′, σ0, σ′

SPS) and starts D on input (guess, St, σch)

3. E answers an opening query (m̃, σ̃) submitted by D as follows:
a) E tries to open the signature by computing o← Open(gmsk, m̃, σ̃)
b) if it obtains o = ⊥, it returns i to D, otherwise it returns o

4. When D eventually outputs a guess b̃ ∈ {0, 1}, E outputs b̃

The values choose and guess are constants indicating the current phase of the game. It
is important to note that the group manager secret key gmsk is not created as required
in the full-anonymity game, since no trapdoor for pki was generated. But the value o
obtained by the opening try in the third step of the reduction is distributed as prescribed
by the original game nevertheless. We already mentioned this in the discussion about

62

5.2 Full-anonymity

the G4 change after the definition of the game sequence for this proof. Moreover we
see that the change made in G4 is of great importance for this reduction to work, since
E can generate the first SFPK key pair from the class-hiding challenge by computing
(pk0, sk0)←$ KGenSFPK(λ, ω0) and reusing randomness ω0 but cannot create a trapdoor
for the class [pk0]R′ . So for E to be able to blend a key pair from its own class-hiding
challenge into the personal secret keys, one of the key pairs in the personal secret keys
must be allowed to have no corresponding trapdoor in gmsk. Furthermore we see that
E obviously is a PPT adversary since

• D is a PPT adversary

• all algorithms used in the construction of E are PPT algorithms by definition (since
they are part of either ΠSFPK, ΠSPS or gFPK-GSΠSFPK,ΠSPS), namely

– KGenSPS

– TKGenSFPK

– KGenSFPK

– SignSPS

– Open

• sending messages and all other basic operations E performs can obviously be done
by PPT algorithms

Next we prove that if b = 0, E simulates G4 to D, if b = 1, E simulates G5 to D. For
that, we use the terminology established in Def. 5.1. We will start with the case b = 0
and prove that in that case B correctly simulates G4 to D. The view of D in G4 is a
tuple with the following structure:

V4 = (gpk, gsk, (md, σd, od)q1
d=1, St, σch, (md, σd, od)q2

d=q1+1)

with

• gpk, gsk being a group public key and group secret key vector generated using
GKGen

• For every d ∈ [q2], md is a message, σd is a signature, od is the response of the
opening oracle to the query (md, σd). For reasons of convenience we define the
term queryd := (md, σd, od) for every d ∈ [q2].

• St being a variable containing state information about the experiment

• σch is the challenge signature, containing a randomized version pk′
ib

of pkib
, a

certificate for this randomized public key and an SFPK signature created using a
randomized version of the secret key skib

corresponding to pkib

• q1 is the number of opening queries A submitted during the choose phase, q2 is
the total number of opening queries A submitted throughout course of the entire
experiment with both q1, q2 being polynomials in λ

63

5 Security of group signature by Backes et al.

So next we iterate through the view of D in the case that b = 0 and prove that every
random variable is distributed like in G4 if we condition on arbitrary fixed values of all
random variables prior in the view. Looking at the individual random variables in the
view is sufficient since they can all be considered independent since none of them is com-
puted directly from others without using fresh randomness in the computation. For that
it is important that we look at each query queryd as a single random variable consisting
of three values since od := Open(gmsk, md, σd) is entirely determined by md, σd. We see
that

• gpk is correctly distributed since BG is a bilinear group and pkSPS is an SPS-EQ
public key generated using KGenSPS as required.

• gsk is correctly distributed since

– the j-th entry (pkj , skj , σ
(j)
SPS) of gsk for j 6= i is an SFPK key pair (pkj , skj)

generated like (pkj , skj , ·)←$ TKGenSFPK(λ, ωj) as required using randomness
ωj←$ coin and an SPS-EQ certificate σ

(j)
SPS←$ SignSPS(skSPS, pkj) for pkj gen-

erated using SignSPS and the SPS-EQ secret key skSPS corresponding to pkSPS
from the group public key gpk

– the i-th entry (pki, ski, σ
(i)
SPS) of gsk is an SFPK key pair

(pki, ski)←$ KGenSFPK(λ, ω0) as required with ω0←$ coin being first random-
ness from the class-hiding challenge E was given. Furthermore
σ

(i)
SPS←$ SignSPS(skSPS, pki) is an SPS-EQ certificate for pki generated using

SignSPS as required

• St obviously is correctly distributed since it is computed by D as required

• σch is a gFPK-GS-signature containing a randomized version pk′ of pki as its first
component (note that due to the change in G2, i = ib holds, so B has to set up the
challenge signature as a signature created by user i). This is because if b = 0, pk′ ∈
[pki] holds due to the definition of the class-hiding game from Def. 3.17 (since pki

is the first candidate public key pk0 from the class-hiding challenge that was given
to E). Furthermore σ′

SPS←$ SignSPS(skSPS, pk′) is an SPS-EQ certificate for pk′

generated using SignSPS as required, moreover σ0←$ SignSFPK(sk′, M) with M :=
m||σ′

SPS||pk′ is an SFPK signature as required. So all in all, σch := (pk′, σ0, σ′
SPS)

is a correctly distributed challenge signature.

• queryd := (md, σd, od) for d ∈ [q2] obviously is correctly distributed in the simula-
tion since

– if the originator behind the signature σd for the message md is j 6= i, then by
construction of E , E ’s opening try will retrieve its identity and E will return
od := j (since the trapdoor τj for the SFPK public key pkj in the personal
secret key gsk[j] of this user j is contained in gmsk)

64

5.2 Full-anonymity

– if the originator behind the signature σd for the message md is i, E will fail to
open (md, σd) (since no trapdoor was generated for the SFPK public key pki in
the personal secret key gsk[i]) of user i and will then return i by construction

So we see that in any case, E correctly retrieves the signer of a message-signature
pair (md, σd) part of a query queryd := (md, σd, od) from D.

So all in all we proved that if b = 0 holds, E correctly simulates G4 to D. Next we prove
that if b = 1 holds, E correctly simulates G5 to D. The view of D in G5 is a tuple with
the following structure:

V5 = (gpk, gsk, (md, σd, od)q1
d=1, St, σch, (md, σd, od)q2

d=q1+1)

with

• gpk, gsk being a group public key and group secret key vector generated using
GKGen

• For every d ∈ [q2], md is a message, σd is a signature, od is the response of the
opening oracle to the query (md, σd). For reasons of convenience we define the
term queryd := (md, σd, od) for every d ∈ [q2].

• St being a variable containing state information about the experiment

• σch is the challenge signature, containing a random public key pk′, a certificate for
this random public key and an SFPK signature created using a randomized version
of the secret key sk′ corresponding to pk′

• q1 is the number of opening queries A submitted during the choose phase, q2 is
the total number of opening queries A submitted throughout course of the entire
experiment with both q1, q2 being polynomials in λ

We see that apart from the challenge signature σch, D’s view in G5 is the same as D’s
view in G4 (this is not surprising since the only change from G4 to G5 is the way the
challenge signature is computed). In the following, we analyze the distribution of every
random variable in the view of D in the simulation in above reduction (with b = 1)
and prove that it is identical to the distribution of the respective random variable in
G5. Looking at the individual random variables in the view is sufficient since they
can all be considered independent since none of them is computed directly from others
without using fresh randomness in the computation. For that it is important that we
look at each query queryd as a single random variable consisting of three values since
od := Open(gmsk, md, σd) is entirely determined by md, σd. We see that:

• gpk is correctly distributed since BG is a bilinear group and pkSPS is an SPS-EQ
public key generated using KGenSPS as required.

• gsk is correctly distributed since

65

5 Security of group signature by Backes et al.

– the j-th entry (pkj , skj , σ
(j)
SPS) of gsk for j 6= i is an SFPK key pair (pkj , skj)

generated like (pkj , skj , ·)←$ TKGenSFPK(λ, ωj) as required using randomness
ωj←$ coin and an SPS-EQ certificate σ

(j)
SPS←$ SignSPS(skSPS, pkj) for pkj gen-

erated using SignSPS and the SPS-EQ secret key skSPS corresponding to pkSPS
from the group public key gpk

– the i-th entry (pki, ski, σ
(i)
SPS) of gsk is an SFPK key pair

(pki, ski)←$ KGenSFPK(λ, ω0) as required with ω0←$ coin being first random-
ness from the class-hiding challenge E was given. Furthermore
σ

(i)
SPS←$ SignSPS(skSPS, pki) is an SPS-EQ certificate for pki generated using

SignSPS as required

• St obviously is correctly distributed since it is computed by D as required

• σch is a gFPK-GS-signature containing a random public key pk′ which is most
likely not related to any SFPK public key pkj contained in any gsk[j] as its first
component. This is because if b = 1, pk′ /∈ [pki] most likely holds due to the
definition of the class-hiding game from Def. 3.17 (since pki is the first candi-
date public key pk0 from the class-hiding challenge that was given to E and
in case b = 1, pk′ ∈ [pk1] holds (pk1 is the second candidate public key from
the class-hiding challenge given to E)). Furthermore σ′

SPS←$ SignSPS(skSPS, pk′)
is an SPS-EQ certificate for pk′ generated using SignSPS as required, moreover
σ0←$ SignSFPK(sk′, M) with M := m||σ′

SPS||pk′ is an SFPK signature as required.
So all in all, σch := (pk′, σ0, σ′

SPS) is a correctly distributed challenge signature.

• queryd := (md, σd, od) for d ∈ [q2] obviously is correctly distributed in the simula-
tion since

– if the originator behind the signature σd for the message md is j 6= i, then by
construction of E , E ’s opening try will retrieve its identity and E will return
od := j (since the trapdoor τj for the SFPK public key pkj in the personal
secret key gsk[j] of this user j is contained in gmsk)

– if the originator behind the signature σd for the message md is i, E will fail to
open (md, σd) (since no trapdoor was generated for the SFPK public key pki in
the personal secret key gsk[i]) of user i and will then return i by construction

So we see that in any case, E correctly retrieves the signer of a message-signature
pair (md, σd) part of a query queryd := (md, σd, od) from D.

So all in all we proved that if b = 1 holds, E correctly simulates G5 to D. We already
proved above that if b = 0 holds, E correctly simulates G4 to D, so now we are done with
analyzing the distribution of D’s view in the simulation.

Next we prove that if D distinguishes G4 and G5, then E breaks the class-hiding
property of ΠSFPK. For that we denote by Wj the event that D outputs 1 in Gj for
j ∈ {4, 5} and by Wc−h

b the event that E outputs 1 in the class-hiding experiment

66

5.2 Full-anonymity

Expc−h−sfpk−b
ΠSFPK,E (λ). The fact that D distinguishes G4 and G5 is formalized by |Pr[W4]−

Pr[W5|] being not negligible. We get

Advc-h-sfpk
ΠSFPK,A(λ) = |Pr[Wc−h

0]− Pr[Wc−h
1]|

= |Pr[W4]− Pr[W5]|

which is not negligible since D distinguishes G4 and G5. The last equation sign holds
since

W4 occurs ⇔Wc−h
0 occurs

and
W5 occurs ⇔Wc−h

1 occurs

since if b = 0 holds, E correctly simulates G4 to D, if b = 1 holds, E correctly simulates
G5 to D and E outputs the same bit as D. So since we constructed an adversary E
breaking class-hiding of ΠSFPK from an adversary D distinguishing G4 and G5, this
means we proved that if G4 and G5 are computationally distinguishable, ΠSFPK is not
class-hiding, which in contraposition means that if ΠSFPK is class-hiding, G4 and G5
are computationally indistinguishable, meaning for every PPT adversary D we have
that |Pr[W4 −W5]| is negligible. We now need to use this fact to establish a relation
between Pr[S4] and Pr[S5] with Sj denoting the event that a specific adversary A wins
the full-anonymity game in Gj . In fact, we will prove that for every PPT adversary A,
|Pr[S4]−Pr[S5]| is negligible in λ. We see that there exist negligible functions κ1, κ2, κ3
such that

|Pr[S4]− Pr[S5]|
=|Pr[W4 ∧ b = 0] + Pr[W4 ∧ b = 1]− (Pr[W5 ∧ b = 0] + Pr[W5 ∧ b = 1])|
=|1− Pr[W4 ∧ b = 0] + Pr[W4 ∧ b = 1]− (1− Pr[W5 ∧ b = 0] + Pr[W5 ∧ b = 1])|
=|Pr[W4 ∧ b = 1]− Pr[W4 ∧ b = 0] + Pr[W5 ∧ b = 0]− Pr[W5 ∧ b = 1]|
=|Pr[W4 ∧ b = 1]− Pr[W5 ∧ b = 1] + Pr[W5 ∧ b = 0]− Pr[W4 ∧ b = 0]|

=1
2 |Pr[W4 | b = 1]− Pr[W5 | b = 1] + Pr[W5 | b = 0]− Pr[W4 | b = 0]|

≤|Pr[W4 | b = 1]− Pr[W5 | b = 1]|+ |Pr[W5 | b = 0]− Pr[W4 | b = 0]|
≤κ1(λ) + κ2(λ)
=κ3(λ)

holds. In this computation we used computation rules for (conditional) probabilities as
well as the triangle inequality. The second last inequality comes from the fact that G4
and G5 are computationally indistinguishable. With that we proved that |Pr[S4]−Pr[S5]|
is in fact negligible in λ.

Analysis of anonymity advantage In the last paragraphs, we established the following
relations between Pr[Si], Pr[Si+1] for every i ∈ {0, . . . , 4}:

67

5 Security of group signature by Backes et al.

• Pr[S0] = Pr[S1]

• Pr[S1] = n · Pr[S2], which is equivalent to 1
n Pr[S1] = Pr[S2]

• |Pr[S2]− Pr[S3]| is negligible in λ

• Pr[S3] = Pr[S4]

• |Pr[S4]− Pr[S5]| is negligible in λ

This will now help us to upper-bound the winning probability Pr[S0] of an adversary A
in the regular full-anonymity bit guessing game for gFPK-GSΠSFPK,ΠSPS from Def. 3.11
using the winning probability Pr[S5] of an adversary A in the bit-independent game G5.
After that, we only need to find a suitable upper bound to Pr[S5] to finish our proof
of gFPK-GSΠSFPK,ΠSPS ’s full-anonymity. Using the triangle inequation it directly follows
from above equations that there exist negligible functions κ1, κ2, κ3 such that

Pr[S0]
=|Pr[S0]|
=|Pr[S0]− Pr[S1] + Pr[S1]− Pr[S2] + Pr[S2]− Pr[S3]
+ Pr[S3]− Pr[S4] + Pr[S4]− Pr[S5] + Pr[S5]|
≤|Pr[S0]− Pr[S1]|+ |Pr[S1]− Pr[S2]|+ |Pr[S2]− Pr[S3]|
+|Pr[S3]− Pr[S4]|+ |Pr[S4]− Pr[S5]|+ |Pr[S5]|
=0 + |Pr[S1]− Pr[S2]|+ |Pr[S2]− Pr[S3]|+ 0 + |Pr[S4]− Pr[S5]|+ Pr[S5]

=0 + |(1− 1
n

) · Pr[S1]|+ |Pr[S2]− Pr[S3]|+ 0 + |Pr[S4]− Pr[S5]|+ Pr[S5]

≤0 + (1− 1
n

) · Pr[S1] + κ1(λ) + 0 + κ2(λ) + Pr[S5]

=(1− 1
n

) · Pr[S0] + κ1(λ) + κ2(λ) + Pr[S5]

=(1− 1
n

) · Pr[S0] + κ3(λ) + Pr[S5]

which is equivalent to
1
n
· Pr[S0]− κ3(λ) ≤ Pr[S5] (5.3)

Rearranging this yields the equivalent inequality

Pr[S0] ≤ n · (Pr[S5] + κ3(λ)) (5.4)

In the following we are going to prove that the view (for terminology see Def. 5.1) of
A in G5 is distributed identically no matter what the value of the hidden bit b is. So in
that case, A’s view in G5 is not depending on b, which yields that its output b̃ is also
identically distributed in both cases b = 0, b = 1. The view of A in G5 is a tuple with

68

5.2 Full-anonymity

the following structure:

V5 = (gpk, gsk, (md, σd, od)q1
d=1, St, σch, (md, σd, od)q2

d=q1+1)

with

• gpk, gsk being a group public key and group secret key vector generated using
GKGen

• For every d ∈ [q2], md is a message, σd is a signature, od is the response of the
opening oracle to the query (md, σd). For reasons of convenience we define the
term queryd := (md, σd, od) for every d ∈ [q2].

• St being a variable containing state information about the experiment

• σch is the challenge signature, containing a random public key pk′, a certificate for
this random public key and an SFPK signature created using a randomized version
of the secret key sk′ corresponding to pk′

• q1 is the number of opening queries A submitted during the choose phase, q2 is
the total number of opening queries A submitted throughout course of the entire
experiment with both q1, q2 being polynomials in λ

To prove that V5 is independent of b, we prove that every random variable contained
in V5 is distributed identically in both cases b = 0 and b = 1. Hereby looking at the
individual variables is sufficient to make the required statement about their common
distribution (the distribution of V5) since all of them can be considered independent
because none of them is computed directly from others without using fresh randomness
in the computation. For that is important that we look at each query queryd as a single
random variable consisting of three values since od := Open(gmsk, md, σd) is entirely
determined by md, σd. We see that

• gpk obviously is identically distributed in both cases with BG being a bilinear
group and pkSPS being an SPS-EQ public key generated using KGenSPS

• gsk is identically distributed in both cases since the j-th entry (pkj , skj , σ
(j)
SPS) of

gsk for j ∈ [n] is an SFPK key pair (pkj , skj) generated like
(pkj , skj , ·)←$ TKGenSFPK(λ, ωj) using randomness ωj←$ coin and an SPS-EQ cer-
tificate
σ

(j)
SPS←$ SignSPS(skSPS, pkj) for pkj generated using SignSPS and the SPS-EQ secret

key skSPS corresponding to pkSPS from the group public key gpk in both cases

• St obviously is identically distributed in both cases since it is computed by D in
both cases

• in both cases the public key pk which is part of the strong unforgeability challenge
given to B clearly is independent of b, so the same holds for it’s randomized version

69

5 Security of group signature by Backes et al.

pk′ which is part of the challenge signature σch. This yields that σ$ is also indepen-
dent of b. Since the challenge secret key sk from the above unforgeability challenge
and it’s randomized version sk′ used in the creation of the challenge signature are
clearly also independent of b, we get that the SFPK signature σ0 contained in σch

is independent of b as well. All in all this yields that the challenge signature σch

is independent of b and therefore identically distributed in both cases b = 0 and
b = 1.

• it is clear to see that each query (md, σd) that A submits to its opening oracle
throughout the course of G5 is independent of b since A cannot access b. Since
B’s answer to that query is already determined by the query itself (since Open is
a deterministic algorithm), od therefore also is independent of b. With that we
get that for all d ∈ [q2], queryd := (md, σd, od) is independent of b and therefore
identically distributed in both cases b = 0, b = 1.

All in all we get that the view of A in G5 is independent of b since it is identically
distributed in both cases b = 0, b = 1 since all of its components are independent and
identically distributed in both cases b = 0, b = 1.

However, if the adversary A somehow manages to create a randomized version σ∗
ch =

(pk∗, σ∗
0, σ∗

$) of the challenge signature σch = (pk′, σ0, σ$) (according to Def. 4.4) and
submits it to the opening oracle, the opening oracle will fail to open σ∗

ch (since most
likely no j ∈ [n] with pk∗ ∈ [pkj]R′ exists) which means by the change in G3, that i will
be returned as the answer to the query. With that the adversary now has access to a
pk∗ related to the public key pk′ in the challenge signature and gets the information that
a valid gFPK-GSΠSFPK,ΠSPS-signature containing pk∗ opens to i. By the construction of
Open in gFPK-GSΠSFPK,ΠSPS , A can now come to the conclusion that σch also opens to i

and output b̃ such that ib̃ = i which makes him win the game. Consequently we see that
if A manages to randomize the challenge signature σch, it has a chance to win G5. Let
R denote the event of A submitting such a randomized version σ∗

ch of σch. Therefore to
estimate Pr[S5] we must upper-bound the probability Pr[R]. For that we prove that if R
occurs, A wins the strong unforgeability experiment for ΠSFPK for the random key pair
(pk, sk) from G5, which yields

Pr[R] ≤ Advseuf−sfpk
ΠSFPK,A (λ) (5.5)

So with the strong existential unforgeability of ΠSFPK being a prerequisite for Thm. 5.3,
we get that there exists a negligible function κ with

Pr[R] ≤ κ(λ)

Therefore what is left to prove is that if R occurs throughout the course of G5, A wins
the strong unforgeability experiment for ΠSFPK for the random key pair (pk, sk) from
G5. For proving this, we will use the terminology from G5. Let σ∗

ch := (pk∗, σ∗
0, σ∗

SPS) be
a randomized version of the challenge signature σch := (pk′, σ0, σ′

SPS). So by definition
(see Def. 4.4) we get

70

5.2 Full-anonymity

• pk′ R′ pk∗

• σch 6= σ∗
ch

Let M := m||σ′
SPS||pk′, M∗ := m||σ∗

SPS||pk∗. We claim that when outputting (pk∗, M∗, σ∗
0),

A wins the strong existential unforgeability game for ΠSFPK for (pk, sk). We see that by
construction of GSign in gFPK-GSΠSFPK,ΠSPS , (M∗, σ∗

0) is a valid SFPK message-signature
pair under pk and we get

pk′ 6= pk∗ ∨ σ′
SPS 6= σ∗

SPS ⇒M 6= M∗

So if pk′ 6= pk∗ ∨ σ′
SPS 6= σ∗

SPS holds it is easy to see that A wins the strong existential
unforgeability game since it forged a signature for a message that has never been signed
before with sk (since M is the only message that has been signed with sk). If on the
other hand pk′ = pk∗∧σ′

SPS = σ∗
SPS holds, we get that σ0 6= σ∗

0 holds since a randomized
signature must be distinct from the original one by definition. This yields that in this
case, A managed to create a distinct and valid signature for a message that has been
signed before using sk (an SFPK secret key not known to A) which by definition of the
strong existential unforgeability experiment Expseuf−sfpk

ΠSFPK,A (λ) also means that A wins the
game. With that we proved Eq. (5.5) which means there exists a negligible function κ
such that

Pr[R] ≤ κ(λ)

An interesting side remark is that in the case that

pk′ 6= pk∗ ∨ σ′
SPS 6= σ∗

SPS

holds, A would even win the weak EUF-CMA game from Def. 3.20 with the forgery
(M∗, σ∗

0), since M∗ 6= M and M was the only message that was signed before. But in
the case that

pk′ = pk∗ ∧ σ′
SPS = σ∗

SPS

holds, (M∗, σ∗
0) is not a suitable forgery to win the weak existential unforgeability game

since M∗ = M and M has been signed before. This gives an intuition of why strong exis-
tential unforgeability of ΠSFPK is required for the full-anonymity of gFPK-GSΠSFPK,ΠSPS .
With Eq. (5.5) and the fact that A’s output b̃ is independent of the hidden bit b, we get
that

Pr[S5] = Pr[S5 | R] · Pr[R] + Pr[S5 | R] · Pr[R]
≤Pr[R] + Pr[S5 | R]

=Advseuf−sfpk
ΠSFPK,A (λ) + 1

2n

≤κ(λ) + 1
2n

The last equation deserves a little more attention. Let S′
5 denote the event that S5 occurs

71

5 Security of group signature by Backes et al.

under the prerequisite that R does not occur (so S′
5 is the event that A guesses the bit

correctly in G5, A does not submit a randomized version of the challenge signature to
the opening oracle and the identity i matches the challenge identity ib (since otherwise,
G5 would be aborted after the choose-phase)). We see that under that prerequisite, the
hidden bit b and A’s output b̃ are independent random variables, furthermore the events
i = ib and b̃ = b are also independent. With this we get

Pr[S′
5] = Pr[i = ib ∧ b̃ = b]

= Pr[i = ib] · Pr[b̃ = b]

= 1
n
· Pr[b̃ = b]

= 1
n

(Pr[b̃ = 0 | b = 0] · Pr[b = 0] + Pr[b̃ = 1 | b = 1] · Pr[b = 1])

= 1
n

(Pr[b̃ = 0 | b = 0] · 1
2 + Pr[b̃ = 1 | b = 1] · 1

2)

= 1
n

(Pr[b̃ = 0 | b = 0] · 1
2 + (1− Pr[b̃ = 0 | b = 1]) · 1

2)

= 1
n

(Pr[b̃ = 0 ∧ b = 0]
Pr[b = 0] · 1

2 + (1− Pr[b̃ = 0 ∧ b = 1]
Pr[b = 1]) · 1

2)

= 1
n

(Pr[b̃ = 0] · Pr[b = 0]
Pr[b = 0] · 1

2 + (1− Pr[b̃ = 0] · Pr[b = 1]
Pr[b = 1]) · 1

2)

= 1
n

(Pr[b̃ = 0] · 1
2 + (1− Pr[b̃ = 0]) · 1

2)

= 1
n

((Pr[b̃ = 0] + 1− Pr[b̃ = 0]) · 1
2)

= 1
n
· 1

2
= 1

2n

which proves the last equation from the previous computation. So all in all we get that
there exists a negligible function κ such that

Pr[S5] ≤ κ(λ) + 1
2n

(5.6)

as claimed, which finally allows us to upper-bound the advantage of an arbitrary PPT
adversary A against full-anonymity of gFPK-GSΠSFPK,ΠSPS . For doing so, we use Eq. (5.4)
and Eq. (5.6) and the fact that we can assume Pr[S0] ≥ 1

2 . This follows from the fact
that from every adversary A with a winning probability p ≤ 1

2 we can construct an
adversary A′ with winning probability 1 − p ≥ 1

2 by simply flipping the bit output by
A. With that we get that there exist negligible functions κ1, κ2, κ3, κ4 such that

Advanon
gFPK-GSΠSFPK,ΠSPS ,A(λ, n) =|Pr[S0]− 1

2 |

72

5.3 Original approaches

= Pr[S0]− 1
2

≤n · (Pr[S5] + κ1(λ))− 1
2

≤n · (1
2n

+ κ2(λ) + κ1(λ))− 1
2

≤n · (1
2n

+ κ3(λ))− 1
2

≤1
2 + κ4(λ)− 1

2
=κ4(λ)

So for any PPT adversary A we have

Advanon
gFPK-GSΠSFPK,ΠSPS ,A(λ, n) is negligible.

which means that gFPK-GSΠSFPK,ΠSPS is fully-anonymous according to Def. 3.10.

We will give proof of the Difference Lemma here for completeness.
Lemma 5.4 (Difference Lemma) Let W0, W1, Z be events defined over the same
probability space with

W0 ∧ Z ⇔W1 ∧ Z

Then it holds that
|Pr[W0]− Pr[W1]| ≤ Pr[Z]

Proof. We see that

|Pr[W0]− Pr[W1]| = |Pr[W0 ∧ Z] + Pr[W0 ∧ Z]− (Pr[W1 ∧ Z] + Pr[W1 ∧ Z])|
= |Pr[W0 ∧ Z] + Pr[W0 ∧ Z]− Pr[W1 ∧ Z]− Pr[W1 ∧ Z]|
= |Pr[W0 ∧ Z]− Pr[W1 ∧ Z]|
≤ Pr[Z]

The third equation sign holds since we have W0 ∧ Z ⇔ W1 ∧ Z by assumption so the
probabilities of these two events are obviously equal. The last inequality holds since
Pr[W0 ∧ Z] ad Pr[W1 ∧ Z] are obviously less or equal than Pr[Z] and greater or equal
than 0.

5.3 Original approaches

In this section, we are going to discuss the approaches for the security proofs for
gFPK-GS that were sketched by Backes et al. in the appendix of [3].

73

5 Security of group signature by Backes et al.

Full-traceability An equivalent formulation of Thm. 5.2 can be found as Theorem 3 in
the original paper [3]. The authors tackle the proof with a sequence of games approach,
using the following sequence of games:

G0: regular full-traceability game from Def. 3.13

G1: G0 but the game is aborted if the adversary A forges a valid and unopenable (see
Def. 3.7) signature

G2: G1 but before the beginning of the game an identity i←$ [n] is drawn and the game
is aborted if A forges a signature that does not open to i

With Sj denoting the event that A wins in Gj (meaning it outputs a forgery that is
either unopenable or opens to an identity not included in A’s collusion set), Backes et
al. conclude

|Pr[S0]− Pr[S1]| ≤ Adveuf−sps
ΠSPS,A (λ) ≤ κ(λ) (5.7)

for a suitable negligible function κ and

Pr[S1] = n · Pr[S2] (5.8)

and provide a sketch of a proof for Eq. (5.7). It holds since an unopenable yet valid
forgery against full-traceability of gFPK-GS can be used to win the existential unforge-
ability game for ΠSPS according to Def. 3.23. This follows from the fact that a valid
forgery must contain an SFPK public key and a valid SPS-EQ certificate for it and
that the public key in an unopenable gFPK-GSΠSFPK,ΠSPS-signature must be in a differ-
ent equivalence class than all SFPK public keys pkj in the personal secret keys gsk[j].
So an adversary who is able to forge a valid an unopenable signature is capable of
creating a valid SPS-EQ signature for a new message (here: the public key from the
forgery which is in the message space of ΠSPS by construction of gFPK-GSΠSFPK,ΠSPS)
and therefore clearly breaks the existential unforgeability of ΠSPS. We see that the ad-
versary D against existential unforgeability of ΠSPS from the proof of full-traceability of
gFPK-GSΠSFPK,ΠSPS that is given in this thesis is based on the same idea of how to break
existential unforgeability of ΠSPS. However, in this thesis, a formal description of D was
added as well as a proof that it has non-negligible advantage in breaking the existential
unforgeability of ΠSPS. With that done, Backes et al. sketch how an adversary A win-
ning in G2 can be used to win the existential unforgeability game for the SFPK scheme
ΠSFPK. Their reduction is analogous to the construction of the adversary B in the proof
of Thm. 5.2 in this thesis, making use of the fact that the SFPK signature σ∗

0 from the
forgery (m∗, (pk∗, σ∗

0, σ∗
SPS)) A outputs is a valid signature for M∗ := m∗||σ∗

SPS||pk∗ un-
der pk∗ ∈ [pki]R′ . Since M∗ was never signed before, (M∗, σ∗

0) therefore is a forgery that
allows to win the existential unforgeability experiment from Def. 3.20 for the challenge
key pair (pki, ski) from the personal secret key gsk[i] of user i. So with that Backes et
al. conclude

Pr[S2] = Advseuf−sfpk
ΠSFPK,A (λ)

74

5.3 Original approaches

which allows them to upper-bound the winning probability Pr[S0] of an arbitrary PPT
adversary A to

n ·Adveuf−sfpk
ΠSFPK,A (λ) + Adveuf−sps

ΠSPS,A (λ)

Since this is a negligible term by prerequisite, the proof of full-traceability of
gFPK-GSΠSFPK,ΠSPS is finished with that inequality. Again, the formal description of
above reduction algorithm was not included in [3] and added in this thesis (Sect. 5.1).
As mentioned above, the proof for full-traceability under Thm. 5.2 in this thesis uses
similiar intuitions to reduce full-traceability of gFPK-GSΠSFPK,ΠSPS to existential unforge-
ability of ΠSFPK and ΠSPS. However, the framework of the proof in this thesis is different
since it does not use a sequence of games but constructs two independent adversaries
B and D, one against each of the prerequisited security requirements, and proves that
for each adversary A against the full-traceability of gFPK-GSΠSFPK,ΠSPS exactly one of
the constructed adversaries has non-negligible advantage in winning the respective se-
curity game. Thus the approach chosen in this thesis directly maps the ways to win
Exptrace

gFPK-GSΠSFPK,ΠSPS ,A(λ, n) to the security requirements and can therefore be consid-
ered more intuitive than the sequence of games approach in [3].

Full-anonymity An equivalent formulation of Thm. 5.3 can be found as Theorem 4 in
the original paper [3]. As in their proof sketch for full-traceability of gFPK-GSΠSFPK,ΠSPS ,
the authors choose an approach based on a sequence of games. The proof of full-
anonymity of gFPK-GSΠSFPK,ΠSPS in this thesis uses the same sequence of games and
follows the extended proof sketch from [3], especially on the last transition in the game
sequence and the way the fact that G5 is independent of b is used. However, we added
the complete pseudocode for all games in the sequence (see Appendix A), a detailed
analysis of the game hops and the relations between the winning probabilities Pr[Sj] of
the adversary in Gj for all j. In the original work by Backes et al. the reduction of
distingushing games 4 and 5 to class-hiding was only sketched, without formally writing
out the reduction algorithm or analyzing its advantage. We added this in our proof (see
Thm. 5.3). In addition, the proof that

• G5 is independent of the hidden bit

• therefore the only way to win G5 is guessing the bit at random or randomizing the
challenge signature

was also skipped in the original work [3] and done in detail in this thesis. From these
two facts, the authors concluded that the winning probability Pr[S5] was equal to the
strong existential unforgeability advantage Advseuf−sfpk

gFPK-GSΠSFPK,ΠSPS ,A(λ) of the adversary A
which was proven wrong in this thesis, in fact we get

Pr[S5] ≤ 1
2n

+ Advseuf−sfpk
gFPK-GSΠSFPK,ΠSPS ,A(λ)

as it can be seen in Sect. 5.2. Finally note that the definition of full-anonymity used
for the extended proof sketch in [3] contains a major flaw which makes it useless for

75

5 Security of group signature by Backes et al.

any meaningful statements on a group signature scheme’s security (see Sect. 3.7.2 for
details). This makes the proof outline of the full-anonymity proof given in the appendix
of [3] a lot harder to follow since it is not clear whether the authors intended to define
full-anonymity via a distinguishing or bit-guessing game.

76

6 Future work

In Chapter 5, we gave full proof of the full-traceability (Thm. 5.2) and full-anonymity
(Thm. 5.3) of the group signature scheme gFPK-GS by Backes et al. [3]. A detailed
description of our additions to the original proof sketches given in [3] can be found in
Sect. 5.3. To finish the thesis, we outline possible consecutive work to the findings in this
thesis. More precisely, we look at a fully-dynamic group signature scheme from standard
assumptions that Backes et al. presented in [4].

In [4], Backes et al. addressed the issue of application scenarios where even member-
ship in a certain group is confidential information by extending the security model by
Bootle et al. [8] by a new security notion for fully-dynamic group signature schemes
which they call membership privacy. Intuitively, this notion means that any information
about the list of members of a group shall be hidden from the public. To outline how
membership privacy is formalized in terms of security experiments, we need to recall
the notion of an epoch for group signature schemes (see [8]). Any period of time that
the list of members of a given group does not change is called an epoch of that group.
Information about the state of a group is published at the beginning of every epoch. The
critical point when it comes to membership privacy therefore is to give this information
about the group to the public without revealing any information that can help to iden-
tify the group’s members. Backes et al. [4] split up membership privacy into the two
requirements join privacy and leave privacy. Join privacy means that given two users
who are non-members of a given group in a given epoch, it is infeasible to determine
which of the two has become a member in the next epoch. Leave privacy is then defined
analogously, given two group members, it shall be infeasible to tell which of them left the
group in the next epoch. With membership privacy being defined formally, Backes et al.
[4] continue with describing a generic construction of a fully-dynamic group signature
fulfilling the requirements of membership privacy which combines SFPK and SPS-EQ in
a similar way than gFPK-GS. We will refer to this generic construction by gFPK-FDGS.

We will continue to describe the intuition behind the membership privacy of
gFPK-FDGS and the process of signing a message using this scheme. In contrast to
gFPK-GS, the SFPK public key pki of user i is no longer certified itself but first ran-
domized by the issuing authority before the randomized SFPK key pk′

i is signed with
an SPS-EQ scheme. The outcome of the certfication process is the certificate σ

(i)
SPS for

pk′
i alongside with a public-key encryption c of the randomness used to obtain it. Note

that the secret key corresponding to the public key used to encrypt the randomness is
only known to user i. Therefore only user i can decrypt c and obtain the decrypted
randomness, which means that no one else can know the public key pk′

i that was signed.
Note that in each epoch, a fresh SPS-EQ key pair is used to create new certficates for

77

6 Future work

each member of the group. Together with the facts that

• the SFPK public keys are not certified themselves but made unreadable to the
public before the certificate is computed (so no certificate can be linked to a specific
group member trivially)

• the SFPK public keys published which are published by the group authorities are
randomized

this yields membership privacy of gFPK-FDGS. To sign a message using gFPK-FDGS,
user i randomizes its SFPK key pair (pki, ski) as in gFPK-GS and adapts the SPS-
EQ certificate to fit the obtained randomized SFPK public key pk′

i. After that, it
creates a proof of knowledge ΠSFPK of the globally known unique representative pki

of the equivalence class of its SFPK public key [pki]R = [pk′
i]R and the randomness r

used above to randomize the SFPK key pair. The resulting group signature contains an
SFPK signature under sk′

i over the the current epoch information and all data computed
in the process of signing. The other components of the produced group signature are
the public key pk′

i corresponding to sk′
i, the adapted SPS-EQ certificate σ

(i)
SPS

′
for it, the

proof ΠSFPK, and a public-key encryption cSFPK of the unique representative pki under
a public key of a PKE key pair belonging to the opening authority. With cSFPK, the
unique representative pki of the SFPK public key user i is included in the signature in a
way that only the opening authority can read it. This is needed to allow for subsequent
openings of signatures while at the same time hiding the identity of the signer from the
public.

As they did for gFPK-GS in [3], Backes et al. provided extended proof sketches for
the relevant security properties of gFPK-FDGS in the full version of [4]. These include
updated versions of full-anonymity and full-traceability as well as non-frameability and
tracing soundness, which were all introduced by Bootle et al. in [8]. Furthermore Backes
et al. prove the membership privacy of gFPK-FDGS by proving join and leave privacy
according to their new definitions in [4]. The above mentioned extended proof sketches
can be found as Theorems 3 to 8 in the full version of [4]. However, writing full formal
proofs for the security properties of gFPK-FDGS is still an open task that might give
deeper insight on where the security of gFPK-FDGS comes from.

78

Bibliography

[1] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and
provably secure coalition-resistant group signature scheme. In Annual International
Cryptology Conference, pages 255–270. Springer, 2000.

[2] Michael Backes, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schneider. Signatures
with flexible public key: A unified approach to privacy-preserving signatures (full
version). IACR Cryptology ePrint Archive, 2018:191, 2018.

[3] Michael Backes, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schneider. Signatures
with flexible public key: introducing equivalence classes for public keys. In Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, pages 405–434. Springer, 2018.

[4] Michael Backes, Lucjan Hanzlik, and Jonas Schneider-Bensch. Membership pri-
vacy for fully dynamic group signatures. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 2181–2198, 2019.

[5] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group
signatures: Formal definitions, simplified requirements, and a construction based on
general assumptions. In International Conference on the Theory and Applications
of Cryptographic Techniques, pages 614–629. Springer, 2003.

[6] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The
case of dynamic groups. In Cryptographers Track at the RSA Conference, pages
136–153. Springer, 2005.

[7] Dan Boneh and Victor Shoup. A graduate course in applied cryptography. Draft
0.2, 2015.

[8] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, and Jens Groth.
Foundations of fully dynamic group signatures. In International Conference on
Applied Cryptography and Network Security, pages 117–136. Springer, 2016.

[9] David Chaum and Eugène Van Heyst. Group signatures. In Workshop on the
Theory and Application of of Cryptographic Techniques, pages 257–265. Springer,
1991.

[10] Georg Fuchsbauer. Breaking existential unforgeability of a signature scheme from
asiacrypt 2014. IACR Cryptology ePrint Archive, 2014:892, 2014.

79

Bibliography

[11] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Euf-cma-secure
structure-preserving signatures on equivalence classes. IACR Cryptology ePrint
Archive, 2014:944, 2014.

[12] Christian Hanser and Daniel Slamanig. Structure-preserving signatures on equiv-
alence classes and their application to anonymous credentials. In International
Conference on the Theory and Application of Cryptology and Information Security,
pages 491–511. Springer, 2014.

[13] Benoît Libert, Thomas Peters, and Moti Yung. Short group signatures via structure-
preserving signatures: Standard model security from simple assumptions. In Annual
Cryptology Conference, pages 296–316. Springer, 2015.

[14] David Pointcheval and Olivier Sanders. Short randomizable signatures. In Cryp-
tographers Track at the RSA Conference, pages 111–126. Springer, 2016.

[15] Ronald L Rivest, Adi Shamir, and Yael Tauman. How to leak a secret: Theory and
applications of ring signatures. In Theoretical Computer Science, pages 164–186.
Springer, 2006.

80

Appendix A

Formal definition of game sequence for
full-anonymity proof

We will give a formal algorithmic description of the games in the game sequence used
in the full-anonymity proof (Thm. 5.3). We will write down the original full-anonymity
game from Def. 3.11 as G0 in a more detailed way to make it easier to see the changes
made in the following games.

81

A Formal definition of game sequence for full-anonymity proof

G0(λ)

1 : b←$ {0, 1}
2 : BG := BGGenSPS(λ)
3 : (pkSPS, skSPS)←$ KGenSPS(BG, l)
4 : for j ∈ [n]
5 : ωj ←$ coin
6 : (pkj , skj , τj)←$ TKGenSFPK(λ, ωj)

7 : σ
(j)
SPS←$ SignSPS(skSPS, pkj)

8 : gpk := (BG, pkSPS)
9 : gmsk := ((pkj , τj))n

j=1

10 : for j ∈ [n]
11 : gsk[j] := (pkj , skj , σ

(j)
SPS)

12 : gsk := (gsk[j])n
j=1

13 : (St, i0, i1, m)←$AOpen(gmsk,·,·)(choose, gpk, gsk)
14 : parse gsk[ib] := (pkib

, skib
, σ

(ib)
SPS)

15 : r←$ coin
16 : pk′

ib
←$ ChgPKSFPK(pkib

, r)
17 : sk′

ib
←$ ChgPKSFPK(skib

, r)

18 : (pk′
ib

, σ
(ib)
SPS

′
)←$ ChgRepSPS(pkib

, σ
(ib)
SPS, r, pkSPS)

19 : M := m||σ(ib)
SPS

′
||pk′

ib

20 : σ0←$ SignSFPK(sk′
ib

, M)

21 : σch := (pk′
ib

, σ0, σ
(ib)
SPS

′
)

22 : b̃←$AOpen(gmsk,·,·)(guess, St, σch)
23 : if A did not query Open-oracle with (m, σch) in guess phase
24 : then return b̃ = b

25 : else return 0

82

G1(λ)

1 : b←$ {0, 1}
2 : BG := BGGenSPS(λ)
3 : (pkSPS, skSPS)←$ KGenSPS(BG, l)
4 : for j ∈ [n]
5 : ωj ←$ coin
6 : (pkj , skj , τj)←$ TKGenSFPK(λ, ωj)

7 : σ
(j)
SPS←$ SignSPS(skSPS, pkj)

8 : gpk := (BG, pkSPS)
9 : gmsk := ((pkj , τj))n

j=1

10 : for j ∈ [n]
11 : gsk[j] := (pkj , skj , σ

(j)
SPS)

12 : gsk := (gsk[j])n
j=1

13 : (St, i0, i1, m)←$AOpen(gmsk,·,·)(choose, gpk, gsk)
14 : parse gsk[ib] := (pkib

, skib
, σ

(ib)
SPS)

15 : r←$ coin
16 : pk′

ib
←$ ChgPKSFPK(pkib

, r)
17 : sk′

ib
←$ ChgPKSFPK(skib

, r)

18 : σ
(ib)
SPS

′
←$ SignSPS(pk′

ib
, skSPS)

19 : M := m||σ(ib)
SPS

′
||pk′

ib

20 : σ0←$ SignSFPK(sk′
ib

, M)

21 : σch := (pk′
ib

, σ0, σ
(ib)
SPS

′
)

22 : b̃←$AOpen(gmsk,·,·)(guess, St, σch)
23 : if A did not query Open-oracle with (m, σch) in guess phase
24 : then return b̃ = b

25 : else return 0

83

A Formal definition of game sequence for full-anonymity proof

G2(λ)

1 : b←$ {0, 1}
2 : i←$ [n]
3 : BG := BGGenSPS(λ)
4 : (pkSPS, skSPS)←$ KGenSPS(BG, l)
5 : for j ∈ [n]
6 : ωj ←$ coin
7 : (pkj , skj , τj)←$ TKGenSFPK(λ, ωj)

8 : σ
(j)
SPS←$ SignSPS(skSPS, pkj)

9 : gpk := (BG, pkSPS)
10 : gmsk := ((pkj , τj))n

j=1

11 : for j ∈ [n]
12 : gsk[j] := (pkj , skj , σ

(j)
SPS)

13 : gsk := (gsk[j])n
j=1

14 : (St, i0, i1, m)←$AOpen(gmsk,·,·)(choose, gpk, gsk)
15 : if i 6= ib

16 : abort
17 : parse gsk[ib] := (pkib

, skib
, σ

(ib)
SPS)

18 : r←$ coin
19 : pk′

ib
←$ ChgPKSFPK(pkib

, r)
20 : sk′

ib
←$ ChgPKSFPK(skib

, r)

21 : σ
(ib)
SPS

′
←$ SignSPS(pk′

ib
, skSPS)

22 : M := m||σ(ib)
SPS

′
||pk′

ib

23 : σ0←$ SignSFPK(sk′
ib

, M)

24 : σch := (pk′
ib

, σ0, σ
(ib)
SPS

′
)

25 : b̃←$AOpen(gmsk,·,·)(guess, St, σch)
26 : if A did not query Open-oracle with (m, σch) in guess phase
27 : then return b̃ = b

28 : else return 0

84

G3(λ)

1 : b←$ {0, 1}
2 : i←$ [n]
3 : BG := BGGenSPS(λ)
4 : (pkSPS, skSPS)←$ KGenSPS(BG, l)
5 : for j ∈ [n]
6 : ωj ←$ coin
7 : (pkj , skj , τj)←$ TKGenSFPK(λ, ωj)

8 : σ
(j)
SPS←$ SignSPS(skSPS, pkj)

9 : gpk := (BG, pkSPS)
10 : gmsk := ((pkj , τj))n

j=1

11 : for j ∈ [n]
12 : gsk[j] := (pkj , skj , σ

(j)
SPS)

13 : gsk := (gsk[j])n
j=1

14 : (St, i0, i1, m)←$AOpen(gmsk,·,·)(choose, gpk, gsk)
15 : if i 6= ib

16 : abort
17 : parse gsk[ib] := (pkib

, skib
, σ

(ib)
SPS)

18 : r←$ coin
19 : pk′

ib
←$ ChgPKSFPK(pkib

, r)
20 : sk′

ib
←$ ChgPKSFPK(skib

, r)

21 : σ
(ib)
SPS

′
←$ SignSPS(pk′

ib
, skSPS)

22 : M := m||σ(ib)
SPS

′
||pk′

ib

23 : σ0←$ SignSFPK(sk′
ib

, M)

24 : σch := (pk′
ib

, σ0, σ
(ib)
SPS

′
)

25 : b̃←$AOpen(gmsk,·,·)(guess, St, σch)
26 : if A queried (m∗, σ∗) with Open(gmsk, m∗, σ∗) = ⊥
27 : abort
28 : if A did not query Open-oracle with (m, σch) in guess phase
29 : then return b̃ = b

30 : else return 0

85

A Formal definition of game sequence for full-anonymity proof

G4(λ)

1 : b←$ {0, 1}
2 : i←$ [n]
3 : BG := BGGenSPS(λ)
4 : (pkSPS, skSPS)←$ KGenSPS(BG, l)
5 : for j ∈ [n]
6 : ωj ←$ coin
7 : if j 6= i

8 : (pkj , skj , τj)←$ TKGenSFPK(λ, ωj)
9 : else

10 : (pkj , skj)←$ TKGenSFPK(λ, ωj)

11 : σ
(j)
SPS←$ SignSPS(skSPS, pkj)

12 : gpk := (BG, pkSPS)
13 : gmsk := ((pkj , τj))n

j=1

14 : for j ∈ [n]
15 : gsk[j] := (pkj , skj , σ

(j)
SPS)

16 : gsk := (gsk[j])n
j=1

17 : (St, i0, i1, m)←$AOpen(gmsk,·,·)(choose, gpk, gsk)
18 : if i 6= ib

19 : abort
20 : parse gsk[ib] := (pkib

, skib
, σ

(ib)
SPS)

21 : r←$ coin
22 : pk′

ib
←$ ChgPKSFPK(pkib

, r)
23 : sk′

ib
←$ ChgPKSFPK(skib

, r)

24 : σ
(ib)
SPS

′
←$ SignSPS(pk′

ib
, skSPS)

25 : M := m||σ(ib)
SPS

′
||pk′

ib

26 : σ0←$ SignSFPK(sk′
ib

, M)

27 : σch := (pk′
ib

, σ0, σ
(ib)
SPS

′
)

28 : b̃←$AOpen(gmsk,·,·)(guess, St, σch)
29 : if A queried (m∗, σ∗) with Open(gmsk, m∗, σ∗) = ⊥
30 : abort
31 : if A did not query Open-oracle with (m, σch) in guess phase
32 : then return b̃ = b

33 : else return 0

86

G5(λ)

1 : b←$ {0, 1}
2 : i←$ [n]
3 : BG := BGGenSPS(λ)
4 : (pkSPS, skSPS)←$ KGenSPS(BG, l)
5 : for j ∈ [n]
6 : ωj ←$ coin
7 : if j 6= i

8 : (pkj , skj , τj)←$ TKGenSFPK(λ, ωj)
9 : else

10 : (pkj , skj)←$ TKGenSFPK(λ, ωj)

11 : σ
(j)
SPS←$ SignSPS(skSPS, pkj)

12 : gpk := (BG, pkSPS)
13 : gmsk := ((pkj , τj))n

j=1

14 : for j ∈ [n]
15 : gsk[j] := (pkj , skj , σ

(j)
SPS)

16 : gsk := (gsk[j])n
j=1

17 : (St, i0, i1, m)←$AOpen(gmsk,·,·)(choose, gpk, gsk)
18 : if i 6= ib

19 : abort
20 : ω←$ coin
21 : (pk, sk)←$ KGenSFPK(λ, ω)
22 : r←$ coin
23 : pk′←$ ChgPKSFPK(pk, r)
24 : sk′←$ ChgPKSFPK(sk, r)
25 : σ′

SPS←$ SignSPS(pk′, skSPS)
26 : M := m||σ′

SPS||pk′

27 : σ0←$ SignSFPK(sk′, M)
28 : σch := (pk′, σ0, σ′

SPS)
29 : b̃←$AOpen(gmsk,·,·)(guess, St, σch)
30 : if A queried (m∗, σ∗) with Open(gmsk, m∗, σ∗) = ⊥
31 : abort
32 : if A did not query Open-oracle with (m, σch) in guess phase
33 : then return b̃ = b

34 : else return 0

87

	Introduction
	Current state of research
	Our work

	Definitions and notation
	Bilinear groups
	Group signature schemes
	Security of group signature schemes
	Signatures with flexible public keys
	Structure-preserving signatures on equivalence classes
	An important equivalence relation
	Changes to original definitions
	Full-traceability definition by Bellare et al.
	Full-anonymity definition by Backes et al.

	Group signature by Backes et al.
	Definition
	Correctness
	Changes to original work

	Security of group signature by Backes et al.
	Full-traceability
	Full-anonymity
	Original approaches

	Future work
	Bibliography
	Formal definition of game sequence for full-anonymity proof

