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Abstract—We present an approach to deep neural network
based (DNN-based) distance estimation in reverberant rooms
for supporting geometry calibration tasks in wireless acoustic
sensor networks. Signal diffuseness information from acoustic
signals is aggregated via the coherent-to-diffuse power ratio to
obtain a distance-related feature, which is mapped to a source-
to-microphone distance estimate by means of a DNN. This
information is then combined with direction-of-arrival estimates
from compact microphone arrays to infer the geometry of the
sensor network. Unlike many other approaches to geometry
calibration, the proposed scheme does only require that the
sampling clocks of the sensor nodes are roughly synchronized.
In simulations we show that the proposed DNN-based distance
estimator generalizes to unseen acoustic environments and that
precise estimates of the sensor node positions are obtained.

Index Terms—DNN, CDR, acoustic distance estimation, geom-
etry calibration

I. INTRODUCTION

A wireless acoustic sensor network (WASN) consists of
small devices called ”nodes”, which are connected via wireless
links. Each node is equipped with memory, a wireless network
interface, a processing unit and one or multiple microphones.
WASNs are used in surveillance, human-machine interfaces
and environmental monitoring tasks [1]. Distributing micro-
phones in an environment comes with the promise that there
is always a sensor close to each relevant sound source. Thus,
WASNs offer the potential of improved signal enhancement
and acoustic localization capabilities, compared to a single
compact microphone array.

Acoustic source localization can, e.g., be used to steer
a camera towards a moving speaker in a smart home sce-
nario [2]. In such multi-modal setups the usage of a common
coordinate system eases the process of data fusion. Hence,
knowledge of the position and orientation of the sensor nodes
within a chosen coordinate system is required in these scenar-
ios to provide absolute positioning information. The process
of determining the nodes’ position and orientation is called
geometry calibration.

However, manual geometry calibration is a tedious task, in
particular if the network consists of a large number of nodes,
and any change in the setup asks for recalibration. Therefore,
automatic geometry calibration from the observed acoustic
signals is desirable, and, indeed, has been studied extensively,
see [3] for an overview.

It appears natural to consider geometry calibration and
sampling clock synchronization jointly, because correlation-

based measures, such as the time difference of arrival (TDoA)
of signals at different nodes, typically used to infer geometric
relations among the nodes, require a synchronous network.
However, such methods (e.g., [4], [5]) often require additional
information, such as the position of anchor sources [4], which
may not be available in practice.

In this paper we take a different approach: rather than
relying on a synchronous network or jointly estimating the ge-
ometry and the sampling clock offsets, we develop a technique
which only needs a rough synchronization across sensor nodes.
We do, however, assume that each node has a synchronous
microphone array of known topology instead of only a single
microphone. The rough synchronization between the nodes is
needed to match the observations made by the different nodes.

Our proposed approach to geometry calibration is an ex-
tension of the method we presented in [6], which utilizes
direction-of-arrival (DoA) estimates computed from the micro-
phone array signals of each node. But, DoA information alone
can only infer a “relative” geometry, lacking any absolute
distances. Thus, the inferred geometry can be determined only
up to an unknown scaling factor. In this contribution we
propose to compute this scaling factor from source-to-sensor
distance estimates gleaned from the acoustic properties of the
microphone signals.

In [7] and [8] it was shown that the coherent-to-diffuse
power ratio (CDR) can be utilized to estimate the distance
between a microphone pair and an acoustic source. There,
Gaussian processes (GPs) were used for CDR-based distance
estimation. However, the GPs were learned for a certain acous-
tic environment and generalization to unseen environments is
expected to yield poor results.

We overcome this restriction by using DNNs, which are
trained on various acoustic environments such that both, the
room characteristics and the distance, can be extracted from
the CDR. To further support the generalization of the learned
model to varying acoustic environments, we employ the re-
cently proposed R-vectors as additional input to the network,
which are meant to capture the room properties [9].

The remainder of the paper is organized as follows: In
Sec. II the idea of CDR-based distance estimation is reviewed,
followed by the new DNN approach in Sec. III. Subsequently,
geometry calibration using DoAs and distance estimates is
explained in Sec. IV. Finally, simulation results are presented
in Sec. V and some conclusions are drawn in Sec. VI.



II. CDR-BASED DISTANCE ESTIMATION

We consider a microphone pair, which records a single
acoustic source in a reverberant environment. The recorded
signal can be decomposed into a coherent component and
a diffuse part. The CDR measures the power ratio of these
components, which is related to the distance between the
source and the microphones as shown in [7]. In [10, Eq. 12] a
DoA-independent estimator, yielding the estimate ĈDR(l, k),
was derived, where l indexes the time frame and k the
frequency bin, respectively. From ĈDR(l, k), the so-called
diffuseness

D̂(l, k) =
1

1 + ĈDR(l, k)
(1)

can be computed, which we will use in the following, because,
unlike the CDR, it is limited to the interval [0, 1].

To achieve robustness against temporal inactivity of the
acoustic source, it was proposed in [7] to average the diffuse-
ness D̂(l, k) across a sufficiently large number of time frames
and frequency bins, resulting in the averaged diffuseness ζ.

A. GP-Based Distance Estimation

In prior works on CDR-based distance estimation, e.g., [7]
and [8], it was proposed to use GP regression trained on the
averaged diffuseness ζ for distance estimation.
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Fig. 1. Dependency of the relationship between ζ and the distance d on
the acoustic environment: Each datapoint corresponds to a randomly drawn
source-microphone constellation. The legend in the plot shows the dimensions
of the considered rooms and the corresponding reverberation time T60.

Fig. 1 shows the relationship between the averaged diffuse-
ness ζ and the distance d for three exemplary rooms with
different acoustic characteristics. Obviously, this relationship
strongly depends on the acoustic properties of the room,
since the energy decay of the coherent signal component
is directly affected by the reverberation time T60 and many
other factors [7]. Consequently, a GP, learned for a certain
acoustic environment, will not generalize to other acoustic
environments. Additionally, ζ tends for large values towards an
asymptote, prohibiting the exact estimation of the regression
function and, thus, degrading the performance also for smaller
distances.

III. DNN-BASED DISTANCE ESTIMATION

DNNs have many learnable parameters, which gives them
an increased modeling power compared to GPs. Hence, they
may be able to take advantage of the additional information

present in the high-resolution estimate D̂(l, k) compared to
the scalar value ζ. Keeping all the information contained
in the time-frequency pattern, the DNN has the freedom to
decide by itself, how to best combine this information, rather
than defining this combination beforehand. Actually, we used
a window consisting of several frames of the diffuseness
as input feature. Additionally, we enable the DNN to learn
room characteristics by presenting data from various acoustic
environments. The underlying hypothesis is that this will allow
the DNN to map D̂(l, k) to a distance estimate irrespective of
the present room characteristics.

Fig. 1 shows that the variance of ζ grows as a function of
the distance, which also holds for D̂(l, k). Therefore, to avoid
unreliable measurements, we concentrate on small distances
and exclude distances that are larger than an upper bound rmax.
This restriction is not detrimental for scaling geometries, since
only one reliable distance estimate is sufficient and there is
mostly a node of a WASN close to each relevant sound source.

To handle the growing variance of D̂(l, k) for larger dis-
tances we formulated distance estimation as a classification
problem rather than a regression problem, by which small
and large deviations from the ground truth distance (class)
are penalized equally. Thus, a distinction between the large
distances, which are more tricky to be estimated correctly, is
enforced. When distance estimation is formulated as a regres-
sion problem this can be circumvented by the DNN because
the loss can be minimized by estimating an average distance
for the larger distances. The error due to the categorization of
the distance into classes has a negligible effect on geometry
scaling because this error is rather small (a few cm) compared
to the inter-node distances (a few m). For distances larger
than rmax an additional class called out-of-range (OoR) is
introduced.

We investigate two types of DNNs, a simple multilayer per-
ceptron (MLP) and a convolutional recurrent neural network
(CRNN). The architectures of the DNNs are given in Tab. I
and Tab. II, respectively. Hereby, B denotes the size of the
mini-batches, F the number of frequency bins, T the number
of time frames, C the number of classes, and R the dimension
of the R-vector, which will be introduced later.

The major difference between the two types of DNNs lies in
the usage of temporal information. When using the MLP, we
average the diffuseness over all time frames in the considered
observation interval to obtain the input feature vector of the
DNN. Thus, all time information is discarded. In contrast, the
CRNN is able to utilize temporal information contained in
D̂(l, k), e.g., information about the activity of the coherent
source. This will also be reflected by the simulation results in
Sec. V.

Distance estimation can be further improved by utilizing
R-vectors as additional input feature. R-vectors have been
introduced in [9] to capture information about the acoustic
environment in automatic speech recognition.

This idea can be transferred to distance estimation, whereby
the R-vector is used to capture information about the current
environment, e.g., the reverberation time T60. As shown in



TABLE I
ARCHITECTURE OF THE MLP USED FOR DISTANCE ESTIMATION: DROPOUT

WITH A PROBABILITY OF 0.5 IS USED IN ALL HIDDEN LAYERS.
Block Output shape

Diffuseness B × F
optional: Concat R-vector B × (F +R)

3× fcReLU(1024) B × 1024
fcSoftmax(C) B × C

TABLE II
ARCHITECTURE OF THE CRNN USED FOR DISTANCE ESTIMATION: EACH

CONV{1,2}D LAYER INCLUDES RELU AS ACTIVATION AND BATCH
NORMALIZATION. ONLY THE LAST OUTPUT VECTOR OF THE GRU IS

FORWARDED TO THE CLASSIFICATION NETWORK.
Block Output shape

Diffuseness B × 1× F × T
2× Conv2d(7× 3; 16) B × 16× F × T

MaxPool2d(4× 2) B × 16× bF/4c × bT/2c
2× Conv2d(7× 3; 32) B × 32× bF/4c × bT/2c

MaxPool2d(4× 2) B × 32× bF/16c × bT/4c
Reshape B × 32 · bF/16c × bT/4c

Conv1d(3; 512) B × 512× bT/4c
Conv1d(3; 256) B × 256× bT/4c
2× GRU(256) B × 256

optional: Concat R-vector B × (256 +R)
fcReLU(256) B × 256
fcSoftmax(C) B × C

Tab. I and Tab. II the R-vector will be concatenated either
with the input feature vector of the MLP or the output of the
gated recurrent unit (GRU) layer of the CRNN.

R-vectors correspond to the output of an intermediate layer
of a DNN trained to classify room impulse responses (RIRs)
from reverberated signal recordings. In [9] it was suggested
to use a time delay neural network (TDNN) for R-vector
extraction. However, we decided to replace the TDNN by
a convolutional neural network for simplicity, whereby this
decision was inspired by the x-vector extractor presented
in [11]. The architecture of our R-vector extractor can be found
in Tab. III. We use the output of the first fully connected layer
as R-vector.

TABLE III
ARCHITECTURE OF THE R-VECTOR EXTRACTOR: EACH CONV1D LAYER

INCLUDES RELU AS ACTIVATION. BATCH NORMALIZATION IS USED.
Block Output shape
MFCC B × 23× T

Conv1d(3; 128) B × 128× T
Conv1d(5; 128) B × 128× T
Conv1d(1; 128) B × 128× T

StatisticPool B × 256
R-Vector = fcReLU(512) B × 512

fcReLU(512) B × 512
fcSoftmax(C) B × C

IV. GEOMETRY CALIBRATION

We simulated two-dimensional scenarios with K nodes and
N independent acoustic sources, with only one source being
active at any given time (see Fig. 2 for an example).

In order to determine the nodes’ positions and orientations,
we use the geometry calibration method introduced in [6],
which also provides the position of the acoustic sources. There,
an objective function is defined which assesses the compati-
bility of the K·N DoA estimates with an assumed geometry.
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Fig. 2. Example of a random setup with four microphone arrays at positions
nj , and highlighted i-th source position si (red dots: microphones; green
dots: source positions; gray area: possible positions to randomly place nodes
(microphone arrays); all nodes and sources have a minimum distance of 0.5m
to the closest wall; 1m spacing between the gray areas; the dimensions of
the room are drawn from [6m, 7m]× [5m, 6m]; room height=3m)

This nonlinear objective function is iteratively minimized, see
[6] for details. Additionally, we embed the calibration method
into a similar random sample consensus (RANSAC) method
as the one described in [12] to be more robust against outliers
in the DoA estimates.

Due to the fact that this method only utilizes DoA estimates,
the optimization problem suffers from scale invariance [12].
To avoid the trivial solution (all unknowns equal to zero),
the following equality constraint, which relates all inter-node
distances, is added to the optimization problem:

K∑
i=1

K∑
j=i

||ni − nj ||2 = 1, (2)

with ni and nj , i, j ∈ {1, 2, 3, 4}, denoting the node positions.
We use the estimated source-node distances to determine

the unknown scaling factor v of the calibration results, which
arises from the introduced constraint. As mentioned earlier, a
single source-node distance estimate would ideally be suffi-
cient. But better results are obtained if all available distance
estimates are utilized.

The unknown v ∈ R+ is determined by scaling the
source-node distances of the unscaled geometry to the distance
estimates. This results in the following weighted least squares
problem

v̂ = argmin
v

N∑
i=1

K∑
j=1

wij

(
v||ŝi − n̂j ||2 − d̂ij

)2
, (3)

where ŝi denotes the unscaled estimate of the position of the
i-th source, n̂j the unscaled estimate of the position of the j-th
node, and d̂ij the estimate of the distance between source i
and node j. The weights wij are introduced to account for the
distance dependence of the variance of the distance estimates,
see Fig. 1. They are chosen to be: wij = 1/||ŝi − n̂j ||2 .

The optimization in Eq. (3) leads to

v̂ =

∑N
i=1

∑K
j=1 wij d̂ij ||ŝi − n̂j ||2∑N

i=1

∑K
j=1 wij ||ŝi − n̂j ||22

. (4)

The properties of the sensor nodes used in the simulations
were inspired by the hardware described in [13], where each



node is equipped with a circular array that consists of six
microphones. The two opposite microphones which are 5 cm
apart form a pair used for distance estimation, giving three
distance estimates per array, which are combined by checking
the consistency of the three estimates. Using the microphones
exhibiting the largest distance in an array is a reliable choice
in practice (see, e.g., [7]). If at least two estimates coincide,
we select the corresponding estimate for geometry scaling and
exclude the source-node pair otherwise (wij = 0). Besides, we
do not utilize the corresponding source-node pair for geometry
scaling if at least one node provides the OoR class.

V. SIMULATION RESULTS

Simulated data is used for the evaluation of our approach
as well as for training the DNNs. We utilize the image
source method [14] to simulate RIRs, using the implemen-
tation of [15]. The RIRs are used to reverberate the source
signals, which can be either white Gaussian noise or speech,
whereby the used speech samples are taken from the TIMIT
database [16]. Due to additional physical effects that are not
considered by the simulated data, e.g., directional sources, an
adaptation of DNN-based distance estimation to real data is
expected to be beneficial for real microphone recordings and
will be considered in future work.

The distance estimators are trained and evaluated on data
sets, consisting of single source-node pairs, which are uni-
formly drawn from the room layout at a height of 1.5m. Due
to the fact that the accuracy of distance estimates degrades
if the source or the node is located in the vicinity of walls
(see [17]), a minimum distance of 0.5m to the closest wall is
ensured for all nodes and sources.

We use separate data sets for distance estimator training
and R-vector extractor training, which we consider to be
more realistic than using the same data sets for the training
of both. In both data sets rooms with a height of 3m are
considered. The room dimensions are uniformly drawn from
the set [6m, 7m] × [5m, 6m] for the distance estimator and
from the set [5m, 8m]× [4m, 7m] for the R-vector extractor.
Besides, the reverberation time T60 is uniformly drawn at
random from [0.2 s, 0.5 s] and [0.1 s, 0.6 s], respectively. We
placed the sources such that the distance to the nodes is
uniformly drawn from [0.03m, 3m]. In the R-vector data
set all sources are uniformly distributed in the room. Both
training data sets contain 10000 source-node pairs, whereby
additional 1000 OoR examples are added for the simulations
corresponding to Tab. V and Tab. VI.

In order to evaluate our approach to geometry calibration,
we consider scenarios with a setup as depicted in Fig. 2. All
scenarios consist of K=4 nodes and N=30 successively active
sources, whereby each source corresponds to a 3 s long speech
signal, which is generated as described before.

A. Model Configuration

All DNNs are trained using Adam [18] with a mini-batch
size of B=32 and a learning rate of 3·10−4, whereby the
distance is linearly quantized into C=31 classes plus one
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Fig. 3. Cumulative distribution function of the error PE(e) of CRNN-based
and GP-based distance estimates: The GP (zero-mean prior and γ-exponential
covariance function [8]) is trained on a single acoustic environment and tested
either on the same environment (matched) or on the evaluation data set that
contains multiple environments. Speech is used as source signal.

additional class for OoR. The short-time Fourier transform,
which is needed to estimate ĈDR(l, k), uses a Blackman
window with a length of 25ms and 10ms shift. Additionally,
we estimate the power spectral densities, used for CDR esti-
mation, by recursive averaging with forgetting factor λ=0.95,
as described in [7]. Furthermore, D̂(l, k) is calculated for all
frequencies between 125Hz and 3.5 kHz, which corresponds
to the frequency range, where speech has significant power.

B. Distance Estimation
We first evaluate the proposed distance estimators, and use

the mean-absolute error (MAE) as performance metric

eAE =
1

M

M∑
m=1

|d̂m − dm|. (5)

Here, dm denotes the ground truth distance and d̂m the dis-
tance estimate. The evaluation set contains 10000 source-node
constellations, which results in M=30000 source-microphone-
pair constellations.

Fig. 3 shows a comparison of GP-based and DNN-based
distance estimation. It can be seen that the proposed approach
outperforms the GP-based method, even so if the GP is applied
to the acoustic room characteristics, on which it was trained.

Tab. IV provides results for distance estimation using differ-
ent input signals and DNN architectures. It becomes obvious
that the best results can be achieved, when a CRNN is used,
which is able to utilize temporal information. Additionally,
R-vectors, which contain distance information by itself (see
first row of Tab. IV), are helpful to reduce the error in all
cases. Nevertheless, R-vectors have a diminishing effect, when
a CRNN is used and speech is the input signal. This means

TABLE IV
PERFORMANCE OF THE DISTANCE ESTIMATOR FOR DIFFERENT TYPES OF

SOURCE SIGNALS AND DIFFERENT DNN ARCHITECTURES

MAE / m
Architecture Diffuseness R-vector Noise Speech

MLP X 0.176 0.151
MLP X 0.119 0.148
MLP X X 0.064 0.070

CRNN X 0.087 0.055
CRNN X X 0.062 0.052



that the diffuseness contains already enough information about
the environment. Moreover, better results can be achieved
when speech is used instead of white Gaussian noise. We
hypothesize that the correlation properties of the diffuseness
resulting from speech support the learning process of the
convolutional layers and, thus, are beneficial for gathering
information about distances and environments.

TABLE V
INFLUENCE OF SNR AND OOR DETECTION ON DISTANCE ESTIMATION:

2500 OOR EXAMPLES ARE ADDED TO THE EVALUATION SET. THE
CRNN (DIFFUSENESS + R-VECTOR) IS APPLIED TO SPEECH.

SNR/dB Fusion # Discards MAE/m F1-score (OoR Detection)

30 - 0.046 91.44%
30 X 148 0.033 94.90%
20 X 166 0.034 94.67%
10 X 308 0.044 91.86%
5 X 745 0.062 86.00%

The influence of sensor noise, which is simulated by adding
white Gaussian noise to the reverberated signal, and the
introduced OoR class can be seen in Tab. V. To generate the
corresponding training data, integer values in the range from
5 dB to 30 dB are randomly chosen for the signal-to-noise
ratio (SNR). Obviously, our approach is robust against a wide
range of sensor noise levels. Furthermore, the fusion of the
three distance estimates per node improves the performance.

C. Geometry Calibration

Next, we examine the geometry calibration performance. It
is to be mentioned that all results, which are provided by our
geometry calibration method, are given relative to the position
and orientation of a reference node. Thus, the calibration
results are matched to the ground truth geometry by a rigid
body transformation for evaluation. For DoA estimation, the
complex Watson kernel method [19] is used.

The mean position error (MPE) of the nodes’ positions is
used as metric

ePE =
1

4M

M∑
m=1

4∑
j=1

||n̂j,m − nj,m||2. (6)

Tab. VI shows the MPE of the calibration results for
different values of T60 for M=100 scenarios. Noticeably,
the MPE increases for larger T60 values. This is caused by
the degradation of the DoA estimates in more reverberant
environments (see [19]). Additionally, the distance estimation
errors influenced the calibration results only marginally.

TABLE VI
MPE OF THE SCALED GEOMETRY CALIBRATION RESULTS

Distances
T60/ms 200 300 400 500

Ground truth 0.080m 0.134m 0.187m 0.213m
Estimates (CRNN) 0.084m 0.14m1 0.197m 0.228m

VI. CONCLUSIONS

In this paper we proposed a DNN-based distance estimator.
It takes acoustic signal diffuseness information and, optionally,
R-vectors to capture acoustic properties of the room, as input

and predicts the distance between an acoustic source and a
recording node. The distance estimates are combined with
DoA estimates to infer the positions and orientations of
the sensor nodes of a WASN. Simulations have shown that
the distance estimator provides estimates, which exhibit an
average error that is smaller than 6.5 cm under various acoustic
conditions, and enables accurate geometry calibration results.
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