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Abstract—Modern services consist of modular, interconnected
components, e.g., microservices forming a service mesh. To
dynamically adjust to ever-changing service demands, service
components have to be instantiated on nodes across the network.
Incoming flows requesting a service then need to be routed
through the deployed instances while considering node and link
capacities. Ultimately, the goal is to maximize the successfully
served flows and Quality of Service (QoS) through online service
coordination. Current approaches for service coordination are
usually centralized, assuming up-to-date global knowledge and
making global decisions for all nodes in the network. Such global
knowledge and centralized decisions are not realistic in practical
large-scale networks.

To solve this problem, we propose two algorithms for fully
distributed service coordination. The proposed algorithms can be
executed individually at each node in parallel and require only
very limited global knowledge. We compare and evaluate both
algorithms with a state-of-the-art centralized approach in exten-
sive simulations on a large-scale, real-world network topology.
Our results indicate that the two algorithms can compete with
centralized approaches in terms of solution quality but require
less global knowledge and are magnitudes faster (more than
100x).

I. INTRODUCTION

There is a rising demand of services consisting of multiple
interconnected components, e.g., microservices in a service
mesh or chained virtual network functions (VNFs) in net-
work function virtualization (NFV) [1]. These services can
scale flexibly by instantiating service components according
to current demand. Such instances can run independently on
any compute node in the network and process incoming flows.

The goal of service coordination is to ensure that flows
requesting a service are processed successfully by traversing
instances of all service components. Additionally, flows should
complete with short end-to-end delay to ensure good Quality
of Service (QoS). To this end, the requested services need
to be scaled and their instances placed in the network, i.e.,
we have to decide how often and where to instantiate service
components. Furthermore, incoming flows need to be routed
from their ingress nodes through these deployed instances
and finally to their egress nodes. In doing so, node and link
capacities need to be respected and link delays should be
considered.

Current approaches mostly coordinate services globally, i.e.,
they make centralized decisions for all flows and nodes and

rely on global knowledge [2]–[5]. Since service demands of
incoming flows and resource utilization can change frequently,
up-to-date global knowledge is not realistic. In practice, up-
to-date global knowledge would require prohibitive overhead.
Besides, due to their time complexity, centralized decisions are
often too slow for practical large-scale networks with many
nodes and rapidly arriving or departing flows.

To address these issues, we propose two fully distributed
approaches for online service coordination. These approaches
can be executed individually by each node in the network,
are simple and fast, and only require very limited knowledge.
As there is no single coordinator that could fail or become
disconnected, they are more robust to failures than existing
centralized approaches. These properties make them ideal for
practical large-scale networks with many flows. One algorithm
is greedy in that nodes process incoming flows locally if
possible and forward them along the shortest path to their
egress nodes. The other algorithm leverages more available
knowledge (e.g., utilization of neighboring nodes) to identify
suitable nodes for processing incoming flows. Rather than
processing all flows on the shortest path from ingress to egress,
it distributes load to avoid congestion.
Overall, our contributions are:
• We formalize the problem of online service coordination

in networks with limited node and link capacity.
• We propose two novel, fully distributed approaches for

online service coordination. The algorithms can be exe-
cuted individually by each node in the network, are simple
and fast, and only require limited global knowledge.

• In our evaluation based on a large-scale, real-world net-
work topology, we show that the proposed fully dis-
tributed algorithms can compete with a state-of-the-art
centralized coordination approach but require less global
knowledge and are magnitudes faster.

• We make our code publicly available on GitHub [6] to
encourage reproduction of results and reuse.

II. RELATED WORK

There has been significant research interest in service coor-
dination, e.g., in the context of edge or cloud computing [7],
[8] and NFV [9]. Most authors propose centralized approaches
that require global knowledge and make global decisions,
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using optimization solvers and/or heuristic algorithms [2]–
[5], [10]–[12]. For example, Luizelli et al. [12] propose an
efficient heuristic for large-scale networks using a variable
neighborhood search metaheuristic. Nevertheless, the authors
still rely on centralized knowledge and coordinate services
offline. These limitations make their heuristic unsuitable for
practical large-scale networks with constantly fluctuating load,
which require fast, online service coordination. In contrast, our
fully distributed approaches do not have these limitations and
are suitable for fast, online service coordination.

Virtual network embedding (VNE) is a well researched
problem related to service coordination [13], where authors
have proposed distributed approaches [14]–[18]. For example,
Houidi et al. [15] split the network into different clusters.
Similar to our approach, they process multiple incoming flows
in parallel. Likewise, other authors [16]–[18] split the network
into different clusters that are coordinated independently by
separate coordinators. Still, each cluster is coordinated cen-
trally by a single coordinator. In contrast, our approaches fully
distribute service coordination to each node in the network
without any centralized coordinating entity. This allows even
more parallelization and faster processing of flows. It also
requires less knowledge for service coordination and is more
robust since there is no single coordinator that could fail.
Moreover, the most common VNE variants only focus on
placement of already scaled and chained services but disregard
scaling and online flow scheduling [13]. We consider online
service coordination including scaling, placement, and flow
scheduling.

III. PROBLEM STATEMENT

We address the problem of coordinating services online over
discrete time steps t ∈ T . The problem can be formalized as
follows.

A. Problem Inputs

We consider a substrate network G = (V,L) of distributed
nodes connected by undirected links. Each node v ∈ V has
a generic compute capacity capv ∈ R≥0 (e.g., CPU). This
could easily be extended to multiple different resource types.
Each link l = (v, v′) ∈ L connects two nodes v and v′

bidirectionally with a certain delay dl ∈ R>0 and maximum
data rate capl ∈ R>0 that is shared between both directions.
Let Lv ⊆ L be the subset of links leaving node v and Vv ⊆ V
the set of v’s neighbors that can be reached following a link
in Lv .

Incoming flows may request multiple different services.
Each service s ∈ S consists of a chain of components
Cs = 〈c1, ..., cns

〉. Each service component c ∈ Cs can be
instantiated multiple times at different nodes in the network.
All instances of a component are identical and independent
of each other. Service requests arrive in form of flows at

geographically distributed ingress nodes in the network. Each
flow f = (sf , cf , v

in
f , v

eg
f , λf , tf , δf ,mf ) ∈ F is defined by

• the service sf it requests,
• its currently requested component cf ∈ Cs∪{∅} to keep

track of the flow’s current processing state (cf. network
service header [19]),

• its ingress and egress node vin
f and veg

f ,
• its requested data rate λf at this point, which may

change when traversing components (e.g., a compression
function),

• its time of arrival tf , its duration δf ,
• and optional metadata mf , which can be used for coor-

dination.
All nodes can be ingress or egress nodes. To successfully
complete a flow, it has to traverse instances of all service
components in order and then leave the network at the egress
node. After traversing the last component cns

, the flow finished
processing and needs to be routed to its egress node; this is the
case once cf = ∅. When an instance of component c processes
a flow, the flow incurs a processing delay dc ∈ R≥0, which
may be fixed or randomly distributed. We do not consider
queuing delays here, but they could be added to dc in a similar
fashion.

B. Decision Variables

In online service coordination, scaling and placement of
service components as well as routing and processing of
flows needs to be decided for each time step t. To this end,
we introduce decision variables xc,v(t) and yf,c,v(t). Binary
variable xc,v(t) ∈ {0, 1} denotes whether to place an instance
of component c at node v at time t (placement). The same
component can be placed at none, one, or multiple nodes
(scaling). We assume a serverless computation environment
where we only decide at which nodes to place a certain
component c (inter-node). Within a node v (intra-node), we
assume the operating system or a system like Kubernetes [20]
to start and scale instances of c transparently if xc,v(t) = 1.
The system may internally start multiple instances of c within
v, e.g., depending on whether v is a single machine or a cluster.
We assume such intra-node scaling to be transparent and out
of scope for our inter-node service coordination problem.

Rather than having fixed resource requirements, component
instances require resources proportional to the total data rate
of flows they are currently processing. The duration for com-
pletely processing a flow f at an instance of c depends on
the component’s delay dc and the flow’s duration δf , during
which resources proportional to data rate λf are required.

In addition to scaling and placement, incoming flows need to
be routed from their ingress, through the requested instances,
to their egress node. Variable yf,c,v(t) ∈ Vv ∪ {v} indicates
how to route and process flow f requesting component c and
arriving at node v. If yf,c,v(t) = v, it means v processes f
locally at its instance of c at time t. This is only possible if



an instance of c is placed at v and v has enough remaining
resources to process f . If yf,c,v(t) = v′ ∈ Vv , it indicates that
v does not process f locally at an instance of c but, instead,
forwards f to its neighbor v′ (routing). Forwarding f along
link l = (v, v′) ∈ Lv is only possible if it does not exceed l’s
maximum data rate capl.

We denote the currently utilized resources of node v with
rv ≤ capv and of link l with rl ≤ capl. This utilization
depends on the coordination decisions yf,c,v(t) and the flow
data rate λf and duration δf .

C. Objectives

The goal of online service coordination is to set variables
xc,v(t) and yf,c,v(t) such that incoming flows are processed
successfully and with short end-to-end delay. We formalize
this high-level goal as two objectives of and od:

max of =
|Fsucc|

|Fsucc|+ |Fdrop|
(1)

min od =
1

|Fsucc|
∑

f∈Fsucc

∑
c∈Csf

dc +
∑

(v,v′)=l∈L,
c∈Csf

,t∈T

1{yf,c,v(t)=v′}dl

(2)
Maximizing objective of means to process as many flows
successfully (Fsucc) as possible, avoiding dropped flows (Fdrop),
thus maximizing the percentage of successful flows (eq. 1).
To avoid dropping flows due to lack of available node or link
capacities, load should be balanced across multiple nodes and
links according to their capacities.

At the same time, the goal is to minimize od, which is the
end-to-end delay averaged over all successful flows (eq. 2).
The end-to-end delay of a flow f consists of two parts. First,
the sum of processing delays dc of components c whose
instance f traversed. And second, the sum of link delays dl
that f experienced during routing. In eq. 2, 1{yf,c,v(t)=v′} is
an indicator variable that is 1 if f traversed link l = (v, v′)
and 0 otherwise.

Note that the two objectives of and od may be conflicting.
For example, distributing flows over more nodes and links to
balance the load helps with processing more flows successfully
(improves of ) but also leads to longer paths and higher end-to-
end delays (degrades od). In our algorithms, we approach this
trade off by optimizing of and od in lexicographical order, i.e.,
prioritizing of but still trying to optimize od as far as possible.

IV. FULLY DISTRIBUTED SERVICE COORDINATION

To solve the online service coordination problem of Sec. III,
we propose two fully distributed algorithms. Both algorithms
are executed independently in parallel on each node in the
network. Nodes hence rapidly decide how to treat incom-
ing flows. The algorithms require knowledge of the network
topology including link delays, which we assume to be rather
static and globally available. The algorithms, however, do not

Algorithm 1 GCASP Algorithm

1: procedure GCASP(v, f )
2: while rv < capv and cf 6= ∅ do
3: xv,cf (t)← 1
4: yf,cf ,v(t)← v

5: if v = vin
f then

6: mf .dst ← veg
f

7: mf .path ← shortest_path(v,mf .dst, L)
8: if v = mf .dest and cf 6= ∅ then
9: mf .dst ← random_choice(V )

10: mf .path ← shortest_path(v,mf .dst, L)
11: if cf = ∅ and mf .dst 6= veg

f then
12: mf .dst ← veg

f

13: mf .path ← shortest_path(v,mf .dst, L)
14: FORWARD FLOW(v, f, L)

Algorithm 2 Flow forwarding using adaptive shortest paths

1: procedure FORWARD FLOW(v, f, L)
2: v′ ← mf .path.pop()
3: if r(v,v′) + λf ≤ cap(v,v′) then
4: yf,cf ,v(t)← v′

5: else
6: Lfree ← L \ {l ∈ Lv|rl + λf > capl}
7: mf .path ← shortest_path(v,mf .dst, Lfree)
8: yf,cf ,v(t)← mf .path.pop()

rely on full up-to-date, global knowledge of fast changing
information such as the current utilization of all nodes and
links in the network. Instead, GCASP (Sec. IV-A) does not
require any further global information and SBC (Sec. IV-B)
can be configured to leverage any useful information that is
available.

A. Greedy Coordination with Adaptive Shortest Paths

The main design goals for Greedy Coordination with Adap-
tive Shortest Paths (GCASP) were to be simple, effective,
fast, and frugal, in that it works without any global up-to-
date information about node and link utilization. Instead, each
node only knows the utilization of its own compute resources
and outgoing links. Nodes process flows greedily and forward
them along the shortest path to their egress nodes, minimizing
end-to-end delay. To avoid dropping flows due to congestion,
GCASP adjusts routing when a link is congested, i.e., sending
a flow via the link would violate its capacity capl.

1) Algorithm: Alg. 1 shows the GCASP algorithm, which
is run by a node v once a flow f starts arriving (passed
as arguments in ln. 1). First, v locally processes as many
components of f as possible (ln. 2–4). Specifically, v processes
f at an (existing or newly started) instance of requested
component cf if there are enough available resources. After



processing, cf points to the next requested component in Csf .
Again, v processes f locally at an instance of cf if it has
sufficient resources. This local, greedy processing continues
until either v’s compute resources are fully utilized or after f
traversed all requested service components (cf = ∅).

In the former case, f continues processing in a similar
fashion on the next node. In the latter case, f finished
processing successfully and leaves the network once it reaches
its egress veg

f . In both cases, v tries to forward f to neighbor v′

on the shortest path to f ’s egress node. If v is f ’s ingress
node, it calculates the shortest path to veg

f based on the
static topology and weighted by link delays in L, e.g., using
Dijkstra’s algorithm (ln. 5–7). The destination and calculated
path are saved in metadata mf , which is used when forwarding
the flow (ln. 14).

Forwarding is done in Alg. 2, which retrieves the next
node v′ on the computed path (ln. 2 in Alg. 2). If the link
to v′ still has enough available data rate, v sends f to v′

(ln. 3–4). Otherwise, v recomputes the shortest path without
using any of its currently congested outgoing links and sends
f along the adapted path (ln. 5–8). Note that just excluding
all congested links up front (at t = 0) does not suffice since
link utilization changes dynamically over time according to
flow arrival and the algorithm’s decisions. In case all outgoing
paths are congested, we assume that v cannot buffer the entire
flow f and thus drops it.

If a flow arrives at its egress before being fully processed, it
is sent to and processed at surrounding nodes and returns to the
egress once it finished processing completely. To balance the
load among the surrounding nodes, GCASP randomly chooses
a new, temporary destination node, computes the shortest path,
and sends f towards the new destination (ln. 8–10 in Alg. 1).
As before, nodes on the path to the new destination process f
greedily. Once f is fully processed, it is no longer sent towards
its temporary destination but is immediately rerouted to its
egress node (ln. 11–13). In doing so, remaining processing is
done close to the egress node as far as possible, keeping the
path delay low.

2) Complexity: The most common coordination decisions
concern processing an incoming flow (ln. 2–4 in Alg. 1) and
then forwarding it along its path (ln. 2–4 in Alg. 2). Both
operations only take constant time, i.e., O(1). Computation
of the initial or adapted shortest path is more expensive
but happens much more rarely. Using Dijkstra’s algorithm,
it takes O(|V |2) or O(|L| + |V | log |V |), depending on the
implementation.

GCASP only relies on the static network topology for
computing shortest paths, leading to a space complexity of
O(|V | + |L|). Except for shortest path calculation, all other
decisions only take O(1) space, e.g., based on a node’s local
resource utilization or a flow’s attributes.

3) Example: Fig. 1 illustrates GCASP’s adaptive routing
for a flow f . In step 1, f is sent along the shortest path
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Fig. 1: Example illustration of GCASP’s adaptive routing.
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Fig. 2: Rather than sending all flows along the same shortest
path, SBC avoids congestion by distributing flows across
different nodes based on their calculated score.

from its ingress towards its egress. On the path, intermediate
nodes (omitted in the figure) process f greedily. At v1, the
outgoing link on the shortest path is congested and the path is
recomputed (step 2). Here, f reaches its egress without being
fully processed. Hence, GCASP randomly selects v3 as new,
temporary destination and sends f towards v3 (step 3). Nodes
on the path continue to process f greedily such that f is fully
processed when reaching intermediate node v2, which is still
close to the egress. At that point, it is immediately rerouted to
its egress node and leaves the network successfully (step 4).

B. Score-Based Coordination with Adaptive Shortest Paths

While full up-to-date global knowledge may be unrealistic,
it is likely that some information is available through moni-
toring or beaconing. We designed the score-based coordina-
tion (SBC) algorithm to leverage such available information
for its coordination decisions. In particular, SBC calculates
node scores based on the available information that indicate
each node’s suitability to process a given flow. Rather than
sending all flows to their egress nodes along the same shortest
path, SBC tries to distribute flows among different paths
and actively selects promising nodes for processing. SBC’s
score calculation can be configured to use information that is
available, which depends on the network and monitoring setup.

1) Motivating Example: Fig. 2 illustrates the benefit of SBC
over GCASP in an example. GCASP greedily sends all flows
with the same ingress and egress node (here, f1, f2) along the
same shortest path (dashed lines). All flows compete for node
and link resources on the path which may lead to congestion,
overloaded nodes (e.g., v1), and dropped flows. Instead, SBC
uses available knowledge to calculate a score and select the
most suitable destination nodes (with the highest score) for



Algorithm 3 SBC Algorithm

1: procedure SBC(v, f )
2: if v = vin

f then
3: SET DEST(v, f, V, L)
4: if v = mf .dst then
5: if rv < capv and cf 6= ∅ then
6: xv,cf (t)← 1
7: yf,cf ,v(t)← v

8: SET DEST(v, f, V, L)
9: FORWARD FLOW(v, f, L)

10: procedure SET DEST(v, f, V, L)
11: if cf = ∅ then
12: mf .dst← veg

f

13: else
14: Vv,f ← candidates(v, f, V, L)
15: for all v′ ∈ Vv,f do
16: g(v′)←

∑
i∈[1,|A|] wiai(v

′)

17: mf .dst← argmaxv′ [g(v′)]

18: mf .path← shortest_path(v,mf .dst, L)

processing each flow. Here, nodes v2, v3 receive the highest
score for f1, f2, respectively. Processing the flows there avoids
congestion and dropped flows.

2) Algorithm: Alg. 3 shows the SBC algorithm, which is
called when a new flow f starts arriving at a node v. If v
is f ’s ingress node, v computes the first destination node for
processing f (ln. 2–3). The calculation of the destination node
based on available information is the core procedure of SBC
(ln. 10–18). If f is already fully processed (cf = ∅), its egress
node is set as destination (ln. 11–12). Once f reaches its egress
fully processed, it successfully leaves the network. Otherwise,
SBC chooses a new suitable destination node from a set of
candidate nodes based on their calculated score (ln. 15–16).
Specifically, for each candidate node v′, it considers a set
A = {a1, ..., ak} of k weighted (by wi) node attributes ai to
calculate an overall node score g(v′) (ln. 15–16). Attributes A
and candidate nodes Vv,f can be selected depending on the
available information in the network, e.g., Vv,f could be all
nodes V or just neighbors Vv (ln. 14). Attributes ai should be
scaled to [0, 1] for comparability and reflect available metrics
of interest that help asses a node’s suitability for processing.
Examples are the shortest path delay to the egress via v′, the
current utilization of v′, the amount of successfully processed
flows at v′, etc. Ultimately, the candidate v′ with the highest
score g(v′) is chosen as next destination and the shortest path
is calculated, e.g., using Dijkstra’s algorithm (ln. 17–18).

Similar to GCASP, SBC then forwards f along the com-
puted path (ln. 9) using Alg. 2. Rather than processing f
greedily on the path, f is processed at its selected destination
node if it has enough available resources (ln. 4–7). Afterwards,

a new destination is selected (ln. 8).
3) Complexity: Like GCASP, SBC makes fast forwarding

and processing decisions in O(1). Only adapting the shortest
paths due to congestion and setting a new destination require
more time. The latter requires O(|Vv,f |φ) where φ is the
time complexity of calculating g(v), which depends on the
complexity of computing the chosen node attributes. If all
attributes are simple measurements that can be retrieved in
O(1), it results in φ = O(k) = O(1) and complexity O(|Vv,f |)
for setting a new destination. Calculation of the shortest path
can be done in O(|V |2) or O(|L|+ |V | log |V |).

In addition to the static network topology, SBC also relies
on k attributes and the computed score for all candidate
nodes Vv,f . Hence, SBC’s space complexity is O(|V |+ |L|+
k|Vv,f |) = O(|V |+ |L|+ |Vv,f |).

4) Configuration: SBC’s configurability allows numerous
different variants of candidate node selection and attributes A.
For the variant we use in our evaluation, we set candidate
nodes Vv,f to be all nodes other than current node v with
sufficient remaining resources for processing f . The score of
each candidate node v′ is calculated based on k = 3 equally
weighted (wi = 1) attributes based on 1) the shortest path
delay from current node v to v′ and from there to the egress
node, 2) the number of dropped flows at v′ so far, 3) the total
data rate of flows currently being processed or forwarded at v′.

V. EVALUATION

A. Evaluation Setup

We evaluate our two proposed algorithms, GCASP and
SBC, using extensive simulations on the real-world DFN
network topology [21] with 58 nodes and 87 links. We set
link capacities to capl = 50 and use either homogeneous node
capacities (capv = 10) or randomly picked heterogeneous node
capacities (capv ∈ {0, 10, 50}), depending on the evaluation
scenario.

Furthermore, we consider three services s1 =
〈cIDS, cproxy, cweb〉, s2 = 〈cproxy, cIDS, cweb〉, and
s3 = 〈cFW, cDPI〉. Instances of each service component
require resources linear in the currently processed load.
Furthermore, they incur a per-flow processing delay that is
normally distributed with N (5ms, 1ms), where values are
cut off at 0 ms to prevent negative delays. Flows arriving
at the network’s ingress nodes request one of the three
services chosen uniformly at random. For each ingress,
flow inter-arrival times vary randomly between 1, 2, 5, and
10 time steps, flow duration δf ∈ {1, 2}, and flow data rate
λf ∈ {1, 2, 4, 6}. The duration per experiment is |T | = 1000
time steps.

We compare GCASP and SBC with a state-of-the-art
centralized coordination algorithm, BSP, from our previous
work [5]. We call BSP once for each new flow that enters
the network to compute where to process and how to route
the flow. In doing so, BSP requires global knowledge of the
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Fig. 3: Comparison of successful flows.

currently available node and link resources. Even with up-to-
date global knowledge at the time of flow arrival, BSP may
choose a currently free node for processing that is later fully
utilized by other flows when the scheduled flow arrives there.
Hence, flows may be dropped when they arrive for processing
at an over-utilized node. Therefore, we also consider a variant,
BSP+, where we call BSP again to recompute flow processing
and routing when a flow cannot be processed at an over-utilized
node.

All experiments were repeated 50 times with different
random seeds. Our figures show the mean and 95% confidence
interval of these repetitions. For running the evaluation, we
used machines with Intel Xeon W-2145 CPU and 32 GB
RAM. For reproducibility, we publish the code of both our
proposed fully distributed algorithms and all evaluation results
on GitHub [6]. Similarly, BSP is publicly available [22].

B. Service Coordination Quality

First, we compare the achieved solution quality of our
proposed fully distributed service coordination algorithms
(GCASP and SBC) and the centralized approach (BSP and
BSP+). As evaluation parameter, we vary the ingress node per-
centage, i.e., the percentage of nodes in the network at which
flows arrive. With an increasing ingress node percentage, more
nodes are randomly selected as ingress nodes, leading to
increasing overall load. The percentage of egress nodes is fixed
to 30%, to which flows are assigned uniformly at random.
We also vary between homogeneous vs. heterogeneous node
capacities. As metrics to evaluate the service coordination
quality, we consider the percentage of successfully processed
flows of and their average end-to-end delay od at the end of
each experiment as defined in Sec. III-C. We also consider
resource utilization of both nodes and links since service
coordination algorithms should use resources economically.

1) Successful Flows: Fig. 3 shows the percentage of suc-
cessful flows achieved by the different algorithms. The per-
centage of successful flows decreases with increasing load as
the network becomes more congested and some flows cannot
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Fig. 4: Comparison of end-to-end delay.

be processed or forwarded. BSP drops comparatively many
flows as it only makes coordination decisions once per flow
when flows enter the network, based on information that may
be outdated soon after. Like many centralized service coor-
dination approaches, BSP is designed to focus on few long-
running flows rather than many, rapidly arriving, sequential,
and partially overlapping flows. BSP+, which recalculates flow
processing and routing whenever a flow would otherwise be
dropped due to lack of node capacities, performs much better
and achieves close to 100% successful flows.

Nevertheless, the two fully distributed algorithms process
similar or even more flows successfully than BSP+. Clearly,
the many fast and individual per-node decisions of these fully
distributed algorithms work well and process close to 100%
of flows successfully. In the network with homogeneous node
capacities (Fig. 3a), GCASP even outperforms all other algo-
rithms, even though it uses no global knowledge except for the
static network topology. This is because, with homogeneous
node capacities, there are likely enough compute capacities
on the shortest path from ingress to egress and around the
egress node. In contrast, in the case of heterogeneous node
capacities (Fig. 3b), SBC is slightly better than GCASP and
on par with BSP+ because it leverages available knowledge
to actively select nodes with sufficient processing capacities.
Still, GCASP processes more than 90% of flows successfully
even under high load.

2) End-to-end Delay: Fig. 4 shows the avg. end-to-end
delay of successfully processed flows. While BSP drops an
increasing percentage of flows with increasing load, it ensures
relatively low and constant end-to-end delay for the remaining
successful flows. For the other algorithms, avg. end-to-end
delay increases with increasing load as more flows are rerouted
due to congestion, leading to longer paths. Again, our fully
distributed algorithms can compete with and even outperform
the centralized BSP and BSP+ approaches. The figure also
confirms that the greedy GCASP is best in the homogeneous
case (Fig. 4a). In the heterogeneous case (Fig. 4b), SBC is
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Fig. 5: Comparison of node resource utilization.
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Fig. 6: Comparison of link resource utilization.

better again and achieves lower end-to-end delay.
3) Resource Utilization: Fig. 5 shows the node resource uti-

lization averaged over all nodes. The node utilization correlates
with the percentage of successful flows in Fig. 3 as processing
more flows completely (i.e., successfully) requires more node
resources. Accordingly, BSP requires less node resources
than the other algorithms because it drops more flows. The
two distributed algorithms utilize similar percentages of node
resources as the centralized BSP+ approach.

Fig. 6 shows the link resource utilization averaged over
all links. Again, by dropping more flows, BSP reduces the
overall load in the network and thus also the link utilization
compared to the other algorithms. More interestingly, the
link utilization also reflects how efficiently the algorithms
route traffic. Longer detours lead to more traversed links and
higher link utilization. For homogeneous traffic (Fig. 6a), both
distributed algorithms utilize less than 30% link resources and
far less than BSP+, which reroutes traffic whenever flows
could not be processed. As discussed before, GCASP performs
worse for heterogeneous traffic (Fig. 6b) and routes flows
along detours to complete processing. Nevertheless, the link
utilization of GCASP is not much higher than of BSP+. SBC
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Fig. 7: Percentage of successful flows and avg. end-to-end
delay over time.
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Fig. 8: Avg. node and link resource utilization over time.

uses available information to route traffic more effectively and
outperforms BSP+ in terms of link utilization.

C. Service Coordination Stability

The results in Sec. V-B show the quality metrics at the end
of each experiment, i.e., after |T | = 1000 time steps. Here, we
evaluate the service coordination stability over these 1000 time
steps during which flows keep arriving randomly as described
in Sec. V-A. We consider the DFN network with heterogeneous
node capacities and 30% ingress nodes.

Fig. 7 shows that both the percentage of successful flows
(Fig. 7a) and the avg. end-to-end delay (Fig. 7b) are very stable
over time for all algorithms. The initial jump from t = 0
to t = 100 is simply because all metrics are initialized to
0. While GCASP performs worse on heterogeneous than on
homogeneous node capacities, its achieved end-to-end delay
still only increases slightly in the beginning but then converges
and stabilizes.

Fig. 8 shows the avg. node and link utilization over time.
Again, the utilization is fairly stable for all algorithms. Only
for BSP+ the link utilization slowly grows over time as more
and more flows are being rerouted due to congestion. Overall,
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Fig. 9: Coordination decisions and their runtime (log. scale).

the results indicate that the two distributed algorithms not only
achieve competitive solution quality but also converge early
and maintain stable service coordination over time.

D. Service Coordination Scalability

In addition to ensuring high and stable service quality, ser-
vice coordination should be fast and scalable to handle rapidly
arriving flows in practical scenarios. To evaluate coordination
scalability, we compare the number of coordination decisions
(i.e., algorithm calls) and algorithm runtime of the different
approaches. Again, we consider the DFN network with het-
erogeneous node capacities and 30% ingress nodes. Fig. 9
shows the algorithms’ number of coordination decisions on
a logarithmic scale. Our proposed fully distributed algorithms
(GCASP and SBC) make coordination decisions individually
at each node for each incoming flow. In contrast, BSP and
BSP+ are only called once when a new flow enters the network
and, in case of BSP+, when a flow cannot be processed due to
lack of node resources. Hence, our fully distributed algorithms
make far more coordination decisions in total and per flow
than the centralized approaches (Fig. 9a). We assume that BSP
and BSP+ make all decisions at a single centralized node (at
least logically). On the other hand, GCASP and SBC distribute
coordination over all nodes in the network such that they still
make significantly fewer coordination decisions per node.

The runtime for these coordination decisions is even more
important than the number of decisions. Due to their simplicity,
the runtime (per flow, per node, and in total) of our fully
distributed algorithms is much lower than of BSP and BSP+
(Fig. 9b). While we do not consider this coordination time as
part of a flow’s end-to-end delay in Sec. V-B and V-C, it would
still impact overall delay and service quality in practice.

We also tested GCASP and SBC successfully on the large
GTS CE network [21] with 149 nodes and 193 links. Com-
pared to the DFN network, the algorithms’ total decisions and
runtimes were higher, but the numbers per flow and per node
were comparable to the ones in the DFN network. Due to
the prohibitive long runtimes of BSP and BSP+, we do not

present a full performance evaluation of the GTS CE network.
Nevertheless, our results on the two networks indicate that our
proposed, fully distributed algorithms scale well to practical,
large-scale networks.

VI. CONCLUSION

Our proposed fully distributed algorithms coordinate ser-
vices well and achieve comparable service quality to a state-
of-the-art centralized coordination algorithm. At the same
time, they require less or no global network information, are
faster, can be massively parallelized, and are more robust to
failures. Hence, in contrast to centralized approaches, such
fully distributed algorithms are useful in practical large-scale
networks with rapidly arriving flows. We therefore believe
that our proposed algorithms can significantly improve service
coordination and resulting QoS in practice.

In future work, we plan to investigate robustness and fault
tolerance in fully distributed service coordination as well as
hybrid approaches, where some coordination decisions are
made centrally and others in a distributed manner.
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