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This supplement contains additional details about the 2-WL-GNN model that was pro-
posed in the main paper. We begin with a description of how this model can be efficiently
implemented on modern hardware. Afterwards, details about the evaluation procedure and
the chosen datasets are provided. Finally, we discuss a few additional experimental results
that were left out of the main paper.

Appendix A. Implementation of 2-WL-GNNs on GPGPUs

In the main paper we focused on the discriminative power of the proposed 2-WL-GNN. In
this supplementary section we describe how our approach can be implemented on general
purpose graphics processing units (GPGPUs).

Efficient high-level software libraries for the implementation of vertex neighborhood con-
volution approaches such as graph convolutional network or graph isomorphism network
(GIN) already exist. They describe convolutions via a message-passing abstraction in which
vertex feature vectors are passed along their neighboring edges (see Battaglia et al., 2018).
Since a message-passing model along edges is incompatible with the edge-pair neighborhoods
of 2-WL, a custom convolution implementation is required for 2-WL-GNNs.

For this purpose we propose a sparse 2-WL graph representation which is inspired by the
coordinate list adjacency format described by Fey and Lenssen (2019). Given a neighborhood
radius r, we encode a graph G using the following two matrices:

1. Z(0)
G ∈ Rm×d(0) : The initial feature matrix is represented directly as a dense floating

point matrix with m := |EGr | rows, each of which encodes the feature vector of an edge
eij ∈ EGr . Edge feature duplicates are prevented by only encoding edges with i ≤ j
for some arbitrary vertex ordering of G.

2. RG ∈ [m]γ×3: The reference matrix RG encodes the edge neighborhood information.
It consists of γ :=

∑
eij∈EGr

|ΓGr(vi) ∩ ΓGr(vj)| rows, one for each 2-WL neighbor
{{eil, elj}} of each edge eij . Each neighbor row is a vector (rL, rΓ,1, rΓ,2) ∈ [m]3 of three
index pointers to rows in Z(0)

G . rL points to the row index of the feature vector of eij ,

© 2020 C. Damke, V. Melnikov & E. Hüllermeier.



Damke Melnikov Hüllermeier

while rΓ,1 and rΓ,2 point to the indices of eil and elj respectively. We will refer to the
three column vectors of RG as RG,L, RG,Γ,1 and RG,Γ,2.

This encoding can also be used to represent graph batches by simply concatenating the rows
of each graph’s feature and reference matrices while shifting the index pointers to account
for the concatenation offsets. Figure 1 illustrates how such a batch encoding might look like.
After encoding a graph dataset as 2-WL matrices, convolutions can be computed efficiently

idx. edge Z(0)

1 e11 (1, 0)
2 e22 (1, 0)
3 e33 (1, 0)
4 e12 (0, 1)
5 e13 (0, 1)
6 e23 (0, 1)

7 e′11 (1, 0)
8 e′22 (1, 0)
9 e′12 (0, 1)

RL RΓ,1 RΓ,2

(1, 1, 1)
(1, 4, 4)
(1, 5, 5)
(2, 2, 2)
(2, 4, 4)
(2, 6, 6)
(3, 3, 3)
(3, 5, 5)
(3, 6, 6)
(4, 1, 4)
(4, 4, 2)
(4, 5, 6)
(5, 1, 5)
(5, 5, 3)
(5, 4, 6)
(6, 2, 6)
(6, 6, 3)
(6, 4, 5)

(7, 7, 7)
(7, 9, 9)
(8, 8, 8)
(8, 9, 9)
(9, 7, 9)
(9, 9, 8)

Figure 1: Exemplary 2-WL encoding of a batch of two small graphs.

on GPGPUs via the common gather-scatter pattern from parallel programming (He et al.,
2007). The so-called gather operator takes two inputs: A list Z of m row vectors and a list
R of γ pointers into Z. It returns a list X of γ row vectors X[i] = Z[R[i]] for i ∈ [γ]. The
scatterΣ operator can be understood as the opposite of gather . scatterΣ takes a list X of
γ row vectors and a list R of γ pointers from the range [m]. It returns a list Z of m row
vectors Z[i] =

∑
j∈[γ]∧R[j]=iX[j] for i ∈ [m].

Using the gather and scatterΣ operators, the 2-WL convolution operator from Def. 4.3
can be computed via the following parallel algorithm:

Algorithm 1 Parallel Implementation of a 2-WL Convolution Layer S(t)

1: function S(t)(Z(t−1) ∈ Rm×d(t−1)
, R ∈ [m]γ×3)

2: ZL := Z(t−1)W
(t)
L . Matrix multiply: Rm×d(t−1) → Rm×d(t)

3: ZF := Z(t−1)W
(t)
F

4: ZΓ := Z(t−1)W
(t)
Γ

5: XΓ,1 := gather(ZΓ, RΓ,1) . Gather: Rm×d(t) × [m]γ → Rγ×d(t)

6: XΓ,2 := gather(ZΓ, RΓ,2)
7: XΓ := σΓ (XΓ,1 +XΓ,2) . Element-wise operations
8: ZΣΓ := scatterΣ(XΓ, RL) . Scatter: Rγ×d(t) × [m]γ → Rm×d(t)

9: Z(t) := σ (ZL + ZF � ZΣΓ) . Element-wise operations
10: return Z(t)
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Appendix B. Evaluated Hyperparameter Grids

To tune the hyperparameters of the evaluated models, we used a regular grid search. De-
pending on the type of model, different sets of hyperparameter configurations Θ were used.

Graph Kernels We used the support vector machine classifier from Scikit-learn to eval-
uate the graph kernel approaches. We tuned only the regularization parameter C of this
classifier; the evaluated values are C ∈ {1, 1× 10−1, 1× 10−2, 1× 10−3, 1× 10−4}. All other
parameters were left at the default setting (using scikit-learn 0.22.1).

Baseline and GIN For the evaluation of the structure unaware baseline learner and GIN,
we used the same hyperparameter configurations as Errica et al. (2020). We therefore refer
to their work for a complete list of the tuned hyperparameters for those models.

2-GNN and 2-WL-GNN We evaluated our implementations of 2-GNNs as well as 2-
WL-GNNs on the grid spanned by the following hyperparameter values:

• Number of convolutional layers T ∈ {3, 5}: This parameter describes only the
depth of the stack of convolutional layers. The multilayer perceptron (MLP) after the
pooling layer is always configured with a single hidden layer.

• Layer width d ∈ {32, 64}: This parameter describes the output dimensionalities
d = d(1) = · · · = d(T ) of the convolutional layers and (if applicable) also the hidden
layer width of the final MLP after the pooling layer.

• Learning rate η ∈ {1× 10−2, 1× 10−3, 1× 10−4} of the Adam optimizer.

• Activation functions σ and σΓ are set to the standard logistic function. However,
for the evaluation of the synthetic TRIANGLE dataset we used ReLU instead be-
cause this choice led to improved and more consistent results in previous exploratory
experiments.

• Number of epochs E and early stopping patience p are set to E = 1000 and
p = 100, except for the evaluation of the synthetic TRIANGLE dataset for which we
used E = 5000 and p = 1000 to ensure model convergence.

Both, 2-GNNs and 2-WL-GNNs, were evaluated using two different pooling layers which
combine the edge feature vectors {zij}eij∈EGr

into a graph feature representation zG. The
mean pooling layer uses zG = 1

|EGr |
∑

eij
zij . The weighted mean pooling layer extends this

approach by incorporating attention scores wij ∈ R that are learned alongside zij for each
edge; the graph feature representation is then defined as zG = 1∑

eij
ewij

∑
eij
ewijzij .

Appendix C. Dataset Statistics and Descriptions

TRIANGLE The triangle detection dataset was generated by sampling three graphs with
exactly one unicolored triangle uniformly at random for each possible combination of the
following parameters: The number of vertices (between 6 and 32), the vertex color propor-
tions (either 50/50%, 75/25% or 25/75% vertices with the colors A/B), the graph density
(|VG|−2 |EG| ∈ {1/4, 1/2}) the graph class (add a triangle with either the color A or B).
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Table 1: Sizes of the evaluated binary classification datasets and their graphs.

vertex count |VG| edge count |EG| vert. deg.no. of
graphs

vertex data
(feat. + lab.) min mean max min mean max mean± σ

TRIANGLE 228 0 + 2 6 18.3 32 5 52.1 164 5.7± 2.8
NCI1 4110 0 + 37 3 29.9 111 2 32.3 119 2.2± 0.8
PROTEINS 1113 29 + 3 4 39.1 620 5 72.8 1049 3.7± 1.1
D&D 1178 0 + 89 30 284.3 5748 63 715.7 14267 5.0± 1.7
REDDIT 2000 0 + 1 6 429.6 3782 4 497.8 4071 2.3± 20.7
IMDB 1000 0 + 1 12 19.8 136 26 96.5 1249 9.8± 7.4

NCI1 This dataset was made available by Shervashidze et al. (2011). It contains a bal-
anced subset of molecule graphs that were originally published by the US National Cancer
Institute. In each molecule graph, vertices correspond to atoms and edges to bonds between
them. The binary classes in this dataset describe whether a molecule is able to suppress or
inhibit the growth of certain lung cancer and ovarian cancer cell lines in humans.

PROTEINS and D&D The graphs in both the PROTEINS dataset (Borgwardt et al.,
2005) as well as the D&D dataset (Dobson and Doig, 2003) represent proteins. Each vertex
corresponds to a so-called secondary structure element (SSE), i.e. a certain molecular sub-
structure. An edge encodes either that two SSEs are neighbors in the protein’s amino-acid
sequence or that those SSEs are close to each other in 3D space. Each protein graph is
classified by whether it is an enzyme or not. The main difference between the two datasets
is their selection of vertex features/labels.

REDDIT This balanced dataset contains graphs that represent online discussion threads
on the website Reddit (Yanardag and Vishwanathan, 2015). Each vertex corresponds to a
user; an edge is drawn between two users iff. at least one of them replied to a comment
of another. Such social interaction graphs were sampled from two types of subreddits:
Question/answer-based and discussion-based. The classification goal is to predict from which
type of subreddit a given graph was sampled.

IMDB This dataset contains so-called ego-networks of movie actors (Yanardag and Vish-
wanathan, 2015). Vertices in such networks represent actors and edges encode whether two
actors starred in the same movie. The graphs in the dataset are derived from the actors
starring in either action or romance movies. The classification goal for each graph is to
predict the movie genre it was derived from.

Appendix D. Influence of the Neighborhood Radius on the Predictive
Performance

As described in Section 4, the neighborhood radius r ∈ N determines the number of con-
volved edges feature vectors, i.e. the number of rows in Z(t) ∈ R|EGr |×d(t) (see Fig. 2). We
will now analyze the influence of r on the accuracy of 2-WL-GNNs. The theory suggests
that the DP of the 2-WL convolution is increased by increasing the radius; e.g., the proof of
2-WL’s cycle counting ability (Fürer, 2017) depends heavily on the structural information
carried by the indirect edge features/colors that are only present if r > 1.
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r = 0 r = 1 r = 2 r = 3

Figure 2: Illustration of the powers of the six-cycle graph for varying r. The self-loop edge
at each of the vertices is not explicitly shown. For r = 3 all possible edges between the six
vertices will be considered, just as in the original 2-WL algorithm.
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Figure 3: Accuracy of the 2-WL-GNN with varying neighborhood radii r. All datasets were
evaluated on r = 1 and the highest radius for which the 2-WL graph encodings would still
fit into memory; the REDDIT dataset only fit into memory for r = 1, therefore it is not
shown here.

Figure 3 shows1 that, in practice, a neighborhood radius r > 1 does correlate with a
higher training and test accuracy on the NCI1 and D&D datasets; howerver, on the IMDB
and PROTEINS datasets this is not the case. This difference is interesting because NCI1
(molecular structures) and D&D (protein sequences) contain more cyclic graphs, while IMDB
(ego-network structures) and PROTEINS (protein sequences) consist of more tree- or list-
like graphs (see Appendix C). Even though the PROTEINS and D&D datasets both contain

1. Note that the accuracies in this figure are lower than those in the evaluation section of the main paper
because a different 2-WL-GNN architecture is used here; namely, no MLP is applied after pooling.
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protein sequences, we find that the protein sequences in the PROTEINS dataset are very
“list-like” with much fewer large cycles than in the proteins structures of the D&D dataset
(compare the vertex and edge count statistics of both datasets in Tbl. 1). Figure 4 illustrates
this difference. This leads us the the hypothesis that 2-WL-GNNs with a neighborhood
radius of r > 1 are able to improve their real-world performance over that achieved with
r = 1 by detecting cyclic constituents in graphs. Due to the limited number of evaluation
results, further investigations are required to verify this hypothesis.

D&DPROTEINS

Figure 4: Two samples illustrating the difference between the PROTEINS and D&D
datasets.

Appendix E. Empirical Runtime Evaluation
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Figure 5: Comparison of the mean training epoch durations of 2-WL-GNN and GIN for
varying graph sizes n, vertex degrees d and neighborhood radii r. (Left) Durations for
varying vertex counts n ∈ {24, . . . , 214} with a fixed degree d = 2. (Middle) Durations for
varying vertex degrees d with a fixed size n = 1024. (Right) Table of the factors by which
2-WL-GNN is slower than GIN for n = 1024.

In Appendix D we evaluated the relation between the neighborhood radius r and the
resulting accuracy. As described in Section 4, the neighborhood radius also affects the 2-WL
convolution runtime which is bounded by O(nd2r), with n denoting the vertex count and d
being the maximum vertex degree.

We will now verify this bound experimentally. Figure 5 shows the duration of a single
training epoch of a 2-WL-GNN and a GIN model with the same depth and a similar number
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of learnable parameters (≈ 2200). The time for each combination of n, d and r was obtained
by taking the mean duration of the first 100 training epochs using a dataset of 100 synthesized
regular graphs with size n and uniform vertex degree d. The experiment was implemented in
TensorFlow and executed on a single Nvidia 1080 Ti GPU. Since the coefficient of variation
for the 100 samples of each (n, d, r) combination is ≤ 5%, no error bars are shown for visual
clarity.

In the left plot of Fig. 5 we see that the epoch durations are dominated by constant costs
for n < 210; for n ≥ 210 the expected linearity in n can be observed. For 2-WL-GNNs we
expect that the slope of the epoch durations is described by O(d2r). The roughly uniform
y-offsets of the r = 1, r = 2 and r = 3 curves in the left log-log plot are in line with this
expectation. Additionally, the middle plot confirms the expected power law relation between
the epoch duration and the vertex degree d.

The table on the right shows how much slower the 2-WL-GNN is compared to the 1-
WL bounded GIN architecture. Note however that we considered the worst-case scenario
in which all vertices reach the upper degree bound d. Many real-world datasets consist
of graphs with only a few high-degree vertices. Looking at the NCI1, PROTEINS, D&D,
REDDIT and IMDB datasets, which have mean vertex degrees that range between 2.2 and
9.8 (see Tbl. 1), the table in Fig. 5 would suggest that a 2-WL-GNN with r = 1 is at
least 2 or 3 times slower than a GIN on those datasets. However, in reality the slowdown
is only 228ms

198ms ≈ 1.15 for NCI1, 262ms
206ms ≈ 1.27 for PROTEINS, 765ms

514ms ≈ 1.49 for D&D,
1081ms
804ms ≈ 1.35 for REDDIT and 96ms

61ms ≈ 1.57 for IMDB. For neighborhood radii r > 1,
the real-world slowdown factor can be significantly smaller than the worst-case slowdown
as well: 964ms

198ms ≈ 4.87 for NCI1 with r = 8, 670ms
206ms ≈ 3.25 for PROTEINS with r = 5,

1386ms
514ms ≈ 2.70 for D&D with r = 2 and 239ms

61ms ≈ 3.92 for IMDB with r = 4. Consequently,
2-WL-GNNs appear to be computationally feasible in practice despite the large worst-case
slowdown factors in Fig. 5. Additionally, as we saw in Appendix D, a neighborhood radius
r > 1 is not always necessary to reach optimal predictive performance; the computationally
cheap choice of r = 1 should therefore always be considered.

Appendix F. Fold-wise Accuracy Deltas

Due to the relatively small sizes of the evaluated benchmark datasets, the variance of the
test accuracies across different folds is quite large. When directly comparing the mean
accuracies of two learners, it is often impossible to tell whether one consistently outperforms
the other. We therefore now list the mean and standard deviations of the fold-wise test
accuracy differences of all pairs of learners for all datasets. This effectively removes the
variance introduced by “easy” and “hard” folds on which all learners might tend to perform
consistently better/worse.

In the following Matrices 2 to 7 we show accuracy differences as row accuracy minus
column accuracy. For each row i and column j, the corresponding cell (i, j) is highlighted in
red or green iff. the learner i performs consistently worse (or better respectively) than j with
a significance level of 2σ. To compute the deltas for 2-WL-GNNs, the same neighborhood
radii as in the evaluation section of the main paper are used, i.e. r = 2 for the synthetic
triangle detection dataset and r = 8, 5, 2, 1 and 4 for NCI1, PROTEINS, D&D, REDDIT
and IMDB respectively.
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Matrix 2: Fold-wise accuracy delta means and standard deviations on the triangle dataset.
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Matrix 3: Fold-wise accuracy delta means and standard deviations on NCI1.
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Matrix 4: Fold-wise accuracy delta means and standard deviations on PROTEINS.
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WLSP (T = 3) ±2.8
+0.1

±3.5
+3.7

±3.6
−0.0

±4.1
−0.9

±3.0
+1.4

±4.1
−1.7

±4.0
−0.6

±3.2
−3.4

±3.7
−2.2
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−1.2

Matrix 5: Fold-wise accuracy delta means and standard deviations on D&D.
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±6.4
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+9.1
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+4.1
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Matrix 6: Fold-wise accuracy delta means and standard deviations on REDDIT.
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Matrix 7: Fold-wise accuracy delta means and standard deviations on IMDB.
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