
Nonlinear dielectric properties of random paraelectric-dielectric

composites

Viktor Myroshnychenkoa,∗, Stanislav Smirnova, Pious Mathews Mulavarickal Josea,
Christian Brosseaub, Jens Förstnera

aInstitute of Electrical Engineering, Paderborn University, Warburger Straße 100, D-33098 Paderborn,

Germany
bUniv. Brest, CNRS, Lab-STICC, CS 93837, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France

Abstract

The challenge of designing new tunable nonlinear dielectric materials with tailored properties

has attracted an increasing amount of interest recently. Herein, we study the effective non-

linear dielectric response of a stochastic paraelectric-dielectric composite consisting of equi-

librium distributions of circular and partially penetrable disks (or parallel, infinitely long,

identical, partially penetrable, circular cylinders) of a dielectric phase randomly dispersed

in a continuous matrix of paraelectric phase. The random microstructures were generated

using the Metropolis Monte Carlo algorithm. The evaluation of the effective permittivity

and tunability were carried out by employing either a Landau thermodynamic model or

its Johnson’s approximation to describe the field-dependent permittivity of the paraelectric

phase and solving continuum-electrostatics equations using finite element calculations. We

reveal that the percolation threshold in this composite governs the critical behavior of the

effective permittivity and tunability. For microstructures below the percolation threshold,

our simulations demonstrate a strong nonlinear behaviour of the field-dependent effective

permittivity and very high tunability that increases as a function of dielectric phase con-

centration. Above the percolation threshold, the effective permittivity shows the tendency

to linearization and the tunability dramatically drops down. The highly reduced permit-

tivity and extraordinarily high tunability are obtained for the composites with dielectric

impenetrable disks at high concentrations, in which the triggering of the percolation tran-

∗Corresponding author
Email address: viktor.myroshnychenko@gmail.com (Viktor Myroshnychenko)

Preprint submitted to Acta Materialia September 8, 2020



sition is avoided. The reported results cast light on distinct nonlinear behaviour of 2D and

3D stochastic composites and can guide the design of novel composites with the controlled

morphology and tailored permittivity and tunability.

Keywords: Paraelectric-dielectric composite, Tunability, Effective permittivity,

Landau-Devonshire theory, Percolation, Nonlinear dielectric properties

1. Introduction

Ferroelectric materials have attracted significant scientific and practical attention in last

decades due to their highly nonlinear dielectric response to an applied electric field in mi-

crowaves range [1, 2]. In particular, ferroelectrics in a paraelectric state are characterized by

the absence of polarization hysteresis, relatively low dielectric losses and leakage currents,5

high dielectric permittivity which nonlinearly depends on the applied electric field, and high

tunability at microwave frequency. These peculiar properties of paraelectrics find potential

application in microelectronic circuits and voltage tunable microwave devices, such as tun-

able mixers, varactors, oscillators, phase shifters, capacitors, delay lines, and filters [3–7].

Ferroelectrics such as (Ba,Sr)TiO3, Ba(Zr,Ti)O3, and (Pb,Sr)TiO3 have been demonstrated10

to be potential candidates for such applications [8–10]. However, the high dielectric tun-

ability in single-phase ferroelectrics is usually accompanied by large permittivity (∼ 1000)

that might be undesirable for some applications which simultaneously require to maintain

high tunability and reduced permittivity while keeping low losses [4, 11]. To address this

major challenge in designing materials for tunable devices, several methods were proposed,15

e.g., doping ferroelectrics with different ions [12] and fabrication of a variety of composite

mixtures of a nonlinear paraelectric and a linear low-loss dielectric (oxides, polymers, and

pores) phases [13–17]. It has been demonstrated that specially designed ferroelectric com-

posite structures possess even improved tunability than those of single phase nanonlinear

materials due to the interfacial phenomena between distinct phases and the resulting local20

electric field inhomogeneity and enhancement. Actually, it has been known for many years

that the functional properties of composites are strongly dependent on their microstructures

[18]. Therefore, the ability to control and manipulate microstructures of a composite offers

a practical way to tailor both permittivity and tunability to desired values [19, 20].
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The determination of the effective dielectric response of composite materials has been25

the subject of continuous attention over several decades [21–23]. With regard to linear

macroscopic electromagnetic response of these materials, physicists engaged in this area

have developed approximate analytical effective-medium theories (EMT) and other mean-

field-like approximations to describe their behaviour [24, 25]. However, many of these theories

can be applied only to a specific combination of particles-host medium taking into account30

simple microstructure information such as volume fraction and inclusion shape, furthermore,

they are based on dipolar interactions only. A number of authors have developed modified

EMTs for nonlinear ferroelectric-dielectric composites, by coupling EMTs with the expression

for field-dependent permittivity of the ferroelectric material described by phenomenological

Landau-Devonshire (LD) theory [26, 27]. However, due to the complexity of the multipolar35

interactions between inclusions and an environment and, in turn, the intense local electric

field fluctuations, modified EMTs cannot be predictive for general situations.

Therefore, a number of recent works have considered a numerical approach to this problem

within the long wavelength limit [28–31]. These investigations focus on modeling the effective

nonlinear permittivity and tunability of several ferroelectric-dielectric systems by integrating40

the field-dependent permittivity of a ferroelectric, described by either LD theory or Johnson’s

equation (JE), into a finite element analysis. In particular, it has been shown that the porous

(Ba,Sr)TiO3- and Pb(Zr,Ti)O3-based ceramics exhibit a higher tunability and significantly

reduced permittivity comparable to those of the bulk ceramics [32–34]. However, further

efforts are still needed to fully understand the numerically and experimentally observed45

features of the nonlinear behaviour of ferroelectric composites. For examples, there is a

need for systematic investigation of (i) how the randomness and connectedness influence

the effective permittivity and tunability, (ii) how dielectric response of percolative systems

change near and above the percolation threshold, (iii) how interactions between aggregates

and agglomerates, which are always formed within a host matrix, affect interfacial and50

multipolar interactions. All of these structural features give rise to extremely rich physics

not fully explored so far.

In this paper, we report on a comprehensive numerical study of effective nonlinear di-

electric properties of a 2D random paraelectric-dielectric composite in the long-wavelength
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limit. The composite is composed of identical circular disks, with an arbitrary degree of55

impenetrability, made of a linear lossless dielectric randomly distributed throughout a con-

tinuous paraelectric host matrix. The 3D analog of this model would be a composite consist-

ing of parallel infinitely long, identical, partially penetrable cylinders randomly distributed

throughout a host matrix, where the properties and characteristics are invariant along the

cylinder axis. The generation of random microstructures was carried out using the standard60

Metropolis Monte Carlo algorithm. The permittivity field dependence of the paraelectric

phase are specified through a nonlinear thermodynamic model using either the LD theory

of phase transformations or its Johnson’s approximation and then built-in into a finite ele-

ment method (FEM) analysis, which solves continuum-electrostatics equations for the local

potential. We demonstrate the great potential of this combined numerical technique by ac-65

cessing spatially resolved electric fields in composites and computing field-dependent effective

permittivity and tunability over wide ranges of various parameters, including the intrinsic

constituent permittivity, the surface fraction, and the degree of disk impenetrability. Our

simulations reveal a strong nonlinear behaviour of the effective permittivity and extraordi-

narily high tunability. Furthermore, we show that the randomness and connectedness of the70

particle phase can dramatically influence the tunability of the paraelectric-dielectric compos-

ite and reveal its critical dependence on the percolation threshold. Finally, our comparative

study of results obtained by using the LD theory and its Johnson’s approximation for the

description of permittivity in a paraelectric phase unveils unexpected underlying differences

in the nonlinear response and tunability of the composite.75

2. Dielectric nonlinearity of paraelectrics

2.1. Landau-Devonshire theory

Here, we focus on ferroelectrics in the paraelectric state as dielectrically isotropic mate-

rials whose dielectric permittivity changes significantly under the applied external electric

field. This dielectric nonlinearity can be phenomenologically treated within the framework

of LD theory, where the Gibbs free energy of a ferroelectric cubic crystal free of stress/strain

and space charges is described in terms of macroscopic polarization as [35, 36]

F (P, T, E) =
α

2
P 2 +

β

4
P 4 +

γ

6
P 6 + . . . , (1)
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where T , E, and P are the temperature, applied electric field, and equilibrium polarization

at a given field, respectively, and α, β, γ are Landau coefficients. The coefficient α =

C(T −T0) = 1/(ε0εr(0)) given by the Curie-Wiess law is temperature-dependent, where C is

the Curie-Wiess constant, T0 is the Curie-Wiess temperature, εr(0) is the relative dielectric

permittivity at zero dc electric field (positive in paraelectric state), and ε0 is the permittivity

of free space. The coefficients of the ferroelectric nonlinearity β and γ are generally smooth

functions of temperature. When a dc electric field is applied to the paraelectric phase and

assuming γ = 0, the energy of the system can be written as

F (P, T, E) =
α

2
P 2 +

β

4
P 4

− P · E. (2)

Stable states of the system are characterized by minima of the free energy, i.e., ∂F (P, T, E)/∂P =

0, leading to

E = αP + βP 3. (3)

In a nonzero bias field, the relative dielectric permittivity of the system parallel to the applied

electric field is defined as

εr(E) =

[

ε0
∂2F (P, T, E)

∂P 2

]

−1

, (4)

where the derivative ∂2F/∂P 2 is derived from Eq. 2. Finally, the dependence of the relative

permittivity on the applied electric field in accordance to the LD theory is described by the

equation

εr(E) =
1

ε0(α + 3βP 2)
, (5)

where the electric field induced polarization P (E) is obtained by solving Eq. 3. It is worth

noting that this approach well describes paraelectrics close and above the Curie temperature

under the assumptions of homogeneity of the electric field within the material, negligible80

contributions of stress/strain to the total energy, and in the absence of charges. This theory

will be used for the local description of the paraelectric material inside the composite and

integrated in our FEM analysis, denoted as LD-FEM and described in the next section.

2.2. Johnson’s equation

Note that the Eq. 5 implicitly includes the electric field dependence of the dielectric per-

mittivity leading to a more complicated implementation. To overcome this issue, Johnson
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Figure 1: Illustration of the calculation of the field-dependent effective permittivity with boundary conditions

for a typical sample realization of the two-phase composite consisting of monodisperse circular disks, of linear

dielectric permittivity ε2, surface fraction φ2 and with a degree of impenetrability λ(0 ≤ λ ≤ 1), randomly

dispersed within the nonlinear paraelectric host material of permittivity ε1 and surface fraction φ1 = 1−φ2.

Each disk of diameter D is composed of a mutually impenetrable core of diameter λD (region inside inner

black circle) encompassed by a perfectly penetrable shell of thickness (1−λ)D/2. The application of periodic

boundary conditions leads to the structure spanning the whole 2D space.

derived an explicit approximative solution for describing the field-dependent dielectric con-

stant of paraelectrics from the LD theory, assuming small polarization values approximated

as P (E) = ε0εr(E)E [37]

εr(E) =
εr(0)

(1 + 3β(εr(0)ε0)3E2)1/3
. (6)

This equation has been tested successfully with experimental results for some paraelectric85

materials up to high dc electric field [13–17, 38, 39]. The Johnson’s equation (JE) was also

built in our FEM simulations, denoted as JE-FEM, and its applicability was studied by

comparison with the LD-FEM results. Besides, the JE was also used to fit numerical results

calculated by using LD-FEM and determine the effective Landau coefficient of the dielectric

nonlinearity βeff of the considered composite systems.90
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3. Methodology and numerical implementation

We consider a two-phase composite medium consisting of monodisperse circular disks

with an arbitrary degree of impenetrability λ(0 ≤ λ ≤ 1) of linear dielectric material with

permittivity ε2 and area fraction φ2 randomly placed in the host of nonlinear paraelectric

material with field-dependent permittivity ε1(E) and area fraction φ1 = 1−φ2. The disks are95

allowed to overlap with each other with an arbitrary degree of impenetrability λ(0 ≤ λ ≤ 1),

i.e., each disk of diameter D is composed of an impenetrable core of diameter λD, which is

encompassed by a penetrable concentric shell of thickness (1 − λ)D/2. The extreme limits

λ = 0 and λ = 1 correspond to fully penetrable disks and the totally impenetrable disks,

respectively. Thus, by continuously varying λ between 0 and 1, one can vary the exclusion-100

area effects and, hence, the connectedness of the inclusions. The surface fraction occupied

by the disks, φ2, varies between 0 and the maximum packing fraction. The representative

realization of such two-phase composite is illustrated in Figure 1. Note that the inclusions

investigated can be considered as circular cross sections of infinite 3D parallel partially-

penetrable cylinders, where the properties and characteristics are invariant along the cylinder105

axis.

Below, we provide a brief description of the procedures for (a) generation of realizations

of the random two-phase medium using the statistically based standard Metropolis Monte

Carlo algorithm and (b) numerical evaluation of the field-dependent effective permittivity

and tunability of the paraelectric-dielectric composite using the FEM combined with either110

the LD or Johnson’s equations.

3.1. Generation of random two-phase microstructures

We used the traditional Metropolis Monte Carlo (MC) algorithm in 2D to generate the

random two-phase microstructures of equilibrium distributions of disks at a specified disk

surface fraction φ2 and degree of impenetrability λ [40, 41]. The explanation and details of the115

key steps of this algorithm, producing statistically homogeneous and isotropic equilibrated

realizations of the composite, can be found in Refs. [42–44]. Periodic boundary conditions

were employed in order to minimize boundary effects due to the finite size of the system,

i.e., the unit cell containing the particles is repeated periodically within the plane to form
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Figure 2: Typical equilibrium sample realizations illustrating the local microstructure of the two-phase

composite consisting of monodisperse circular partially penetrable disks randomly distributed within a square

matrix. The sample packing results from the sequential algorithm described in the text applied to a binary

mixture at a specified disk surface fraction φ2(0 ≤ φ2 ≤ 1) and degree of impenetrability λ(0 ≤ λ ≤ 1).
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an infinite lattice. Figure 2 shows typical random configurations of medium for selected120

values of λ and φ2 demonstrating the qualitative differences of these images related to the

dramatic clustering behavior as λ and φ2 are varied. Once the equilibrium realization of

the composite medium are generated then the FEM analysis for finding the field-dependent

effective permittivity and tunability is started, as discussed in the next subsection.

3.2. Model of the effective permittivity of paraelectric-dielectric media125

The LD (Eq. 5) and Johnson’s (Eq. 6) equations presented in section 2 describe nonlinear

dielectric permittivity of single phase paraelectrics, however, they fail to characterise highly

disordered and inhomogeneous microstructures which generate strong spatial electric field

fluctuations under an applied field. Therefore, in this work, we combine the LD and Johnson’s

equations for the local description of dielectric permittivity of a paraelectric phase with a130

2D FEM analysis to accurately evaluate the local field inhomogeneity in composites. In

what follow, we present a method suitable for determining nonlinear dielectric properties of

paraelectric-dielectric heterostructures in the quasistatic limit.

We consider a parallel plate capacitor, with conducting plates of area S and separation

distance between electrodes h, which is filled with the di-phase composite under consideration

as shown in Figure 1 [45]. The medium consists of an isotropic paraelectric material with

the space- and field-dependent relative permittivity ε1 (matrix phase 1) and a dielectric

material with constant relative permittivity ε2 (disks phase 2). A potential difference ϕapp is

applied between the capacitor plates. Assuming that h is small enough, i.e., fringing effects

can be ignored, the “macroscopic” field-dependent effective permittivity εeff (Eapp) can be

determined from the electrostatic energy W stored in the capacitor as

W =
1

2
ε0εeff (Eapp)

S

h
ϕ2
app, (7)

where Eapp = ϕapp/h is the applied external field. This definition ensures us that the energy

stored in the capacitor would be the same if the composite medium was replaced by a

homogeneous medium with permittivity εeff (Eapp) subject to the same boundary conditions.

Alternatively, the energy W can be expressed in terms of the spatial distribution of the

electrostatic potential ϕ(r) inside the capacitor if the microscopic structure of the material
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is known. Since the composite considered here is locally isotropic, the energy W over the

surface Ω of the capacitor is

W =
1

2
ε0

∫

Ω

ε(r)[∇ϕ(r)]2d2r, (8)

where ε(r) is the local relative permittivity at the position r. Thus, determining the ef-

fective permittivity of the composite medium requires knowledge of the distribution of the

local electrostatic potential ϕ(r). This can be done by solving the boundary value problem

described by the Laplace’s equation

∇ · [ε(r)∇ϕ(r)] = 0 (9)

in conjunction with the boundary conditions ϕbottom = 0 at the bottom plate and ϕtop = ϕapp

at the top plate. Edge fringing effects can be eliminated by the periodic extension of the

capacitor. For that purpose, we apply periodic boundary conditions on the left and right

boundaries of the unit cell, i.e., ϕleft = ϕright. The local permittivity of the dielectric

disks ε2(r) is field-independent and homogeneous inside the phase. Contrarily, the relative

permittivity of the paraelectric matrix ε1(E(r)) depends on the local electric field acting at

the corresponding position r and, thus, can be highly inhomogeneous inside the phase. It is

locally evaluated by using either the LD or Johnson’s equations as

ε1(E(r)) =
1

ε0(α + 3βP 2(r))
(10)

and

ε1(E(r)) =
ε1(0)

(1 + 3β(ε1(0)ε0)3E2(r))1/3
, (11)

respectively, where E(r) = −∇ϕ(r) is the local electric field at the position r and P (r) is the

field induced local polarization obtained by solving Eq. 3 locally, i.e., E(r) = αP (r)+βP 3(r).135

In this case, both E(r) and P (r) are the projections of the corresponding local fields on the

applied field direction.

Due to the nonlinear nature of the paraelectric phase material, the field-dependent ef-

fective permittivity εeff (Eapp) was obtained using the iterative procedure by successively

solving the Laplace’s Eq. 9 in a range of the applied voltages from 0V to ϕmax with a small

step, similar to the one proposed by Padurariu et al. [30]. At each voltage step, the local
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permittivities in the paraelectric phase only are recomputed employing either LD Eq. 10

or Johnson’s Eq. 11 by using the local polarizations P (r) or local electric fields E(r), re-

spectively, calculated at the previous voltage step. This means that the local permittivity

will be scattered in values in the paraelectric phase depending on the degree of local field

inhomogeneity. Once Eq. 9 is solved for the local potential, the energy stored in the capaci-

tor is calculated using Eq. 8 and, finally, field-dependent effective permittivity εeff (Eapp) is

obtained from Eq. 7. To characterize the dielectric nonlinearity of composites, we will use

the absolute tunability parameter defined as the ratio

n(Eapp) =
εeff (0)

εeff (Eapp)
, (12)

where εeff (0) is the effective permittivity at zero field and εeff (Eapp) is that in the presence

of the external field Eapp.

3.3. Summary and further computational details140

To summarize, our procedure for the calculation of field-dependent effective properties

of the random paraelectric-dielectric composite outlined in the previous subsections is as

follows. First, generate randomly distributed disk configurations in a square box for a

specified disk surface fraction φ2 and degree of impenetrability λ using the MC algorithm. In

all calculations a square unit cell of size L = 1 cm and the disks’ diameter D = 0.09 cm were145

maintained constant. Depending on the value of surface fraction of disks φ2, impenetrability

parameter λ and statistical distribution of the disks in the system, the generated realizations

consist of from 16 to about 450 disks in the unit cell. Previous simulations have indicated

that such number of inclusions is acceptable for our purpose [45]. Second, carry out the

calculation of the field-dependent effective permittivity (εeff (Eapp)) and tunability (n(Eapp))150

for each generated realization of medium by separately employing the LD-FEM and JE-

FEM models. They are calculated at different values of the applied external field in the

range from 0 kV/cm to 30 kV/cm generated by a potential difference ϕapp across the vertical

edges of the computational unit cell with the same boundary conditions. The majority of

our simulation results pertain to the following set of parameters: the relative permittivity155

of the linear disk phase ε2 = 1, i.e. we consider a porous paraelectric material; for the

nonlinear matrix phase the zero-field relative permittivity ε1(0) = 1000, which is typical
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for the prototype Pb(Zr,Ti)O3-based ferroelectric, Landau coefficients α = 1/(ε0ε1(0)) =

1.129 · 108V·m/C, and β = 4.821 · 1011V·m5/C3, unless otherwise stated [33, 46]. Finally,

the effective permittivity and tunability are evaluated by averaging over the results for 200160

statistically independent realizations of the random system at specified φ2 and λ. Note that

the statistical averaging over 400 realizations is performed for the disk surface fractions in

the range 0.6 ≤ φ2 ≤ 0.8 due to large variance in the values of εeff . The surface fraction

occupied by the linear dielectric disks varies in this study between 0 and 0.9. Because our

numerical results for the field-dependent effective permittivity and tunability do not show165

a significant sensitivity to the degree of impenetrability λ of the disks in the range between

0 and 0.5, we present our results only for the discrete values of λ = 0, 0.7, 0.9, 1. We used

the FEM-based COMSOL Multiphysicsr software [47] with the aid of Java environment to

perform the generation of random composites and calculation of the effective parameters.

4. Results and discussion170

It should be stressed from the very start that we actually deal with two models of 2D ran-

dom heterostructures here. In the first model, we consider nonpercolating systems consisting

of nonoverlapping hard disks (λ = 1) for which there is always a minimum allowable separa-

tion distance between disks, and thus, particle–particle contacts are avoided. In the second

model, disks are allowed to overlap with each other to some degree (0 ≤ λ < 1) and possess175

the geometrical percolation threshold at the critical surface fraction φ2c, i.e., the point at

which particles (a disconnected phase) form the so-called infinite cluster or pathways span-

ning the composite. In continuum-percolating systems, the percolation threshold depends on

the shape and orientation of the particles and on correlations between the spatial positions of

their centers. In our 2D systems, the thresholds are reported to be φ2c = 0.69, 0.71, 0.76, 0.84180

for the impenetrability parameter λ = 0, 0.7, 0.9, 1, respectively [43].

We start our study of macroscopic response of different configurations of the composite

computed by using the LD-FEM model. The field-dependent effective permittivity and

tunability as a function of applied field at selected values of the disk area fraction φ2 and

degree of impenetrability λ are presented in Figure 3. A drastically different behaviour is185

observed depending on whether the disks are allowed to penetrate or not and whether the
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Figure 3: Effective permittivity (a, dots) and tunability (b, curves) of the random composite as a function

of the applied electric field calculated by using LD-FEM model for different values of the linear dielectric

phase (disks) surface fraction φ2 from 0 to 0.9 and degree of impenetrability λ = 0, 0.7, 0.9, 1. Continuous

curves in (a) correspond to fitting the calculated field-dependent effective permittivity (dots) with Johnson’s

Eq. 6 using the determined effective Landau coefficient βeff shown in Figure 6(a).

system is below, near, or above the percolation threshold.

For the structures with penetrable disks (0 ≤ λ ≤ 0.9), the data shows a highly nonlinear

behaviour of effective permittivity as a function of applied field accompanied by a mono-

tonic reduction of zero-field permittivity (Figure 3(a), dots) and an increase of tunability190

(Figure 3(b), curves) with increasing the surface fraction of disks up to the value well be-

low the percolation threshold for a particular λ. The decrease of the zero-field permittivity

is primarily due to the reduction of surface fraction of the high permittivity paraelectric

phase and, consequently, a decrease of the electrical energy stored in the composite. This is
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counterbalanced by the induced local electric field inhomogeneity inside the composite which195

increases as φ2 increases, resulting in an effect of preserving the strong εeff (Eapp) variation

and thus even higher tunability than for the bulk paraelectric phase. This is illustrated

in Figure 4, showing the calculated local electric field maps in the unit cell at the applied

electric field Eapp = 1kV/cm for typical configurations at a specified disk surface fraction φ2

and degree of impenetrability λ. As can be seen, the degree of electric field inhomogeneity200

strongly and monotonically increases with increasing the number of disks (pores) in the cell.

Interestingly, the highly inhomogeneous field is observed inside the disks and outside the

disks in close vicinity to the matrix-disk boundaries. These plots also reveal the presence of

regions of high field intensity when particles are in close contact with each other arising from

the short-range multipolar interactions localized in disk clusters. Furthermore, we observe a205

high degree of long-range interparticle coupling when disk contacts form partially connected

or disconnected finite chain spanning the cell in a direction approximately perpendicular to

the applied field. This coupling leads to a significant potential-bridging involving a huge field

intensity enhancements (hot spots) along the chain confined inside the disks and in the gap

areas between the disks in the paraelectric phase (e.g. see a plot for λ = 0.9 and φ2 = 0.3210

in Figure 4) and, in turn, strongly influences the effective permittivity. As the number of

disks in the cell increases (i.e. φ2 increases) and the disk-disk distances diminish, the prob-

ability of finding regions of high field intensity rises significantly. Because the permittivity

of paraelectrics strongly depends on the applied electric field (see Eq. 10), these regions of

high field intensity greatly modify the local permittivities in such a way it compensates for215

the redaction of paraelectric phase in the composite and produces enough non-linearity for

the same or even higher tunability as in the bulk paraelectric.

We now continue considering the structures with penetrable disks but with disk surface

fractions near and above the percolation threshold, i.e φ2 & 0.6. In this case Figure 3(a)

indicates that the effective permittivity for all λ exhibits a tendency to a further decrease but220

with linearization as a function of the applied electric field, while the tunability (Figure 3(b))

falls sharply with a different degree depending on λ. Specifically, the effective permittivity is

almost field-insensitive for disk surface fractions φ2 ≥ 0.8 and, thus, the tunability approaches

1. It should be noted at this point that the strong decrease of tunability for the concentration
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Figure 4: Calculated local electric field maps in the unit cell at the applied electric field Eapp = 1kV/cm for

typical equilibrium sample configurations at a specified disk surface fraction φ2(0 ≤ φ2 ≤ 1) and the degree

of impenetrability λ(0 ≤ λ ≤ 1). The side bar gives the values of the electric field corresponding to the

colors.
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of linear dielectric phase above 40%− 50% in other 2D systems has been reported in recent225

numerical and experimental works, while this behaviour has not been well understood [31,

33]. Actually, the abrupt variation of the tunability for the data in the vicinity to the critical

surface fraction φ2c is a clear indication of the critical transition in the composite associated

with the formation of a physically infinite connected cluster of linear dielectric disks spanning

the cell from the left to right sides, as nicely illustrated in Figure 4 for λ = 0.9 and φ2 = 0.7.230

It is intriguing to observe in this map that when the inclusion phase is sample-spanning

in a direction perpendicular to the applied electric field, the paraelectric matrix becomes

completely discontinuous. This results in an enormous field intensity concentrated in the

low-permittivity dielectric phase along a trajectory of the chainlike structure avoiding high-

permittivity regions of the nonlinear paraelectric phase. Moreover, the electric field in major235

regions of the paraelectric phase becomes even weaker than the applied external field that

together with its concentration reduction causes a dramatic decrease of the overall effective

tunability of the composite.

The situation is completely different for the composite configurations with totally impen-

etrable disks (λ = 1). In this case we observe a continuous decrease in nonlinear effective240

permittivity and an increase in tunability up to the highest disk surface fraction (φ2 = 0.9).

One natural explanation for this behavior is that the structures with forbidden particle-

particle overlaps do not possess the geometrical percolation threshold and, thus, the para-

electric matrix phase is always continuous, as can be seen in the upper panel of Figure 4. On

the other hand, in the dense disk configurations, many inclusions approach close contacts245

that initiates higher order interparticle multipole interactions contributing to the polariza-

tion of the paraelectric medium and, thus, produces greatly enhanced electric field confined

in the vicinity of small regions between neighboring inclusions. Indeed, the map for λ = 1

and φ2 = 0.7 of Figure 4 clearly shows that the large portion of the remaining paraelectric

matrix is subjected to the high electric field that is enough to generate a strong nonlinearity250

in the composite. Therefore, the presence or absence of the geometrical percolation thresh-

old in this composite dramatically influences the behavior of the effective permittivity and

tunability at mid-high disk surface fractions.

It is also important to emphasize that for a given value of disk surface fraction, the
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effective permittivity increases as the impenetrability parameter λ is increased (i.e. the255

degree of disks overlap is decreased), while the tunability does not varies significantly for all

random systems below the percolation threshold. This remarkable difference in permittivity

is more pronounce for the larger disk volume fractions. It is attributed mainly to the manner

in which particles form aggregates and agglomerates in the composite governed by λ, where

increased aggregation for the smaller λ results in a decreased number of disk-disk and cluster-260

cluster multipolar interactions and consequently the decreased permittivity. Thus, different

combinations of tunability and reduced permittivity can be tailored by manipulating not only

the disk surface fraction but also the impenetrability parameter of inclusions in paraelectric

composites.

We now investigate the behavior of the effective permittivity and tunability of the com-265

posite by using the JE-FEM model and compare it with the LD-FEM description. Before

exploring this model in more detail, it is worth to keep in mind the following difference

between Johnson’s (Eq. 6) and LD (Eq. 5) equations for the field-dependent permittivity of

paraelectrics. The Johnson’s approximation is restricted to the linear relationship between

polarization and external electric field, while the LD description is based on the Gibbs free270

energy expansion up to the forth order in the polarization which accounts properly for the

non-linear behavior of the system. A few comments about the distinction between the sim-

ulation results obtained using the JE-FEM (Figure 5) and LD-FEM (Figure 3) models are

in order. First of all, the JE-FEM data reveals the same general trend as the LD-FEM data

for both field-dependent effective permittivity (dots) and tunability (curves). However, the275

JE-FEM permittivity for all configurations exhibits much weaker nonlinearity, i.e. weaker

variation of the effective permittivity versus applied electric field (dεeff (Eapp)/dEapp), and

thus much lower tunability. For comparison, the JE-FEM and LD-FEM zero-field effec-

tive permittivities for the pure paraelectric (φ2 = 0) decrease approximately 2.16 and 3.60

times, respectively, comparing with their corresponding values at 30 kV/cm. Note that the280

zero-field permittivity in both models monotonically decreases with no tendency towards

saturation up to the maximum tested field of 30 kV/cm for all disk surface fractions below

percolation thresholds. The second important feature is that the JE-FEM tunability for all

percolating systems with φ2 . φ2c increases as disk surface fraction is increased at low to
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JE-FEM JE-FEM JE-FEM JE-FEM

Figure 5: Effective permittivity (a, dots) and tunability (b, curves) of the random composite as a function of

the applied electric field calculated by using JE-FEM model for different values of the linear dielectric phase

(disks) surface fraction φ2 from 0 to 0.9 and the degree of impenetrability λ = 0, 0.7, 0.9, 1. Continuous

curves in (a) correspond to fitting the calculated field-dependent effective permittivity (dots) with Johnson’s

Eq. 6 using the determined effective Landau coefficient βeff shown in Figure 6(b).

high fields, while the LD-FEM tunability tends to converge at higher fields. Remarkably,285

for all percolating systems below their percolation thresholds (φ2 . φ2c) our results for the

JE-FEM and LD-FEM models demonstrate the high tunability values in the narrow range of

n = 2.15−2.28 and n = 3.56−3.67 at 30 kV/cm, respectively, with the maximum tunability

attained for the disk surface fractions in the range 0.5− 0.6 depending on λ. However, much

higher tunability than for a bulk paraelectric is reached for the non-percolating systems290

(λ = 1) with disk surface fractions above φ2 & 0.5. Specifically, at φ2 = 0.9 corresponding to

a periodic hexagonal array of disks in a matrix, the tunability reaches its maximum value of

18



(a) (b)

(c) (d)

LD-FEM JE-FEM

Figure 6: (a,b) Effective Landau coefficient βeff determined by fitting the calculated LD-FEM (a) and

JE-FEM (b) field-dependent effective permittivities shown respectively in Figures 3(a) and 5(a) (dots) with

Johnson’s Eq. 6. (c,d) Residual determined as a sum of the squares of the relative difference between the

calculated LD-FEM (c) and JE-FEM (d) effective permittivities and the respectively fitted with Johnson’s

Eq. 6 effective permittivities using coefficients βeff in (a) and (b). The calculated LD-FEM and JE-FEM

effective permittivities (dots) together with their fitted counterparts (curves) are shown in Figures 3(a) and

5(a), respectively. The data were calculated for different values of the linear dielectric phase (disks) surface

fraction φ2 from 0 to 0.9 and the degree of impenetrability λ = 0, 0.7, 0.9, 1.

∼ 3.02 and ∼ 4.44 at 30 kV/cm for the JE-FEM and LD-FEM models, respectively. Though,

the increased porosity in this case may raise questions about the mechanical stability and

electrical reliability (breakdown) of these materials.295

So far we have presented the complex numerical simulations with explicit account of full

microstructure information of the continuum disordered systems leading to a highly inho-

mogeneous local fields which in turn govern the tunability properties. In what follows, we

demonstrate that by appropriate modification of the Landau coefficient of nonlinearity β in

the semi-empirical Johnson’s equation (Eq. 6) permits us to accurately describe the effective300

permittivity of a wide variety of models of our paraelectric-dielectric composite medium. For

that, we have determined the effective nonlinearity parameter βeff by linear regression anal-

ysis fitting the LD-FEM (Figure 3(a), dots) and JE-FEM (Figure 5(a), dots) field-dependent

effective permittivities with the Johnson’s Eq. 6. The dependence of the effective parameter
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βeff over the entire range of concentration of the linear dielectric phase and the degree of305

impenetrability considered is shown in Figure 6(a) and (b) for the LD-FEM and JE-FEM

models, respectively. A similar trend for both models is observed. First of all, it is apparent

that βeff values significantly differ from the β parameter of the bulk paraelectric phase used

as the input in the numerical calculations. The βeff for all impenetrability parameters λ

continuously and strongly increases with the concentration of the dielectric disk phase with310

the observation that the larger the λ the smaller the βeff . For instance, βeff increases in the

range from 4.82·1011/2.30·1012V·m5/C3 (φ2 = 0) to 2.92·1017/7.30·1017V·m5/C3 (φ2 = 0.9)

for the JE/LD-FEM models. This increase can be attributed mainly to the appearance of

inhomogeneous local electric field fluctuations caused by increased interfacial contact area

between the paraelectric and dielectric phases, degrees of disk aggregation present in the315

system, and consequently, enhanced multipolar interactions. In this regard, our results for

the βeff trend are in close agreement with those obtained in previous experimental [48, 49]

and simulation [30] studies on other composites. It is important to note about discrepancy

between the fitted values of βeff for the bulk paraelectric phase (φ2 = 0) in the JE-FEM

and LD-FEM models. While this value for the former model coincides with β parameter320

used as the input in numerical calculations, i.e. βeff = β = 4.82 · 1011V·m5/C3, the value of

βeff for the latter is more than four times higher than the β, i.e. βeff = 2.30 · 1012V·m5/C3.

This is due to the fact that the Johnson’s equation is only valid for small applied fields and

small polarization, and therefore, cannot describe exactly the LD-FEM results calculated for

a large range of the applied fields by taking into account the higher order polarization terms.325

The fitted solid curves in Figures 3(a) and 5(a) demonstrate that the Johnson’s equation

fits quite well, respectively, the LD-FEM and JE-FEM numerical data (dots) over the entire

range of disk surface fraction and the degree of impenetrability considered, though some

considerable deviations are observed to a greater extent for the former. To measure and

compare the accuracy of the fits for both models, we also plot in Figure 6(c),(d) a computed

residual for each system defined as a sum of the squares of the relative difference between

the numerical LD/JE-FEM effective permittivities (εFEM) and the fitted with Johnson’s

dependency (εJohnson)

R =
∑

((εFEM − εJohnson)/εFEM)2. (13)
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In other words, the lower the residual the better the Johnson’s equation fits the numerical

data. A few comments are in order here. First of all, our data suggest that the the Johnson’s

equation does not fit the simulation data equally well over the entire range of surface fraction

and whatever is the degree of impenetrability considered. Second, a comparison of the

residuals for both models shows that overall the Johnson’s equation describes more accurately330

the JE-FEM data than the LD-FEM data, as intuitively expected. Third, as already pointed

out in the previous paragraph, while the Johnson’s equation describes exactly the JE-FEM

data for the pure paraelectric material, i.e. the residual RJE−FEM(φ2 = 0) = 0, it fails

to represent well the LD-FEM data for the pure paraelectric manifested in the non-zero

value of the residual RLD−FEM(φ2 = 0) = 0.11. Next, what is noticeable in Figure 6(c),(d)335

is that, the residual for the two models follows a different trend for disk surface fractions

φ2 . 0.5 and the same trend for φ2 & 0.5. For the JE-FEM model, the zero value residual at

φ2 = 0 increases slowly with increasing the concentration of the linear dielectric phase up to

φ2 ≈ 0.5, while for the LD-FEM model the non-zero value of the residual at φ2 = 0 decreases

slowly. Thus, the Johnson’s equation describes more accurately the LD-FEM data for values340

of φ2 in the range 0.3 ≤ φ2 ≤ 0.5. Then, Figure 6(c),(d) reveals that the global features

of the residual above φ2 & 0.5 are different for the percolative and nonpercolative systems,

indicating that particle connectivity has a great impact on the accuracy of the fit. For the

percolating systems in both models, the residual increases abruptly up to φ2 ≈ 0.7, and then

sharply decreases for φ2 & 0.7. This abrupt variation of the residual is clear suggestion of a345

critical transition associated with percolation threshold which emerges in these composites at

the surface fractions in the range 0.69 ≤ φ2c ≤ 0.76 depending on λ. Indeed, the paraelectric

matrix discontinuity and associated large electric field enhancement near the percolation

threshold lead to abnormal behaviour of the field-dependent effective permittivity, reflected

in high nonlinearity of the tunability as can be seen in Figures 3(b) and 5(b), and thus the350

worse accuracy of the fit. For the higher surface fractions of linear dielectric phase, φ2 ≥ 0.8,

the strong linearization of the field-dependent effective permittivity explains the significant

redaction of the residual. On the other hand, for the nonpercolating systems in both models,

the residual increases continuously with φ2. Overall, Figure 6 demonstrates that the semi-

empirical Johnson’s equation with only one fitting parameter can be used to describe the355
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Figure 7: Effective permittivity (a, dots) and tunability (b, curves) of the random composite as a function of

the applied electric field calculated by using LD-FEM model for different values of the linear dielectric phase

(disks) permittivity ε2 from 1 to 200. The data were calculated for the surface fraction of disks φ2 = 0.5

and degree of impenetrability λ = 0, 0.7, 0.9, 1. Continuous curves in (a) correspond to fitting the calculated

field-dependent effective permittivity (dots) with Johnson’s Eq. 6 using the determined effective Landau

coefficient βeff shown in Figure 8(a).

field-dependent effective permittivity with a certain accuracy and establishes a link between

the Johnson’s equation and LD theory which have been used to describe the tunability of

paraelectric composites.

In the physical systems like those described above, generically the nonlinear dielectric

behaviour depends not only on the microstructure characteristics but also on the properties360

of their constituents. So far we have presented our simulations for the systems consisting

of disks of relative permittivity ε2 = 1 randomly distributed throughout the paraelectric

matrix, i.e. for the porous paraelectrics. Next, we investigate the role of the linear dielectric

phase permittivity on the effective permittivity and tunability of the composite by employing

LD-FEM model and varying the relative permittivity of disks in the range 1 ≤ ε2 ≤ 200.365

Our results for the surface fraction φ2 = 0.5 (i.e. all systems are well below their percolation
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LD-FEM(a)

(b)

Figure 8: (a) Effective Landau coefficient βeff determined by fitting the calculated LD-FEM field-dependent

effective permittivity shown in Figures 7(a) (dots) with Johnson’s Eq. 6. (b) Residual determined as a sum of

the squares of the relative difference between the calculated LD-FEM effective permittivities (Figures 7(a),

dots) and the fitted with Johnson’s Eq. 6 effective permittivities (Figures 7(a), curves) using the coefficients

βeff in (a). The data were calculated for the fixed surface fraction of disks φ2 = 0.5 and different values of the

linear dielectric phase (disks) permittivity ε2 from 1 to 200 and the degree of impenetrability λ = 0, 0.7, 0.9, 1.

thresholds for all λ) and different values of λ and ε2 are displayed compactly in Figure 7.

For all values of λ, the dependencies of εeff (Figure 7(a), dots) and tunability (Figure 7(b),

curves) on Eapp reveal the same systematic trend in the progressive increase of the zero-

field effective permittivity and continuous decrease of the tunability with the increase of370

ε2. Furthermore, for a given value of ε2, both εeff and tunability increase as a function of

the impenetrability parameter λ. More specifically, the highest tunability is observed for

the porous paraelectric composite (ε2 = 1) due to the highest phases permittivity contrast

and consequently strongest polarization of the medium leading to the most intense spatial

distribution of the electric field. It is also important to note that the tunability decreases375

more rapidly for the smaller values of ε2, and thus, only for ε2 close to 1 the tunability values

are comparable to the those of the single-phase paraelectric for all range of λ (see Figure 3(b),

black curves). Nevertheless, these numerical results offer possibilities for tailoring dielectric

and tunability properties in a certain range through a properly chosen filler material. They

also highlight the crucial sensitivity of the tunability properties to the permittivity contrast380
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between the phases in this composite.

By fitting the LD-FEM permittivity data (dots) with the Johnson’s equation (Eq. 6), we

determined the effective nonlinearity parameter βeff and then calculated the corresponding

residual over the entire range of ε2 and λ as plotted in Figure 8. As expected, the βeff

parameter for all λ decreases monotonically as ε2 is increased towards the zero-field permit-385

tivity of the nonlinear phase (ε1(0) = 1000), and eventually would approach the value of the

bulk paraelectric material for ε2 = 1000, i.e. βeff = 2.30·1012V·m5/C3. Another observation

is that the variance of βeff as a function of λ at a given ε2 is decreased as ε2 is increased.

Interestingly, the dependence of the residual on ε2 (Figure 8(b)) shows the varying trend,

but the smallest residual and thus the best fit is observed for the porous paraelectric (see390

Figure 7(a), black curves).

We further examine the effect of the Landau coefficient of dielectric nonlinearity β (see

LD Eq. 10) of the paraelectric matrix in these systems by varying β between 1 · 1011 and

9 · 1011V·m5/C3 and fixing the surface fraction at φ2 = 0.5. The LD-FEM data presented in

Figure 9 demonstrates the trend of the progressive increase in the nonlinearity of the field-395

dependent effective permittivity and in turn the tunability with the increase in β. Likewise,

this figure nicely illustrates the effect of the degree of disk impenetrability λ on the effective

permittivity of the resulting microstructures. Interestingly, while for a given β the effec-

tive zero-field permittivity remarkably increases as a function of λ, the tunability increases

slightly. In addition to these features, we also note that the Johnson’s equation fittings for400

all configurations (Figure 9a, curves) describe the LD-FEM numerical data (Figure 9a, dots)

with an excellent accuracy. In this regards, one can observe two tendencies in Figure 10: (a)

the larger the coefficient of the nonlinearity β the larger βeff and residual; (b) for a given

β the larger the λ the smaller the βeff and residual, showing a considerable impact of the

connectedness and clustering of disks on the βeff and accuracy of the fits.405

So far, we have focused on composites consisting of the dielectric disks randomly dis-

tributed in the paraelectric matrix. In what follow, we aim to investigate the impact of the

periodicity in 2D composite systems on the tunability properties. Figure 11 compares the

effective permittivity and tunability of the three different composite configurations, namely

consisting of the random, periodic square and hexagonal arrays of dielectric impenetrable410
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Figure 9: Effective permittivity (a, dots) and tunability (b, curves) of the random composite as a function

of the applied electric field calculated by using LD-FEM model for different values of the nonlinear Landau

coefficient of the paraelectric matrix β from 1 · 1011 to 9 · 1011 V·m5/C3. The data were calculated for the

surface fraction of disks φ2 = 0.5 and degree of impenetrability λ = 0, 0.7, 0.9, 1. Continuous curves in (a)

correspond to fitting the calculated field-dependent effective permittivity (dots) with Johnson’s Eq. 6 using

the determined effective Landau coefficient βeff shown in Figure 10(a).

disks (λ = 1) in the paraelectric matrix. It is worthy to note that the maximum close

packing fraction of hard disks for the square, random, and hexagonal arrays is known to be

φmax
2

∼= 0.785, 0.86, and 0.907, respectively, so we are limited by these values of disk surface

fraction for each particular array. It is quite remarkable that the effective permittivity for

all three arrays (Figure 11(a)) demonstrates a distinct behaviour. Namely, the value of the415

zero-field effective permittivity of the random array (dots) for a particular surface fraction

is smaller than that of the square array (solid curves), which in turn is smaller than that

of the hexagonal array (dashed curves). Furthermore, the difference between these values

increases monotonically as the disk surface fraction is increased. Importantly, this plot also

clearly reveals that the periodic square array possesses the strongest nonlinear response of420

the field-dependent effective permittivity, i.e. the strongest field-dependent effective permit-
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(b)

LD-FEM

Figure 10: (a) Effective Landau coefficient βeff determined by fitting the calculated LD-FEM field-dependent

effective permittivity shown in Figures 9(a) (dots) with Johnson’s Eq. 6. (b) Residual determined as a sum of

the squares of the relative difference between the calculated LD-FEM effective permittivities (Figures 9(a),

dots) and the fitted with Johnson’s Eq. 6 effective permittivities (Figures 9(a), curves) using the coefficients

βeff in (a). The data were calculated for the fixed disk surface fraction φ2 = 0.5, different values of the

Landau coefficient of paraelectric matrix β from 1 ·1011 to 9 ·1011 V·m5/C3 and the degree of impenetrability

λ = 0, 0.7, 0.9, 1.

tivity variation as compared to others. Indeed, the largest tunability among the three arrays

is achieved for the periodic square array (Figure 11(b)), while the intermediate and smallest

ones for the random (Figure 11(c)) and hexagonal (Figure 11(d)) arrays, respectively. As

expected, all composites exhibit a continuous growth of the tunability with the disk surface425

fraction, though the magnitude of this growth is different in each case. Again, the fastest

growing tunability is observed for the square array, while for the random array this growth

is a bit smaller. In contrast, for the hexagonal array, the tunability increases insignificantly

in a wide range of surface fractions 0 ≤ φ2 ≤ 0.7. Actually, there is a simple explanation for

the distinct grow and magnitude of the tunability in these arrays. The simple square and430

hexagonal arrays ensure respectively the closest and the farthest particle-particle distance

in the composite for the same φ2. As shown above, the closer contact between neighboring

inclusions produces the stronger electric field enhancement confined in a paraelectric ma-

trix between inclusions, which actually explains the large tunability values for the square
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Figure 11: (a) Effective permittivity of the random (dots), periodic square (solid curves) and hexagonal

(dashed curves) arrays of dielectric impenetrable disks in a paraelectric matrix as a function of the applied

electric field calculated by using LD-FEM model for different values of the disk surface fraction φ2 and degree

of impenetrability λ = 1. (b-d) Same as in (a) for effective tunability (solid curves) of the periodic square

(b), random (c), and periodic hexagonal (d) arrays of dielectric impenetrable disks in a paraelectric matrix.

array. Obviously, the values of tunability of the random disk configurations must be in435

between those two extreme cases. Furthermore, the tiny increase of tunability for surface

fractions φ2 ≤ 0.7 in the hexagonal array is because the particles start to significantly “feel”

each other for larger values of surface fractions, i.e., when the distance between particles

becomes smaller. Nevertheless, this peculiar feature of the periodic hexagonal array can

be useful for certain applications where different field-dependent effective permittivities and440

same tunabilities are required.

5. Conclusions

In this work we have numerically investigated nonlinear dielectric properties of the 2D

random paraelectric-dielectric composite consisting of monodisperse disks with an arbitrary

degree of impenetrability of a dielectric phase randomly dispersed in the continuous matrix445

of the paraelectric phase. Our simulations reveal that the geometrical percolation threshold

in this composite governs the critical behavior of the effective permittivity and tunability.

Below the percolation threshold, our simulations show a strong nonlinear behavior of the

field-dependent permittivity and high tunability that increases as a function of dielectric
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phase concentration. Above the percolation threshold, the permittivity shows the tendency450

to linearization and the tunability dramatically drops down. Actually, the presence of perco-

lation transition explains why many experimental works demonstrate the drop of tunability

at the intermediate values of concentration of the linear dielectric phase. In contrast, for

the nonpercolating structures with prohibited disk overlaps the tunability increases with the

concentration of the dielectric phase up to the highest possible concentrations. Therefore,455

the large values of tunability and highly reduced permittivity are possible at the arbitrarily

large values of the linear dielectric phase concentration if we avoid triggering the percolation

transition within the system. Indeed, our simulations demonstrate the extraordinarily high

tunability obtained for the random composite with impenetrable dielectric disks at high con-

centrations. Furthermore, even higher tunability is revealed in the 2D periodic square array460

of dielectric disks in the paraelectric matrix. Notably, our study also shows that only the

porous paraelectrics and paraelectrics filled with materials of very low dielectric constant

possess the tunability which is comparable to that of the bulk paraelectric.

We are now ready to answer on an important open question which arises as to why

among various types of 2D random paraelectric-dielectric composites the reported tunability465

demonstrates the abrupt break down to the almost zero value above some critical concen-

tration of the a linear dielectric phase, while for many 3D systems the tunability decreases

more smoothly up to the high volume fractions of dielectric phase [50]. We believe that

the explanation for this emerges from an apparent difference between 2D and 3D stochastic

heterogeneous systems. In the 2D systems the bicontinuous structure cannot exist, i.e., when470

the inclusion phase is sample-spanning (percolating), the matrix is discontinuous, while the

3D systems can be bicontinuous that actually allows the high electric field to be concen-

trated in both the paraelectric and dielectric phases, in contrast to the 2D systems. For

instance, it was demonstrated that for a 3D composite consisting of fully-penetrable spheres

randomly placed in a matrix both the inclusion phase and the matrix are sample spanning475

for 0.29 ≤ φ2 ≤ 0.97 [51]. Furthermore, the percolation threshold for spheres with different

degree of impenetrability (φ2c ≥ 0.29) is considerably lower than that for disks of equal

diameters in 2D (φ2c ≥ 0.67). All of these imply the rather smooth decrease of tunability

in such 3D composite starting already for volume fractions of dielectric spheres below φ2c
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(i.e. much lower than in the corresponding 2D composite) and ensure the nonzero value of480

tunability up to φ2 ≈ 0.97.

The second contribution from the current work consists of a quantitative test of the

semi-empirical Johnson’s equation to describe the paraelectric-dielectric composites. Our

simulations demonstrate that the proper modification of the Landau coefficient of nonlin-

earity in the Johnson’s equation permits us to use it macroscopically for the prediction of485

the effective permittivity of these systems with a certain accuracy covering wide ranges of

structural and material parameters.

Finally, our work reveals a complex interplay between the structural parameters (pe-

riodicity, randomness, phase concentration, degree of phases connectivity, and clustering

characteristics) and induced local electric field inhomogeneity, which governs the overall490

behavior of the tunability properties. In particular, we show that disk impenetrability pa-

rameter provides an additional degree of freedom in the manipulation of dielectric response

of composites, which permits tailoring different combinations of the reduced permittivity and

tunability. Overall, this detailed numerical study unveils a critical role of the microstructure

and casts light on the tunability properties of the disordered percolating and nonpercolating495

composite media. We hope that our work will stimulate experimental efforts along this line

because this simple composite model apart from possessing the enhanced tunability allows

us to tailor nonlinear dielectric properties over a wide range of structural parameters through

the manipulation with microstructures.
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