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Development of a numerical method for analyzing the robustness of clinching 

in versatile process chains 

In many areas of product manufacturing individual components are usually joined together to form 

complex structures with numerous joints. Using mechanical joining technologies offers the possibility 

of joining structures with a wide range of material-geometry combinations. In order to realize the 

increasing number of varying products using different materials and designs within a process chain, 

they need to be versatile.  

Due to changing properties of the materials to be joined, tool geometries and process variables in 

mechanical joining processes, especially clinching, must be continuously adapted which results in a 

limited versatility of the process. Out of this reason, it is necessary to examine the robustness of the 

clinching process in versatile process chains. Therefore, a method is developed which describes the 

joint characteristics based on the material properties in order to enable the investigation of the 

clinching process regarding the robustness concerning continuously changing process and material 

conditions. 

The predictive accuracy of numerical simulations for mechanical joining processes depends on the 

implemented material model, especially the plasticity of the joining parts. Therefore, experimental 

material characterization processes are used to determine material properties. Furthermore, clinched 

joints in different material combinations are experimentally generated and examined. Based on these 

investigations a simulation model of the joining process is developed as 2D-Clinching FEM model in LS-

Dyna. The Validation of the developed simulation model is ensured by comparing the geometric 

formation of the joint and force-displacement curves of the joining process with experimental 

generated joints. By combining the simulation model with an optimization tool (LS-OPT) the influence 

of different parameters on the joint characteristics is determined and the robustness of the joining 

process in versatile process chains is investigated. 
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Clinching process 
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Mechanical joining without auxiliary 

element by cold forming the material 

Form fit and force fit joint  

Joining of different materials possible 

High quasistatic and dynamic load 

capacities 

Both sides accessibility required 

Fundamentals 

Process sequence 

Forming in die Positioning and Fixation Forming of interlock Backstroke 

Blank holder 
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Clinching process 
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Experimental 

® 

Materials 

HCT590X, t = 0.8/1.5 mm 

EN AW-6014 T4, t = 1.0/2.0 mm 

Joining technology 

Clinching with rigid die 

Joining speed 

2 mm/s 

Blank holder force   

785 N 

 

 

 

Type: TOX® TZ-VSN 

Engine: EPMR 100.113 

Max. joining force: 90 kN 

Stroke: 190 mm 

  2 mm   2 mm   2 mm 

HCT590X – 1.5 mm 

HCT590X – 1.5 mm 

EN AW-6014 T4  – 2.0 mm 

HCT590X – 1.5 mm 

EN AW-6014 T4  – 1.0 mm 

EN AW-6014 T4  – 2.0 mm 

Experimental investigation of different material combinations 

Determination of process parameters due to optimized geometric characteristics  
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Material characterization 
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Tensile tests and extrapolation 

® 

Quasistatic tensile tests according to SEP1230 standard 

Flow curves generated by accordingly extrapolation with 

different hardening laws 

Testing method 

Quasistatic tensile test 

Strainrate 

0,01 s-1 

Material 

HCT590X, t =1.5 mm, 0° 

EN AW-6014 T4, t = 2.0 mm, 0° 

Testing standard  

SEP 1230 

Strain measurement 

GOM ARAMIS 

Specimen geometry 

  

  

  

  

  

  

Legend 
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EN AW-6014 T4 

Harding law Equation 

VOCE  𝜎 = 𝐴 − 𝐵 ∙ 𝑒(−𝐶∙𝜀) 

HOCKETT-

SHERBY 
𝜎 = 𝐴 − 𝐵 ∙ 𝑒(−(𝐶∙𝜀)𝐷) 

LUDWIK 𝜎 = 𝜎0 + 𝐴 ∙ 𝜀𝐵 
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Material characterization 
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Simulated tensile tests 

® 

Flow curves implemented in numerical model for simulating 

tensile test 

Determining flow curves for further investigation by best 

fitting of the experimental data  

HCT590X  LUDWIK 

EN AW-6014  HOCKETT-SHERBY   

Simulation object 

Quasistatic tensile test 

Strainrate 

0,01 s-1 

Material 

HCT590X, t =1.5 mm, 0° 

EN AW-6014 T4, t = 2.0 mm, 0° 

Simulation software 

LS Dyna 

Material model 

MAT 224 

Specimen geometry 
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Simulation model and method 
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Simulation model and method 
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Start 

Sampling 

(Point selection) 

 Process Simulation 

(x)  

Finish 

LS-Dyna 2D FEM Simulation 

LS-Dyna 2D FEM Simulation 
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S2 

MAT Lab script 
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2.Pre-processing 
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Results and discussion 
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Results and Discussion 
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Conclusion 
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® 

Summary 

Basic material characterization and flow curve identification were carried out 

2D clinching simulation model was built up and validated  

Automatic method for analyzing the influence of pre-forming the sheet metal in 

clinching processes was developed 

Functionality demonstrated by investigating the influence of preforming sheet 

metal in clinching process on the geometric characteristics of the joint  

Future Research  

Further investigation of material behavior concerning temperature- and 

strain rate-dependency 

Development of a 3D simulation model for clinching processes 

Expansion of the developed method on other process parameters 
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