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Abstract—In practical, large-scale networks, services are re-
quested by users across the globe, e.g., for video streaming.
Services consist of multiple interconnected components such as
microservices in a service mesh. Coordinating these services
requires scaling them according to continuously changing user
demand, deploying instances at the edge close to their users,
and routing traffic efficiently between users and connected in-
stances. Network and service coordination is commonly addressed
through centralized approaches, where a single coordinator
knows everything and coordinates the entire network globally.
While such centralized approaches can reach global optima, they
do not scale to large, realistic networks. In contrast, distributed
approaches scale well, but sacrifice solution quality due to their
limited scope of knowledge and coordination decisions.

To this end, we propose a hierarchical coordination approach
that combines the good solution quality of centralized approaches
with the scalability of distributed approaches. In doing so, we di-
vide the network into multiple hierarchical domains and optimize
coordination in a top-down manner. We compare our hierarchical
with a centralized approach in an extensive evaluation on a real-
world network topology. Our results indicate that hierarchical
coordination can find close-to-optimal solutions in a fraction of
the runtime of centralized approaches.

I. INTRODUCTION

Modern services, e.g., for video streaming, consist of mul-
tiple interconnected components; this holds for examples like
microservices in a service mesh [1] or virtual network func-
tions (VNFs).in a network service [2]. Users from around the
globe may request these services and expect short delays and
high service quality. At the same time, operators are looking
for ways to lower their capital and operational expenditures.

To this end, services and their components need to be
scaled according to the current load such that user demand
is satisfied yet resources are not wasted. Instances of these
service components can be deployed on any compute node
in the network. Deploying instances close to the users helps
minimizing end-to-end delay and improving service quality.
However, deploying more instances increases costs (e.g., due
to licensing and/or resource consumption). With multiple in-
stances being deployed at the same time, user demand needs
to be balanced among available instances and corresponding
traffic needs to be routed between the users and interconnected
instances. In doing so, limited compute and link capacities
need to be respected and the number of instances as well
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as path delays should be minimized. Overall, optimized and
integrated network and service coordination (including scaling,
placement, and routing) is crucial for both users and operators
to ensure high service quality and low costs. Simultaneously,
this is challenging due to many influencing factors such as
limited resources, trade-offs between different objectives, and
continuously changing user demand.

Even taking just some of these factors into account leads
to optimization problems that are NP-hard [3]. Even with
heuristic, non-optimal approaches, practical scalability is usu-
ally limited to small networks. A natural approach is hence
to split large networks into smaller domains, which are then
coordinated independently in a distributed fashion. While this
provides reasonable results within shorter runtimes, solution
quality may be sacrificed due to lack of global knowledge and
necessarily sub-optimal inter-domain coordination.

We propose a novel hierarchical coordination approach
where we combine benefits of both centralized and distributed
approaches. Our approach follows a divide-and-conquer strat-
egy where the network can be divided into arbitrary levels
of hierarchy. First, in a bottom-up phase, lower-level hierar-
chies aggregate and advertise information to the higher-level
hierarchies (cf. “one big switch” abstraction in SDN [4]). In
the following top-down phase, high-level coordinators make
inter-domain coordination decisions based on the advertised
information. All child coordinator then refine the coarse-
grained decisions of their parents in parallel.

A challenge here is that node and link capacity constraints
must be respected on all hierarchies. Decisions of higher-
level coordinators should guide child coordinators by reducing
their decision space but must not keep them from finding a
valid solution if any feasible solution exists. If no feasible
solution exists, e.g., because resources are already highly
utilized, this should be noticed at the top hierarchies to
quickly reject the corresponding service requests without the
unnecessary overhead of recursing to lower hierarchies. Hence,
the advertised information (e.g., about available resources)
needs to be detailed and relevant enough to enable meaningful
decisions at high-level hierarchies. Still, the information should
be aggregated and abstract enough to reduce the complexity
of coordination decisions on higher hierarchies.



To navigate this trade-off, we define a suitable information
advertisement scheme. We then formalize our hierarchical
coordination approach as mixed integer linear program (MILP)
and optimize it numerically. In our extensive evaluation on
a real-world network topology, we compare our hierarchical
approach with an equivalent centralized approach. We find that
our approach achieves comparable solution quality but is more
than 10x faster on average. Overall, our contributions are:

« We define the problem of network and service coordina-
tion, including scaling, placement, and routing (Sec. III).

« We propose a generic coordination approach that works
with any given hierarchical structure (Sec. IV).

e We formalize an MILP that is solved numerically by
coordinators on each hierarchical level (Sec. V).

« We evaluate our approach on a real-world network topol-
ogy comparing it against a centralized approach (Sec. VI).

« For reusability, our implementation is open source [5].

II. RELATED WORK

Considerable effort has been focused on network and service
coordination in the context of network function virtualiza-
tion (NFV) [6] or cloud or edge computing [7], [8]. However,
most authors propose centralized approaches to make global
decisions for coordinating services in the entire network [9]-
[16]. These approaches typically only work in small net-
works and do not scale to practical large-scale networks [11].
Distributed approaches [17], [18] are scalable but lack co-
ordination between domains. To the best of our knowledge,
we propose the first hierarchical approach for network and
service coordination, which solves these inherent limitations.
By dividing the network into hierarchies, they can be optimized
in a scalable and distributed, yet coordinated fashion.

Nevertheless, authors have proposed hierarchical approaches
in related areas. In particular, virtual network embed-
ding (VNE) is well-studied [19] and closely related to our
problem. Samuel et al. [20] propose a distributed and hierar-
chical approach that greedily solves the VNE problem while
different domains hide as much information from each other
as possible because they belong to competitors. While this
perspective is interesting, we assume domains to cooperate
and share relevant topology information to enable optimized
coordination. Due to limited information sharing and its greedy
nature, the approach by Samuel et al. easily gets stuck at
suboptimal solutions or fails to find any feasible solution. In
our approach, we ensure that any solution suggested by the
top hierarchy can be refined into a feasible embedding.

Similar to our approach, Ghazar et al. [21] assume that
domains cooperate. However, the authors do not aggregate
or abstract any information such that computations on high
hierarchical levels become very expensive, comparable to
centralized approaches. Hence, the authors skip higher levels
and directly select an intermediate hierarchical level to embed
the full request in one of its sub-domains. If this is not possible

because the domains are too small, the process is repeated
on the next higher level. This leads to considerable overhead
for large embeddings. In our problem, ingress and egress
nodes may be far apart such that embeddings span large parts
of the network. Our approach efficiently coordinates across
different domains by aggregating information and simplifying
the problem on higher hierarchical levels.

In general, our network and service coordination problem
is considerably more complex than VNE. Unlike typical VNE
approaches, we consider routing from ingress to egress but also
dynamic reuse of components across services and dynamic
scaling, i.e., flexible number and resources per instance. Due
to this higher dynamicity, there is a stronger interdependence
between decisions of different hierarchical levels and domains,
making the problem more challenging than VNE.

Finally, hierarchical approaches are common in traffic en-
gineering, which is a subproblem of network and service
coordination. For example, MPLS uses a path computation
element (PCE) to find shortest paths across different hierarchi-
cal domains (AS) [22]-[24]. Similar to our approach, topology
information from these different domains can be abstracted and
aggregated through topology aggregation mechanisms [25].
Related to our aggregation approach, Secci et al. [26] pro-
pose a full mesh aggregation containing the most relevant
topology information. Still, the authors assume that advertised
intra-domain paths do not overlap, i.e., do not share links.
In contrast, our approach supports overlapping intra-domain
paths and explicitly advertises constraints to avoid overloading
shared links. Hence, our approach allows more paths to be
advertised such that better embeddings can be found.

III. PROBLEM STATEMENT

We address the network and service coordination problem
where users request services in a network of distributed nodes.
Accordingly, the chained components of a service need to be
scaled and instantiated on network nodes and traffic routed
through them, connecting users and instances.

We model the network as graph G = (V, L) with nodes V'
and links L. Each node v € V has a compute capacity
ko' € R>g (e.g., CPU)!. Each link [ € L connects two nodes
bidirectionally with a maximum data rate A} € R>( (shared
in both directions) and delay d; € R>. Users in the network
request services, where each request r = (s,., viT“, v \) €ER
is defined by the requested service s,., ingress node v", egress
node v;2, and required data rate \,.. We assume that a request’s
traffic can be split over multiple paths from ingress to egress.
For unsplittable traffic, additional constraints could be added
to our MILP [27]. Let V" be the set of all ingress and V°8
the set of all egress nodes (Vin Ve C V).

A service s € S is defined by its chain of components Cy =
(cl,...,c™:), each providing parts of the service functionality
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I'This generic compute capacity can easily be extended to multiple different
resource types, e.g., GPU, memory, and storage.



(e.g., security, compression, optimization, ...). A component ¢
may be reused across different services. We denote the set of
all components from all services as C'. Each component ¢ € C
can be scaled flexibly and instantiated zero, one, or more times
across different nodes in the network. Requests need to traverse
instances of all service components in the specified order.

An instance can process multiple requests in parallel, pos-
sibly belonging to different services. In doing so, it requires
resources proportional to the total data rate it is processing. In
particular, we model resource requirements as linear function
Ke(A) = a. - A of the total traversing data rate \. All
instances of a component ¢ have the same component-specific
coefficient .. Furthermore, components may augment or
compress traversing data affecting the data rate (e.g. WAN
optimizers) [28]. Function p.(A) = B, - A defines the outgoing
data rate for instances of component c, based on the total
traversing data rate A and coefficient 3.. While such linear
functions are a fairly accurate representation of real-world
component characteristics [29], [30], the model can easily be
extended to more flexible piece-wise linear functions [31].

Network and service coordination requires joint scaling,
placement, and routing. Coordinators decide how often to in-
stantiate each component (scaling), at which node to deploy an
instance (placement), and via which paths to connect instances
as well as ingress and egress nodes (routing). Joint optimiza-
tion of all three subproblems is important to successfully
balance trade-offs [3], [32], [33]. We adopt the perspective
of serverless computing and focus on inter-node coordination.
Hence, when instantiating a component ¢ on node v, we
assume that within node v (i.e., intra-node) a system like
Kubernetes [34] or an operating system transparently deploys
c on the node’s internal resources (machines, cores).

IV. HIERARCHICAL COORDINATION APPROACH

The main idea of our approach is to divide the network into
smaller domains and coordinate them in a hierarchical manner.
Each domain is a part of the network that may recursively
consist of sub-domains, forming a hierarchy. This hierarchical
approach allows both efficient parallel coordination of different
domains yet necessitates coordination between domains for
highly optimized results. We assume that dividing the network
into hierarchies of domains and sub-domains is out of scope
and happens before coordination starts, e.g., based on node
locality or business aspects. Our approach is not tied to any
structure and works with any given domains and hierarchies.

Given domains and hierarchies, our approach consists of two
phases: First, domains aggregate and advertise relevant infor-
mation (e.g., about available resources) to their coordinators
in a bottom-up manner. Second, based on this information,
the coordinators make coordination decisions in a top-down
manner. We choose top-down coordination to allow high-level
coordinators to optimize inter-domain decisions and guide
lower-level coordinators. Starting coordination directly at a
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Fig. 1: Example with k = 2 hierarchies. Ingress and egress
nodes are shown in blue and border nodes in orange.

lower level would often lead to worse solutions. We ensure that
each high-level coordination decision can be further refined
into a feasible solution or directly reject requests at the top
level. Hence, we avoid overhead of jumping up and down
between levels to backtrack and fix infeasible embeddings.
To enable efficient top-down. coordination, a main challenge
is advertising relevant but aggregated information from lower
levels in phase 1. More detailed information allows higher
quality coordination but also increases complexity. In the fol-
lowing, we introduce our notation for domains and hierarchies
and describe the two phases in more detail.

A. Domains and Hierarchies

We denote the total number of hierarchical levels as k
and a specific level as k < ke Ng, where kK = 0 is the
substrate network G = G°. In the example of Fig. 1, the
substrate network G° = (V°, LY) is split into ng = 3 separate
domains DY, DY, D§ with DY = (V?, LY). Each domain D? is
coordinated separately by its coordinator on k£ = 1, in parallel
with the other domains D?. At level k = 1, nodes are grouped
again into domains that are handled by coordinators on k = 2
(a single domain D} in Fig. 1). This definition recursively
extends to an arbitrary number of k hierarchies.

While we assume that all nodes V* on level k belong to
some domain Df (e, VF = U?:"l Vik), not all links L* are
part of some domain. In particular, we distinguish between
intra-domain and inter-domain links. Intra-domain links L*
connect nodes within a single domain DF (lighter in Fig. 1).
Inter-domain links do not belong to any domain but connect
nodes across two different domains (thicker in Fig. 1). e define
border nodes BF C V¥ as the subset of nodes that have an
inter-domain link to another domain (orange in Fig. 1). For
example in Fig. 1, BY = {vs,vg, v7}.

B. Bottom-Up Information Advertisement (Phase 1)

Each domain’s coordinator scales and places services as well
as routes traffic inside the domain. It needs to know about
available compute capacity, data rate limitations, and delays
within the domain. A domain on level £ > 1 may comprise



1. -»{v3 €E—>(v5 A
@..P‘Z ;A LI00 o
S O e <Ol D N

=0 47 <6 0 . . —0
D Iy ‘D2 D3

Fig. 2: D1 advertised to the coordinator on k = 2 in Fig. 1.

multiple levels of sub-domains and cover large parts of the
network. Thus, it is crucial to hide unnecessary information of
lower levels from higher-level coordinators to reduce complex-
ity and ensure scalability of our hierarchical approach. Hence,
domains aggregate and advertise relevant information of their
sub-domains to their coordinators as follows.

For a sub-domain D} domain information Df =
(VE,PF, LF) is advertised to the coordinator. Fig. 2 illustrates
the advertised domain D} to the coordinator on k = 2,
containing aggregated information about sub-domains Df—
DY from Fig. 1. First, the advertised information includes
a subset V¥ C VF of the domain’s nodes. Subset VF =
{Vin 0N Vk} U {Vee N VF} U BF includes all ingress and
egress nodes within V¥ as well as the domain’s border nodes
but no intermediate nodes. The advertised network in Fig. 2
includes ingress v; and egress v1; as well as border nodes
v3—vg but not intermediate nodes vs, vg, and v1g. In this small
example, the majority of nodes is advertised to the coordinator.
However, in larger networks with more intermediate nodes and
additional levels of sub-domains, more nodes would be hidden
and excluded from V¥ to ensure efficient coordination.

In addition to nodes V¥, domain D¥ also advertises in-
formation about its intra-domain paths PF and inter-domain
links £F. Paths in PF indicate connections between nodes
inside a domain, possibly via multiple hops. For example in
Fig. 2, v; can reach vs via intermediate, hidden node vo and
thus has a path p; to v3. Links £F are inter-domain links
between DY and another domain.

To support coordination, each intra-domain path p € PF is
annotated with further information about available compute
capacity, data rate limitations, and delay along the path.
This is necessary for coordinators to decide where to place
instances and how to route traffic within the domain. The
coordinator needs to know how much traffic (with which data
rate) and at which delay can be routed through the domain.
Traffic may arrive from a neighboring domain or originate
at an ingress node inside the domain. The destination may
be another neighboring domain or an egress node inside the
domain. To this end, paths are calculated between all ingress,
egress, and border nodes of a domain (i.e., V¥) by solving
the corresponding maximum flow problem. We use the Ford-
Fulkerson algorithm [35] with Edmon Karp path selection [36]
to find paths with maximal data rate between nodes in VF.

Why not just advertise simple numbers representing the
domain’s total data rate and compute resources rather than

complex, annotated paths? Such a naive approach would fail to
inform the coordinator about corresponding path delay. More
importantly, it could easily lead to overloading bottleneck
links, resulting in embeddings that can no longer be refined
into feasible solutions.

Hence, we set a path’s data rate limit \;" to the data rate
of the bottleneck link on the path. Since paths may partially
overlap (e.g., p1, p2 in Fig. 2), Plf‘ denotes the set of all paths
(including p) traversing the bottleneck link and sharing its
data rate. The path’s delay d,, correspond to the sum of link
delays along the path. We do not consider queuing delays, but
they could be added based on the current load along the path.
Similarly, compute resources are advertised as properties of a
path rather than of individual nodes since intermediate nodes
of sub-domains are hidden to the coordinator. Path p’s compute
capacity ryp ' is the sum of compute capacities of all nodes
along the path, including the source and destination node. To
avoid that partially overlapping paths overload shared compute
resources, we split x5° = &S+ k5™ into a first part of
resources that are exclusively used by p and a second part that
is shared with other overlapping paths. Shared resources 15"
constitute a pool of resources shared among all paths in P}’
(including p). If p does not overlap with any other path,
Pr = {p}, k) =0, and 5" = k!, For domains at level
k > 2, the approach works similarly based on the properties
of advertised paths from the domains at k — 1.

C. Top-Down Coordination Decisions (Phase 2)

In phase 2, the advertised information from phase 1 is used
to actually decide coordination as described in the following.
Phase 2 starts at the highest hierarchical level k and works
top-down, where each coordinator optimizes coordination in
its own domain using our MILP formulation (Sec. V). A
coordinator on level k£ + 1 only knows the advertised infor-
mation D¥ = (V¥, Pk, LF). Hence, the coordinator scales and
places services and routes traffic on the advertised paths rather
than directly on substrate nodes or links.

For example, assume the top-level coordinator on k=2in
Fig. 1 needs to handle a request for a service consisting of
two components Cs = {c1, co) with ingress v, and egress v11.
The coordinator only knows the advertised domain D} shown
in Fig. 2. Based on this information, it may decide to place an
instance of ¢; on path p; close to the ingress and an instance
of ¢y on ps close to the egress. It could then route the traffic
from v; in DY through DY to vy in DY along p1, 11, p3, 3, ps-

This coordination decision on k = 2 then needs to be refined
by coordinators on k — 1. These child coordinators decide the
specific scaling, placement, and routing within each domain
(DY, DY, DY in the example), again by solving the MILP.
The parent coordinator has to ensure that its decisions are
feasible and can lead to valid solutions. To build on and refine
the decisions of the parent coordinator, the original request
handled on level £ is adjusted and split into separate requests



Fig. 3: DY advertised to the coordinator on k = 1 in Fig. 1.

for all child coordinators on k& — 1. In the aforementioned
example, c¢; was placed on p; and traffic routed from ingress vy
via p1,vs3, [1 to domain DY. Hence, the child coordinator of DY
on k = 1 would receive a request for a service consisting just
of Cs = (c1) with ingress node v, and egress v3. Similarly, the
coordinator of DY would receive a request for routing traffic
from v to v7 (without any placement) and the coordinator of
DY for placing co with ingress vg and egress v1;.

To enable pure routing requests without any placement
and to simplify formalization, we augment all services with
auxiliary ingress and egress components cj,, ceg € C'. These
components are added at the front and end of a service chain,
respectively, and do not consume resources (k.(A) = 0) nor
alter traversing traffic (u.(A\) = A). Hence, a pure routing re-
quest would require an empty component chain Cs = (Cin, Csy)-

Coordinators on k£ = 1 constitute a special case since they
directly coordinate on parts of the substrate network rather
than any further sub-domains. To enable the same consistent
coordination workflow with the same MILP used for £ > 1, we
automatically generate advertised domains D? for substrate-
level domains DY as follows. For each substrate node v; € V,?,
we advertise a separate sub-domain D;“b containing v;, an
additional dummy node v;-, and -intra-domain paths pj,p;-
between the two nodes. Fig. 3 shows how domain DY on
Fig. 1 would be advertised as DY to its coordinator on
k = 1. The intra-domain paths are annotated with compute
capacity equal to the substrate node’s capacity x5, and have
unlimited data rate and zero delay. In doing so, coordinators
on k = 1 can scale, place, and route on these advertised paths,
similar to coordinators on k£ > 1. Coordination decisions on
k = 1 are then transparently and automatically mapped to
placement solutions on the real substrate network, where any
instances placed on paths p;, pg are mapped to and deployed
on corresponding substrate node v;.

Following this top-down coordination approach, decisions
by high-level coordinators are further refined by child coordi-
nators. Child coordinators solve the MILP (Sec. V) in parallel,
improving response time, while the parent coordinator’s deci-
sions ensure proper coordination between domains.

V. MIXED INTEGER LINEAR PROGRAM

We formalize the mixed integer linear program (MILP) that
coordinators on each level k solve for each domain DY based

TABLE I: Parameters

Symbol Definition
Ko P Compute capacity of node v
/\iap ,d; Maximum data rate and delay of link [

r= (sr,vir“,vig,)\r) Request r for service s,, from ingress viT“ to
egress v‘r’“t with data rate A\,

Chain of ms components constituting service s
Resource requirements and outgoing data rate

for instances of ¢ based on ingoing data rate A

CS = <ci7 "'7C£ns>

Ke(N)s pe(N)

0<k<k Hierarchy k and top-level hierarchy k

DF = (VF, LF) Domain ¢ on hierarchy k&

Dz“ = (V¥, 773“, £E)  Advertised information about domain DF

dp Delay of advertised path p € 'Pf

Ap? Maximum data rate of p shared with paths Pg‘
nz,ap n;"d + KI;)OO] Compute capacity of p, partly exclusive, partly

shared with overlapping paths Py’

TABLE 1II: Decision Variables

Symbol Domain Definition
Te,p {0,1} Is an instance of component c is placed on path p?
Ae,p R>o  Total ingoing data rate for an instance of c at p
fe,p R>o  Total outgoing data rate of an instance of ¢ at p
Ke,p R>p  Resource requirements of an instance of c at p
n;}““‘" R>o  Path p’s share of compute resources taken from
resource pool m%m] shared with paths in P;(’mp
yi:,tfc’ P’ {0,1} {s traffic qf request 7 routed via intra-domain path p’’
from an instance of component ¢ at path p to an
instance of ¢’ at p’?
yiner oy {0,1} Is traffic of r routed via inter-domain link I from an
Y A instance of ¢ at p to an instance of ¢/ at p’?
iT‘“g‘c, o’ R>o  Datarate of 7 that is routed via intra-domain path p'/
. from an instance of c at p to an instance of ¢’ at p’
/\iT"‘z'c, P’ L R>o Data rate of r that is routed via inter-domain link [
T Gy from an instance of c at p to an instance of ¢’ at p’
Agf"é‘lc, P’ R>q Total data rate of r that is routed from an instance
e of ¢ at p to an instance of ¢ at p’
Are,c!p R>o  Data rate of r traversing instances of c or ¢/ on p
. R>p  Data rate upper bound for all traffic of 7 on p
Ap R>o  Data rate upper bound for all traffic on path p
diowt R>o  Total delay for processing and routing request r

on advertised information DY = (VF, P¥, £F). We summarize
our notation in Tables I and II. The scaling and placement-
related variables in the first part of Table II are O if the
placement (i.e., an instance of component c at path p) does not
exist. Similarly, the routing-related variables in the second part
of the table are only defined for components ¢, ¢’ where ¢’ is
a direct successor of ¢ in the service function chain requested
in 7. Otherwise, the corresponding variable is 0. Compared
to typical MILPs, we here need additional constraints for
approximating and bounding resources and data rates and for
routing based on the abstract, advertised paths PF.

A. Objective

Z Tep+ws - Z ol 1)

ceC,pePF r€R

min wq -



The objective in Eq. 1 minimizes the number of placed
instances, weighted by wj, and the total delay for processing
all requests, weighted by ws. This corresponds to lower costs,
e.g., for licenses or resources, and better service quality. In
our evaluation, we choose a lexicographical order, prioritizing
the number of instances over total delay. Other objectives
can easily be implemented by choosing suitable weights and
possibly including additional decision variables from Table II.

B. Constraints

1) Ingress Traffic and Chaining: Eq. 2 states that the total
traffic leaving ingress component c¢;, placed at path p;, (at the
ingress) to any other instance equals the request’s data rate \,.
Eq. 3 ensures that flow is conserved between chained instances.
In particular, all outgoing traffic of ¢’ at p’ corresponds to all
ingoing traffic modified by function g ().

§ total _
A"';Cin;(/',7pinap/ - )\T‘ v’r € R (2)
c’eC,pePF
total total
He! § : r,c,c’p,p’ § : A et p! "
ceC,pePF c"eC,pePF

Vr € R,d € O\ {cin, cea}, 0 €PF (3)

2) Scaling and Placement: Whenever traffic is sent between
two instances, Eq. 4 and 5 ensure that both instances indeed
exist and are placed accordingly. Using the Big M method, M
is a large constant that ensures binary variable x., is set to
1 if any traffic traverses the instance. Since we minimize the
number of instances in our objective (Eq. 1), the solver sets
Zc,p = 0 if the instance is not traversed by any traffic.

Nowl, <Mz, VreRpedeCppePt @
A;(‘),t:lch%p/ < M - Tl p! Vr & R7 C, C/ € C’,p,p/ € sz (5)

Eq. 6 sets variable A\, to the total data rate of ingoing traffic
for an instance of ¢’ at p’. Eq. 7 and 8 set resource requirements
and outgoing data rate for the instance accordingly. Eq. 9
ensures that the resource pool x5’ shared between paths in
Py is not over-utilized. Based on this, Eq. 10 guarantees that
the overall compute capacity of path p, consisting of partly
exclusive and partly shared resources, is not over-utilized by
the total resource requirements of instances placed at p.

total
Z )‘T,c,C’,p,p’
r€R,ceC,pePF
Kep = Ke(Aep)

tep = He(Ac,p)

ve € C,p' € PF (6)

Acl,p' =

Yee C,pePF (T)
Vee CipePF  (8)

Z H:sohare < KEOOI Vp c fPZk (9)
pEPI'f
D hep < RS+ Ry Vp € PF (10)

ceC

@ d

— P~ S Mo A Mas—r >

Fig. 4: Flow conservation for routing traffic from c at p with
data rate \°%!,  through node v € VF to ¢’ at p'.

’
r,¢,¢’\p,p

3) Routing: Eq. 11 and 12 ensure that the data rate routed
via intra-domain paths or inter-domain links does not exceed
the total data rate between two instances.

i I k
A oot S Ny VT ER ¢, € Cop,p,p" €P;
(11)
i al k k
l;l,t(elzfc/,p,p',l S At;jtg’c/’p’p/ Vr € R, C, C/ S C7p,p/ € P7 ,l € E,
(12)
Eq. 13 and 14 set binary routing variables y"", o p and
yer, o, using Big M, similar to Eq. 4 and 5.
intre int
mesct st " M Y i
VreR,c,d'e C,p,p,p" € PF (13)
int int
A oot S M Yl b
VreR,c,d € Cop,p e PFleLl (14)

While Eq. 3 ensures flow is conserved between instances of
the whole service chain, Eq. 15 ensures flow conservation on
intermediate nodes during routing. Particularly, we consider
routing via a node v from an instance of component c at
path p to an instance of ¢’ at p’, where the total traffic has
data rate \1°@! ,. We denote vy as source node and vqy as

Y e, pp’ ] )
destination node as illustrated in Fig. 4.
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4) Link Capacities and Delay: Eq. 16 ensures that the total
traffic on inter-domain links does not exceed their capacity.
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The corresponding restriction for intra-domain paths is more
complex and thus split into multiple constraints (Eq. 17-20).
Eq. 17 ensures that all paths Pg‘ sharing the same bottleneck



link as p (including p itself) together do not exceed the max-
imum data rate of path p. Eq. 18 defines an upper bound for
the total data rate on path p based on traffic routed through p
(first part) and traffic being processed by instances on p, which
may modify the data rate of traversing traffic (second part). The
latter data rate can be bounded by considering the maximum
data rate on p between any two chained components ¢, ¢’ € C
placed on p (Eq. 19). In turn, this data rate is calculated in
Eq. 20 based on three overlapping parts of traffic: Traffic from
an instance of ¢ on another path p’ going to ¢’ on p, traffic
within p from ¢, ¢’ instances on p, traffic from ¢ on p to
an instance of ¢/ on another path p’. These bounds slightly
over-approximate the actual data rate on intra-domain path p,
which depends on the refined coordination decisions from
child coordinators. However, the key point is that they ensure
that link capacities are not exceeded and routing decisions by
parent coordinators can be refined into feasible solutions.
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Finally, Eq. 21 calculates the total delay based on all traversed
intra-domain paths and inter-domain links, which is minimized
in the objective (Eq. 1). It is also possible to bound and
minimize the end-to-end delay rather than the total delay using
additional variables and constraints. However, we found that
it considerably increases complexity and yields similar results
as minimizing the total delay and thus focus on the latter.
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VI. EVALUATION

To evaluate our approach, we implemented it using
Python 3.6 and Gurobi 8.11 [37]. Our code is publicly avail-
able on GitHub [5] to encourage reproducibility and reuse.

A. Evaluation Setup

We evaluate our approach on real-world network topology
Janos [38], which is a US network with 39 nodes and 122 links.
We set link delays according to the distance and propagation
delay between nodes and chose node and link capacities
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Fig. 5: Comparison of solution quality.

uniformly at random with ;" € [8,64], \;'" € [20,40].
Furthermore, we consider two services si,Se consisting of
a load balancer and a deep packet inspector (DPI) with
Cs, = (e, cppr) and Cs, = (cpp1). We generate requests
for these services based on‘a randomly selected subset of
10 ingress and egress nodes and data rate \, € [1,5] GB/s
chosen uniformly at random. As evaluation parameter, we
increase load by increasing number of requests from 1 to 5.
On these scenarios, we compare the following approaches:

k=1 A typical flat approach with a single centralized coordi-
nator, finding globally optimal solutions (for comparison).

k = 2: Our hierarchical approach with two hierarchies: One
coordinator on k = 2 and two on k = 1.

k =3: Our approach with an additional hierarchy: One coor-
dinator on k = 3, two on £ = 2, and four on k = 1.

We selected domains within a hierarchy based on node locality
(GPS position) using the k-means algorithm [39].

We executed the evaluation on machines with an Intel Xeon
E5-2670 CPU, allocating 8 cores at 2.6 GHz and 128 GB RAM
per experiment run. The results show the mean and 95 %
confidence interval over 25 repetitions.

B. Solution Quality

First, we compare the solution quality of our hierarchical
approach (iﬂ =2and k = 3) with the centralized approach
(lAc = 1) in terms of number of placed instances and total
delay, which are both minimized in our objective (Sec. V-A).
The centralized approach finds globally optimal solutions and
thus constitutes a lower bound regarding both metrics.

Fig. 5a shows the number of placed instances with in-
creasing load for the different approaches. Our hierarchical
approach finds close-to-optimal solutions with few additional
instances compared to the optimal, centralized approach. As
expected, the hierarchical approach with k=2is slightly
closer to the optimum than the one with k = 3. This is
because the latter has an additional layer of abstraction where
more information is aggregated and hidden from the top-level
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coordinator. Still, the approach with k=3 places just 8 %
more instances on average than the optimal k=1 approach.

Fig. 5b shows similar results for the total delay. To improve
comparability, we here set the same fixed number of instances
(derived from k& = 3 in Fig. 5a) for all three approaches
and only minimize total delay. In doing so, we ensure that
k=1 also represents the optimal lower bound regarding total
delay. Again, our hierarchical approach finds close-to-optimal
solutions for both k = 2 and k = 3.

C. Runtime

While the solution quality of our hierarchical approach is
close to but slightly worse than the optimum, its reduced com-
plexity and improved scalability enables much faster execution.
Fig. 6a shows the total wall-clock runtimes for each approach
on a logarithmic scale when executing all coordinators within
one hierarchy in parallel. While numerical optimization with
MILPs is generally slow, our hierarchical approach is much
faster than the centralized approach. Here, the -additional
hierarchy of k = 3 leads to even shorter runtimes than k = 2
since it hides more complexity from the top-level coordinator.
On average, k = 3 is 4.7x faster than k = 1.

Nevertheless, the runtime grows faster with increasing re-
quests for k =2 and k= 3 than k = 1. With more requests,
more ingress/egress nodes are included in advertised set V¥
and, consequently, more intra-domain paths are advertised in
Pk. Hence, the problem input size and resulting complexity
grows in two ways (requests and advertised information) for
our hierarchical approach. We further explore the impact of
advertised information in Sec. VI-D.

D. Impact of Advertised Information

In Sec. VI-B and VI-C, domains advertise all paths found by
solving the maximum flow problem (Sec. IV-B), often multiple
paths per source-destination pair. With more nodes V¥, this
drastically increases the number of advertised paths P¥. To
improve scalability, we here limit the number of advertised
paths per source-destination pair and evaluate the impact on
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Fig. 7: Solution quality with less advertised information.

solution quality and runtime. In particular, we compare k=3
with all, two, or one advertised paths, denoted as full, 2p, and
1p in figures, respectively.

Fig. 7 shows that, even with fewer advertised paths, k=3
still finds close-to-optimal solutions. Fewer advertised paths
lead to slightly lower solution quality, i.e., more instances
or higher delay, since coordinators lack some information for
finding the optimal solution. At the same time, Fig. 6b shows
that advertising fewer paths considerably reduces complexity
and improves runtime. With just one advertised path per
source-destination pair, k= 3is on average 3.4x faster than
with full advertised paths and 10.7x faster than E = 1.
Furthermore, its runtime grows slower with increasing requests
compared to the approaches with more advertised paths.

VII. CONCLUSION

Our approach for hierarchical network and service coordi-
nation combines the benefits of centralized and distributed
approaches. It achieves close-to-optimal solution quality at
a fraction of the runtime compared to optimal, centralized
solutions. To control the trade-off between optimal solution
quality and fast runtime, operators can adjust the number of
hierarchical levels and the amount of information advertised
from lower to higher levels. The resulting MILPs can be
solved in parallel for all coordinators at one level and can
easily be adjusted to optimize any objective of interest. We
believe our proposed hierarchical approach using bottom-up
information advertisement and top-down coordination to be a
useful framework in general. In future work, this framework
may be applied to other kinds of optimization methods such
as heuristics to improve their performance and scalability.
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