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Abstract

We consider the problem of designing an efficient and robust distributed random number generator
for peer-to-peer systems that is easy to implement and works even if all communication channels are
public. A robust random number generator is crucial for avoiding adversarial join-leave attacks on peer-
to-peer overlay networks. We show that our new generator together with a light-weight rule recently
proposed in [4] for keeping peers well-distributed can keep various structured overlay networks in a
robust state even under a constant fraction of adversarial peers.

1 Introduction

Due to their many applications, peer-to-peer systems have recently received a lot of attention both inside and
outside of the research community. Most of the structured peer-to-peer systems are based on two influential
papers: a paper by Plaxton et al. on locality-preserving data management in distributed environments [20]
and a paper by Karger et al. on consistent hashing and web caching [13]. The consistent hashing approach is
a very simple and elegant approach that assigns to each peer a (pseudo-)random point in the [0, 1)-interval.
Based on this approach, various local-control rules have been proposed to decide how to interconnect the
peers so that they form a well-connected network with good routing properties that is easy to maintain (see,
e.g., [18] for a general framework).

In open peer-to-peer systems, the presence of adversarial peers cannot be avoided. Hence, not only
scalability but also robustness against adversarial behavior is an important issue. The key to scalability and
robustness for peer-to-peer networks based on the consistent hashing approach is to keep the honest and
adversarial peers well-distributed in the [0, 1)-interval. However, just assigning a random or pseudo-random
point to each new peer (by using some random number generator or cryptographic hash function) does not
suffice to keep the honest and adversarial peers well-spread [2]. People in the peer-to-peer community are
well aware of this problem [8, 9] and various solutions have been proposed that may help alleviating it in
practice [6, 7, 19, 27, 28, 30] but until recently no mechanism was known that can provably keep the peers
in a well-distributed state without sacrificing the openness of the system.

Various light-weight perturbation rules that can keep the honest and adversarial peers well-distributed
have recently been proposed in [4, 10, 26]. These rules do not need to be able to distinguish between the hon-
est and adversarial peers, but a crucial prerequisite for them to work is a robust distributed random number
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generator. This random number generator has to work correctly in a system without mutual trust relation-
ships and must be robust against arbitrary adversarial behavior to be applicable to peer-to-peer systems.
Certainly, designing such a random number generator is not an easy task.

1.1 Robust distributed random number generation

How can we generate random numbers in a peer-to-peer system with adversarial presence? The most naive
approach is to let every peer generate its own random numbers. This approach is problematic since in a
dynamic peer-to-peer system it is impossible to collect sufficient statistical evidence to accuse a particular
peer of generating non-random numbers. Yet, somewhat surprisingly, it is still possible to use this approach
to maintain a robust peer-to-peer network, but at the cost of losing scalability [3]. So a different approach is
needed.

A more reasonable approach is the following. Suppose that we need a random number generator that
generates a number by selecting a binary string uniformly at random out of {0, 1}s for some s. Consider the
situation that a group P of the peers wants to generate a random number. Each (honest) peer p in P may
then select a random number xp ∈ {0, 1}s and commit to it to all other peers in P using a bit commitment
scheme (a particularly secure one-way hash function h for which h(x) does not reveal anything about x)
[12, 17]. Once all commitments have been made, the peers will reveal their random numbers, and if they
all do, every peer computes x =

⊕
p∈P xp, where ⊕ is the bit-wise XOR operation. The XOR operation

has the nice property that as long as at least one xp is chosen uniformly at random and the other numbers
are independent of it, x is distributed uniformly at random in {0, 1}s. Hence, if the scheme succeeds and
at least one honest peer participates in it, a random number x will be generated. But the adversarial peers
can easily let the scheme fail, and this not only in an oblivious manner but also in an adaptive manner (by
just waiting for enough numbers xp to be revealed before revealing their own numbers). Thus, in order to
avoid a significant bias on the successfully generated random numbers, the fraction of adversarial peers in
the system would have to be so small that no adversarial peer will be present in most of the groups P that
are used for the random number generation. Such an approach was pursued in [2].

To avoid the problems above, we recently proposed a distributed random number generator that is based
on verifiable secret sharing [4]. This random number generator can still fail if the peer initiating it does
not behave correctly, but it has the advantage that if the peer initiating it is honest, then the random number
generation is guaranteed to succeed, and whenever the random number generation succeeds, the number
generated will be random.

Yet, using this scheme is not completely satisfying. First of all, an adversary can let it fail in an adaptive
manner (i.e., it can let it fail after knowing the final key), which is sufficient to create a significant bias, even
though the adversary cannot undermine the randomness of the generated key. It just has to run sufficiently
many attempts until a key is generated that falls into a desired range. Furthermore, the scheme is not easy
to implement and private channels are needed between the peers. So the question that led to this paper was:

Is it possible to design an elementary and sufficiently unbiased distributed random number generator
that even works for public channels and a constant fraction of adversarial peers?

Remarkably, this paper shows that this is possible.

1.2 Related work on random number generation

Surprisingly little has been published about robust random number generators for distributed systems. Ran-
dom number generators have mostly been studied in the context of pseudo-random number generators
(PRNGs) with small seed or cryptographically secure random number generators (CSRNG). The main dif-
ference between a PRNG and a CSRNG is that a CSRNG should be indistinguishable from random on any
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examination, whereas a PRNG is normally only required to look random to standard statistical tests. For
foundations and surveys on random number generators see, e.g., [11, 16, 23, 32].

There are many protocols for distributed systems with adversarial presence that need random numbers
for atomic broadcasting, leader election and almost-everywhere agreement (e.g., [14, 21] for recent results),
but in these it is sufficient that every peer chooses its own random numbers.

Unbiased random numbers can be computed via verifiable secret sharing or secure multiparty computa-
tion schemes (e.g., [5, 29]), but these are not easy to implement (since they need error correction techniques),
and they require private channels.

1.3 Details of our random number generator

The basic idea behind our random number generator is the insight that generating a single random number
is difficult with public channels but generating a batch of random numbers is doable. An m-random number
generator (or m-RNG) is a random number generator that generates a batch of up to m random numbers.
We assume that every random number is represented as a binary string in {0, 1}s for some fixed s. Given an
m-RNG G and any subset S ⊆ {0, 1}s, let EG(S) be the expected number of keys y generated by G with
y ∈ S. Ideally, G should satisfy EG(S) = m · |S|/2s for all S ⊆ {0, 1}s. Let E(S) = m · |S|/2s. Then we
define the bias β(G) of G as

β(G) = max
S⊆{0,1}s

max
{

EG(S)
E(S)

,
E(S)
EG(S)

}

The m-RNG that we present in this paper is called round-robin random number generator (or short round-
robin RNG). Let P be the group of m peers this protocol is applied to. The basic ideas of the protocol can
be summarized as follows:

• When correctly initiated, every peer in P will supervise the generation of one random number in
{0, 1}s. A peer whose random number generation fails can send an accusation to the peers in P in
which it can accuse exactly one other peer. Honest peers will run the random number generation one
after the other (using a proper timing scheme) so as to maximize the effect of the accusations and
thereby minimize the number of times an adversarial peer can cause the failure of a random number
generation supervised by an honest peer.

• A single random number is generated by the supervising peer taking over the role of a dealer and the
others being a group of players. Both the players and the dealer commit to a key. However, as we
will see, the dealer key is a special master key that is committed to first and revealed last. In this way,
the dealer is the only one that can adaptively decide whether to let the random number generation fail
or not. However, this is the only way in which the dealer can bias the random number generation. It
cannot make its probability distribution non-uniform if at least one honest player is participating in it.

More details are given in Section 2. For this protocol, the following theorem is shown.

Theorem 1.1 Suppose that |P | = m and there are t < m/6 adversarial peers in P . Then the round-robin
RNG generates random keys y1, y2, . . . , yk ∈ {0, 1}s with m − 2t ≤ k ≤ m and the property that for all
subsets S ⊆ {0, 1}s with σ = |S|/2s,

E[|{i | yi ∈ S}|] ∈ [(m− 2t)σ, m · σ]

The worst-case message complexity of the protocol is O(m2).

Hence, the bias of our m-RNG is just 1 + 2t
m−2t , which is a constant. It turns out that this bias is small

enough in order to maintain a scalable and robust peer-to-peer network.
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1.4 Application to robust peer-to-peer networks

In the area of peer-to-peer systems, work on robustness in the context of overlay network maintenance has
mostly focused on how to handle a large fraction of faulty peers (e.g., [1, 24, 31]) or churn, that is, peers
frequently enter and leave the system (e.g., [15, 22]). However, none of these approaches can protect a
peer-to-peer network against adaptive join-leave attacks. In an adaptive join-leave attack, adversarial peers
repeatedly join and leave a network in order to occupy certain areas of the network. To prevent them from
doing this, proper join and leave protocols have to be found so that the honest and adversarial peers are kept
well-spread in the [0, 1)-interval. More precisely, what we would like to aim for is that at any time point
with n peers in the system the following two conditions can be met for every interval I ⊆ [0, 1) of size at
least (c log n)/n for a constant c > 0:

• Balancing condition: I contains Θ(|I| · n) peers.

• Majority condition: the honest peers in I are in the majority.

If this is the case, then proper region-based overlay networks and routing rules can be defined to guarantee
connectivity and correct routing (e.g., [4]). However, maintaining the two conditions under adaptive ad-
versarial join-leave attacks turns out to be quite tricky. Just assigning a random or pseudo-random point to
each new peer (by using some random number generator or cryptographic hash function) does not suffice
to preserve the balancing and majority conditions [2]. Fortunately, just recently we found a join operation,
called cuckoo rule, that can solve this problem [4].

1.5 The cuckoo rule

In the following, a region is an interval of size 1/2r in [0, 1) for some integer r that starts at an integer
multiple of 1/2r. Hence, there are exactly 2r regions of size 1/2r. A k-region is a region of size (closest
from above to) k/n, and for any point x ∈ [0, 1), the k-region Rk(x) is the unique k-region containing x.

Cuckoo rule: If a new node v wants to join the system, pick a random x ∈ [0, 1). Place v into x and move
all nodes in Rk(x) to points in [0, 1) chosen uniformly and independently at random (without replacing any
further nodes).

Suppose that we have n honest peers and εn adversarial peers in the system for some ε < 1. For the situ-
ation that the adversary adaptively rejoins the system with its peers in a one-by-one fashion, it was shown [4]
that as long as ε < 1− 1/k, the k-cuckoo rule satisfies the balancing and majority conditions for a polyno-
mial number of rejoin operations, with high probability. However, for the cuckoo rule to be implementable
in a distributed system, a robust distributed random number generator is needed. Furthermore, the cuckoo
rule may need up to O(log2 n) random bits in the worst case (for O(log n) peers that need to be replaced).

1.6 The round-robin cuckoo rule.

The problem with O(log2 n) bits is solved by proposing a slight adaptation of the cuckoo rule that we call
the de Bruijn cuckoo rule. The new rule has the benefit that only O(log n) random bits are needed in the
worst case (for two random points in [0, 1)).

In order to solve the problem with the random number generator, we combine the round-robin RNG
with the de Bruijn cuckoo rule to the so-called round-robin cuckoo rule. It works in a way that for every
successful random number generation in the round-robin RNG, the de Bruijn cuckoo rule is used. The
protocol has the following performance.

Consider adversarial join-leave attacks in a system with n honest peers and εn adversarial peers. Let β
be the bias of the round-robin RNG. Then it holds:
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Theorem 1.2 For any constants ε, k and β ≥ 1 with ε < (1/β)(1/β − 1/k), the round-robin cuckoo rule
with bias β satisfies the balancing and majority conditions for a polynomial number of rounds, with high
probability, for any adversarial strategy within our model.

Hence, Theorem 1.2 is a natural extension of the result in [4], which assumes a bias of β = 1.

1.7 Structure of the paper

In Section 2, we present the round-robin random number generator, and in Section 3 we show how to use it
to counter join-leave attacks in peer-to-peer networks. The paper ends with conclusions.

2 Robust random number generation

In this section we consider the situation that we have a set P of m players denoted p1, . . . , pm. We dis-
tinguish between honest and adversarial players. The honest players follow the protocol in a correct and
timely manner, whereas the adversarial players may behave in an arbitrary way, including arbitrary collu-
sion among the adversarial players. Our goal is to find elementary protocols that construct random numbers
with a uniform distribution in {0, 1}s for some given s, even under adversarial presence.

First, we state some assumptions, and then we present the round-robin random number generator. After
its analysis, we discuss some extensions for peer-to-peer systems.

2.1 Assumptions

We assume that only point-to-point communication is available and that all information sent out by a player
can be seen by the adversary. Thus, no broadcasting primitive and no private channels are given, which is
often the case in other robust distributed protocols like verifiable secret sharing. We just need a mechanism
that allows the players to verify the sender of a message. For this, we assume the existence of a proper
signature scheme. A message m signed by player p will be denoted as (m)p.

Honest players are supposed to act not only in a correct but also a timely manner (which is important
to maintain dynamic systems such as peer-to-peer networks). We assume that any message sent from one
honest player to another honest player needs at most δ time steps to be received and processed by the
recipient for some fixed δ, and we assume that the clock speeds of the honest players are roughly the
same. However, the clocks do not have to be synchronized (i.e., show the same time) nor do we require the
protocols to run in a synchronous mode (i.e., all players must send their messages at exactly the same time).
The latter assumption makes it hard to generate unbiased random keys even though there is a notion of time
because the adversarial players can always choose to be the last to send out messages, thereby maximizing
the control they have on the generation of the random number.

For the random number generation, we need a bit commitment scheme h, i.e., a scheme where h(x) does
not reveal anything about x. In practice, a cryptographic hash function might be sufficient for h so that the
protocols below can be easily implemented. Furthermore, we assume that all honest players have a perfect
random number generator. In practice, pseudo-random number generators that pass a certain collection of
statistical tests (such as the DIEHARD tests) might be sufficient here.

2.2 Round-robin random number generator

Suppose that we have a set P of m players, p1, . . . , pm, that know each other and their indexing, with any t
of them being adversarial for some t < m/6. The round-robin random number generator works as follows
for some player p∗ ∈ P initiating it.
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1. p∗ sends a signed request to initiate the random number generation to all players in P .

2. Once player pi ∈ P receives p∗s signed initiation request for the first time (from anywhere), it for-
wards it to all other players in P . Afterwards, it sets Pi := P \ {pi} and waits for i · 8δ time steps.
Each time it receives an accusation (pk)pj from a player pj ∈ P it has not received an accusation
from yet, it sets Pi := Pi \ {pk}. Once the i · 8δ steps are over, pi initiates step (3). pi terminates after
(m + 1)8δ steps.

3. If |Pi| ≥ 2m/3, then pi chooses a random xi ∈ {0, 1}s and sends (h(xi), Pi)pi to all players in Pi.
Otherwise, pi aborts the protocol (which will not happen if t < m/6).

4. Each player pj ∈ Pi receiving a message (h(xi), Pi)pi for the first time from pi with Pi ≥ 2m/3
chooses a random xj ∈ {0, 1}s and sends the message (pi, h(xj), Pi)pj to pi. Otherwise, it does
nothing.

5. If all players in Pi reply within 2δ time steps, then pi sends ({(pi, h(xj), Pi)pj | pj ∈ Pi})pi to all
players in Pi. Otherwise, pi sends an accusation (pj)pi for any pj ∈ Pi that did not reply correctly or
in time to all players in P and stops its attempt of generating a random number.

6. Once pj ∈ Pi receives ({(pi, h(xk), Pi)pk
| pk ∈ Pi})pi from pi, pj sends (xj)pj to pi.

7. If pi gets a correct reply back from all players in Pi within 2δ time steps, then it sends (xi, {(xj)pj |
pj ∈ Pi})pi to all players in Pi and computes yi = xi ⊕

⊕
pj∈Pi

xj where ⊕ is the bit-wise XOR
operation. Otherwise, pi sends an accusation (pj)pi to all players in P for any pj ∈ Pi that did not
reply correctly or in time and stops.

8. Once pj ∈ Pi receives (xi, {(xk)pk
| pk ∈ Pi})pi , pj verifies that all keys are correct. Then pj

computes y
(i)
j = xi ⊕

⊕
qk∈Pi

xk and sends the message (y(i)
j )pj to pi.

9. If pi receives yi from at least 2m/3 players in P within 2δ time steps, it accepts the computation and
otherwise sends an accusation (pj)pi to all players in P for any pj ∈ Pi that did not reply correctly or
in time.

We define the random number generation of pi to be successful if pi receives the same key from at least
2m/3 many players in step (9). This is important for pi since it will need the support of at least 2m/3 other
players for further operations that we will discuss in the next section.

2.3 Analysis of the round-robin RNG

The round-robin RNG has the following performance.

Theorem 2.1 Suppose that |P | = m and there are t < m/6 adversarial players in P . Then the round-robin
RNG generates random keys y1, y2, . . . , yk ∈ {0, 1}s with m − 2t ≤ k ≤ m and the property that for all
subsets S ⊆ {0, 1}s with σ = |S|/2s,

E[|{i | yi ∈ S}|] ∈ [(m− 2t)σ,m · σ] .

The worst-case message complexity of the protocol is O(m2).

In order to prove the theorem, we start with some simple claims.
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Some basic facts.

Because of the flooding strategy in step (2) and the definition of δ it holds:

Claim 2.2 No matter whether p∗ is adversarial or not, all honest players start the protocol within δ steps.

Since each honest player pi needs at most 7δ time steps to complete the protocol from step (3) to (9) and
starts after waiting for i · 8δ steps, the claim above implies the following claim.

Claim 2.3 No two honest players execute their random number generation scheme (steps (3) to (9)) at the
same time.

Hence, honest player pi can make use of the accusations of all honest players pj with j < i in order to
keep its own problems with the random number generation as small as possible.

Next, we bound the size of any Pi for an honest player pi. Recall that honest players are supposed to
work in a correct and timely manner. Hence, honest players will never accuse other honest players of any
wrongdoing but only adversarial players. Since every adversarial player can issue at most one accusation
to any honest player, there will be at least m − 2t honest players left in every set Pi of an honest player pi

throughout the protocol. Hence, we get:

Lemma 2.4 If t < m/6 then |Pi| ≥ 2m/3 throughout the protocol for every honest player pi.

Moreover, every player pi can only be successful for one key. This is because all players in Pi have to
see commitments to the same Pi for all players in Pi and |Pi| ≥ 2m/3 before revealing their random keys
in step (6). Since t < m/6, this means that there must be more than m/2 honest players in Pi, which can
only be possible for at most one Pi. Hence, we get.

Lemma 2.5 If t < m/6 then every player can be successful for at most one key.

Analysis of steps (3) to (9).

Next, we focus on the execution of steps (3) to (9) by some fixed peer pi. First, we consider the case that pi

is honest, and then we consider the case that pi is adversarial.

Lemma 2.6 If pi is honest and |Pi| ≥ 2m/3, then no matter how many adversarial players there are in Pi,
if the protocol terminates successfully, then the key yi generated by pi is distributed uniformly at random in
{0, 1}s and all honest players in Pi compute the same key as pi.

Proof. pi will not reveal xi before the keys in Pi have all been revealed. Hence, the probability distribution
on z =

⊕
pj∈Pi

xj must be independent of xi. But for any probability distribution on z =
⊕

pj∈Pi
xj that

is independent of xi it holds that if xi is chosen uniformly at random in {0, 1}s, then also yi = xi ⊕ z is
distributed uniformly at random in {0, 1}s. Moreover, also the decision of the adversarial players to let the
random number generation fail must be independent of xi and can only be a function of z because xi will
not be revealed before. Hence, it holds for any adversarial strategy and any y∗ ∈ {0, 1}s that

Pr[yi = y∗ | generation of yi successful] = Pr[yi = y∗] =
1
2s

If pi succeeds with computing yi, then it informed all players in Pi about the revealed keys, and all honest
among them will accept these keys since they match the message sent out by pi in step (5). Hence, all honest
players in Pi compute the same key as pi. ut
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Notice that if the adversarial players knew about xi before deciding to let the random number generation
fail, they can create a significant bias, even if the other keys were chosen independent of xi. A simple
example for this would be:

Focus on any fixed y∗ ∈ {0, 1}s. If yi = y∗, then let the attempt fail, and otherwise let it be successful.

It is easy to see that this would make it very unlikely for the round-robin RNG to generate y∗ (since it
would have to be generated more than t times to be successful at least one). Hence, it is crucial that xi is
only revealed after all the other keys have been revealed. Next, we consider the case that pi is adversarial.

Lemma 2.7 If pi is adversarial, then no matter what pi and the other adversarial players in Pi do, whenever
an honest player pj reveals its key xj , y

(j)
i has a uniform distribution on {0, 1}s.

Proof. An honest player pj will only reveal xj once it receives ({(pi, h(xk), Pi)pk
| pk ∈ Pi})pi from

pi and pj ∈ Pi (so that y
(i)
j is well-defined). In this case, xj is a random number that is independent of

z = xi ⊕
⊕

pk∈Pi\{pj} xk, and since xj is independent of z and chosen uniformly at random, y
(i)
j = xj ⊕ z

has a uniform distribution. ut

Notice, however, that pi can commit to different sets Pi to different honest players without being de-
tected, so the keys y

(i)
j can differ among the honest players. Nevertheless, if pi wants to be successful (i.e.,

collect commitments to the same key from at least 2m/3 many players), it must let more than m/2 honest
players pj succeed with computing the same y

(i)
j , which has a uniform distribution.

Still, the adversarial players can create a bias on the successfully computed keys since after knowing yi,
an adversarial player pi still has the option to let the key generation be successful or not. Fortunately, this
bias cannot be too large, as shown in the following lemma.

Analysis of the entire protocol.

Lemma 2.8 If t < m/6 then at least m − 2t of the m − t random number generations initiated by the
honest players are successful, irrespective of whether p∗ is adversarial or not. Furthermore, it holds for all
subsets S ⊆ {0, 1}s with σ = |S|/2s that E[|{i | yi ∈ S for a successful yi}|] ∈ [(m− 2t)σ, m · σ]

Proof. According to Lemma 2.7, every key y that an honest player p commits to must be distributed
uniformly at random in {0, 1}s. However, whereas the adversarial players can adaptively abort the random
number generation initiated by adversarial players, it follows from the protocol that they can only do this
in an oblivious way for the honest players. We know from Claim 2.3 that the adversarial players can only
sabotage the random number generation of at most t honest players. This insight together with Lemma 2.4
implies that at least m − 2t random number generations of honest players pi will be successful, and their
success does not depend on their values. Thus, the probability for any of these players pi that yi ∈ S is
equal to σ and, therefore, the expected number of successful pi’s with yi ∈ S is at least (m− 2t)σ.

On the other hand, we know from Lemma 2.5 that at most m key generations can be successful, and
since every successfully generated key yi is distributed uniformly at random in {0, 1}s, the probability for
any yi to be in S is equal to σ. Hence, the expected number of successful pi’s with yi ∈ S is at most m · σ.

ut

The next lemma follows immediately from the protocol.

Lemma 2.9 The message complexity of the round robin-random RNG is O(m2).
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2.4 Extensions

In our random number generator we assumed that the players in P know each other and the indexing. This
assumption can be problematic in peer-to-peer systems since there might be a disagreement among the
honest players about the set of adversarial players in P . Fortunately, it is not too difficult to address this
issue, as we will show in the following.

First, suppose that for every player pi there is an agreement among the honest players about its index
i ∈ {1, . . . , m}. Furthermore, every honest player knows every other honest player in P but not necessarily
all the adversarial players in P , and therefore the honest players may have different estimates of |P |. Then
the round robin RNG can easily be modified so that Theorem 2.1 still holds:

• In lines 3 and 9, replace “|Pi| ≥ 2m/3” by “|Pi| ≥ 2mi/3” where mi is the number of players that
pi knows in P .

• In line 4, replace “|Pi| ≥ 2m/3” by “|Pi ∩ Pj | ≥ 2mj/3”.

• An honest player only accepts random number initiations and accusations from players that it knows
about.

Given these rules, the following lemma can be used to replace Lemma 2.4:

Lemma 2.10 If t < m/6 then |Pi ∩ Pj | ≥ 2mj/3 throughout the protocol for every pair of honest players
pi and pj .

Proof. Consider some fixed honest player pi. Let mh ≥ 5m/6 be the number of honest players and
ma < m/6 be the number of adversarial players that pi knows about. Then, initially, |Pi| = mh + ma,
and Pi can be reduced by at most 2ma accusations. Hence, throughout the protocol, |Pi| ≥ mh − ma ≥
2m/3 ≥ 2mi/3. Since the number of honest players in Pi will be at least mh − ma as well and honest
players know each other, it follows that also |Pi ∩ Pj | ≥ 2mj/3 for any pair of honest players pi and pj . ut

Furthermore, Lemma 2.5 can be replaced by the following lemma.

Lemma 2.11 If t < m/6 then every player can be successful for at most one key.

Proof. A prerequisite for an adversarial player pi to be successful is that for a sufficient number of honest
players pj , |Pi∩Pj | ≥ 2mj/3. Let Pj = mh +ma, where mh is the number of honest players and ma is the
number of adversarial players pj is aware of. In the worst case, the adversarial player may select Pi ⊆ Pj

so that |Pi ∩ Pj | = 2mj/3 and Pi contains all ma adversarial players that pj knows about. Even then, there
are still mh −ma ≥ 2m/3 > m/2 honest players left in Pi ∩ Pj , which means that more than half of the
honest players are needed to successfully generate a key, which implies the lemma. ut

With these lemmas, the rest of the results in Section 2.3 still holds.

Another problem is how to fix the indexing issue. When there is disagreement about P , it may not be
possible for the honest players to agree on a common indexing scheme. Instead, they can use the following
simple trick. Each player pi picks a random slot out of c ·mi many slots for generating a random number,
where c is a sufficiently large constant. Then it holds for every honest player pi that Pr[pi avoids the
slots taken by other honest players] ≥ (cmi − m)/(cmi) ≥ 1 − 8/(7c). Hence, if m = Θ(log n) is
sufficiently large (for some parameter n), then the Chernoff bounds can be used to prove that the number
of slots occupied by the honest players is at least (1 − 1/(2c))mh, w.h.p. (with respect to n), where mh is
the number of honest players. Thus, the adversarial players would only manage to let up to t + mh/(2c)
random number generations of honest players fail, w.h.p., instead of just t, which is still acceptable if c is
sufficiently large.
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3 Application to robust peer-to-peer networks

In this section we show how to use the round-robin random number generator above to satisfy the balancing
and majority conditions for any adversarial join-leave strategy for a polynomial number of rejoin operations,
with high probability. We start with a formal model. Then we present the de Bruijn cuckoo rule, and
afterwards we combine it with the round-robin RNG to obtain the round-robin cuckoo rule.

3.1 Model

Recall that we want to associate all peers with points in [0, 1). These points can be encoded as binary strings
from {0, 1}s (in a sense that b = (b1, . . . , bs) represents xb =

∑
i≥1 bi/2i) for a sufficiently large s (in

SHA-1, which is used by the Chord system, for example, s = 160).
There are n blue (or honest) nodes and εn red (or adversarial) nodes for some fixed constant ε < 1.

There is a rejoin operation that, when applied to node v, lets v first leave the system and then join it again
from scratch. The leaving is done by simply removing v from the system and the joining is done with the
help of a join operation to be specified by the system. We assume that the sequence of rejoin requests is
controlled by an adversary. The adversary can only issue rejoin requests for the red nodes, but it can do this
in an arbitrary adaptive manner. That is, at any time it can inspect the entire system and select whatever red
node it likes to rejoin the system. The goal is to find an oblivious join operation, i.e., an operation that does
not distinguish between the blue and red nodes, so that for any adversarial strategy above the balancing and
majority conditions can be kept for any polynomial number of rejoin requests.

3.2 The de Bruijn cuckoo rule

Recall the original cuckoo rule in Section 1.5. We present a slight but crucial modification to this rule, called
the de Bruijn cuckoo rule, which only needs two random numbers in {0, 1}s, irrespective of k. The prefix
de Bruijn was chosen because the rule can be easily implemented in dynamic de Bruijn graphs, as will be
demonstrated in Section 3.3.

de Bruijn cuckoo rule: If a new peer v wants to join the system, pick random x, y ∈ [0, 1). Place v into x
and replace all peers in Rk(x) in the following way. If |Rk(x)| = 0, we are done, and if |Rk(x)| = 1, then
the peer in Rk(x) is moved to position y. Otherwise, let b = dlog |Rk(x)|e. Given that y is represented by
a binary string (y1, . . . , ys) ∈ {0, 1}s, peer i ≥ 0 in Rk(x) is moved to position ((ys−b+1, . . . , ys)⊕ (i)2) ◦
(y1, . . . , ys−b) where (i)2 represents the binary representation of i and ◦ the concatenation.

For example, suppose that y = 0100110 and |Rk(x)| = 3. Then the new positions of the three peers are
(10⊕00)◦01001 = 1001001 for peer 0, (10⊕01)◦01001 = 1101001 for peer 1, and (10⊕10)◦01001 =
0001001 for peer 2. This rule of mapping peers to new points has the following property:

Lemma 3.1 Every replaced peer is moved to a position that is distributed uniformly at random in {0, 1}s.

Proof. Consider peer i in Rk(x) for any fixed i and suppose that y is distributed uniformly at random in
{0, 1}s. Then (ys−b+1, . . . , ys) ⊕ (i)2 is distributed uniformly at random in {0, 1}b and (y1, . . . , ys−b) is
distributed uniformly at random in {0, 1}s−b, resulting in the lemma. ut

Moreover, any two peers in a region Rk(x) with p peers have a distance of at least (1/2)log p−1 ≥ 1/(2p)
of each other. Hence, when looking at the analysis in [4], it turns out that all results still hold when using a
perfect random number generator (though in Lemma 2.6 and Lemma 2.10 the independence property of the
new node positions has to be replaced by negative correlation, but the negative correlation is so small that it
is negligible – more precise arguments on this will be given in Section 3.4).
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Theorem 3.2 For any constants ε and k with ε < 1 − 1/k, the de Bruijn cuckoo rule with parameter k
satisfies the balancing and majority conditions for a polynomial number of rounds, with high probability,
for any adversarial strategy within our model. The inequality ε < 1− 1/k is sharp as counterexamples can
be constructed otherwise.

3.3 Applying the de Bruijn cuckoo rule in a dynamic de Bruijn graph

To illustrate the application of the de Bruijn cuckoo rule in a dynamic overlay network, we will introduce
the continuous-discrete variant of the de Bruijn graph proposed by Naor and Wieder [18]. We start with the
definition of the classical de Bruijn graph.

Definition 3.3 The d-dimensional de Bruijn graph DB(d) is an undirected graph G = (V, E) with node
set V = [2]d and edge set E that contains all edges {v, w} with the property that v = (v1, . . . , vd) and
w ∈ {(x, v1, . . . , vd−1) : x ∈ {0, 1}}.

Let us view each binary label (v1, . . . , vd) as a point x ∈ [0, 1) with x =
∑d−1

i=0 vi/2i and let d go to
infinity. Then we obtain a continuous form of the de Bruijn graph with node set U = [0, 1) and edge set
E = {{x, y} ∈ U | y = x/2 or y = (1 + x)/2}. In order to convert this back into a discrete graph, one can
use the continuous-discrete approach of Naor and Wieder [18].

For i ∈ {0, 1} let fi(x) = (i+x)/2. Given any finite set of points V ⊂ [0, 1), we define the home region
Uv of point v as the interval [v, succ(v)) where succ(v) is the closest successor of v in V on the [0, 1)-ring,
i.e. the minimum point w ∈ V so that w > v. We say that a point v ∈ V owns a point x ∈ [0, 1) if x ∈ Uv.

The de Bruijn graph DB(V ) of a point set V is an undirected graph with node set V that contains an
edge {v, w} for every two points v, w ∈ V with f0(Uv) ∩ Uw 6= ∅ or f1(Uv) ∩ Uw 6= ∅. This definition
immediately implies the following fact:

Fact 3.4 For any set of points V and any two points x, y ∈ [0, 1) with y = fi(x) for some i it holds for the
owner v of x and the owner w of y that {v, w} is an edge in DB(V ).

If V is well-spread over U (i.e., the balancing condition holds), then one can also show that every peer
in V has at most a logarithmic degree in DB(V ) and the diameter of DB(V ) is logarithmic, that is, DB(V )
is a scalable network and therefore useful for dynamic peer-to-peer systems.

Now, recall the de Bruijn cuckoo rule. Given that all peers are reliable, then in order to forward a peer i
in Rk(x) to position ((ys−b+1, . . . , ys) ⊕ (i)2) ◦ (y1, . . . , ys−b), we first move it along the (owners of the)
points (x1, . . . , xs), (ys, x1, . . . , xs), . . . , (y1, y2, . . . , ys, x1, . . . , xs) and from there along b further moves
to ((ys−b+1, . . . , ys)⊕(i)2)◦(y1, . . . , ys)◦(x1, . . . , xs) whose owner is in direct proximity (if not the same)
of ((ys−b+1, . . . , ys) ⊕ (i)2) ◦ (y1, . . . , ys−b). If not all peers are reliable, then a region-based routing as
sketched in [4] has to be used to ensure the correct movement of the peers to their new positions.

3.4 The round-robin cuckoo rule

Finally, we show how to combine the de Bruijn cuckoo rule and the round-robin random number generator
into a simple and efficient join protocol called round-robin cuckoo rule that achieves a result similar to
Theorem 3.2.

Recall the definition of a region in Section 1.5. Given a node v ∈ [0, 1), we define its quorum region Rv

as the unique region of size closest from above to (γ log n)/n, for a fixed constant γ > 1, that contains v.
We demand that whenever a new node u wants to join the system, it has to do so via a node v already in

the system. v then initiates the following protocol:

1. v initiates the round-robin RNG in Rv (i.e., v acts as p∗).
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2. For each successful node vi ∈ Rv, vi initiates the de Bruijn cuckoo rule by sending a message
(yi, {(y(i)

j )pj | vj ∈ Pi})pi with 1 + 2m/3 signed keys to all nodes in Rv.

3. Once node w ∈ Rv receives a correctly signed (yi, {(y(i)
j )pj | vj ∈ Pi})pi containing more than 2m/3

keys, it forwards it to all other nodes in Rv and initiates the de Bruijn cuckoo rule.

In the de Bruijn cuckoo rule, majority decision is used to execute the proper actions (see [4] for more details).
Since step (3) ensures the “all or nothing” principle concerning the honest peers, the de Bruijn cuckoo rule
is guaranteed to be executed in a correct and timely manner once a single honest peer has received a correct
(yi, {(y(i)

j )pj | vj ∈ Pi})pi message. We assume that the new node u can choose to assume any one of the
new positions of a successfully executed de Bruijn cuckoo rule. It just needs to commit to one to Rv. If the
node v just wants to rejoin the system (like in the adversarial strategies considered here), then we identify v
with u.

3.5 Perturbation with biased randomness

Next we analyze the round-robin cuckoo rule. Recall that we consider adversarial join-leave attacks in a
system with n honest nodes and εn adversarial nodes. Let β be the bias of the round-robin RNG. Then it
holds:

Theorem 3.5 For any constants ε, k and β with ε < (1/β)(1/β − 1/k), the round-robin cuckoo rule with
the round-robin RNG with bias β satisfies the balancing and majority conditions for a polynomial number
of rounds, with high probability, for any adversarial strategy within our model.

Proof. We recall the analysis of the cuckoo rule in [4]. In the following, the time is counted in rounds. Each
successful application of the de Bruijn cuckoo rule defines a round. Thus, an application of the round-robin
cuckoo rule can have between m−2t and m rounds, where m is the number of nodes in the region in which
the join operation is initiated and t is the number of adversarial nodes in that region.

Let R̂ be any fixed region of size (c log n) · k/n, for some constant c, for which we want to check the
balancing and majority conditions over polynomial in n many rejoin operations. Thus, R̂ contains exactly
c log n many k-regions. The age of a k-region is the difference between the current round and the last round
when a new node was placed into it (and all old nodes got evicted), and the age of R̂ is defined as the sum
of the ages of its k-regions. A node in R̂ is called new if it was placed in R̂ when it joined the system, and
otherwise it is called old.

We assume that before the adversary starts with its rejoin operations, only the n blue nodes were in the
system, and sufficiently many rejoin operations have been executed on the blue nodes so that every k-region
has been entered by a new node at least once. Afterwards, the adversary enters with its εn red nodes one by
one, using the round-robin cuckoo rule, and then it starts executing rejoin operations on the red nodes as it
likes. The assumption of acting on a sufficiently old system significantly simplifies the proofs.

The next lemma follows directly from the round-robin cuckoo rule because every k-region can have at
most one new node at any time.

Lemma 3.6 At any time, R̂ contains at most c log n new nodes.

In order to bound the number of old nodes in R̂, we first have to bound the age of R̂ (Lemma 3.7). Then
we bound the maximum number of nodes in a k-region (Lemma 3.8) and use this to bound the number of
evicted blue and red nodes in a certain time interval (Lemma 3.9). After that, we can combine all lemmas to
bound the number of old blue and red nodes in R̂ (Lemma 3.10).
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Lemma 3.7 At any time, R̂ has an age between (1 − δ)(1/β)(c log n)(n/k) and (1 + δ)β(c log n)(n/k),
with high probability, where δ > 0 is a constant that can be made arbitrarily small depending on the
constant c.

Proof. Let R1, . . . , RC be the k-regions of R̂, where C = c log n. For every k-region Ri, let the random
variable Xi denote the age of Ri at the beginning of the given round, and let X =

∑C
i=1 Xi. We focus on a

particular k-region Ri and consider the two extreme cases for it. In case 1, the adversary aims at minimizing
the lifetime of Ri, which it achieves by adaptively letting all of its key generations fail that do not cause
Ri to be replaced, and in case 2, the adversary aims at maximizing the lifetime of Ri, which it achieves by
adaptively letting all of its key generations fail that do cause Ri to be replaced. In addition to these adaptive
failures, the adversary also aims at causing failures of as many key generations by honest nodes as possible
in order to maximize the impact of its adaptive strategy. When considering these two cases in the following,
we will assume for simplicity that m (the number of nodes) and t (the number of adversarial nodes) are the
same for all regions in which the adversary initiates a join operation. This will be fine for our calculations
as long as we assume the worst case ratio between m and t.

Case 1: In order to prove a lower bound for the lifetime of Ri, let us assume for the moment that there
are m− 2t successful key generations by the blue nodes and t successful key generations by the red nodes,
independent on whether the generated keys affect Ri or not. Then it holds that Pr[Xi = t] = (k/n)(1 −
(k/n))t−1 and, therefore, E[Xi] = n/k. Furthermore, using the proof of Lemma 2.5 in [4], it follows that
the age of R̂ would be at least (1− δ)(c log n)(n/k), w.h.p. However, of the t adversarial key generations,
only those will succeed that generate a key in Ri, which implies that of the m−t key generations considered
above, up to t may get canceled. Thus, the age of R̂ can reduce up to a (m − 2t)/(m − t) = 1/β-factor.
Combining this with the idealistic lower bound on R̂ gives a lower bound of (1 − δ)(1/β)(c log n)(n/k)
that holds w.h.p.

Case 2: In order to prove an upper bound for the lifetime of Ri, let us assume as a worst case that none of the
keys generated by adversarial nodes will hit Ri. If we only focus on the m−2t successful key generations by
blue nodes, then it holds that Pr[Xi = t] = (k/n)(1−(k/n))t−1 and, therefore, E[Xi] = n/k. Furthermore,
using the proof of Lemma 2.5 in [4], it follows that the age of R̂ would be at most (1 + δ)(c log n)(n/k),
w.h.p. However, when also considering the t key generations by red nodes, the age of R̂ can increase up to
a (m− t)/(m− 2t) = β-factor. Combining this with the idealistic upper bound on R̂ gives a upper bound
of (1− δ)β(c log n)(n/k) that holds w.h.p. ut

Lemma 3.8 For any k-region R in R̂ it holds at any time that R has at most O(k log n) nodes, with high
probability.

Proof. Following the arguments of Lemma 2.6 in [4], there are at most (1 + ε)n · (1 + δ)γ ln n node
replacements during the lifetime of a k-region, w.h.p., for some constants ε, δ > 0. Hence, the expected
number of nodes in a k-region can be at most

k

n
· ((1 + ε)n · (1 + δ)γ ln n + 1) = (1 + ε)(1 + δ)k · γ ln n + 1 .

Since the locations of the node replacements are independent (if they are due to different rounds) or neg-
atively correlated (if they happen at the same round), it follows from the Chernoff bounds for negatively
correlated variables [25] that the number of nodes in a k-region is at most O(k log n) at any time, w.h.p. ut

Next we bound the number of blue and red nodes that are evicted in a certain time interval.

13



Lemma 3.9 For any time interval I of size T = (γ/ε) log3 n, the number of blue nodes that are evicted in
I is within (1 ± δ)T · k, with high probability, and the number of red nodes that are evicted in I is within
(1± δ)T · εk, with high probability, where δ > 0 can be made arbitrarily small depending on γ.

Proof. The proof is exactly the same as the proof of Lemma 2.9 in [4]. ut

Combining Lemmas 3.7 to 3.9, we obtain the following lemma.

Lemma 3.10 At any time, R̂ has between (1− δ)(1/β)(c log n) · k and (1 + δ)β(c log n) · k old blue nodes
and between (1−δ)(1/β)(c log n) · εk and (1+δ)β(c log n) · εk old red nodes, with high probability, where
the lower bound on the red nodes holds if none of the red nodes has rejoined.

Proof. Consider any age distribution t1, . . . , tC for the k-regions R1, . . . , RC of R̂, where C = c log n.
Let T = (γ/ε) log3 n be selected as in Lemma 3.9. Under the assumption that the locations of the replaced
nodes are chosen independently at random, it follows from Lemma 3.9 and the Chernoff bounds that R̂ has
at least

(1 + δ)T · k
n/k

C∑

i=1

bti/T c ≥ (1 + δ)k2

n

(
C∑

i=1

ti − C · T
)

blue nodes and at most

(1− δ)T · k
n/k

C∑

i=1

dti/T e ≤ (1− δ)k2

n

(
C∑

i=1

ti + C · T
)

blue nodes, w.h.p. Unfortunately, due to the use of the de Bruijn cuckoo rule, the locations of the nodes are
not completely independent. However, from Lemma 3.8 we know that a k-region contains at most bk log n
nodes for some constant b, w.h.p., and under the assumption of independent replacements, the probability
that any two of these nodes are placed into R̂ when that k-region gets evicted is at most

(bk log n
2

)
((c log n) ·

k
n)2. Using this bound, it is easy to show that over O((n/k) log n) many rounds (the maximum lifetime of a
k-region, w.h.p.) there will only be o(log n) many pairs of nodes from the same k-region that end up in R̂,
w.h.p. This number affects the upper and lower bounds above only in a negligible way when choosing the
bounds for

∑C
i=1 ti as given in Lemma 3.7. Hence, up to a (1 + o(1)) factor the bounds above also apply to

the de Bruijn cuckoo rule. Since
∑C

i=1 ti is between (1 − δ′)(1/β)Cn/k and (1 + δ′)βCn/k according to
Lemma 3.7, Lemma 3.10 follows for the blue nodes.

The same calculations (with an additional ε factor) apply to the red nodes. ut

Combining Lemmas 3.6 and 3.10, we can now prove when the balancing and majority conditions are
satisfied.

• Balancing condition: From Lemmas 3.6 and 3.10 it follows that every region R of size (c log n)k/n
has at least (1 − δ)(1/β)(c log n) · k and at most (1 + δ)β(c log n + (c log n)k + (c log n)εk) =
(1 + δ)β(c log n)(1 + (1 + ε)k) nodes, where the constant δ > 0 can be made arbitrarily small.
Hence, the regions are balanced within a factor of close to β2(1 + ε + 1/k).

• Majority condition: From Lemmas 3.6 and 3.10 it also follows that every region of size (c log n)k/n
has at least (1−δ)(1/β)(c log n) ·k blue nodes and at most (1+δ)(c log n+β(c log n) ·εk) red nodes,
w.h.p., where the constant δ > 0 can be made arbitrarily small. Hence, the adversary is not able to
obtain the majority in any region of size (c log n)k/n as long as (c log n)(β·εk+1) < (1/β)(c log n)·k
which is true if and only if ε < (1/β)(1/β − 1/k).

Hence, for ε < (1/β)(1/β − 1/k) the balancing and majority conditions are satisfied, w.h.p., which proves
Theorem 3.5. ut
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4 Conclusions

In this paper, we presented a simple and robust random number generator sufficient for keeping honest and
adversarial peers well-distributed in [0, 1). We only proved our results assuming a sequential execution
of rejoin operations (see our model) though we expect that as long as not too many rejoin operations are
executed concurrently, there should be only insignificant side effects (see also the comments in [26]).

Interesting problems for future work are how to extend our results to general β-biased m-RNGs and
how to extend our RNGs to the situation in which the system can be under DoS attacks.
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