
Transparent Data Structures, or How to Make Search Trees Robust in a
Distributed Environment

Miroslaw Korzeniowski∗

International Graduate School of
Dynamic Intelligent Systems

Computer Science Department
University of Paderborn

D-33102 Paderborn, Germany
rudy@upb.de

Christian Scheideler†

Department of Computer Science
Johns Hopkins University

3400 N. Charles Street
Baltimore, MD 21218, USA

scheideler@cs.jhu.edu

Abstract

In this paper we propose a new class of memory mod-
els, called transparent memory models, for implementing
data structures so that they can be emulated in a distributed
environment in a scalable, efficient and robust way. Trans-
parent memory models aim at combining the advantages
of the pointer model and the linear addressable memory
model without inheriting their disadvantages. We demon-
strate the effectiveness of our approach by looking at a spe-
cific memory model, called the hypertree memory model,
and by implementing a search tree in it that matches, in an
amortized sense, the performance of the best search trees
in the pointer model yet can efficiently recover from arbi-
trary memory faults.

1. Introduction

In this paper we propose a new class of memory mod-
els for implementing data structures so that they can be em-
ulated in a distributed environment in a scalable, efficient,
and robust way. Scalability means that a low degree over-
lay network can be used for the emulation of the data struc-
ture, efficiency means that accesses in the data structure can
be emulated with a low time and work overhead, and robust-
ness means that the data structure can recover from (a poten-
tially large number of arbitrary or random) memory faults.

∗ Partially supported by DFG-Sonderforschungsbereich 376 “Massive
Parallelität: Algorithmen, Entwurfsmethoden, Anwendungen” and by
the Future and Emerging Technologies programme of EU under EU
Contract 001907 DELIS ”Dynamically Evolving, Large Scale Infor-
mation Systems”.

† Supported by NSF grants CCR-0311121 and CCR-0311795.

Scalability, efficiency and robustness are especially impor-
tant for dynamic distributed systems such as peer-to-peer
systems which have recently attracted a lot of attention.

Most of the data structures in the algorithms literature are
based on one of the following two basic models: the pointer
model or the linear addressable memory model. In the lin-
ear addressable memory model we have a linear address-
able memory and every read and write request to a mem-
ory cell can be processed at unit cost. In the pointer model
we only have memory cells and labeled pointers intercon-
necting the memory cells. There is nothing like an address-
able space. All read and write accesses have to be handled
via pointers. The standard assumption is that forwarding a
request along a pointer can be done at unit cost. For pa-
pers on various pointer machine models see, for example,
[6, 9, 13, 25].

Both models are useful for the design of data structures
for a single machine. However, in a distributed environment
both models have their limitations. The basic problem with
these models is that they give too much freedom in design-
ing a data structure. This can make it tempting to design
data structures that are hard to emulate in a distributed en-
vironment in a scalable, efficient, and robust way. We first
discuss why this is so, and then we propose a new class of
memory models called transparent memory models.

1.1. Linear addressable memory model

First, consider the problem of emulating a data struc-
ture in the linear addressable memory model in a dis-
tributed environment. Since in this model it may be
hard to predict the access pattern without knowing
the input in advance, a universal shared memory im-
plementation usually has to be used. A vast number
of shared memory platforms have already been devel-

oped. See http://www.computer.org/parascope/

or http://www.aspenleaf.com/distributed/ for a
comprehensive list. Also several scalable systems that pro-
vide a shared memory platform in a peer-to-peer environ-
ment have been developed. The most prominent are Chord
[24], CAN [22], Pastry [23], and Tapestry [16]. As with all
of the existing systems, the problem with any scalable uni-
versal shared memory implementation is that it has an in-
herent (time and work) overhead of essentially Ω(log n).
(This is because by definition, a scalable solution re-
quires the shared memory to be distributed in a sys-
tem interconnected by an overlay network of at most
polylogarithmic degree.) The time overhead may be re-
duced with the help of pipelining techniques but reducing
the work overhead can be very difficult. It usually re-
quires knowledge about the access structure so that parts
of the data structure that have a high access correla-
tion (such as a subheap in a heap) can be stored together or
at a small hop-distance in the distributed system and there-
fore fewer transmissions of requests over the network
are necessary. However, since in a pure shared mem-
ory model there is no incentive for a programmer to im-
plement data structures that have a high degree of locality,
there may not be a high access correlation that can be ex-
ploited.

Robustness can also be a problem. Shared memory plat-
forms generally aim at providing a robust memory to
the user. A general technique for this is to use redun-
dancy. However, redundancy is expensive and cannot
protect against all possible bad events that may hap-
pen. Therefore, it is important to consider also events in
which an item in a data structure may not be recover-
able.

1.2. Pointer model

If we use the pointer model instead of the linear ad-
dressable memory model, then we can get rid of some of
the problems, such as identifying the access structure. For
example, by maintaining a network connection for each
pointer in the data structure, we can obtain a faithful (i.e.,
constant overhead) emulation of the original data structure
in the distributed system. However, if the data structure is
much larger than the number of processing units available
for its emulation, then even though the data structure itself
may be scalable, embedding it in the wrong way into the
distributed system may result in a non-scalable overlay net-
work for the emulation of the data structure. Embedding a
data structure in the right way (i.e., with a low number of
network connections for the non-local pointers) is a non-
trivial problem in general and has been extensively investi-
gated in the context of network embeddings and partitions
in the past (e.g., [18, 19, 20]). This problem can be removed

when embedding the data structure into a shared space, but
as mentioned above, a scalable implementation of a shared
space has an inherent overhead of Ω(log n).

Data structures based on the pointer model can have seri-
ous problems with robustness if they are not designed care-
fully. Pointer structures such as linear lists and trees, for
example, are not useful for a distributed environment be-
cause a single failure of a memory cell (such as the root of
a search tree) can make the whole data structure or a large
part of it inaccessible. Therefore, also more fault-tolerant
pointer structures have been investigated. See, for instance,
the work by Aumann and Bender [4] or on skip graphs [2],
skip nets [14], and deterministic variants of the skip graph
[5, 15]. Since these pointer structures have a high expan-
sion, they can suffer many memory cell faults and still have
a large connected component. However, those parts discon-
nected from the rest of the structure are lost. Our goal, in-
stead, is to find mechanisms so that all information in the
data structure that did not get lost due to memory faults can
be recovered and reorganized so that the data structure is
back to a legal state.

1.3. Our contributions

Our contributions are threefold:

• We introduce a class of structured memory models
that we call transparent memory models. Transparent
memory models are memory models in which mem-
ory accesses can be emulated in a scalable overlay net-
work with constant work.

• As a specific example, we introduce a transparent
memory model called the hypertree memory model and
design a scalable, dynamic overlay network that can
emulate memory accesses in this model with constant
work.

• We show how to implement a search tree in the hyper-
tree memory model with the property that the amor-
tized work for insert, delete and search is the same as
for the best search trees in the pointer model, yet it can
efficiently recover all remaining information under ar-
bitrary memory faults. Moreover, in the emulation, ev-
ery node in the dynamic overlay network only has to
perform a worst-case logarithmic amount of work for
any insert, delete or search operation.

Next we talk about these contributions in more detail.

1.4. Transparent memory models

Transparent memory models belong to the class of struc-
tured memory models. In a structured memory model there
is a countably infinite set U of memory cells and an infinite
family of pointer structures H = {Hn = (Un, Fn) | n ∈

IN, Un ⊆ U, Fn ⊆ Un×Un} interconnecting these memory
cells so that Un ⊆ Un+1, Fn ⊆ Fn+1, and Hn is connected
for all n ∈ IN. Requests can only be exchanged between
adjacent cells and every such request can be processed at
unit cost. We call a structured memory model transparent if
there is an infinite family G = {Gn = (Vn, En) | n ∈ IN}
of graphs of at most polylogarithmic degree so that for all
n ∈ IN and m ∈ IN, Hm can be mapped to Gn with dilation
at most 1 and load at most Õ(|Um|/|Vn|) (where Õ sup-
presses logarithmic factors). That is, for all n and m, there
is a mapping f : Um → Vn of the cells in Hm to the nodes
in Gn so that for all v ∈ Vn, |f−1(v)| = Õ(|Um|/|Vn|), and
for all {v, w} ∈ Fm, f(v) = f(w) or {f(v), f(w)} ∈ En.

In order to demonstrate the usefulness of transparent
memory models, we focus on a specific model called the
hypertree memory model and implement an efficient and
robust search tree in it. We also present a scalable over-
lay network design that can emulate the hypertree memory
model with dilation 1. The idea behind suggesting trans-
parent memory models goes back to a result by Naor and
Wieder [21] demonstrating how to embed replication trees
with dilation 1 in a scalable overlay network in order to re-
lieve hot spots in a peer-to-peer system.

1.5. Related work on search structures

Work on search structures has a long history. The most
popular search structures are probably AVL trees, red-black
trees, skip lists, and splay trees. Whereas all of these struc-
ture allow to process insert, delete, and search operations
with a cost of O(log n) and are therefore efficient, none of
these structures is robust to memory faults.

There are basically two approaches of making search
structures robust to memory faults: using high-expansion
pointer structures such as the skip graph [2] or hyperring
[5], or embedding the search structure in a compact form
into an array [1, 7, 8, 17]. The first approach cannot re-
cover from arbitrary memory faults but can at least make
sure that the number of non-faulty entries that get discon-
nected from the largest connected component of non-faulty
entries is within a constant factor of the faulty entries [3].
The second approach allows, in principle, recovery from ar-
bitrary memory faults, but it is not clear how much time
would be needed for that. But even if there were an efficient
recovery mechanism, the fact that insert and delete opera-
tions in these search structures require an amortized work
of Θ(log2 n) [1, 7, 8, 17], which is also believed to be best
possible [7, 12, 11], makes them not particularly attractive.

Hence, it is rather surprising that we can demon-
strate the feasibility of a search structure with amor-
tized O(log n) work for insert and delete operations and
worst case O(log n) work for search operations that can re-

cover efficiently to a maximum possible extent from arbi-
trary memory faults.

1.6. Structure of the paper

Section 2 presents the hypertree memory model and
demonstrates that it can be emulated in a scalable, efficient,
and robust way, and Section 3 shows how to implement an
efficient and robust search tree in the hypertree model. Due
to space constraints, most of the proofs are left out.

2. Hypertree Memory Model

In the hypertree memory model, U = {0, 1}∗, i.e., the
cells in the model are labeled by binary strings. The class H
of pointer structures interconnecting these cells is defined
as follows. (Recall that the Hamming distance H(v, w) of
any two bit strings v, w ∈ {0, 1}k is equal to

∑k
i=1 |vi −

wi|.)
Definition 2.1 A hypertree of depth d, Hd = (Ud, Fd), is a
pointer structure on Ud = {u ∈ U | |u| ≤ d} in which

• the root has the label ε (the empty label),

• every node v ∈ Ud−1 is connected to v0 and v1 (the
tree edges) and

• every node v ∈ Ud is connected to every node w with
|v| = |w| and Hamming distance H(v, w) = 1 (the
hypercube edges), i.e., v and w only differ in one bit.

We designed the hypertree specifically to support an effi-
cient implementation of a search tree because the tree edges
will be needed for the search tree structure and the hyper-
cube edges will be needed for the balancing. In the follow-
ing, we demonstrate that the hypertree memory model can
be emulated by an infinite graph family so that the transpar-
ent memory model conditions are satisfied.

2.1. A family of graphs for the hypertree model

Consider the following two well-known classes of
graphs.

Definition 2.2 (de Bruijn) For any d ≥ 0, the d-
dimensional de Bruijn graph DB(d) is an undirected graph
G = (V, E) with node set V = {0, 1}d and edge set E
that contains all edges {v, w} with v = (v1, . . . , vd) and
w ∈ {(x, v1, . . . , vd−1) | x ∈ {0, 1}}.

Definition 2.3 (Hypercube) For any d ≥ 0, the d-
dimensional hypercube HC(d) is an undirected graph
G′ = (V, E′) with node set V = {0, 1}d and edge set E′

that contains an edge between any two nodes v, w ∈ V
with H(v, w) = 1.

When combining these two graphs, we obtain the follow-
ing new class of graphs.

Definition 2.4 (de Bruijn cube) For any d ≥ 0, the d-
dimensional de Bruijn cube DC(d) is an undirected graph
Gd = (Vd, Ed) with node set Vd = {0, 1}d and edge set
Ed = E ∪ E′.

Given a finite binary string b = (b1b2 . . . bk), let bR =
(bk . . . b2b1) and prefixk′ (b) = (b1 . . . bmin{k,k′}). For any
two binary strings a and b, a ◦ b represents their concatena-
tion. In order to map the cells of any Hd to the nodes of any
Gd′ , we use the following mapping fd,d′ : Ud → Vd′ :

fd,d′(s) = prefixd′(sR ◦ r) for all s ∈ Ud \ {ε}

where r ∈ {0, 1}d′
is the bit string the root ε is mapped to in

f and can be selected in an arbitrary way. This mapping has
the following important property, which is easy to show:

Theorem 2.5 For any d ∈ IN, d′ ∈ IN and r ∈ {0, 1}d′
,

the embedding of Hd into Gd′ via fd,d′ has a dilation of at
most 1 and a load of at most |Ud|/|Vd′ | + d′.

Hence, the hypertree model satisfies the properties of a
transparent memory model.

2.2. Dynamic graphs for the hypertree model

Using the continuous-discrete approach of Naor and
Wieder [21], one can transform the family of de Bruijn
cubes into a dynamic de Bruijn cube suitable for peer-to-
peer systems. Interpreting every binary label (v1, . . . , vd) as
a point x =

∑d−1
i=0 vi/2i in [0, 1), we can formulate the fol-

lowing continuous variant of the de Bruijn cube.

Definition 2.6 The continuous de Bruijn cube consists of
the space V = [0, 1) and a set of functions f0, f1 : V → V
and gi : V → V , i ≥ 1 with

• fi(x) = (x + i)/2 for all i ∈ {0, 1} (which represents
the de Bruijn edges) and

• gi(x) = x ⊕ 2−i for all i ∈ IN (which represents the
hypercube edges), where x ⊕ y is the bit-wise XOR of
(the binary representations of) x and y.

This continuous form can then be converted back into a
discrete form following [21] that allows cheap update costs
if nodes join or leave the graph so that, for n nodes, any hy-
pertree space Hd can still be mapped with dilation at most
1 and load O((|Ud|/n) logn), with high probability.

2.3. Robustness

The hypertree space model has the advantage that, in
principle, it allows efficient recovery from arbitrary mem-
ory faults (as long as the distributed system emulating it can

recover). We call a data structure implementation in the hy-
pertree model compact if, in the fault-free state, the mem-
ory cells of the data structure form a connected component
in the hypertree. A data structure is called recoverable if it
has a recovery mechanism allowing it to recover from ar-
bitrary lost memory cells. Suppose that we use the follow-
ing strategy whenever a node v establishes a new edge to a
node w in the de Bruijn cube: Wake up the recovery mech-
anism in all used memory cells assigned to v. Then the fol-
lowing result holds:

Theorem 2.7 Any compact data structure implementation
in the hypertree model that can recover from arbitrary lost
memory cells can be efficiently emulated by a scalable over-
lay network so that also in the emulation it can recover from
arbitrary lost memory cells.

Proof. (Sketch) Follows from the fact that the data struc-
ture is compact and that any lost memory cell will eventu-
ally be detected once the edge in the network emulating a
connection to a still working memory cell has been recov-
ered. 	

We use the term “efficient” in the theorem because the
recovery mechanism only needs to be invoked in the case
that there is an edge change in the network. As long as the
network is static, no checks have to be performed (under
the assumption that local memory is reliable). Hence, Sec-
tion 2 implies that efficiency and recovery properties in the
abstract hypertree model are transferrable to its emulation.

3. Search Tree

In this section we show how to implement a balanced
search tree in the hypertree model. We use amortized anal-
ysis to show that our construction has low average cost per
operation. We define the tree in the following way.

Condition 3.1 For each node r of the tree T , where the sub-
trees rooted in the left and right child of r are α and β, re-
spectively:

1. r stores at most one entry

2. if r stores an entry and r is not the root, also the parent
of r stores an entry

3. for all a ∈ α and b ∈ β, a ≤ r ≤ b (i.e., the tree is
sorted)

4. |α|
3 − 1 ≤ |β| ≤ 3 · |α| + 1 (i.e., the tree is balanced)

5. r stores the weight (i.e., size) of the subtree rooted in it

In order to perform operations on the tree and maintain
the balance in it we use the following primitives, each of
them working on a subtree Tv rooted in a node v:

move upwards v is moved to its parent and Tv is moved
so that it remains the subtree rooted in v

move downwards v is moved to its child and Tv is moved
so that it remains the subtree rooted in v

move sideways v is moved to its tree-sibling and Tv is
moved so that it remains the subtree rooted in v

The following lemma states the time and communication
cost of all primitive procedures:

Lemma 3.2 Each of the primitives

• takes logarithmic time in the size of the moved subtree

• needs communication work linear in the size of the
moved subtree

The basic tree operations are performed as follows. Each
of them starts in the root of the tree.

search(a) If the element in the root is equal to a, the ad-
dress of the root is returned. Otherwise the search is
performed recursively in the left (if a is smaller than
the value in the root) or right (if a is larger) subtree.
When the subtree does not exist (e.g. when we are in
the leaf), the element is reported to be not found.

insert(a) First, search(a) is performed, and if a is found,
the operation terminates. If a is not found, then a is in-
serted at the proper place below the leaf reached by
search(a).

delete(a) First, search(a) is performed. Let x be the found
node (if it exists). If it is a leaf, it is simply removed
from the tree. If not, let y be the rightmost node in
its left subtree (or the leftmost node in its right sub-
tree if the left subtree is empty). We remove a from x
and move the element from y to x. The node y was ei-
ther a leaf or its right (left) subtree was empty. If it was
a leaf, we can simply remove it. Otherwise the whole
non-empty subtree is moved upwards.

We show that as long as the tree is balanced, each of the
above operations takes O(log n) time, where n is the cur-
rent number of nodes.

Lemma 3.3 An isolated search or insert operation or any
m consecutive delete operations preserve Condition 3.1
(except point 4) in the tree with logarithmic cost per op-
eration.

After performing an operation on the tree it is easy to
check whether the tree is still balanced as each node that
participated in the operation can check whether its children
fulfill the balance condition (Condition 3.1, property 4). If
they do not, a rebalancing routine is needed. We give a rou-
tine which has logarithmic amortized cost per operation and
performs any rebalancing in worst-case logarithmic time.
The latter implies that each node participating in the net-
work has to send O(log n) messages during the rebalancing
routine, i. e. the approach is fair.

3.1. Amortized analysis

In order to analyze the cost of the algorithm we use amor-
tized analysis. Instead of defining the potential for the tree
as a whole, we define it for each node separately.

Definition 3.4 For a tree T with subtrees α and β, the
potential stored in its root r is the difference between the
weights of α and β: φr = ||α| − |β||

Obviously, for each node r the potential in r is never neg-
ative. Thus, the potential of the whole tree T , which is the
sum of the potentials of all nodes, is never negative either.
We prove that if we can attribute Θ(log n) additional cost
(in the form of virtual coins) to each insert and delete op-
eration, we can use this capital to ensure that the potential
in all nodes of the tree is in accordance with the definition.
Later, we can use the stored coins to pay for a rebalanc-
ing routine.

Lemma 3.5 For an insert or delete operation, O(log n) ad-
ditional coins suffice to update the potentials in the tree
where it is necessary.

Our algorithm uses rotations, similar to other approaches
(see for example [10], the chapter about red-black trees), in
order to keep the tree balanced. We can show the following
properties.

Lemma 3.6 If for a node r, the subtrees rooted in the chil-
dren of r are balanced (all nodes fulfill Condition 3.1(4),
called the balance condition further on), then local balanc-
ing via move upwards/downwards/sideways operations can
modify the tree so that

• r fulfills the balance condition

• on each path from r to a leaf at most one node does not
fulfill the balance condition

• only a constant number of move operations is used

• the potential stored in the tree decreases and the to-
tal communication cost is at most by a constant factor
larger than the decrease in potential

For a node r the local balancing procedure checks 3 lev-
els of descendants of r and depending on the weights of the
trees rooted in them it performs certain rotations (not ex-
plained here). If some other balancing procedures are cur-
rently being executed lower in the tree they do not influence
the procedure in r. It is only important that no node from
the highest 3 levels is participating in any rotations at the
same time. The trees below the third level are only moved
as a whole and individual nodes of such trees are moved af-
ter they have finished the rotations started earlier.

The balancing of the tree is done in a bottom-up-down
fashion. The information about imbalance comes from be-
low and a node r performs a balance procedure on itself.

The latter can destroy the balance in the children of r but
thanks to Lemma 3.6, the children can run the new balanc-
ing procedures without delay. Thus, after a constant number
of steps, the information about imbalance can be forwarded
to the parent of r.

Theorem 3.7 The total communication cost of the balanc-
ing procedure is O(∆φ + m · log n) and the time of the
balancing procedure is O(log n), where ∆φ is the total de-
crease of potential, n is the initial number of nodes in the
tree and m is the number of insert or delete operations exe-
cuted right before the balancing.

3.2. Robustness

The search tree can also recover fast from arbitrary mem-
ory faults. Before a failure, the tree is balanced and each
node knows its height in it. After the failure this informa-
tion is used to guess the maximum depth of survivors, and
the surviving nodes wait for information from them. The
latter takes time proportional to the original depth of the
tree. The communication cost is at most a constant num-
ber of messages per failure, as only the children of broken
nodes initiate the repair procedure. After gathering the in-
formation about broken nodes, the tree can be compressed
as though the broken nodes were deleted in a normal way.

References

[1] A. Andersson and T.W. Lai. Fast updating of well-balanced
trees. In Proc. of the 2nd Scandinavian Workshop on Algo-
rithm Theory (SWAT), pages 111–121, 1990.

[2] J. Aspnes and G. Shah. Skip graphs. In Proc. of the 14th
ACM-SIAM Symp. on Discrete Algorithms (SODA), pages
384–393, 2003.

[3] J. Aspnes and U. Wieder. The expansion and mixing time
of skip graphs with applications. In Proc. of the 17th ACM
Symp. on Parallel Algorithms and Architectures (SPAA),
2005.

[4] Y. Aumann and M.A. Bender. Fault tolerant data structures.
In Proc. of the 37th IEEE Symp. on Foundations of Com-
puter Science (FOCS), pages 580–589, 1996.

[5] B. Awerbuch and C. Scheideler. The hyperring: A low-
congestion deterministic data structure for distributed envi-
ronments. In Proc. of the 15th ACM-SIAM Symp. on Dis-
crete Algorithms (SODA), 2004.

[6] A.M. Ben-Amram and Z. Galil. On pointers versus ad-
dresses. Journal of the ACM, 39(3):617–648, 1992.

[7] M. Bender, E. Demaine, and M. Farach-Colton. Cache-
oblivious B-trees. In Proc. of the 41st IEEE Symp. on Foun-
dations of Computer Science (FOCS), pages 399–409, 2000.

[8] G. Brodal, R. Fagerberg, and R. Jacob. Cache-oblivious
search trees via trees of small height. In Proc. of the 13th
ACM-SIAM Symp. on Discrete Algorithms (SODA), pages
39–48, 2002.

[9] S.A. Cook and P.W.Dymond. Parallel pointer machines.
Computational Complexity, 3:19–30, 1993.

[10] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction
to Algorithms. The MIT Press, Cambridge, Mass., 1999.

[11] P.F. Dietz, J.I. Seiferas, and J. Zhang. A tight lower bound for
on-line monotonic list labeling. In Proc. of the 6th Scandi-
navian Workshop on Algorithm Theory (SWAT), pages 131–
142, 1994.

[12] P.F. Dietz and J. Zhang. Lower bounds for monotonic list la-
beling. In Proc. of the 2nd Scandinavian Workshop on Algo-
rithm Theory (SWAT), pages 173–180, 1990.

[13] M.T. Goodrich and S.R. Kosaraju. Sorting on a parallel
pointer machine with applications to set expression evalu-
ation. In Proc. of the 30th IEEE Symp. on Foundations of
Computer Science (FOCS), pages 190–195, 1989.

[14] N. J. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman. Skipnet: A scalable overlay network with prac-
tical locality properties. In Proc. of the 4th USENIX Sym-
posium on Internet Technologies and Systems (USITS ’03),
2003.

[15] N.J. Harvey and I. Munro. Brief announcement: Determin-
istic skipnet. In Proc. of the 22nd ACM Symp. on Principles
of Distributed Computing (PODC), 2003.

[16] K. Hildrum, J.D. Kubiatowicz, S. Rao, and B.Y. Zhao. Dis-
tributed object location in a dynamic network. In Proc. of
the 14th ACM Symp. on Parallel Algorithms and Architec-
tures (SPAA), pages 41–52, 2002.

[17] A. Itai, A.G. Konheim, and M. Rodeh. A sparse table im-
plementation of sorted sets. Technical Report Research Re-
port RC 9146, IBM T.J. Watson Research Center, Yorktown
Heights, New York, November 1981.

[18] F.T. Leighton. Introduction to Parallel Algorithms and Ar-
chitectures: Arrays • Trees • Hypercubes. Morgan Kauf-
mann, 1992.

[19] B. Monien. Software packages for graph partition-
ing. Dept. of Computer Science, Unversity of Paderborn,
see http://wwwcs.uni-paderborn.de/fachbereich/AG/monien
/SOFTWARE.

[20] B. Monien and H. Sudborough. Embedding one intercon-
nection network in another. Computing Suppl., 7:257–282,
1990.

[21] M. Naor and U. Wieder. Novel architectures for p2p appli-
cations: the continuous-discrete approach. In Proc. of the
15th ACM Symp. on Parallel Algorithms and Architectures
(SPAA), pages 50–59, 2003.

[22] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network. In Proc.
of the ACM SIGCOMM, 2001.

[23] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer sys-
tems. Lecture Notes in Computer Science, 2218:329–350,
2001.

[24] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proc. of the ACM SIGCOMM, pages
149–160, 2001.

[25] P. van Emde Boas. Handbook of Theoretical Computer Sci-
ence, Vol. A, chapter Machine models and simulations, pages
1–66. Elsevier, 1990.

