
How to Spread Adversarial Nodes? Rotate!

Christian Scheideler∗
Dept. of Computer Science
Johns Hopkins University
3400 N. Charles Street

Baltimore, MD 21218, USA

scheideler@cs.jhu.edu

ABSTRACT
In this paper we study the problem of how to keep a dynamic sys-
tem of nodes well-mixed even under adversarial behavior. This
problem is very important in the context of distributed systems.

More specifically, we consider the following game: There are n
white pebbles and εn black pebbles for some fixed constant ε < 1.
Initially, all of the white pebbles are laid down in a ring, and the
adversary has all of the black pebbles in its bag. In each round,
the adversary can look at the entire ring and can select to add a
black pebble to the ring (if its bag is not empty) or to take any
black pebble from the ring and put it back into its bag (i.e. we con-
sider adaptive adversaries). However, the adversary cannot place
a black pebble into any position it likes. This is handled by a join
strategy to be specified by the system. The goal is to find an oblivi-
ous join strategy, i.e. a strategy that cannot distinguish between the
white and black pebbles in the ring, that integrates the black peb-
bles into this ring and may do some further rearrangements so that
for a polynomial number of rounds the adversary will not manage
to include its black pebbles into the ring so that there is a sequence
of s = Θ(log n) consecutive pebbles in which at least half of the
pebbles are black. If this is achieved by the join strategy, it wins.
Otherwise, the adversary wins.

Of course, the brute-force strategy of rearranging all of the peb-
bles in the ring at random after each insertion of a black pebble will
achieve the stated goal, with high probability, but this would be a
very expensive strategy. The challenge is to find a join strategy that
needs as little randomness and as few rearrangements as possible
in order to win with high probability. In this paper, we present and
analyze a very simple strategy called k-rotation that chooses k − 1
existing positions uniformly at random in the ring, creates a new
position uniformly at random in the ring, and then rotates the new
pebble and the k − 1 old pebbles along these positions. Interest-
ingly, even if the adversary has just s pebbles, it can still win for
k = 2. But the k-rotation rule wins with high probability for k = 3
as long as ε < 1/3, demonstrating that there is a sharp threshold
for keeping pebbles in a sufficiently perturbed state.

∗Supported by NSF grant CCR-0311121 and NSF grant CCR-
0311795.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’05, May 22–24, 2005, Baltimore, Maryland.
Copyright 2005 ACM 1-58113-960-8/05/0005 ...$5.00.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Routing and layout; G.2.2
[Discrete Mathematics]: Graph Theory—Graph algorithms and
network problems

General Terms
Algorithms, Theory

Keywords
Random mixing, proactive security, join-leave attacks

1. INTRODUCTION
In this paper we study the problem of how to keep a dynamic

system of nodes well-mixed even under adversarial behavior. This
problem is very important in the context of distributed systems.

Research on scalable distributed systems has recently received
an enormous attention due to the popularity of peer-to-peer sys-
tems. Many scalable designs for peer-to-peer systems are already
known, such as Chord [33], CAN [29], Pastry [16], and Tapestry
[34], to name just a few. However, nowadays, scalability is not the
only concern but robustness against adversarial behavior becomes
an increasingly pressing issue. The robustness of a distributed sys-
tem is measured in its ability to withstand massive and malicious
attacks, including Byzantine behavior of its components. Achiev-
ing robustness and scalability at the same time is a decades old open
problem in the field of distributed computing. The biggest threats
appear to be insider attacks and distributed denial-of-service (DoS)
attacks, against which much of the security measures are ineffec-
tive. These threats are particularly hard to avoid in open distributed
systems, i.e. systems where mutually distrusting parties with con-
flicting interests are allowed to join (such as the Internet).

There are basically two kinds of approaches of making a dis-
tributed system robust against adversarial behavior: proactive and
reactive approaches. Proactive approaches aim at protecting a sys-
tem against attacks, thereby achieving a high availability of the dis-
tributed system, whereas reactive approaches are based on mecha-
nisms to detect and recover from attacks. Proactive strategies are
known to be expensive and cannot protect against all possible bad
events that may happen. On the other hand, just using reactive
strategies may sacrifice the availability of a distributed system in
critical situations. Since it is desirable to have a highly available
system, the proactive security measures should therefore be pushed
as far as possible without paying too much overhead. But how far
can this be pushed, and can any formal guarantees be given?

A prerequisite for a distributed system to work correctly is that
an overlay network can be maintained between its sites. Once dis-
tributed systems become large enough, one has to deal with sites
continuously entering and leaving the system, simply because sites
may fail and have to be replaced by new sites or because addi-
tional resources have to be added to preserve the functionality of
the system. Hence, in general, a distributed system supporting any
service has to have an overlay network supporting joining, leaving
and routing between the sites, and without a robust and scalable
implementation of such a network, the field of scalable and robust
distributed services does not really exist.

Most research on robust distributed systems in the past has ig-
nored the issue that sites may continuously join and leave the sys-
tem. Proactive security has mostly been studied in the context of
a fixed, distributed system. Proactively secure solutions have been
devised, for example, for secret sharing [22, 27], public key signa-
tures [5, 7, 17, 18, 20, 23, 28], link security and secure end-to-end
communication [8], and (pseudo-)random number generation [9,
12]. These solutions can be extended to dynamic distributed sys-
tems if one is willing to pay a linear overhead, i.e., any object that
needs proactive protection is managed by all of the sites. Alterna-
tive approaches are known that just need O(

√
n) of the n sites to

manage any object in order to protect it in a dynamic environment
[1, 24, 25], but for an approach to be truly scalable, only O(log n)
of the n sites should be involved in managing any object.

Peer-to-peer systems such as Chord [33] only require an object
to be stored among O(log n) sites and are therefore scalable. How-
ever, the robustness of these systems hinges on the assumption that
the unreliable and/or adversarial sites are randomly distributed in
the system so that for every object, only a minority of the sites re-
sponsible for the object may create problems, with high probability.
But this randomness assumption is problematic if sites are allowed
to join and leave the system, especially in open distributed systems.

Typically, when sites join a peer-to-peer system, they are either
given a random ID or an ID based on a one-way hash value of
their IP address. Both approaches open up the possibility for an
adversary to degrade randomness by using join-leave attacks. In
the latter case, it just needs sufficiently many IP addresses (which
will not be a problem with IPv6), and in the former case, it just
needs to repeatedly join and leave the system with its sites until it
is able to place its sites into certain areas of the system. People in
the systems community are well aware of the danger of these and
similar attacks [15, 13], and various solutions have been proposed
that may help thwart these attacks in practice [10, 26, 31, 32], but
until recently no mechanism was known that can provably cope
with these attacks without sacrificing the openness of the system.

The only mechanism known so far that can preserve randomness
in the system uses random node IDs and enforces a limited lifetime
on every node in the system, i.e., every node has to reinject itself
after a certain amount of time steps [3]. But this leaves the system
in a hyperactive mode that may unnecessarily consume resources
that could be better used for other purposes. Ideally, one would like
to use competitive strategies. That is, the resources consumed by
the proactive security mechanism should scale with the join-leave
activity of the system. This will make sure that if there is no join-
leave activity, the proactive mechanism will be idle as well. Can
we design a competitive strategy with low overhead? We will show
that this is possible.

1.1 How to counter join-leave attacks
It has been shown in [3] that no open, predictable overlay net-

work can survive adaptive adversarial join-leave attacks. Hence, as
a prerequisite, we have to use randomness. Our basic approach is

to assign to each node a random place in the system. However, as
mentioned above, we also have to do some further rearrangements
in addition to this to prevent adaptive attacks on the system.

If we want to have a competitive strategy, rearrangements of
nodes in the system should only be triggered by join or leave re-
quests. Leave requests are problematic because the adversary can-
not be forced to initiate any rearrangement strategy in a correct way
when it leaves. However, for join requests, rearrangements can be
enforced because the adversary wants to get into the system. Verifi-
able secret sharing approaches may be used here (e.g., [4, 6, 11, 19,
21]) because they can be used to generate unbiased random num-
bers even if adversarial nodes are involved in it. Verifiable secret
sharing consists of a sharing phase and a recovery phase. The shar-
ing phase allows honest nodes to obtain a proof whether the secret
(e.g., the random numbers for the join request) is recoverable with-
out revealing the secret. Once an honest node obtains such a proof,
this can be used to enforce the correct execution of the join opera-
tion by presenting the proof to the other participants. Without such
a proof an honest node will not participate in the recovery phase.

Hence, the only way the adversary can avoid rearrangements in
the join operation is to prevent an honest node from getting a proof,
but then it cannot join and, crucially, also does not learn about the
random numbers for the join operation.

Now, how many rearrangements should be made for each join
request? Here, one may recall a well-known fact from card shuf-
fling. Consider the situation that a deck of n cards is laid out in
a row. In a random transposition operation, we pick two random
cards and exchange their positions. The question is, how many
operations are necessary to achieve a random permutation of the
cards. Diaconis and Shahshahani [14] showed that O(n log n) ran-
dom transpositions are sufficient for this, and it is also known that
this bound is tight. Hence, it seems appropriate in our setting to
perform Θ(log n) random transpositions for each join request to
keep the system in a random state. But it turns out one can do
much better than that. We investigate this by focusing on a specific
game.

1.2 The game
Consider the following game: There are n white pebbles and εn

black pebbles for some fixed constant ε < 1. Initially, all of the
white pebbles are laid down in a ring, and the adversary has all of
the black pebbles in its bag. In each round, the adversary can look
at the entire ring and can select to add a black pebble to the ring
(if its bag is not empty) or to take any black pebble from the ring
and put it back into its bag (i.e. we consider adaptive adversaries).
However, the adversary cannot place a black pebble into any posi-
tion it likes. This is handled by a join strategy to be specified by the
system. The goal is to find an oblivious join strategy, i.e. a strat-
egy that cannot distinguish between the white and black pebbles in
the ring, that integrates the black pebbles into this ring and may do
some further rearrangements so that for a polynomial number of
rounds the adversary will not manage to include its black pebbles
into the ring so that there is a sequence of s = Θ(log n) consecu-
tive pebbles in which at least half of the pebbles are black. If this
is achieved by the join strategy, it wins. Otherwise, the adversary
wins.

To the best of our knowledge, the game has not been studied
before. Therefore, let us motivate why we believe that it is rele-
vant for distributed systems. First of all, one may ask why only the
black pebbles join and leave the system. The reason is that this ac-
tually represents the worst case for a dynamic distributed system.
All schemes we are aware of for perturbing the pebbles actually
work better the more white pebbles join and leave the system. Sec-

ond, the fact that white pebbles are never turned into black pebbles
appears to be a limitation. However, our idea behind the black
and white pebbles is that black pebbles are owned by the adversary
whereas white pebbles are owned by honest peers. White pebbles
may still have vulnerabilities that the adversary may try to exploit,
but whether or not a peer is vulnerable is usually not under the con-
trol of the adversary, so that it suffices to assume an initially random
layout of the white pebbles in order to prevent the adversary from
winning on the white pebbles. Finally, the game does not look at
concurrency. However, it follows from random graph theory that as
long as at most δn requests are served simultaneously at any time
for some sufficiently small constant δ > 0, concurrent executions
of join strategies similar to our proposed strategy do not form cy-
cles up to a negligible fraction, with high probability, so that up to
a negligible fraction, the concurrent executions are serializable and
we therefore expect the outcome to be almost the same as their se-
quential execution. Thus, for simplicity, we leave the concurrency
aspect out of this paper.

1.3 Why the game?
Still, one may ask what is so important about having a majority

of white pebbles in any sequence of s pebbles on the ring? Re-
call that an overlay network needs to support joining, leaving, and
routing as basic primitives. Consider the ring studied in our game,
and interpret every pebble as a node. Suppose that a proper join
operation can be designed so that for any sequence of s consecu-
tive nodes, the number of white (i.e., well-behaved) nodes is in the
majority. Using this property, we can design a robust routing strat-
egy for the ring network. We call a routing strategy robust if every
message sent out by a well-behaved node is guaranteed to reach its
destination. This is more difficult than it seems because the adver-
sarial nodes may not just try to delete or alter the message but also
to generate many messages by themselves to prevent some mes-
sage from ever reaching its destination. The following approach
can help here:

Suppose that each node maintains connections to its s closest
successors and its s closest predecessors on the ring. If a node
v wants to route a message M to node w, it sends M to all of
its successors. Each neighbor of w checks whether w has already
exceeded its allowed rate of message injections. If so, it rejects M
and otherwise accepts M . Every node accepting M forwards it to
all of its known successors. Every node that receives a message
M from at least half of its predecessors forwards it to all of its
successors (or the destination, if it is known).

It is easy to show that if the well-behaved nodes are in the major-
ity in every sequence of s consecutive nodes, this routing strategy
is indeed robust. Certainly, scalability is still an issue, which may
be handled using approaches similar to skip graphs [2], but this is
beyond the scope of this paper. The goal of this paper is solely to
demonstrate that it is possible to counter adaptive join-leave attacks
using efficient, competitive mixing strategies.

1.4 Our contribution
We propose the k-rotation strategy in order to randomly perturb

the pebbles. The k-rotation strategy works as follows: Initially,
the new black pebble is declared a homeless pebble. For k − 1
rounds, place the currently homeless pebble into a random position
of the ring and declare the pebble previously placed at that position
the new homeless pebble. Afterwards, create a new position at a
random place in the ring and place the homeless pebble there.

It turns out that k ≤ 2 is not sufficient but k ≥ 3 is sufficient
for the system to win with high probability. Interestingly, the ad-
versary has a good chance of winning for k = 2 even if it has

only O(log n) pebbles, whereas the adversary has only a negligi-
ble chance of winning for k = 3, even when having n/4 pebbles.
Thus, a sharp threshold can be identified for the system to win or
lose. Our results are summarized in the following theorem.

THEOREM 1.1. Let n and s = O(log n) be sufficiently large.
When using the k-rotation strategy, it holds:

• If k = 1, then the adversary only needs s/2 pebbles to win
within O(n) join attempts, with high probability.

• If k = 2, then the adversary only needs s pebbles to win
within O(n log s) join attempts on expectation and within
O((n log s) log n) join attempts, with high probability.

• If k ≥ 3, then the adversary loses with high probability as
long as it has ≤ εn nodes for some constant ε < 1 − 2/k,
and this result is tight.

In fact, the k-rotation rule ensures that for any k ≥ 3, the fraction
of black pebbles in a sequence of s consecutive pebbles is at most

(1 + δ)

(
1 + kε

k + kε

)

with high probability, where δ > 0 can be an arbitrarily small
constant depending on s.

Thus, as k increases, ε can get arbitrarily close to 1. Note that
ε must be smaller than 1 because otherwise there is certainly no
chance for the system to win.

2. ANALYSIS OF THEK-ROTATION RULE
Recall the k-rotation strategy from the previous section. We an-

alyze the worst-case scenario separately for k = 1, k = 2, k = 3,
and all even k > 3.

2.1 Outcome for k = 1
For k = 1, all what happens in a join operation is that a new

position is created uniformly at random in the ring and the new,
black pebble is placed into it. This scenario makes it very easy for
the adversary to win:

Focus on some fixed sequence S of s/2 consecutive positions on
the initial ring. Continue to inject the black pebbles into the system
until they are all inside of S. Each black pebble that does not land
inside of S is taken out again and reinjected into the system.

Using this strategy, the following result can be shown, which
implies that the adversary can quickly gain the majority of pebbles
in a sequence of size s.

LEMMA 2.1. Consider any sequence S of s/2 consecutive po-
sitions on the initial ring. If the adversary has at least s/2 black
pebbles, then it takes at most O(n) join requests until the adversary
has at least s/2 black pebbles inside of S, with high probability.

PROOF. For any i ≥ 1, let the binary random variable Xi be 1
if and only if in the ith join request the adversary manages to get
a black pebble into S. For each join request, the probability is at
least (s/2−1)/n that the black pebble is placed inside of S. Hence,
Pr[Xi = 1] ≥ (s/2 − 1)/n. Consider now the random variable
St =

∑t
i=1 Xi. Certainly, E[St] =

∑t
i=1 E[Xi] ≥ t·(s/2−1)/n.

Furthermore, because the Xi’s are independent, it follows from the
Chernoff bounds (e.g., [30]) that for any ε ∈ [0, 1],

Pr[St ≤ (1 − ε)E[St]] ≤ e−ε2E[St]/2 .

For t ≥ n/(1 − ε) · 1/(1 − 2/s) it holds that Pr[St ≤ s/2] ≤
e−ε2n/3(1−ε). This is exponentially small in n for any constant ε ∈
(0, 1). Because t = O(n) in this case, the theorem follows.

2.2 Outcome for k = 2
In order to analyze this case, we associate a sequence of s con-

secutive pebbles with every initial position in the system. Given a
position p, we define Sp as the sequence consisting of the s closest
successors of p on the ring (in clock-wise direction). This property
is maintained for Sp as new positions are created and old positions
are removed. If p is removed itself, the predecessor of p on the ring
takes over p’s role. Thus, Sp is well-defined at any time.

Consider now any fixed sequence Sp for some initial position p
in the ring. For simplicity, we just call it S in the following, and
we assume the pebbles in S to be laid out from left to right with p
being to the left of S. Consider an adversarial strategy that never
issues a leave request for a black pebble in S (but may decide to
remove any black pebble outside of S at any time). In this case, we
only have to focus on the effect of join requests on S.

In order to analyze the effect of join requests, we split the exe-
cution of a join request into several stages. In stage 0 the adversary
just presents the new black pebble to the system, which we declare
as homeless. Stage i ∈ {1, . . . , k − 1} represents the ith replace-
ment of a pebble, which places the currently homeless pebble into
the ith position and declares the pebble formerly placed in this po-
sition as the new homeless pebble. Stage k represents the point at
which a new position is created in the ring and the currently home-
less pebble is placed into it.

We model the effect of these stages as a stochastic process. Let
U = {(i, j) | i ∈ {0, . . . , s}, j ∈ {0, 1}} be the state space of
sequence S. In state (i, j), i represents the number of black peb-
bles in S, and j = 1 if and only if the currently homeless pebble
is black. Let Pt = (p

(t)
u,v)u,v∈U represent the system of transition

probabilities at stage t, i.e., p(t)
u,v represents the probability of mov-

ing from state u to state v in stage t. We will determine Pt for the
various stages.

Stage 0: Because the only event that happens is that the new black
pebble is declared homeless, we have

p
(0)
(i,0),(i,1) = 1 and p

(0)
(i,1),(i,1) = 1 for all i ∈ {0, . . . , s}

and all other transition probabilities are 0.

Stage t for some t ∈ {1, . . . , k − 1}: Let N denote the total num-
ber of positions in the ring at the beginning of the join operation
and n denote the number of white pebbles. If S is currently in the
state (i, 0), then S stays at (i, 0) if a position with a white pebble
is selected, S changes to (i− 1, 1) if the homeless pebble is placed
in a position with a black pebble in S, and S changes to (i, 1) if the
homeless pebble is placed in a position with a black pebble outside
of S. Hence, for all i ∈ {0, . . . , s},

p
(t)

(i,0),v =

⎧⎨
⎩

i/N : v = (i − 1, 1)
n/N : v = (i, 0)
(N − n − i)/N : v = (i, 1)

If S is currently in the state (i, 1), then S stays at (i, 1) if a position
with a black pebble is selected, S changes to (i, 0) if the homeless
pebble is placed in a position with a white pebble outside of S, and
S changes to (i+1, 0) if the homeless pebble is placed in a position
with a white pebble in S. Hence, for all i ∈ {0, . . . , s},

p
(t)
(i,1),v =

⎧⎨
⎩

(n − s + i)/N : v = (i, 0)
(N − n)/N : v = (i, 1)
(s − i)/N : v = (i + 1, 0)

In all other cases, the transition probabilities are equal to 0.

Stage k: Suppose that S is currently in state (i, 0). Then S changes
to (i−1, 0) if the homeless pebble is placed inside or directly to the
left of S and a position with a black pebble gets evicted from S. In
all other cases, S stays in the state (i, 0). In order to determine the
probability that a black pebble gets evicted, we need the following
lemma.

LEMMA 2.2. Given that the adversary never removes a pebble
from S, every pebble in S is equally likely to get evicted from S.

PROOF. Let the initial pebbles in S be numbered from 1 to s
and the jth pebble that joins S (either due to a replacement or the
creation of a new position) be given number s+j. Let Πj be the set
of all possible permutations of the pebbles in S after the jth event
that a pebble joins S. We prove by induction that for every j ≥ 0,
every π ∈ Πj is equally likely to occur. This will immediately
imply the lemma.

Under the assumption that the white pebbles are initially ran-
domly distributed on the ring, the induction hypothesis is certainly
true for j = 0. So suppose that it is true up to some j. In order to
show that it is also true for j + 1, we consider two cases:

Suppose that at some stage i < k, the homeless pebble p takes
over the position of some pebble q in S. Since p chooses each posi-
tion in S with the same probability, it follows from the hypothesis
that every permutation of the pebbles in S remains to be equally
likely, no matter which q is chosen.

Suppose that at stage k, the homeless pebble is placed into a
new position in S. For any pebble q in S, let Πj,q be the set of all
permutations with q on the right side. Recall that every permutation
is equally likely to occur. Hence, when removing q from S we
obtain a set Π′

j,q of all permutations of the remaining pebbles that
are equally likely to occur. Since the new pebble may be added
at any of the s possible places in these permutations, and every
case is equally likely to occur, we end up with a set Πj+1 of all
permutations in which each is equally like to occur.

It follows from the lemma that for the adversarial strategy con-
sidered by us, the probability of a particular pebble to get evicted
is independent of the history of S but only depends on the cur-
rent number of black pebbles in S. More precisely, the probability
that a black pebble is evicted from S is i/s. Therefore, for all
i ∈ {0, . . . , s},

p
(k)
(i,0),v =

{
i
s
· s

N
= i

N
: v = (i − 1, 0)

1 − i
s
· s

N
= 1 − i

N
: v = (i, 0)

If S is currently in state (i, 1), then S changes to (i + 1, 0) if the
homeless pebble is placed inside or directly to the left of S and a
position with a white pebble gets evicted from S. In all other cases,
S changes to the state (i, 0). From the lemma above it follows that
the probability that a white pebble is evicted from S is 1 − i/s.
Hence, for all i ∈ {0, . . . , s},

p
(k)
(i,1),v =

{
1 − (1 − i

s

) · s
N

= 1 − s−i
N

: v = (i, 0)(
1 − i

s

) · s
N

= s−i
N

: v = (i + 1, 0)

Suppose now that k = 2 and that S is in the state (i, 0) before
executing the k-rotation. Then it holds

• after stage 0: S is in the state (i, 1)

• after stage 1: S has a probability distribution of

(q(i,0), q(i,1), q(i+1,0)) =

(
n − s + i

N
,

N − n

N
,

s − i

N

)

• after stage 2: S has a probability distribution of (q(i−1,0), q(i,0),
q(i+1,0)) with q(i−1,0) = (i/N) · (n − s + i)/N and

q(i+1,0) =
s − i

N

(
N − n

N
+

(
1 − i + 1

N

))

Thus, we can model the effect of a join operation on S as a simple
birth-death process P on the state space U′ = {0, . . . , s} with
transition probabilities

pi,j =

⎧⎪⎨
⎪⎩

i(n−s+i)

N2 : j = i − 1
s−i
N

(
2 − n+i+1

N

)
: j = i + 1

1 − (pi,i−1 + pi,i+1) : j = i

(1)

In order to determine the behavior of this birth-death process, we
need a series of lemmas. The first is well-known, but we sketch its
proof for completeness.

LEMMA 2.3. Any birth-death process P on a state space U =
{0, . . . , s} with transition probabilities pi,i+1 = λi and pi+1,i =
μi+1 > 0 for every i ∈ {0, . . . , s − 1} has a unique stationary
distribution π with

πi = π0 ·
i−1∏
j=0

λj

μj+1
(2)

for all i ∈ {0, . . . , s} where π0 is chosen so that
∑s

i=0 πi = 1.

PROOF. The following conditions must be satisfied by any sta-
tionary distribution π:

λ0 · π0 = μ1 · π1

λi−1πi−1 + μi+1πi+1 = (λi + μi)πi ∀i ∈ {1, . . . , s − 1}
λs−1 · πs−1 = μs · πs

Using these, equation (2) can easily be shown by induction on i,
starting with i = 1.

Hence, P has a unique stationary distribution π. In order to in-
vestigate how P approaches π when starting with the state 0 (i.e.,
all pebbles are initially white), we need the concept of domination.

DEFINITION 2.4. Given two probability distributions q and q′

on the state space U′ we say that q dominates q′, or q � q′, if for
all i ∈ {0, . . . , s},

∑
j≥i qj ≥∑j≥i q′j .

LEMMA 2.5. Given any stochastic process P = (pi,j) on some
state space U = {0, . . . , s}, let pi = (pi,j)j∈U denote the vector
of transition probabilities for state i. If pi � pi′ for every pair
(i, i′) ∈ U with i > i′ then it holds for any two probability distri-
butions q and q′ on U : if q � q′ then q · P � q′ · P .

PROOF. Follows directly from the insight that q′ can be pro-
duced from q by moving probability pieces to lower states.

For any i ≥ 0 let qi denote the probability distribution of S after
processing the ith join request. It certainly holds that q1 � q0.
Hence, it follows from Lemma 2.5 that qt+1 � qt for every t ≥
0, implying that P monotonically converges against its stationary
distribution π. In order to study this convergence in a rigorous way,
we simplify P to the stochastic process P ′ with

p′
i,j =

⎧⎪⎨
⎪⎩

i · n
N2 : j = i − 1

(s − i) · 2N−(n+s)

N2 : j = i + 1

1 − (p′
i,i−1 + p′

i,i+1) : j = i

Consider now the following lemma.

LEMMA 2.6. For any two stochastic processes P and P ′ on
some state space U = {0, . . . , s} with p′

i,j ≥ pi,j for all j < i
and p′

i,j ≤ pi,j for all j > i it holds for any probability distribution
q on U that q · P � q · P ′.

PROOF. Consider any probability distribution q, and let r = q ·
P and r′ = q · P ′. Then it holds for every i ≥ 1 that∑

j≥i

rj =
∑
j≥i

qj(1 −
∑
k<i

pj,k) +
∑
j<i

qj

∑
k≥i

pj,k

≥
∑
j≥i

qj(1 −
∑
k<i

p′
j,k) +

∑
j<i

qj

∑
k≥i

p′
j,k =

∑
j≥i

r′j

and therefore r � r′.

Lemmas 2.5 and 2.6 imply that q0 · P t � q0 · (P ′)t for all
t ≥ 0. Hence, in order to obtain a lower bound for the worst-case
number of black pebbles in S, it suffices to focus on P ′. First, we
investigate the stationary distribution of P ′.

LEMMA 2.7. Consider any birth-death process P on a state
space U = {0, . . . , s} with transition probabilities pi,i+1 = α(s−
i) and pi+1,i = β(i+1) for every i ∈ {0, . . . , s−1}. Let the ran-
dom variable X be the state of P . In the stationary distribution,
E[X] = αs/(α + β). Moreover, for any ε ≥ 0,

Pr[X ≥ (1 + ε)E[X]] ≤ e−min[ε,ε2]E[X]/3

and for any ε ∈ [0, 1],

Pr[X ≤ (1 − ε)E[X]] ≤ e−ε2E[X]/2

PROOF. It is not difficult to show that the unique stationary dis-
tribution π satisfies

πi =

(
s

i

)(
α

α + β

)i (
β

α + β

)s−i

for every i ∈ {0, . . . , s}. Hence, π has the same distribution as s
independent Bernoulli trials with probability p = α/(α+β), which
implies that E[X] = αs/(α + β). The probability bounds for X
immediately follow from the well-known Chernoff bounds.

Let N = (1 + ε)n. It follows from Lemma 2.7 that P ′ has a
unique stationary distribution π in which, on expectation, S has

2N − (n + s)

2N − (n + s) + n
· s =

2N − n − s

2N − s
· s ≈ 1 + 2ε

2 + 2ε
· s

many black pebbles. It remains to bound the speed of convergence
towards the stationary distribution. Given any probability distribu-
tion q on U ′, consider the potential function

Φ =
s∑

i=1

|π≥i − q≥i|

where π≥i =
∑

j≥i πj and q≥i =
∑

j≥i qj . Let q′ = q · P ′. Sup-
pose that π � q. Then also π � q′ by Lemma 2.5, and therefore

Φ′ =

s∑
i=1

|π≥i − q′≥i| =

s∑
i=1

(π≥i − q′≥i)

=
s∑

i=1

(π≥i − (q≥i + λi−1qi−1 − μiqi))

=
s∑

i=1

(π≥i − q≥i) −
s∑

i=1

λi−1qi−1 +
s∑

i=1

μiqi

= Φ −
s∑

i=0

(s − i)
2N − (n + s)

N2
qi +

s∑
i=0

i
n

N2
qi

= Φ − s

N
· 2N − (n + s)

N
+

2N − s

N2

s∑
i=1

q≥i

= Φ − 2N − s

N2

(
2N − n − s

2N − s
s −

s∑
i=1

q≥i

)
.

Now, notice that
∑s

i=1 π≥i = 2N−n−s
2N−s

s and that
∑s

i=1 q≥i =∑s
i=1 π≥i − Φ. Hence, Φ′ = Φ − 2N−s

N2 Φ = (1 − 2−s/N
N

)Φ.
Because initially, Φ =

∑s
i=1 π≥i = 2N−n−s

2N−s
s, it follows that it

takes at most O(N log(s/δ)) = O(n log(s/δ)) steps to get δ-close
to the stationary distribution. Thus, we get:

LEMMA 2.8. If the adversary has at least s black pebbles, then
it takes at most O(n log s) join requests on expectation and at most
O((n log s) log n) requests with high probability until the adver-
sary has at least s/2 black pebbles in S.

PROOF. Recall that q0P
t � q0(P

′)t for any q0 and t ≥ 0.
From our calculations above it follows that after Θ(n log s) steps,∑

i |π≥i − q≥i| ≤ 1/4 and therefore also |π≥s/2 − q≥s/2| ≤
1/4. Since π is a binomial distribution with expectation above
1/2, it follows that π≥s/2 ≥ 1/2 and therefore Pr[S has ≥ s/2
black pebbles] ≥ 1/4. This probability bound holds irrespective of
the state that S had Θ(n log s) steps before, which completes the
proof.

Hence, the adversary can still win for k = 2. For k = 3 this will
be much harder to achieve.

2.3 Outcome for k = 3
We start with a lower bound and then prove an almost match-

ing upper bound on the worst-case number of black pebbles in a
sequence of size s.

2.3.1 Lower bound
We start with a lower bound on the number of black pebbles in

some sequence S of length s, using again the assumption that the
adversary never evicts a black pebble from S. Given that S is in
state i, it follows from the transition probabilities in Section 2.2 that
after the join operation has finished, S has a probability distribution
of (q(i−1,0), q(i,0), q(i+1,0), q(i+2,0)) with

q(i−1,0) =
i

N
· n − s + i

N

(
2 − s − (i − 1)

N

)
q(i,0) = 1 − (q(i−1,0) + q(i+1,0) + q(i+2,0))

q(i+1,0) =
s − i

N

(
3 − 2n + i + 1 + n/N

N
+

(s − (i + 1))(i + 1) + 2i(s − i)

N2

)

q(i+2,0) =
s − (i + 1)

N
· s − i

N
· N − n − (i + 1)

N

Hence, we can model the effect of a join operation on sequence S
as a stochastic process P on the state space U′ = {0, . . . , s} with

transition probabilities

pi,j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i
N

· n−s+i
N

(
2 − s−(i−1)

N

)
: j = i − 1

s−i
N

(
3N−(2n+i+1+n/N)

N
+ . . .

)
: j = i + 1

s−(i+1)
N

· s−i
N

· N−n−(i+1)
N

: j = i + 2

1 − (pi,i−1 + pi,i+1 + pi,i+2) : j = i

In order to obtain a lower bound on the number of black pebbles
that can be in S in the worst case, we simplify the system P to a
system P ′ with

p′
i,j =

⎧⎪⎨
⎪⎩

i · 2n
N2 : j = i − 1

(s − i) · 3N−(2n+s+1)
N2 : j = i + 1

1 − (p′
i,i−1 + p′

i,i+1) : j = i

Since p′
i,i−1 ≥ pi,i−1, p′

i,i+1 ≤ pi,i+1, and p′
i,i+2 ≤ pi,i+2, Lem-

mas 2.5 and 2.6 imply that the stationary distribution of P domi-
nates the stationary distribution of P ′, as needed. Interpreting the
probabilities as p′

i,i+1 = α(s−i) and p′
i,i−1 = β ·i, it follows from

Lemma 2.7 that the expected value of the stationary distribution of
P ′ is at least

(3N − 2n)/N2 · s
(3N − 2n)/N2 + 2n/N2

=
3N − 2n

3N
· s =

1 + 3ε

3 + 3ε
· s

up to negligible terms. According to Lemma 2.7, it also holds that
the number of black pebbles in S is eventually at least (1−δ)1+3ε

3+3ε
·

s, with high probability. Next we answer the question whether it
can be much worse than that.

2.3.2 Upper bound
The upper bound is significantly more difficult to show because

now we have to argue about arbitrary adversaries. At first glance, it
may look like the stochastic process considered for the lower bound
should be the worst-case process for arbitrary adversaries because
it intuitively makes sense that the adversary should not remove a
black pebble from a sequence S in which it tries to maximize the
number of black pebbles. While this intuition will turn out to be
correct, the process in the lower bound is not the worst possible
because there is a subtle issue in the probabilities for stage k that
allows us to construct a worse stochastic process. More precisely,
if we use the rule that whenever a new position p′ is created di-
rectly to the left of S and a white pebble is placed into it, p′ is
not included into S, we arrive at something worse. (The process
studied in Section 2.2 always includes p′ into S, no matter what
pebble is placed into it. This follows from the definition of the se-
quences Sp.) Unfortunately, this new rule can create dependencies
that are very hard to resolve (basically, Lemma 2.2 does not hold
any more), but fortunately there is a way of working around this
problem using combinatorial techniques.

Our proof for the upper bound proceeds as follows. First, we
introduce a combinatorial technique allowing us to cover any se-
quence of s consecutive pebbles on the ring at any time and to
model the outcome of adversarial behavior on them as a near-Mar-
kov chain under the assumption that the adversary never removes a
black pebble from the considered sequence. By “near-Markov” we
mean that transition probabilities only depend on the current state
but may differ for different join requests. Afterwards, we show that
this stochastic process dominates any stochastic process on any se-
quence under any adversarial behavior, completing the proof.

Counting all sequences
Consider the graph G = (V, E) in which we have a node for every
initial position on the ring and every new position created by a join

request. There is a directed edge from v to w if and only if w is
the successor of v on the ring when w is created. Every directed
edge represents an option to follow a certain sequence in a sense
that if we are currently considering Sv (i.e. the s closest successors
of v on the ring) and w becomes the closest successor of v, we may
either choose to continue with Sv (which means to include w into
the old Sv) or to continue with Sw (which means just to stay with
the old Sv).

Certainly, for any adversarial strategy, G is a forest, and every
node w associated with a new position has a directed path from an
initial node v. This path specifies a unique trajectory for a sequence
originally starting with Sv . Let W be the set of nodes visited along
the path from v to w in G (including v and w) and SW be the
sequence associated with it. We also say that W is a witness for
SW . The following crucial fact is easy to see.

FACT 2.9. For every sequence S on the ring at any time there
is a witness W so that S = SW .

Given a sequence S, let b(S) denote the number of black pebbles
in S. Because for any outcome with a sequence S so that b(S) =
b for some b it holds that there exists a W with b(SW) = b, it
holds for any b after any number of join requests executed by the
adversary that

Pr[∃S : b(S) ≥ b] ≤
∑
W

Pr[W] · Pr[b(SW) ≥ b | W]

where the sum sums up over all possible witnesses W and Pr[W]
is the probability that W represents a directed path in G, i.e., SW

is well-defined.
Some of the witnesses are very unlikely to be true, and we there-

fore want to remove them from consideration for the rest of the
proof. Suppose that the initial positions have numbers from 1 to n
and the position created by the jth join request has number n + j.
Thus, any witness W is a subset of M = {1, . . . , n+m}. Let I be
the set of all sets {i, . . . , i+ c log n} ⊂ M for some fixed constant
c > 3. Given any numbers p, p′ ∈ M with p < p′, the probability
that p′ is the successor of p when created is at most 1/n. Hence,
we get:

Pr[∃W ⊆ M : W is true and ∃J ∈ I : |W ∩ J | ≥ c]

≤ (n + m)

(
c log n

c

)(
1

n

)c−1

≤ (n + m)n ·
(

e log n

n

)c−1

≤ n−c+3

Thus, we can ignore in the following witnesses that are too dense
(i.e., that satisfy the property |W ∩ J | ≥ c). In the following, let
W be the set of all sparse witnesses.

Because for any outcome of m join requests there are exactly
n+m witnesses that are well-defined (note that a witness may just
contain an initial position), it holds that

∑
W Pr[W] = n + m.

Thus, if we can show for some b that

max
W∈W

Pr[b(SW) ≥ b | W] ≤ p

n + m

for some p ∈ [0, 1], then Pr[∃S : b(S) ≥ b] ≤ p + n−c+3. Our
goal will be to find a b so that p is polynomially small in n so that
for a polynomial number of join requests it is very improbable that
there ever exists a sequence S with b(S) ≥ b.

Adversaries without S-departures
Consider now some fixed witness W ∈ W . Let Pk be the transition
matrix of the k-rotation rule as implied by the transition probabil-

ities for the various stages in Section 2.2. P2 and P3 have already
been derived above. We use W to define a stochastic process on
a sequence S that is initially equal to Sp where p is the smallest
element (i.e., an initial position) in W . S is initially in state 0. Af-
terwards, we process the numbers n + 1, . . . , m in a consecutive
way starting with n + 1. For each number j ∈ {n + 1, . . . , m},
we check whether j ∈ W . If j ∈ W , then we apply P3 to S, and
if j ∈ W , we apply P2 to S. This has the following justification:

If j ∈ W , then we do not assume anything about the new posi-
tion of j because we will continue to follow the sequence associ-
ated with the current position, and hence we can use the transition
matrix P3 because we are using the 3-rotation rule. If j ∈ W ,
however, then the new position for j is predetermined to be the
new successor of the current position considered by us. Hence, the
transition probabilities in stage 3 are not applicable to the current
sequence S. Using only the transition probabilities of stages 0 to
2 results in the transition matrix P2. If we assume now that the
adversary never removes a pebble from S, then none of the two
cases creates a bias in the pebble distribution in S, and therefore
Lemma 2.2 holds at any time, which implies that the use of P3 for
j ∈ W is indeed correct.

It remains to bound the probability distribution of S after all re-
quests have been processed. For this, we first assume that only P3

is applied to S. In order to obtain an upper bound on the number of
black pebbles in S, we simplify the transition probabilities in P3 to

p′
i,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i · n−s
N2

(
2 − s

N

)
: j = i − 1

(s − i) · 3N−2n
N2 : j = i + 1

(s − i − 1)(s − i) · N−n
N3 : j = i + 2

1 − (p′
i,i−1 + p′

i,i+1 + p′
i,i+2) : j = i

(3)

Since p′
i,i−1 ≤ pi,i−1, p′

i,i+1 ≥ pi,i+1, and p′
i,i+2 ≥ pi,i+2 for

any N ≥ n, Lemmas 2.6 and 2.5 imply that the stationary distribu-
tion of P ′ dominates the stationary distribution of P3, as needed.

Also, notice that the current N used in the system may differ
from join operation to join operation, depending on how many
black pebbles the adversary currently has in the system. How-
ever, it is easy to check that for any two values N1, N2 with N1 <
N2, p′

i,i−1(N1) ≥ p′
i,i−1(N2), p′

i,i+1(N1) ≤ p′
i,i+1(N2), and

p′
i,i+2(N1) ≤ p′

i,i+2(N2). Hence, as a worst case, we can assume
that N is maximal possible in each join operation.

Now, recall that when starting in the state 0 (only white pebbles
are in the sequence S), the stationary distribution π of P ′ domi-
nates the probability distribution of S at any time. Hence, all we
need to do for an upper bound on the worst-case distribution of S
is to find a probability distribution q that dominates π.

In the following, let α = (3N − 2n)/N2, β = (2 − s/N)(n −
s)/N2, γ = (N − n)/N3, and α′ = (1 + δ)α for some δ > 0
determined later. Consider the distribution q with

qi =

(
s

i

)(
α′

α′ + β

)i (
α′

α′ + β

)s−i

for all i ∈ {0, . . . , s}. Then it holds for q′ = q · P ′ that

q′≥i = q≥i − βi · qi + α(s − i − 1)qi−1 +

γ(s − i + 2)(s − i + 1)qi−2

= q≥i − βi · qi +
α · β
α′ i · qi + γ

(
β

α′

)2

i(i − 1)qi

= q≥i −
(

δ

1 + δ
− (i − 1)

γβ

((1 + δ)α)2

)
βi · qi

for all i ≥ 1. Notice that γβ/α2 ≤ 1/N . Hence, q′≥i ≤ q≥i for

all i ≥ 1 if δ is chosen so that δ/(1 + δ) − s/((1 + δ)2N) ≥ 0,
which is true for δ ≥ s/N . Hence, for this δ, q � q · P , and
because of Lemma 2.5 this implies that q � q · P t for any t ≥ 0.
Since q · P t converges against the stationary distribution π of P ′,
it follows that q � π. Hence, according to Lemma 2.7, it follows
that the expected number of black pebbles in S in the stationary
distribution, when using only P3, is at most

α′

α′ + β
s =

1 + 3ε

3 + 3ε
s

up to negligible terms. It remains to show this result cannot be per-
turbed too much by P2-transitions. For this we need three lemmas.
Recall that

(
n
k

)
= [n]k/k! with [n]k = n!/(n−k)!. For any k > n,

[n]k = 0 and therefore also
(

n
k

)
= 0. By definition,

(
0
0

)
= 1.

LEMMA 2.10. Consider any two birth-death processes P and
P ′ on a state space U = {0, . . . , s} with transition probabilities
pi,i+1 = α(s − i), pi+1,i = β(i + 1), p′

i,i+1 = α′(s − i), and
p′

i+1,i = β′(i + 1) for all i ∈ {0, . . . , s − 1}. Any product of ma-
trices out of P and P ′ in which P appears t times and P appears
t′ times results in a stochastic matrix P ′′ with

p′′
i,i−d ≥ [i]d(1 − s · m)d · fd(min[β, β′], max[β, β′])

and

p′′
i,i+d ≤ [s − i]d · fd(max[α, α′], min[α, α′])

for all d ≥ 1 where m = max[α, α′, β, β′]. f1(x, y) = txx + tyy
with tx = t if x ∈ {α, β} and otherwise tx = t′, and for all d ≥ 2,

fd(x, y) =

((
tx + ty

d

)
−
(

ty

d

))
· xmin[d,tx]ymax[d−tx,0]

+

(
ty

d

)
· yd

PROOF. Similar to the proof of Lemma 2.15.

LEMMA 2.11. For any set of constants k ≥ 1, γ1, . . . , γk ≥ 0
and α′′, β′′ ∈ (0, 1), the transition matrix Q = (qi,j) on U =
{0, . . . , s} with qi,j = γj−i(α

′′)j−i[s − i]j−i for any j > i and
qi,j = γi−j(β

′′)i−j [i]i−j for any j < i has a unique stationary
distribution π with

πi =

(
s

i

)(
α′′

α′′ + β′′

)i (
β′′

α′′ + β′′

)s−i

PROOF. Can easily be checked by computing π · P .

LEMMA 2.12. Let the values in Lemma 2.10 be defined as α =
(1+s/N)(3N−2n)/N2 , β = (2−s/N)(n−s)/N2, α′ = (2N−
n)/N2, β′ = (n − s)/N2, t = c(log n − 1), and t′ = c. Let the
values in Lemma 2.11 be given as α′′ = α, β′′ = (1− 2/ log n)β,

and γd =
(

t+t′
d

)
, 1 ≤ d ≤ t + t′. Then it holds that qi,j ≤ p′′

i,j for
all j < i and qi,j ≥ p′′

i,j for all j > i.

PROOF. It is easy to verify that [s − i]dγd(α
′′)d ≥ p′′

i,i+d for
all d ≥ 1. To see that [i]dγd(β

′′)d ≤ p′′
i,i−d, one has to distinguish

between d ≤ (c/2) log n and d ≥ (c/2) log n and use the fact that

f(β′, β) ≥ max[
(

t+t′
d

)
(β′)cβd−c,

(
t
d

)
β].

Thus, the worst-case stationary distribution of our stochastic pro-
cess with P2- and P3-transitions is dominated by a binomial distri-
bution with an expected value of at most (1+3ε)/(3+3ε)s+O(1).
Also, due to Lemma 2.7, the probability that there are more than
(1 + δ) 1+3ε

3+3ε
· s black pebbles in S is polynomially small in n for

any constant δ > 0 if s = O(log n) is sufficiently large, complet-
ing the proof for adversaries without S-departures.

Arbitrary adversaries
The departure of a black pebble can certainly never increase the
number of black pebbles in S, even if the new pebble added to
the right is black, but it can create a bias towards which pebbles
are evicted in stage k. To handle this bias, we compare the pebble
distribution in S = SW for any W due to adversarial strategies
without S-departures with adversarial strategies with S-departures.

Consider any (adaptive or non-adaptive) adversarial strategy A,
and let A∗ be A in which any leave request of a black pebble in
S is replaced by a leave request of any black pebble outside of
S. To make sure that this is always possible, we assume for A∗

that initially s randomly selected white pebbles are converted into
black pebbles. In this way, A∗ will never run out of black pebbles
outside of S, no matter what A is doing. Our aim will be to show
that at any time, the probability distribution over the number of
black pebbles in S w.r.t. A∗ dominates the probability distribution
over the number of black pebbles in S w.r.t. A. This allows us
to reduce arbitrary adversaries to adversaries that never remove a
black pebble from S, as desired.

A configuration of S is represented by a tuple (v, m) where v ∈
{0, 1}s represents the distribution of white and black pebbles in S
(0:white, 1:black) and m denotes the total number of black pebbles
in the system. Let Γ be the set of all possible configurations of S,
and let pj : Γ → [0, 1) (resp. p∗

j : Γ → [0, 1)) be the probability
distribution over Γ after the jth request of A (resp. A∗). Given
two configurations C = (v, m) and C′ = (v′, m′), we say that C
dominates C′, or C � C′, if and only if v � v′ (which is defined
here as

∑i
j=1 vj ≥ ∑i

j=1 v′
j for all i) and m = m′ + s. We will

show the following lemma.

LEMMA 2.13. For any adversarial strategy A, there is a prob-
ability distribution qj : Γ2 → [0, 1) for every j ≥ 0 so that
C∗ � C for every pair (C, C∗) ∈ Γ2 with qj(C, C∗) > 0,∑

C∗∈Γ qj(C, C∗) = pj(C) for all C ∈ Γ, and
∑

C∈Γ qj(C, C∗)
= p∗

j (C
∗) for all C∗ ∈ Γ.

PROOF. We prove the lemma by induction on j. For j = 0, the
lemma is certainly true because for A there are initially only white
pebbles in S. So let us assume that for some j ≥ 0 the lemma
is already true. Then we will show that it is also true for j + 1.
The (j + 1)st operation of A can be either a join request or a leave
request.

Join requests. First, suppose that it is a join request. We ana-
lyze the effect of such a request by introducing transitional con-
figurations. A transitional configuration C is a tuple (v, h, m) ∈
{0, 1}s+1 × IN0 where v represents the pebble distribution in S,
h represents the state of the homeless pebble, and m is the total
number of black pebbles in the system. Let Ω be the set of all tran-
sitional configurations. For two configurations C, C′ ∈ Ω we say
that C � C′ if and only if v � v′, h ≥ h′, and m = m′ + s.

CLAIM 2.14. Given any two transitional configurations C, C∗ ∈
Ω with C∗ � C at the beginning of stage t of the join request,
it holds at the end of stage t: there is a probability distribution
q : Ω2 → [0, 1) so that D∗ � D for every pair (D, D∗) ∈ Ω2 with
q(D, D∗) > 0,

∑
D∗∈Ω qj(D, D∗) = PrA[D] for all D ∈ Ω, and∑

D∈Ω q(D, D∗) = PrA∗ [D∗] for all D∗ ∈ Ω.

PROOF. Consider any pair (C,C∗) ∈ Ω2 with C∗ � C. Let
C = (v, h, m) and C∗ = (v∗, h∗, m∗). If t = k, i.e., the homeless
pebble is inserted into a new position, then it is easy to check that
for any position i in which the homeless pebble is placed in v and

v∗, the outcome w of v and the outcome of w∗ of v∗ satisfy w∗ �
w. Hence, it remains to consider the case t < k.

Consider any fixed extension of v to the pebbles outside of S and
any fixed extension of v∗ in C∗ to the pebbles outside of S so that v
and v∗ are both elements of {0, 1}n+m. We require a permutation
π on {1, . . . , n + m} satisfying the following conditions:

For all i, π(π(i)) = i (i.e., π is a set of transpositions); for all i,
v∗

i ≥ vπ(i); for all i ≤ s with v∗
i < vi, π(i) < i; and for all i ≤ s

with π(i) < i, v∗
π(i) > vπ(i).

Since the positions 1 to s belong to S, v∗ � v, and m∗ = m+s,
all conditions can be satisfied.

For any i ∈ {1, . . . , n + m} let w∗(i) be the outcome of re-
placing the pebble in position i of v∗ and w(i) be the outcome of
replacing the pebble in position π(i) of v. Then it follows from our
definition of π that w∗(i) � w(i) (w.r.t. the first s positions) for
every i. Also for the two new homeless pebbles h∗(i) and h(i) it
holds that h∗(i) ≥ h(i). Since every position i is equally likely to
be selected for the replacement, the claim holds also for t < k.

It immediately follows from the claim that join requests satisfy
the lemma.

Leave requests. Suppose that the (j+1)st operation of A is a leave
request. Consider any two configurations C = (v, m) and C∗ =
(v∗, m∗) with C � C∗, and let D resp. D∗ be the configurations
after executing the leave request of A resp. A∗. If A removes a
black pebble outside of S, then it follows that D = (v, m − 1)
and D∗ = (v∗, m∗ − 1), and hence D∗ � D. Otherwise, a black
pebble is removed from v but no black pebble is removed from
v∗. In this case, it is easy to verify that v∗ � v and therefore also
D∗ � D.

Hence, the induction step is true, which concludes the proof of
the lemma.

Given any adversarial strategy A, let the random variable Xj

(resp. X∗
j) denote the number of black pebbles in S after the jth

join request of A (resp. A∗). Lemma 2.13 immediately implies
that Pr[Xj ≥ b] ≤ Pr[X∗

j ≥ b] for any j and any b ∈ {1, . . . , s}.
Hence, it suffices for our upper bound to focus only on adversarial
strategies that never remove a black pebble from S. Since removals
of pebbles outside of S do not affect S, we can ignore these and
therefore only need to study the effect of join requests on S. Hence,
our analysis above for the case that an adversary never removes a
pebble from S captures indeed the worst case that can happen to a
sequence, which finishes the proof.

2.4 Outcome for k > 3
We only sketch the upper bound for all even k > 3, but using the

techniques of the previous section, it is not difficult to extend it to
all k ≥ 3. Also a matching lower bound can be shown by providing
a counterpart of Lemma 2.15 with slightly changed bounds.

Consider some fixed sequence S of length s. Since Lemma 2.13
holds for arbitrary k, it suffices for the worst possible distribution
of black pebbles in S to study only adversaries that remove black
pebbles outside of S. Hence, we only need to focus on the effect of
join operations on S. The following lemma bounds the transition
probabilities of the k-rotation rule. As before, let N denote the
maximum number of pebbles in the system.

LEMMA 2.15. For any k > 3, it holds for the transition matrix
P = (pi,j) of the k-rotation rule that for all d ≥ 1,

pi,i−d ≥ [i]d
Nd

(
1 − s · k

N

)d (
n − ks

N

)d
(

k − d

d

)

and

pi,i+d ≤ [s − i]d
Nd

(
N − n

N

)d−1
((

k − d

d − 1

)
+

N − n

N

(
k − d

d

))

PROOF. Given that the system starts in state (i, 0), it can be
shown by induction that for every t ≥ 1, the probability distribution
q(t) at the beginning of stage t satisfies q

(t)

(i,0) ≥ n−ks
N

and q
(t)

(i,1) ≤
N−n

N
. Hence, the probability moved from (i, 1) to (i + 1, 0) is at

most s−i
N

at stage 1 and at most s−i
N

· N−n
N

at all subsequent stages.
Using this as the basis, it can be shown by induction on d ≥ 2 that
at stage t ≥ 2d − 1, a probability of at most

[s − i]d
Nd

(
N − n

N

)d−1
((

t − d − 1

d − 2

)
+

N − n

N

(
t − d − 1

d − 1

))

is moved from (i + d − 1, 1) to (i + d, 0). Summing up over all t
gives the bound on pi,i+d.

For the probability flow to lower states, note that for any flow
from (j, 0) to (j − 1, 1), at most a fraction of sk

N
will leave the

states (j − 1, 0) and (j − 1, 1) over the remaining stages. Hence,
by induction on d ≥ 1, it can be shown that at any stage t ≥ 2d, at
least a probability of

[i]d
Nd

(
1 − s · k

N

)d (
n − ks

N

)d
(

t − d − 1

d − 1

)

will flow from (i− d+1, 0) to (i− d, 1) that will stay at (i− d, 0)
or (i− d, 1). Summing up over these probabilities gives the bound
on pi,i−d.

Now, consider the transition matrix P ′ = (p′
i,j) with

p′
i,j =

⎧⎪⎨
⎪⎩

i
N

· (1 − sk
N

)
n−ks

N
(k − 1) : j = i − 1

s−i
N

· (1 + N−n
N

(k − 1)
)

: j = i + 1

1 − (p′
i,i−1 + p′

i,i+1) : j = i

Our goal will be to show that for any even k > 3, the stationary
distribution of P ′ dominates the stationary distribution of P . In
order to do this, we need the following lemma.

LEMMA 2.16. Let α′′ = 1
N

(1+ N−n
N

(k−1)) and β′′ = 1
N

(1−
ks
N

)n−ks
N

(k−1) and let γd =
(

k−d
d

)
/(k−1)d for all d ≥ 1. Then

it holds for the system Q in Lemma 2.11 that qi,j ≤ pi,j for all
j < i and qi,j ≥ pi,j for all j > i.

PROOF. It is easy to verify that γd(β
′′)d[i]d ≤ pi,i−d for all

d ≥ 1. Furthermore, γd(α
′′)d[s − i]d ≥ pi,i+d for all d ≥ 1

because

γd

(
1 +

N − n

N
(k − 1)

)d

≥ γd

((
d

1

)(
N − n

N
(k − 1)

)d−1

+

(
N − n

N
(k − 1)

)d
)

=

(
N − n

N

)d−1
((

k − d

d − 1

)
+

N − n

N

(
k − d

d

))

Combining this with Lemmas 2.11 and 2.16 implies that the sta-
tionary distribution of P ′ indeed dominates the stationary distribu-
tion of P . Thus, it follows from Lemma 2.7 and the arguments in

Section 2.3 that the expected number of black pebbles in a sequence
S of length s is at most

kN − (k − 1)n

kN − (k − 1)n + (k − 1)n
· s + O(1) =

1 + kε

k + kε
· s + O(1)

Also, following along the lines of the proof for k = 3, the proba-
bility that there are more than (1 + δ) 1+kε

k+kε
s black pebbles in S is

polynomially small in n for any constant δ > 0 if s = O(log n) is
sufficiently large.

3. CONCLUSIONS
In this paper we only showed how to make a ring robust against

adaptive join-leave attacks. Further research is needed to investi-
gate strategies that can also handle join-leave attacks for other types
of networks. For example, many peer-to-peer systems are based on
the concept of virtual space, for which the k-rotation rule does not
work because the node IDs have to be kept well-spread in the vir-
tual space. As another example, if we want to maintain a dynamic
random graph, we do not just have to make sure that each honest
node has only a small constant fraction of its edges to adversarial
nodes, with high probability, but we also have to make sure that
those edges that it has to honest nodes are still sufficiently random.

Acknowledgements
I would like to thank Baruch Awerbuch for suggesting to me to
work on scalable, proactive security mechanisms for peer-to-peer
systems and for many helpful discussions.

4. REFERENCES
[1] I. Abraham and D. Malkhi. Probabilistic quorums for dynamic

systems. In Proc. of the 18th Annual Conference on Distributed
Computing (DISC), 2003.

[2] J. Aspnes and G. Shah. Skip graphs. In Proc. of the 14th ACM
Symp. on Discrete Algorithms (SODA), pages 384–393, 2003.

[3] B. Awerbuch and C. Scheideler. Group Spreading: A protocol for
provably secure distributed name service. In Proc. of the 31st
International Colloquium on Automata, Languages and
Programming (ICALP), 2004.

[4] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness
theorem for non-cryptographic fault tolerant distributed computing.
In Proc. of the 20th ACM Symp. on Theory of Computing (STOC),
1988.

[5] D. Boneh and M. Franklin. Efficient generation of shared RSA keys.
In Proc. of CRYPTO 97, pages 425–539, 1997.

[6] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl.
Asynchronous verifiable secret sharing and proactive cryptosystems.
In Proc. of the 9th ACM Conference on Computer and
Communications Security (CCS), 2002.

[7] R. Canetti, R. Gennaro, A. Herzberg, and D. Naor. Proactive
security: Long-term protection against break-ins. RSA CryptoBytes,
3(1):1–8, 1997.

[8] R. Canetti, S. Halevi, and A. Herzberg. Maintaining authenticated
communication in the presence of break-ins. Journal of Cryptology,
13(1):61–106, 2000.

[9] R. Canetti and A. Herzberg. Maintaining security in the presence of
transient faults. In Proc. of CRYPTO 94, pages 425–438, 1994.

[10] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wallach.
Security for structured peer-to-peer overlay networks. In Proc. of the
5th Usenix Symp. on Operating Systems Design and Implementation
(OSDI), 2002.

[11] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable
secret sharing and achieving simultaneity in the presence of faults. In
Proc. of the 26th IEEE Symp. on Foundations of Computer Science
(FOCS), pages 383–395, 1986.

[12] C.S. Chow and A. Herzberg. Network randomization protocol: A
proactive pseudo-random generator. In Proc. of the 5th USENIX
UNIX Security Symposium, pages 55–63, 1995.

[13] S. Crosby and D. Wallach. Denial of service via algorithmic
complexity attacks. In Usenix Security, 2003.

[14] P. Diaconis and M. Shahshahani. Generating a random permutation
with random transpositions. Z. Wahrscheinlichkeitstheorie
verw. Gebiete, 57:159–179, 1981.

[15] J. R. Douceur. The sybil attack. In Proc. of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[16] P. Druschel and A. Rowstron. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Proc. of
the 18th IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware 2001), 2001. See also
http://research.microsoft.com/∼antr/Pastry.

[17] Y. Frankel, P. Gemmell, P. MacKenzie, and M. Yung. Proactive RSA.
In Proc. of CRYPTO 97, 1997.

[18] Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Optimal
resilience proactive public-key cryptosystems. In Proc. of the 38th
IEEE Symp. on Foundations of Computer Science (FOCS), pages
384–393, 1997.

[19] R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. The round
complexity of verifiable secret sharing and secure multicast. In
Proc. of the 33rd ACM Symp. on Theory of Computing (STOC),
pages 580–589, 2001.

[20] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold
DSS signatures. Information and Computation, 164(1):54–84, 2001.

[21] R. Gennaro, M. Rabin, and T. Rabin. Simplified VSS and fast-track
multiparty computations with applications to threshold cryptography.
In Proc. of the 17th ACM Symp. on Principles of Distributed
Computing (PODC), pages 101–111, 1998.

[22] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung.
Proactive secret sharing, or: How to cope with perpetual leakage. In
Proc. of CRYPTO 95, pages 339–352, 1995.

[23] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung.
Proactive public key and signature systems. In Proc. of the ACM
Conference on Computer and Communications Security (CCS),
pages 100–110, 1997.

[24] U. Nadav and M. Naor. Fault tolerant storage in a dynamic
environment. In Proc. of the 18th Annual Conference on Distributed
Computing (DISC), 2004.

[25] M. Naor and U. Wieder. Scalable and dynamic quorum systems. In
Proc. of the 22nd ACM Symp. on Principles of Distributed
Computing (PODC), 2003.

[26] S. Nielson, S. Crosby, and D. Wallach. Kill the messenger: A
taxonomy of rational attacks. In Proc. of the 4th International
Workshop on Peer-to-Peer Systems (IPTPS), 2005.

[27] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks.
In Proc. of the 10th ACM Symp. on Principles of Distributed
Computing (PODC), pages 51–59, 1991.

[28] T. Rabin. A simplified approach to threshold and proactive RSA. In
Proc. of CRYPTO 98, 1998.

[29] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
scalable content-addressable network. In Proc. of the ACM
SIGCOMM ’01, 2001.

[30] C. Scheideler. Probabilistic Methods for Coordination Problems.
HNI-Verlagsschriftenreihe 78, University of Paderborn, 2000. See
also http://www.cs.jhu.edu/∼scheideler.

[31] E. Sit and R. Morris. Security considerations for peer-to-peer
distributed hash tables. In Proc. of 1st International Workshop on
Peer-to-Peer Systems (IPTPS), 2002.

[32] M. Srivatsa and L. Liu. Vulnerabilities and security threats in
structured overlay networks: A quantitative analysis. In Proc. of the
20th IEEE Computer Security Applications Conference (ACSAC),
2004.

[33] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for Internet
applications. In Proc. of the ACM SIGCOMM ’01, 2001. See also
http://www.pdos.lcs.mit.edu/chord/.

[34] B.Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing.
Technical report, UCB/CSD-01-1141, University of California at
Berkeley, 2001. See also
http://www.cs.berkeley.edu/∼ravenben/tapestry.

