
Group Spreading: A Protocol for

Provably Secure Distributed Name Service

Baruch Awerbuch� and Christian Scheideler��

Department of Computer Science, Johns Hopkins University, 3400 N. Charles Street,
Baltimore, MD 21218, USA, {baruch,scheideler}@cs.jhu.edu

Abstract. This paper presents a method called Group Spreading that
provides a scalable distributed name service that survives even mas-
sive Byzantine attacks. To accomplish this goal, this paper introduces
a new methodology that essentially maintains a random distribution of
all (honest and Byzantine) peers in an overlay network for any sequence
of arrivals and departures of peers up to a certain rate, under a rea-
sonable assumption that Byzantine peers are a sufficient minority. The
random distribution allows to proactively protect the system from any
adversarial attack within our model.

1 Introduction

The Internet was originally designed for the purpose of being extremely robust
against hardware attacks, such as natural disasters or wars. However, software
attacks (such as viruses, worms, or denial-of-service attacks) have become in-
creasingly severe over the past few years, whereas hardware attacks are negligi-
ble. Thus, for any distributed application to run reliably on the Internet, it is of
utmost importance that it is robust against adversarial software attacks. This is
especially important for critical applications such as name service, i.e. a service
that translates names such as “machine.cs.school.edu” into IP addresses so that
machines can communicate with each other.

The current way name service is provided in the Internet is server-based.
However, server-based architectures are vulnerable to attacks. A much more
robust alternative appears to be the recently emerged peer-to-peer paradigm
with its strictly decentralized approach. Unfortunately, despite the appeal of a
decentralized approach, it appears to be a daunting task to develop peer-to-
peer networks that are robust against adversarial attacks. Obviously, in an open
environment any attempt to keep adversarial peers out of the network is doomed
to failure because a priori there are no trust relationships that would allow to
distinguish adversarial peers from honest peers. So one approach has been to
at least limit the number of identities adversarial peers can obtain. Here, the
use of a certification authority was suggested that requires credentials, sensitive
information, or a payment to obtain an identity that allows the peer to join the
� Supported by NSF grant ANIR-0240551 and NSF grant CCR-0311795.

�� Supported by NSF grant CCR-0311121 and NSF grant CCR-0311795.

system (e.g., [3]). However, being overly restrictive here would not only prevent
adversarial peers but also many honest peers from joining the system, either
because they cannot provide the necessary credentials or they are not willing
to reveal sensitive information or to pay for their membership. Thus, it should
be clear that without being overly restrictive, a certification authority will be
ineffective in limiting the number of identities adversarial peers may obtain,
allowing them to start so-called Sybil attacks [6] that can cause severe problems
to all structured peer-to-peer systems that have been suggested so far. Hence,
new designs are needed that provide reliability despite adversarial peers with a
potentially unlimited number of identities.

The goal of this paper is to demonstrate that it is possible, under certain
simplifying assumptions, to design completely open peer-to-peer systems that are
provably robust against adversarial peers of arbitrary behavior with an unlimited
number of identities, as long as the adversarial peers in the system (or more
precisely, their currently active identities) are in a sufficient minority.

1.1 Distributed name service

A peer is defined as an entity with a unique identity, i.e. each peer p is uniquely
identified by a tuple (Name(p), IP(p)) where Name(p) represents the name of p
and IP(p) represents the IP address of p. In order to provide a distributed name
service, the following operations have to be implemented:

– Join(p): peer p wants to join the system.
– Leave(p): peer p wants to leave the system.
– Lookup(Name): returns the IP address of the peer p in the system with

Name(p) = Name, or NULL if there is no such peer.

These operations must be implemented so that they can be run concurrently
and reliably in an asynchronous environment without any trust relationships in
which adversarial peers have an unlimited number of identities at their disposal
and behave in an arbitrary way (i.e. we allow Byzantine peers). To formalize
this goal, we need a model (see also [1] for further details and motivation).

1.2 Security model

We consider a peer to be adversarial if it belongs to an adversary or it is sim-
ply unreliable. Otherwise, a peer is called honest. We do not assume any prior
trust relationships between the peers. Hence, a priori honest peers cannot be
distinguished from adversarial peers.

Certification authority. A necessary requirement for a name service as defined
above to work correctly is that every possible name x has at most one peer p
with Name(p) = x, i.e. the Lookup operation provides a unique peer for a given
name (if such a peer is currently in the system). To guarantee this property,
an authority is needed that resolves conflicts among the peers and that prevents

peers from taking over names of other peers. Thus, we assume that a certification
authority is available that issues certified names to peers that want to enter the
system and that only provides such a name if no peer has registered under that
name before. Certified names allow peers to prove that they are the rightful
owner of a name, which prevents peers from taking over the identities of other
peers.

Semantics of Join, Leave, and Lookup. Join, Leave, and Lookup are oper-
ations acting on a name service relation DNS ⊆ Names × IPs in the following
way:

– Join(p): if this operation was initiated by IP(p) and p is correctly certified
then DNS← DNS ∪ {(Name(p), IP(p))}

– Leave(p): if this operation was initiated by IP(p) then DNS← DNS\{(Name(p),
IP(p))}

– Lookup(Name): if there is a peer q with (Name, IP(q)) ∈ DNS then return
IP(q) and otherwise return NULL

Given that the certification authority maintains a mapping CA : Names → IPs
that is well-defined at any time (i.e. each name is associated with at most one IP
address), also the lookup operation will be well-defined. Indeed, if the operations
above are correctly implemented and executed, then DNS ⊆ CA at any time and
DNS consists of all identities currently present in the peer-to-peer system.

Notice that there are many ways for adversarial peers to attack the correct-
ness of DNS: adversarial peers may execute Join(p) for honest peers currently
not in the system or Leave(p) for honest peers currently in the system, or may
leave the system without notice. Also, adversarial peers may attempt to provide
a wrong answer to a lookup operation. So countermeasures have to be taken to
protect the system against these attacks.

Network model. Our basic approach is to organize peers in a scalable overlay
network in which every peer may be represented by multiple logical units called
nodes. We allow arbitrary adversaries with bounded resources, i.e. the number
of adversarial nodes is at most an ε-fraction of the honest nodes in the system
at any time. Such adversaries are called ε-bounded.

We consider asynchronous systems in which every honest peer has the same
clock speed but the clocks are not synchronized and there is no global time.
Since honest peers are considered reliable, we assume that at any point in time,
any message sent by an honest peer p to another honest peer q will arrive at
q within a unit of time. (Other message transmissions may need any amount
of time.) Furthermore, honest peers have unbounded bandwidth and computa-
tional power, i.e. an honest peer can receive, process, and send out an unbounded
number of messages in a unit of time. The latter assumption allows us to ignore
denial-of-service attacks, but it does not simplify the task of securing an overlay
network against legal attacks (i.e. attacks exploiting security holes in its pro-
tocols). As long as adversarial peers do not transmit unnecessary packets, the

number of messages an honest peer will have to deal with in a time unit will
normally be low so that we believe that our protocols are practical despite this
assumption. Designing provably secure overlay networks for honest peers with
bounded bandwidth is very challenging and needs further research.

Bootstrap peers. We assume that the certification authority provides a limited
number of so-called bootstrap peers that are always part of the overlay network.
This list of peers may be downloaded by a new peer when it registers its name so
that it can contact one of the bootstrap peers without contacting the certification
authority again. Bootstrap peers are like normal peers. For the Join protocol to
work correctly we assume that at least one of the bootstrap peers is honest.
Otherwise, there is no reliable way for a new peer to join the system. However,
the Leave and Lookup protocols should not rely on the bootstrap peers so that
the system is scalable and can work correctly under ε-bounded adversaries even
if all bootstrap peers are adversarial.

In this paper, we will assume that all bootstrap peers are honest.

Messages. Finally, we need some assumptions about how messages are passed.
We assume that the (IP address of the) source of a message cannot be forged so
that adversarial peers cannot forge messages from honest peers (which can easily
be achieved). Also, a message sent between honest peers cannot be deleted or
altered by the adversary (because peers normally sit at the edge of the network).

1.3 Security goal

Recall that our security goal is to implement the Join, Leave, and Lookup op-
erations so that they can be run concurrently and reliably in an asynchronous
environment. More precisely, any of these operations executed by any of the
honest peers in the system should be executed in a correct and efficient way. “In
the system”, “correct” and “efficient” require precise definitions.

A Join(p) (resp. Leave(p)) operation is called completed if any Lookup(Name(p))
operation executed afterwards by an honest peer in the system (and before an-
other Join(p) or Leave(p) operation) returns IP(p) (resp. NULL). A peer p is
called mature if Join(p) has been completed and Leave(p) has not been initiated
yet. A Lookup(Name) operation is called completed once the peer initiating the
request accepts the return value.

An overlay network operation is said to execute correctly if it completes within
a finite amount of time. Furthermore, an overlay network operation is called

– work-efficient if it is completed using at most polylog(N) messages and
– time-efficient if it is completed using at most polylog(N) time,

where N be the current number of nodes in the overlay network. The following
definition is central to this paper.

Definition 1. We call an overlay network survivable if, when starting with a
consistent system of n honest nodes (i.e. there are no pending join or leave re-
quests) and N ≥ n at any time afterwards, it can guarantee the correct and (time
and work) efficient execution of any overlay network operation initiated by an
honest peer for poly(n) time steps, with high probability, for any 1/polylog(N)-
bounded adversary and a join/leave rate of up to 1/polylog(N), i.e. at least
N/polylog(N) peers may join or leave the network in a time unit.

Notice that we only require correct and efficient executions for honest peers,
i.e. we do not care whether the semantics of Join, Leave, or Lookup are violated for
adversarial peers. For example, a Lookup(Name) request for some Name owned
by an adversarial peer q is allowed to give inconsistent answers, i.e. some honest
peers may receive the answer IP(q) and others may receive the answer NULL.

Also, notice that we have to add the term “with high probability” above,
because we said that a priori, it is not possible to distinguish between honest and
adversarial peers. So no absolute guarantees can be given, unless we completely
interconnect all peers, which is highly inefficient and therefore out of question.

1.4 Existing work

Classical distributed computing methods [12, 4, 13, 16] use Byzantine agreement
and two-phase commit approaches with inherently linear redundancy and over-
head to maintain a consistent state.

The proactive security approach in [15, 11, 10, 2, 9] uses different coding tech-
niques to protect unreliable data in reliable networks; applying these methods
in our context still yields linear overhead.

Fixed topology networks as in [8], will work only for non-Byzantine peers, and
only allow fail-stop faults; the construction cannot handle malicious behavior of
even a few malicious players.

The reliability of hash-based peer-to-peer overlays (or DHT’s) such as Chord
[17], Pastry [7], and Tapestry [18] hinges on the assumption that the IDs given to
the nodes are pseudo-random, so that they can cope with a constant fraction of
the nodes failing concurrently, with only logarithmic overhead. While this may
seem to perfectly defeat massive attacks under these randomness assumptions,
DHT’s cannot handle even small-scale adaptive adversarial attacks involving
the selection of adversarial IP addresses (to get close to desired IDs). One such
“Sybil” attack is described in [6]. Remarkably, the attackers do not need to do
anything complex such as inverting the hash function; all that is needed is to get
hold of a handful (actually, logarithmic) number of IP addresses so that IDs can
be obtained that allow to disconnect some target from the rest of the system.
This can be accomplished by a linear number (i.e. O(n)) of offline trial/errors.
For similar attacks, see [5].

Random or unpredictable placement of data in a logarithmic size subset of
locations (as in Freenet) ensures that data is difficult to attack, but also makes it
difficult to retrieve. Specifically, data retrieval of randomly placed data requires
a linear number of queries, which is definitely unscalable.

Recently, an overlay network design for robust distributed name service has
been suggested [1] that satisfies all criteria of survivability apart from work-
efficiency; the work overhead can be close to linear.

2 Non-survivable overlay networks

In this section we prove that predictable overlay networks and hash-based overlay
networks (i.e. networks in which the ID of a node is determined by a hash
function) are not survivable. Furthermore, we show that being able to enforce
a limited lifetime is crucial for the survivability of systems based on a virtual
space, like hash-based systems.

2.1 Predictable overlay networks

An overlay network is predictable if for any fixed join/leave sequence of peers the
topology will always be the same in a consistent state. Notice that all hash-based
overlay networks with a fixed hash function are predictable.

We start this section by demonstrating that no predictable overlay network
can be survivable under our definition of survivability.

Theorem 1. Consider an arbitrary predictable overlay network of maximum
(peer) degree d that can handle any sequence of N join/leave requests of peers
in T time units. Then there is a join/leave sequence of 2N peers so that an
ε-bounded adversary with ε ≥ d/N can isolate an honest peer in O(T) steps.

Proof. The proof is relatively easy. First, 2N honest peers join, and afterwards
the first N peers that joined the network leave. This takes O(T) time steps.
Consider now any peer in the resulting network, say v, and let w1, . . . , wd be its
neighbors. Then, consider the join/leave sequence of honest peers that is like the
sequence above but without w1, . . . , wd. Assign the join events for w1, . . . , wd to
the adversary. Then we arrive at the situation that v is completely surrounded
by adversarial peers. This sequence always works because the overlay network is
predictable. Hence, the theorem follows. �	

2.2 Hash-based overlay networks

Hash-based overlay networks are vulnerable to adversarial attacks even if the
hash function is chosen at random, and it is a one-way hash function. The mere
fact that peers do not change their location over time turns them into “sitting
ducks”. To illustrate how an attack on hash-based approaches would look like,
consider the Chord system.

Suppose that we have a system currently consisting of a set V of n nodes,
each representing a peer, and further suppose we have a (pseudo-)random hash
function h : Names → [0, 1) that maps nodes to real values in the [0, 1) ring.
The real value a node v is mapped to is called its identification number or ID

and denoted by ID(v). The basic structure of Chord is a doubly-linked cycle,
the so-called Chord ring, in which all nodes are ordered according to their IDs.
In addition to this, every node v has edges to nodes fi(v), called fingers, with
fi(v) = argmin{w ∈ V | ID(w) ≥ ID(v) + 1/2i} for every i ≥ 1 ([0, 1) is treated
as a ring here).

Now, take any node v in Chord with hash value x ∈ [0, 1). By generating
a set A of adversarial nodes with hash values in [x − ε, x], [x, x + ε], and [x +
1/2i, x + 1/2i + ε] for all relevant i where ε > 0 is sufficiently small, v will have
no node pointing to it any more, and all nodes v is pointing to belong to A,
with high probability. Hence, the peer p of v will effectively be isolated from the
rest of the system. Notice that even a relatively modest adversary can come up
with such a set A, even if the hash function is not invertible. It just has to try
enough values (which is easily possible with SHA-1; the fact that the hash values
may depend on IP addresses is not a limitation, because with IPv6 there will be
plenty of them available – even for private users). Also, notice that an adversary
just has to know the IP address of p (to compute x and) to start an attack on p.

2.3 Problems with unlimited lifetime

Also truly random IDs do not help as long as no node can be excluded from the
system against its will, even if there is a secure mechanism for enforcing such an
ID on every node that joins the system.

All hash-based systems are based on the concept of a virtual space. The basic
idea underlying these systems is that nodes are given virtual locations in some
space, and the overlay network is constructed based on these virtual locations.
That is, depending on its virtual location, a node aims to maintain connections
to other virtual locations and does this by establishing pointers to the nodes
closest to these locations. See, e.g., [14] for a general framework behind this
approach.

Thus, all an adversary has to do to attack such a system is to throw new
nodes into the system at a maximum possible rate and to keep only those nodes
that obtain IDs in regions the adversary intends to take over. Hence, unlimited
lifetime can result in a fast degradation of randomness.

3 Outline of the Group Spreading Protocol

Finally, we give an outline of the Group Spreading Protocol that avoids the
problems above. The details can be found in a full paper.

3.1 Basic approach

We start with some basic definitions. Recall that a peer is an entity with a unique
name and a node is a logical unit in the system with a unique ID. A peer may
have multiple nodes in the system. However, honest peers will limit their nodes
to O(log Nt), where Nt denotes the number of honest nodes in the system at

time t. A node is called honest if it belongs to an honest peer. We assume that
honest nodes execute our protocols in a faithful and reliable way. Adversarial
nodes may do anything. (Recall that we only have to worry about legal attacks
because honest nodes have infinite bandwidth.) A region is an interval of length
1/2r in [0, 1) for some integer r ≥ 0 that starts at an integer multiple of 1/2r.
The core ideas behind the Group Spreading protocol are:

1. every honest peer aims to maintain a group of Lp = Θ(log Nt) nodes of
consecutive remaining lifetimes from 1 to Lp time steps,

2. every honest node v maintains connections to all reliable nodes in all regions
of size 1/2rv = Θ(log Nt) containing ID(v) ± 1/2i for some i ≥ 0

3. the system enforces a random ID in [0, 1) on every node, and
4. the system enforces a lifetime of O(log Nt) on every node.

The reason for item 1 is that Group Spreading uses a simple ID generation
mechanism that enforces the selection of a random ID if it terminates. But this
mechanism may not terminate if adversarial nodes are involved in it. Thus, every
honest peer keeps a group of Θ(log Nt) nodes in the system so that, with high
probability, sufficiently many nodes of a peer will be in regions without a close-
by adversarial node, and therefore the ID generation mechanism can terminate
in these regions.

Using this approach, we can prove the following theorem.

Theorem 2. Group Spreading survives up to a Θ(1/ log N) fraction of ad-
versarial nodes with O(log N) time and O(polylogN) work per operation as long
as the join/leave rate of honest nodes is O(1/ log N) and the join rate of adver-
sarial nodes is O(1/ log2 N).

Next we sketch the proof of this theorem. We start with some notation that
we will frequently use, followed by some basic assumptions. Afterwards, we sketch
the protocols and their analysis.

3.2 Notation

– rv: range of a node v, selected upon creation of v by a node w so that w’s
view (i.e. the nodes it knows) of the region of size 1/2rv containing ID(w) is
as close as possible to ρ(rv − log rv) for some fixed constant ρ

– Lv: maximum lifetime of a node v, computed as Lv = λ · rv for some fixed
constant λ

– Lp: (3/4)minv∈p Lv

– L̂ = maxv Lv and � = minv Lv over all nodes in the system
– p = (Name(p), IP(p)): represents a peer
– v = (p(v), ID(v), rv): represents a node, where p(v) is the peer owning v
– Γv,t: all nodes v is connected to at time t
– Ri(v): the unique region of size 1/2rv containing ID(v) + sgn(i)/2|i|

– m = (Source(m), Dest(m)): represents a message
– B: set of bootstrap peers

– At: nodes that are part of a join operation of a peer at time t

– Dt: nodes that are part of a leave operation of a peer at time t
– Ct: nodes whose creation is started at time t

– Mt: nodes that are mature at time t (i.e. their creation is completed)
– Vt: nodes that are legal members at time t (i.e. they have a connection to an

honest node in the system)

Given a set of nodes S, Sh denotes the set of honest nodes in S and Sa denotes
the set of adversarial nodes in S. So Nt = |V h

t |. Furthermore, given a set of
nodes S and a region R ⊆ [0, 1), S(R) denotes the set of nodes in S with IDs in
region R. Given a set St and a time interval I, SI =

⋃
t∈I St.

3.3 Prerequisites

There is a sufficiently small constant ε > 0 so that for all t ≥ 0,

P1 B ⊆ V h
t ,

P2 |Ah
t ∪Dh

t | ≤ ε ·Nt/ log Nt,
P3 |Aa

t | ≤ ε ·Nt/ log2 Nt, and
P4 |V a

t | ≤ ε ·Nt/ logNt.

Suppose that the adversary has bounded resources (concerning computational
cycles and bandwidth). Then, in practice, conditions P3 and P4 could be enforced
by presenting computational challenges or Turing tests to new nodes that are
created via bootstrap peers and by continuously checking connections to other
nodes in the system. If a peer does not respond in time, its request for creating a
node is ignored by the bootstrap peer, resp. the connection to the corresponding
node is removed.

3.4 Creating a new node

Suppose that a node u wants to create a new node v. Then u calls the Create
operation, which does the following. (t denotes the current time step.)

1. ID generation stage:
(a) u sends an ID generation request to all nodes in G = Γu,t(R0(u)), then

waits for Lu/3 steps, and afterwards asks the nodes in G to compute the
ID and send it to u. If u has not received the same ID x from ≥ |G|/5
nodes within O(1) steps, it aborts the protocol. Otherwise, u continues
with the authorization stage.

(b) Each node w ∈ G receiving an ID request, generates a random xw and
sends h(xw) (for some bit commitment scheme h) to all nodes in R0(u).
Afterwards, it waits for Lu/3 + O(1) steps during which it accepts com-
mitments from other nodes till u sends an ID computation request to w.
If w has not heard back from u by then, it aborts the protocol.

(c) Each node w ∈ G receiving an ID computation request from u waits
until Lu/3 steps are over since it received the ID generation request and
then sends xw to all nodes in G. If w receives all xw′ for all h(xw′) it
received before within O(1) steps, it computes x =

⊕
w′ xw′ (including

xw) and sends x to u. Otherwise, it aborts the protocol.
2. Authorization stage:

(a) u computes rv and sends an authorization request with (x, rv) to all
nodes in G.

(b) Each node w ∈ G that sent u the same x O(1) steps before, routes its
view of R0(u) to the region Rx of size 1/2rv containing x, and each node
w′ in Rx routes its view of Rx back to the nodes in R0(u), giving a
set Sw ⊆ VI(Rx) for w with I = [t − 2 log Nt, t] if this process took at
most 2 logNt steps (otherwise, w aborts the protocol). If so, w sends an
authorization to the nodes in Sw and forwards Sw to u.

(c) Once u receives sets Sw from ≥ 3|G|/20 nodes in G, it computes the set
G′ = {w′ ∈ ⋃

w Sw : |{w | w′ ∈ Sw}| ≥ |G|/10} ⊆ VI(Rx).
3. Integration stage:

(a) v sends an integration request to all nodes in G′. Then it waits for
O(1) steps to make sure that all nodes relevant for v added v to their
connection table. Afterwards, v sends an integration request to all nodes
relevant for it.

(b) Each node w in Rx that was authorized by sufficiently many nodes in
R0(u) at most log Nt + O(1) steps ago, notifies v about all nodes rele-
vant for v and authorizes all nodes relevant for v to integrate v in their
connection table.

(c) Each node w′ relevant for v that receives sufficiently many authorizations
from nodes in Rx and an integration request from u within O(1) steps,
adds u to its connection table.

Apart from the bootstrap nodes, every node is only allowed to initiate the Create
protocol 3 times during its life.

3.5 Insert and Lookup operations

The Insert and Lookup operations use the binary search method of Chord to for-
ward requests, with the only difference that they are region-based, i.e. messages
are forwarded along a sequence of regions rather than nodes. An honest node v
accepts a message m only if v ∈ Vt(Ri(m)) for some i > 0 and m was sent to v
by at least 1/5 of the nodes in Γt,v(Ri−1(m)), where Ri(m) is the ith region on
the path of m.

Each peer p in the system calls the Insert operation every Lp/3 steps to store
(Name(p), IP(p)) in the unique region Rp of size 1/2rv for some node v of p that
contains h(Name(p)) for some one-way hash function h : Names → [0, 1). This
makes sure that sufficiently many honest nodes in Rp know p at any time. Thus,
when executing a Lookup operation for Name(p), it will return IP(p) as long as
p is in the system.

3.6 Join and Leave operations

When a peer p wants to join the system, it contacts some bootstrap peer q. q
will then initiate 3 Create operations via one of its nodes in each step until p has
Lp nodes with remaining lifetimes from 1 to Lp. Once this is done, p is mature.
Afterwards, p will initiate 3 Create operations via one of its nodes in each step
(using each node only once) to keep Lp nodes in the system.

Leaving is easy. The peer p simply does not create any new nodes and waits
until all of its old nodes left the system.

3.7 Safety

The correctness of the operations crucially depends on whether the system is safe.
That is, we require for all regions R with |R| = (γ log Nt)/Nt for a sufficiently
large γ that

S1 |V h
t (R)| ∈ [(2/3)γ log Nt, (4/3)γ log Nt],

S2 |Mh
t−�/2(R) ∩Mh

t (R)| ≥ (1/3)γ log Nt,
S3 |V a

I (R)| ≤ (1/20)γ log Nt for I = [t− �/2, t], and
S4 for all t′ ∈ [t − L̂, t], |V h

t′ (R)| ∈ [(1 − δ)|V h
t (R)|, (1 + δ)|V h

t (R)|] for a small
constant δ > 0.

Suppose that the system has been safe so far. Then the following claims hold:

C1 For all R = Ri(v) for some v ∈ V h
t , |Mh

t−�/2(R) ∩Mh
t (R)| ≥ |Γv,t(R)|/5.

C2 For every routed message accepted by some v ∈ V h
t (Ri(m)) there is a t′ < t

s.t. m was sent to v by some u ∈ V h
t (Ri−1(m)) if i > 0, and otherwise m

was sent to v by Source(m) ∈ Γv,t(R0(m)).
C3 For every routed message m generated at time t with Source(m) ∈Mh

t and
all i ≥ 0, m is accepted by all v ∈ Mh

t (Ri(m)) ∩Mh
t′(Ri(m)) at some time

t′ ∈ [t, t + i].

Using these claims, one can show the following lemma.

Lemma 1. As long as the system is safe, any Insert or Lookup operation or
Create operation with a successful ID generation stage initiated by a mature
honest node needs O(log Nt) time and O(polylogNt) work to be completed.

3.8 Invariants

For the safeness of the system as well as the correct execution of Join and Leave
operations, we need the following invariants (α > β > 0 are constants).

I1 For all v ∈ Vt it holds for all w ∈ V h
t with v ∈ Γt(w) that w’s views on v

match. Thus, ID(v) and rv are well-defined.
I2 For all v ∈ Vt, ID(v) is a random value in [0, 1).
I3 For all v ∈ Vt there is a t′ ∈ [t− α log Nt, t− β log Nt]: v ∈ At′ ∪Ct′ .
I4 For all v ∈Mh

t it holds that Mh
t (Ri(v)) ⊆ Γv,t(Ri(v)) for all i.

The safeness and the invariants are shown to be true by induction:

Lemma 2. As long as the system is safe, the invariants are fulfilled.

Lemma 3. As long as the invariants are fulfilled, the system is safe, with high
probability.

Lemma 4. As long as the system is safe and the invariants hold, any Join or
Leave operation executed by an honest peer needs O(log Nt) time and O(polylogNt)
work to be completed, and every mature honest peer can keep Θ(log Nt) nodes in
the system, with high probability.

This completes the proof of Theorem 2. The full paper will be made available
at www.cs.jhu.edu/∼scheideler.

References

1. B. Awerbuch and C. Scheideler. Robust distributed name service. In Proc. of the 3rd Inter-
national Workshop on Peer-to-Peer Systems (IPTPS), 2004.

2. R. Canetti, R. Gennaro, A. Herzberg, and D. Naor. Proactive security: Long-term protection
against break-ins. RSA CryptoBytes, 3(1):1–8, 1997.

3. M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wallach. Secure routing for structured
peer-to-peer overlay networks. In Proc. of the 5th Usenix Symp. on Operating Systems Design
and Implementation (OSDI), 2002.

4. M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Proc. of the 2nd Usenix
Symp. on Operating Systems Design and Implementation (OSDI), 1999.

5. S. Crosby and D. Wallach. Denial of service via algorithmic complexity attacks. In Usenix
Security, 2003.

6. J. R. Douceur. The sybil attack. In Proc. of the 1st International Workshop on Peer-to-Peer
Systems (IPTPS), 2002.

7. P. Druschel and A. Rowstron. Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. In Proc. of the 18th IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware 2001), 2001.

8. A. Fiat and J. Saia. Censorship resistant peer-to-peer content addressable networks. In Proc. of
the 13th ACM Symp. on Discrete Algorithms (SODA), 2002.

9. Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Optimal resilience proactive public-
key cryptosystems. In Proc. of the 38th IEEE Symp. on Foundations of Computer Science
(FOCS), pages 384–393, 1997.

10. A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive public key and
signature systems. In Proc. of the ACM Conference on Computer and Communications
Security (CCS), pages 100–110, 1997.

11. A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or: How to cope
with perpetual leakage. In CRYPTO ’95, pages 339–352, 1995.

12. L. Lamport. The weak Byzantine generals problem. Journal of the ACM, 30(3):669–676, 1983.
13. L. Lamport and N. Lynch. Distributed computing. Chapter of Handbook on Theoretical

Computer Science. Also, to be published as Technical Memo MIT/LCS/TM-384, Laboratory
for Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 1989.

14. M. Naor and U. Wieder. Novel architectures for P2P applications: the continuous-discrete
approach. In Proc. of the 15th ACM Symp. on Parallel Algorithms and Architectures (SPAA),
2003.

15. R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In Proc. of the 10th ACM
Symp. on Principles of Distributed Computing (PODC), pages 51–59, 1991.

16. R. De Prisco, B. W. Lampson, and N. Lynch. Revisiting the Paxos algorithm. In Workshop
on Distributed Algorithms, pages 111–125, 1997.

17. I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-
to-peer lookup service for Internet applications. In Proc. of the ACM SIGCOMM ’01, 2001.

18. B.Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-tolerant wide-
area location and routing. Technical report, University of California at Berkeley, Computer
Science Department, 2001.

