
A Distributed Hash Table for Computational Grids

Chris Riley, Christian Scheideler
Department of Computer Science

Johns Hopkins University
{chrisr,scheideler}@cs.jhu.edu

Abstract

In this paper, we present and analyze a distributed hash
table-based supervised peer-to-peer system that allows an
even distribution of and efficient lookup for objects (e.g.
data or tasks) stored in the system. A supervised peer-to-
peer system is a system that is formed by a supervisor but
in which all other activities can be performed on a peer-to-
peer basis without involving the supervisor. Our system has
average constant degree and can distribute objects evenly
among the peers up to a constant factor in expectation. The
supervised peer-to-peer approach makes the system partic-
ularly useful for computational grids. As an example, we
discuss the use of our structure for recursively defined algo-
rithms such as dynamic programming and distributed tree
searches, and practical problems such as web crawling; our
structure distributes tasks randomly and prevents repeated
computations to optimize parallel efficiency.

1 Introduction

The ultimate challenge of computational grids is to use
loosely connected unreliable computers as a source of com-
putational power for arbitrary sequential or concurrent com-
putations, and to allow that power to be sold and used on de-
mand like modern day electrical systems. Networks of com-
puters suitable for more restricted problem domains are in
active use. Some of these networks address problems based
on brute force checking of a large input range, or problems
involving management of extremely large data sets.

As a structure to support these and future computational
grid applications, we present a supervised distributed hash
table supporting efficient object insertion and lookup along
with balanced allocation; our objects are treated in the same
way as data items in other distributed hash tables. Be-
cause of our supervised approach, the network can achieve
a constant factor expected load balance with average con-
stant node degree, something not achieved yet by decen-
tralized distributed hash tables. The supervised approach

makes this structure particularly suitable for computational
grid applications by providing a reliable and trusted location
for node authentication and task assignment and combining
results. Since our system can be used to spawn and evenly
distribute further subtasks by the peers without involving
the supervisor, and since the supervisor only needs to know
a constant-sized portion of the network, the supervisor can
be a low-powered node. The supervisor also serves as a
reliable anchor for code execution rollback, which is im-
portant for failure recovery mechanisms such as those used
in the Time Warp system[10, 18]. We discuss the use of
our structure to support distributed divide-and-conquer al-
gorithms, including dynamic programming, tree searches,
and web crawling.

1.1 Related Work

Computational grids. Existing networks for distributed
computation include SETI@home[21], Folding@home[5],
and distributed.net[4]. These are systems solving problems
which run relatively small pieces of code on very many in-
puts; such problems are easily divided into subtasks cor-
responding to subranges of the input, and the entire code
can be sent to each client. They use a star topology, with
a central server connecting directly to each client for all
communications. No communication is needed between the
clients, so code can be executed in parallel with very little
overhead (there is only the cost of sending the code to the
participants). While these systems are adequate for their
tasks, they represent only a fraction of the potential of gen-
eral purpose computational grids. Furthermore, a star topol-
ogy places a high demand on the central server since it must
be involved in all computation assignments and must keep
track of all nodes participating in the system, limiting scal-
ability and increasing expense. The OptimalGrid project
at IBM[15] extends the reach of these systems by allowing
communication between the subtasks, but as it still uses a
star topology it suffers from the same scalability concerns.

Recently the CERN project [3] has attracted significant
media attention. CERN’s network, known as the Grid, com-

bines computing power from research centers in 12 coun-
tries. This power is used to examine terabytes of data gener-
ated by a new particle accelerator at CERN called the Large
Hadron Collider (LHC). Unlike SETI@home and similar
programs, their focus is on managing large amounts of data
rather than using highly dynamic networks. To the best of
our knowledge their work does not address topological con-
siderations in peer-to-peer computational grids.

Extensive research on computational grids is being con-
ducted by the Globus Alliance [8]. Their work includes ser-
vices such as security tools and a data management struc-
ture known as the Data Grid, designed for “coordinated
resource sharing and problem solving”[6]. The Data Grid
offers services for abstracting out the storage system lay-
ers at each network node and services for maintaining and
organizing metadata about the stored data, as well as ser-
vices for replica management, along with applications for
data exchange within the Globus framework; they also do
not appear to consider topological designs in their research.
Their system is best suited for data-intensive applications
such as the CERN project.

Supervised distributed networks. The authors have some
ongoing work on using supervised peer-to-peer networks
for different problems, including reliable broadcasting [19]
and distributed monitoring systems [1]. The design in these
works is tree-based and consequently very different from
the design presented in this paper.

Pandurangan, Raghavan, and Upfal [16] present a super-
vised peer-to-peer network where connections are made by
a low powered host server; their network has constant de-
gree and low diameter, and remains connected with high
probability under a stochastic model of node arrivals and de-
partures, though insertion work is Ω(log n) in some cases.
Their network does not seem to be capable of supporting
object lookup or message passing, though it could be used
for broadcasting.

Peer-to-peer systems. Research in peer-to-peer systems
has been active for several years now. Though the origins
of interest in peer-to-peer systems are in popular file sharing
networks like Gnutella [9] and Napster [14], the academic
community quickly adopted the model for research pur-
poses. Distributed hash tables (DHT) are frequently used
for peer-to-peer token location, and have been implemented
with different structures by multiple researchers; for some
classic examples, see [17, 20, 22].

We are aware of three papers [7, 11, 13] proposing peer-
to-peer systems based on the DeBruijn graph; our approach
uses a DeBruijn topology as well, though our construction
and maintenance are quite different. In particular, these
structures are probabilistic in their organization, while ours
is deterministic in all but the placement of objects.

Distributed hash tables built on peer-to-peer networks

could be considered for distributed computation as well.
On top of a DHT one could run a system like Time Warp
to ensure successful code execution. The Time Warp op-
erating system [10, 18] was designed to support parallel
execution of discrete event simulations, which have been
and will continue to be among the most expensive compu-
tational tasks. The Time Warp system is based on a dis-
tributed process rollback mechanism, and involves signifi-
cant changes to traditional operating systems designs. This
mechanism is used to ensure the successful completion of
a distributed program even when some pieces fail; rollback
processes shift the state of the running program back to a
valid state to resume normal computation. Decentralized
systems like pure peer-to-peer systems are not very useful
for this, since they lack a single reliable point to ensure that
code rollback can proceed successfully in all cases.

1.2 Our results

We present and analyze a DHT-based supervised peer-to-
peer system, SPON-DHT, that allows an even distribution
of and efficient lookup for objects stored in the system. A
supervised peer-to-peer system is a system that is formed
by a supervisor but in which all other activities can be per-
formed on a peer-to-peer level without involving the super-
visor. The supervisor only needs to be involved with node
join and leave operations. The network supports efficient
node-to-node communication and object lookup. Object
lookup trivially supports object insertion and deletion on
request from the object’s lookup destination. While these
results assume graceful node departures (nodes which do
not depart without advance notice), the network functions as
well when this assumption is removed, though some O(1)
costs increase to O(log n). The network performance can
be summarized as follows:

1. Join operations require O(1) work and time and leave
operations require O(1) average (O(log n) worst-case)
work and time, plus the cost of object movements.

2. For all sets of nodes V the expected relative load E[λv]
∀ v ∈ V is Θ

(
1
n

)
.

3. Object lookup requires O(log n) work and time.

4. All nodes have constant out-degree and only need con-
stant storage to manage the object space.

5. The supervisor’s network knowledge, measured in out-
degree and storage, is constant.

The relative load λv for any node v in the current set of
nodes in the system V is a random variable corresponding to
the fraction of objects in the system mapped to node v. The
expectation of λv , E[λv], in a distributed hash table on the

[0, 1) real line is equal to the size of the subrange assigned
to node v. In our system the size of the subrange mapped to
v is guaranteed to be Θ

(
1
n

)
for all nodes v and all sets of

current nodes V . In most previous distributed hash tables,

for all sets of nodes V , maxv∈V (E[λv]) = Θ
(

log n
n

)
with

high probability (based on the random hash function h used
to select points on the identifier circle for all v ∈ V). Some
papers use virtual nodes to reduce this to a constant, but
node degrees and join/leave work increase by a O(log n)
multiplicative factor to achieve this. Our deterministic con-
struction allows us to achieve a low expected relative load
without increasing average node degree.

1.3 Network applications

SPON-DHT can be used to support a new class of com-
putational grid applications such as distributed divide-and-
conquer programs. Our structure allows these operations to
be executed without repeating subtasks. Since a star topol-
ogy is not used, the effort exerted by the supervisor can be
reduced significantly by allowing nodes to spawn subtasks
and combine the results themselves; this allows inexpen-
sive supervisors to manage large networks. Combined with
a system like Time Warp, applications can be executed cor-
rectly in unreliable networks. Furthermore, the supervisor
can keep known malicious nodes from entering the system,
and can authenticate nodes so that malicious behavior can
be detected by other nodes and reported.

Since our network is a distributed hash table, it is also
suitable for storage systems or any other application requir-
ing an object management infrastructure.

2 Network overview

2.1 Interface

We provide a network which offers object management
in a dynamic network. Our objects could be either units of
storage data or computational tasks or some combination of
the two; we refer to these units as objects in the spirit of
object-oriented programming. The network supports three
fundamental operations: join() and leave() calls for nodes,
and lookup(t) calls for an object t. This interface can be
used by applications to perform distributed computation or
storage. The basic functionality of these operations is given
below.

1. A join operation requires the network to include the
new node so it can communicate with all nodes and
preserve all existing communications. Also, some ob-
jects must be moved to the new node to preserve a good
load balance.

2. A leave operation requires the network to extract the
departing node while preserving the ability to commu-
nicate between all other node pairs. Also, the node’s
objects must be moved to other nodes while preserving
the load balance.

3. A lookup operation involves locating the physical node
currently responsible for the object t, whether or not
the object exists.

Insertions and deletions for an object t can be accom-
plished by an application by performing a lookup and then
requesting that the node responsible for t insert or delete t.

For the sake of simplicity we assume for most of this
paper that nodes depart gracefully. A graceful departure is
one in which a node requests permission and waits for a
confirmation before departing; this allows the network to
easily accomodate the node’s departure. We will remove
this assumption by extending our system later.

2.2 Supervisor

The network includes a low powered reliable supervisor,
which handles node insertions and deletions; the supervi-
sor is not involved in direct node-to-node communication.
The use of a supervisor allows the network to achieve a
greater level of security and trustworthiness than can be ac-
quired by fully decentralized systems. Since messages are
passed without the supervisor’s interference or knowledge,
the nodes in the network are capable of unrestricted concur-
rent communication. However, nodes can be identified and
authenticated when joining, and through appropriate mes-
sage signatures can be held responsible for their actions by
other nodes, so that improper activity can be detected and
reported to the supervisor.

We outline the following guidelines for a scalable super-
vised peer-to-peer system:

1. The network should possess a single supervisor node
which can be assumed to be reliable.

2. The supervisor should not be involved in any node-to-
node communication.

3. The supervisor node should at no point in time need
more storage or degree than O(log n).

4. Non-supervisor nodes must have low degree and stor-
age, at most O(log n).

Our system exceeds these specifications by requiring only
constant degree. The extended version of our system de-
signed to support ungraceful node departures matches these
requirements.

While the supervisor is a single point of failure, this is
easily corrected: Replace the supervisor with a multicast

group of O(log n) (or O(1)) nodes, and let all messages
from other network nodes be sent to the multicast address
so that all group nodes receive all messages. At any time, a
single group node is the active supervisor, and responds to
messages; the other nodes process the messages internally
but do not respond. If the active supervisor fails a new ac-
tive supervisor is elected through any process. If a single
group node survives, the network will continue to function
normally. Using standard models, if each node fails with
constant probability, then using a group of size O(log n)
implies that with high probability at least one group mem-
ber survives. For clarity, in the remainder of this paper we
will assume that only a single supervisor is used.

2.3 Dynamic DeBruijn graph

Non-supervisor network nodes are organized into a dy-
namic version of the DeBruijn graph. The static DeBruijn
graph includes two directed edges out from each node, con-
necting node i to nodes 2i and 2i + 1 modulo n when there
are n = 2b nodes for some integer b. This is not easily
adapted to dynamic network conditions. When the graph
grows, the modulus will change, causing some edges to be-
come invalid because their endpoints had been beyond the
previous modulus 2b but are below the new modulus 2b+1.
Similarly, if a static DeBruijn graph were to shrink by re-
moving nodes and their adjacent edges, the graph would
not remain properly connected since some edges based on a
lower modulus would not exist.

1110

100

110

111

101

10

1

0

10

11

Figure 1. The extension of a 2D DeBruijn
graph to 3D, with older edges indicated

We suggest a dynamic extension of the DeBruijn graph:
leave all old edges in the graph during expansion. This can-
not raise a node’s outdegree beyond 4 (2 based on the in-
sertion time modulus and 2 without modulus), though some
nodes will have an indegree of �log n�. The node with a
binary address of all 0’s, for example, will have an incom-
ing edge from each node with a binary address containing

a single 1. Should it be desired, it is possible to extend the
structure to allow removal and reinsertion of the old edges,
though some applications of the network would need mod-
ification.

In a graph with n nodes, nodes are labelled with distinct
binary strings of at most �log n� bits, where only the strings
0 through n − 1 are in use. The structure supports the fol-
lowing:

Invariant 2.1 Every node with address β whose highest-
order 1-bit is bit j has an outgoing edge to every exist-
ing node with address ∈ {2β, 2β + 1, 2β mod 2j+1, 2β +
1 mod 2j+1}.

In addition, we maintain:

Invariant 2.2 Every node with address β has an edge to the
nodes with addresses β − 1 and β + 1, if they exist. These
are the predecessor and successor nodes.

Since this is an overlay network, having an edge to a
node is equivalent to possessing its real network address
(such as an IP address), and sometimes also involves pe-
riodic link checking to make sure the node is available; this
requires O(1) space per edge. This applies to both incoming
and outgoing edges, because a node’s incoming neighbors
need to be determined before it can be replaced.

2.4 Permanent addressing

SPON-DHT is an overlay network, so addresses as-
signed to nodes are virtual addresses only, and keeping an
edge to a node involves storing the actual IP address or some
other contact information to allow direct communication;
knowing the virtual address is not sufficient for communi-
cation in the underlying network. As a consequence, virtual
addresses can be arbitrarily assigned and readily exchanged
as long as the functionality of the address is also exchanged.

We will perform deletion by replacement, so that at any
given time the only addresses in use in a network of n nodes
are 0 through n − 1. It is worth noting that, because of
this, once a node is assigned an address, its address does
not need to change, unless it leaves and rejoins or is used as
a replacement. This is because shorter addresses can be im-
plicitly padded with zeros, so that an assigned 2D address of
10, for example, is the same as the 3D address 010. In other
words, nodes do not need to be contacted to extend their ad-
dresses when the graph grows, saving significant periodic
update costs.

2.5 Node responsibilities

The supervisor. To maintain the topology during node
joins and leaves, the supervisor must keep an edge to the
following nodes:

• the 0-node (i.e. the node with address of all 0’s),

• the end node (i.e. the node with the largest virtual ad-
dress), and

• any nodes with edges to the end node.

Theorem 2.3 The supervisor has constant-sized network
knowledge, since it has O(1) out-degree and requires no
storage for object space management.

Proof. As stated previously, we assume that each outgo-
ing edge requires O(1) storage. Since the end node has the
largest address in the system, it cannot have more than one
incoming edge, the non-modular edge from node � n

2 �, since
modular edges end at a node with at most the same value
as the source (since the most significant zero in the address
becomes more significant and the length is the same); there-
fore the degree of the supervisor is constant. The supervi-
sor does not need to keep any information pertaining to the
object lookup and load balancing, as this process is fully
unsupervised. �	

Non-supervisor nodes. Each non-supervisor node must
keep pointers to the following nodes:

• its predecessor and successor, and

• its outgoing neighbors, and

• its incoming neighbors.

Non-supervisor nodes also keep knowledge of the ranges
assigned to them for object allocation purposes; this will be
discussed in more detail later. Each node also must store an
address to contact the supervisor to be able to announce its
departure.

Theorem 2.4 Non-supervisor nodes have O(1) out-degree
and average in-degree O(1) (worst-case log n + 3).

Proof. The constant out-degree follows from the speci-
fications. Average in-degree is clearly O(1) since all out-
degrees are O(1). The worst-case in-degree occurs at the
0-node, which has an incoming edge from every node with
only one 1-bit. The number of bits is log N where N =
2�log n�, which is at most log n + 1; including the pre-
decessor and successor edges produces worst-case degree
log n + 3. �	

Later we also bound the storage for object management.

3 Node operations

We assume that node join and leave requests are sent to
the supervisor; join requests could be sent initially to any
node and forwarded from there. Node join and leave re-
quests are processed by the supervisor as node insertions
and deletions. Each node insertion and deletion has two
major components, the structural modifications and the ob-
ject movements. We address the structural changes in this
section and the object movements later.

3.1 Structural changes

Node deletion occurs through replacement, in the sense
that the node in the network with the highest virtual address
replaces any other internal node wishing to leave the sys-
tem, so that the highest virtual address is removed, along
with its adjacent edges, regardless of which physical node
leaves. Replacement involves creating outgoing edges from
the replacement node to match those of the departing node,
changing incoming edges to the departing node to point to
the replacement node, and moving tokens and other object
management data to the replacement node. This approach
has been used in other research, e.g. [2]. This process im-
plies that an inserted node receives the largest virtual ad-
dress in the network. We can thus give only the process for
inserting or removing the last node in the network (the node
with largest virtual address).

An inserted node is given two outgoing edges and one in-
coming edge. A node inserted into a n-node network will be
given (virtual) address n. Node n is given outgoing edges
to nodes 2n − 2l and 2n + 1 − 2l in order to satisfy Invari-
ant 2.1 for node n, where l = �log n� is the number of bits
in address n. Also, the node with address p = � n

2 � is given
an outgoing edge to n; this is needed to satisfy Invariant 2.1
for node p.

Since the supervisor keeps an outgoing edge to the cur-
rent end node x, it can connect n and x as successor and
predecessor, satisfying Invariant 2.2. Furthermore, if x’s
outgoing neighbors are the nodes with addresses k and k+1,
then n’s outgoing neighbors have addresses k+2 and k+3,
and can be located in a few steps by contacting node k + 1
(which the supervisor can reach through x). This is true for
all addresses except for n = 2l for any integer l, whose out-
going neighbors are 0 and 1. If n is odd, then its incoming
neighbor is the same as x’s (and is known by the supervi-
sor). If not, its incoming neighbor is the successor of x’s
and can be easily reached. These properties follow from the
DeBruijn topology.

Removing the end node requires the supervisor to add an
edge to the new end node’s incoming neighbor. Reversing
the insertion, this is the predecessor of the removed node’s

incoming neighbor, except when the removed node’s ad-
dress is odd, when the incoming neighbor is the same.

Theorem 3.1 Node insertion cost is O(1) in time, number
of messages, and local computations, plus any cost of ob-
ject movements. Node removal cost is O(1) for most nodes,
and O(log n) in the worst case. Invariants 2.1 and 2.2 are
preserved by the operations.

Proof. Follows directly from our algorithms. �	

3.2 Node-to-node communication

The algorithm for object lookup requires a primitive
for one node to contact another node in the network by
knowing its virtual address. The DeBruijn graph is read-
ily equipped to handle such an operation; the static ver-
sion supports O(log n)-time message passing by shifting in
the bits of the address of the destination one bit at a time.
Since our version is dynamic, it needs to be shown that
the graph can route between any two nodes even though
some nodes may be missing. Consider sending a packet
from node x = (x1x2 . . . xd) to y = (y1y2 . . . yd), where
either x1 or y1 = 1 (if not the nodes cannot be expected
to know d). If all nodes with d-bit addresses exist, then
the path given by the default DeBruijn routing algorithm is
x → x2,dy1 → x3,dy1,2 → . . . → xdy1,d−1 → y, where
xi,j is bits i through j of x; this path is of length d. If at
any step some node xi,dy1,i−1 does not exist, then the node
with address 0xi+1,dy1,i−1 is used instead. This node has
the same connections as the missing node, so that its use
does not change the rest of the path; and because deletion
by replacement is used, it must exist, since the only missing
network nodes have highest bit 1.

Since our DeBruijn graph is dynamic, it may be difficult
to route at lower levels of the structure, since the nodes may
not know the total number of nodes in the network. But
if the old edges are left, then the graph contains all nodes
and edges of the static DeBruijn graph corresponding to the
larger of the dimensions of the source and destination, and
this subgraph can be used to pass the message, with cost
still O(log n) in number of messages and rounds of com-
munication.

When sending a message from each node in the network
to a randomly chosen destination (the random routing prob-
lem), the static DeBruijn graph is well known to have a con-
gestion of at most O(log n) with high probability on each
node in the network. Missing nodes do not significantly af-
fect this, as a node with address 0x has to support at most
the congestion of 0x plus the congestion of 1x in a full De-
Bruijn graph, if node 1x is not present; therefore conges-
tion of each node in a dynamic DeBruijn graph is at most
twice the congestion of the node in a static DeBruijn graph
containing the node. Furthermore, congestion caused by

older dimensional edges can be avoided by first sending the
message to a random maximal-dimension node and routed
from there; the dilation and congestion are asymptotically
unchanged. This leads to the following:

Theorem 3.2 The dynamic DeBruijn graph can perform
the random routing problem with congestion and dilation
O(log n) with high probability.

4 Object mapping

4.1 Virtual locations

Initially, we hash objects uniformly at random to the
[0, 1) real line using a repeatable hash function; this out-
put is considered a virtual location for the object. The [0, 1)
line is then divided into ranges which are assigned to the
nodes in the network, and each node is responsible for the
objects with virtual locations within its assigned range(s).
The hash function is distributed to all network nodes so that
anyone can compute an object’s virtual location to perform
a lookup operation. In practice, any sufficiently precise and
uniform hash function can be used.

When ranges are exchanged between nodes, the objects
represented by the ranges must be moved as well. This pro-
cess may vary from application to application. For example,
in a storage system, an object represents data that must be
sent across the network. In a computational grid, an object
represents a computational task which may be in progress.
The task can be restarted at the destination node, or some
checkpoint information can be sent, or all current state for
the process can be transferred.

4.2 Recursive placement algorithm

We initially give a recursive range placement algorithm.
This algorithm specifies range movements during a single
node join or leave operation; the iterative distributed lookup
algorithm given below is derived from the placement pro-
duced by this algorithm. Our recursive algorithm is similar
to the cut-and-paste algorithm of [2], designed for dynamic
storage systems. Their algorithm is workload optimal for
maintaining a perfect expected load across single disk joins
and leaves, and supports O(log n)-cost data item search-
ing. A networked version would send load from all exist-
ing nodes to a joined node, and would distribute the load
from a departing node across all remaining nodes, so that
communication costs are Ω(n) per join or leave operation.
We reduce this to a constant while preserving O(log n)-
cost lookup, though the load balance is allowed to worsen
slightly.

Initially a single node is responsible for the entire [0, 1)
range. In our algorithm, each new node takes the higher half

of the existing range of each of its two outgoing neighbors
(or one if there is only one outgoing edge), and returns the
ranges to its neighbors when it departs. As in [2], deletion
by replacement ensures that any sequence of mixed node
insertions and deletions produces a load distribution equiv-
alent to a sequence of insertions alone. Since only outgoing
adjacent nodes are contacted on node join and leaves, and
since the dynamic DeBruijn graph has constant outgoing
degree, the cost is O(1) per insertion or deletion plus the
cost of transferring load.

1110

100

1110

0 1 10

Figure 2. A node insertion with load move-
ment

Since the outgoing neighbors of each sequential node are
sequential, half the load is taken from each node before the
process restarts (which occurs when the number of nodes
passes 2l for each integer l). At any point in time, if there
are n nodes with l = �log n�, then the [0, 1) interval will be
divided into subranges of size 1

2l (ranges already split in this
dimension) or 1

2l−1 (unsplit ranges). Each node will have
either one split or unsplit subrange or two split subranges
assigned to it.

Theorem 4.1 For all nodes u, E[λu] = Θ
(

1
n

)
.

Proof. When the network changes dimensions (when the
number of nodes goes from 2 l to 2l +1), consider the larger
subranges to be two subranges of equal size, one of which
will be taken away in this dimension while the other will
stay. Then we can assume that all subranges are of equal
size. Tasks are assigned uniformly at random to the [0, 1)
interval, so tasks are assigned uniformly at random to each
subrange, so the expected relative load of each subrange is
the same, 1

2�log n� if there are n nodes currently in the sys-
tem. Since each node has either one or two assigned sub-
ranges the theorem holds. �	

Theorem 4.2 The storage required by each node for its
ranges is O(1).

Proof. It has been shown that each node has only one or
two ranges, so the proof depends only on the space required

to store a single range. This depends on the resolution re-
quired to store the range boundaries. For l = �log n�, the
resolution needed is l decimal bits, since each range bound-
ary is i

2l for some integer i between 0 and 2 l. Since this
is less information than the amount needed to distinguish
nodes (such as an IP address), it is considered a single word.
Since each range requires only two boundaries, the theorem
holds. �	

4.3 Range history

We define a history for each range that gives the set of all
nodes which held the range before it was taken away, going
back to the node with address 0 which originally holds all
ranges. Suppose that the range is held by some node with
address v. The range history is a set of nodes {vi} for i = 0
to f , where v0 = v and vf = 0. Note that vi < vj ∀ i > j,
and also that f , the number of steps the range has moved,
varies depending on v, though it can be shown to be at most
O(log2 v). According to our definition of the load balanc-
ing algorithm, each vi must have an outgoing edge to vi+1;
so vi+1 = 2vi or 2vi + 1 (with appropriate modulus). Intu-
itively, if vi is the terminal location in this dimension, then
vi+1 = 2vi, and otherwise vi+1 = 2vi + 1; this is because
the a range stolen from 2vi + 1 will be taken by some other
node before the dimension is full.

More formally, let d(vi) be the number of bits in the ad-
dress vi with all high-order 0’s removed. The v i’s are cal-
culated as follows:

• If v0 holds a single range or if the range in question is
the first of two held ranges, then v1 = 2v0 mod 2d(v0).

• If the range in question is the second of two ranges
held by v0, then v1 = 2v0 + 1 mod 2d(v0).

• If d(vi) = d(vi−1), then vi+1 = 2vi + 1 mod 2d(vi).

• If d(vi) �= d(vi−1), then vi+1 = 2vi mod 2d(vi).

5 Distributed iterative object lookup

This section gives a distributed iterative algorithm for
object lookup derived from the placement produced by the
recursive algorithm. We begin by giving the object loca-
tion in a full DeBruijn graph, where the number of nodes in
the network is a power of 2, assuming that all nodes know
the network is a full DeBruijn graph; this is a much sim-
pler process, albeit unrealistic, that identifies the heart of
the algorithm. Then we extend this to an arbitrary number
of nodes.

5.1 In a known full graph

In a full graph, each node v holds a single range rv .
Knowing the graph is full, each node can compute n = 1

|rv|
correctly. In order to locate a token each node must be able
to compute the node w holding the range rw containing the
token. We give an algorithm to compute the infinite se-
quence of nodes v(t) holding the point t ∈ [0, 1]. We also
compute the starting points s(t), where si(t) is the point in
[0, 1] corresponding to the beginning of the range held by
vi(t).

• v0(t) = s0(t) = 0.

• If t ≥ si(t) + 1
2i+1 , vi+1(t) = vi(t)/2 + 2i and

si+1(t) = si(t) + 1
2i+1 .

• If t < si(t) + 1
2i+1 , vi+1(t) = vi(t) and si+1(t) =

si(t).

The node currently holding the point t in a full graph is the
largest j such that vj(t) < n (and thus exists in a graph with
addresses 0 through n − 1). It is not hard to show that the
largest such j ≤ log n.

5.2 In an arbitrary graph

We begin with a definition and a lemma:

Definition 5.1 The ideal host of an object is the node which
would hold the object if the graph was full at its current
dimension (if the number of nodes was extended from the
current n to n′ = 2�log n�).

Lemma 5.2 All node with virtual addresses with fewer bits
than the longest existing address must exist. Equivalently,
all nodes which are parents of nodes definable within the
current dimension must exist.

Proof. The former holds because of deletion by replace-
ment; the largest address is always removed, so no shorter
address could be missing while a larger exists. The latter
follows since by definition parent nodes have shorter ad-
dresses than their children, and any node definable within
the current dimension has address at most the length of the
longest existing dimension. �	

The process for lookup in a partial graph is more diffi-
cult. It can be broken down into the following steps:

1. Guess the ideal host for the object based on local in-
formation.

2. Route the lookup request to the parent of the ideal host
guess; this node must exist.

3. If the guess for the ideal host is incorrect, then the re-
quest is forwarded down the tree to the true parent of
the ideal host.

4. If the ideal host exists, route the request to it.

5. If the ideal host does not exist, compute the next host
to check and route the request to that node’s parent.
Repeat until found.

Steps 1-3: Finding the parent of the ideal host
The source node of the request estimates the dimension-

ality of the network using the size of the range it is respon-
sible for. If the source node holds two ranges taken from
two different nodes, then its estimate is based on the size
of one of the ranges. The node’s estimate of the number of
nodes in the network is 1

range size . If the range is of size
1
2l , where l = �log n�, then the node’s estimate of the num-
ber of nodes is n′ = 2l = N , which is considered a correct
estimate. If the node has a single unsplit range, in the sense
that as the graph grows from its current size to N nodes the
range held by the node will be split in half, then n ′ = N/2.
In either case, n′ is used to guess the ideal host of the object
using the computations for a known full graph.

Regardless of whether the estimated ideal host w is
the true ideal host, its parent node p(w) must exist by
Lemma 5.2, so the lookup request can be sent from the ini-
tiating node to p(w). If w is not the true ideal host, then
the number of nodes was estimated too small (n ′ = N/2),
which implies that node w must exist (since it must have
highest-order bit 0), and p(w) can route the request to it.
Node w can then determine whether or not it is not the true
ideal host for the node. If not, it can be shown through the
load balancing algorithm that the true ideal host y is a de-
scendant of w. Then node w can compute y (using the true
N) and route the request to the true parent of the ideal host
p(y). On the other hand, if w does not exist, then it must be
the true ideal host, or w = y and p(w) = p(y).

Steps 4-5: Finding the actual host
If the ideal host y exists, then it must hold the object, be-

cause as soon as a node joins it gets its full subrange and all
associated objects for the current dimension (all nodes but
the last in a dimension also get a second subrange which
will later be taken away); then p(y) can route the request to
it and the request can be processed. If not, the range his-
tory {vi} can be examined for y, and the first valid address
is the current node containing the point. Consider the set
{pi} where pi is the address of the parent of vi for all i; all
these nodes must exist according to Lemma 5.2. The search
request is passed through the set {pi} until some vi is valid.

Consider the sequence of nodes {pi} where each pi =
�vi/2�, or the parent of vi in the search tree. Because of the
DeBruijn construction each pi has an edge to its vi and is

capable of determining whether or not v i is valid. Suppose
the search request is at some node pi, which has determined
that vi does not exist. Node pi computes vi+1 and pi+1 and
then forwards the request to pi+1.

5.3 Analysis

Lemma 5.3 For some t = O(log n), vt exists.

Proof. Assume that v0 does not exist, so that the lemma
is nontrivial. Then v0’s address must be of maximum bit
length log n, by deletion by replacement. Divide the set of
all nodes with (log n)-bit addresses with highest-order bit
1 into subsets {Sj}, where Sj contains all nodes with all j
highest-order bits 1 and the (j + 1)st highest-order bit 0.
Then j ranges from 1 to log n, where S log n is the node with
address all 1’s. Suppose that vi is in set Sk for k > 1. Then
vi+1 must be in set Sk−1, since the highest 0 in vi’s address
is shifted up one bit to produce vi+1 (and a 0 is introduced if
vi ∈ Slog n). So for some t = O(log n), vt−1 is in S1. Then
vt must have d(vt) < d(v0). All vt with d(vt) < d(v0)
must exist by Lemma 5.2. �	

Theorem 5.4 Object lookup requires O(log n) time steps
and messages.

Proof. The cost in time and messages of finding p0, the
parent of the ideal host, is O(log n), since it takes log n
steps to find the parent of the first guess of the ideal host,
and the request can only be routed down from there. For the
previously defined sets {vi} and {pi}, let t be such that vt

exists and for all i < t, vi does not exist. Each routing step
from p0 to pt−1 requires only a single step and message,
since pi is either equal to or has an outgoing edge to p i+1

according to the DeBruijn construction and the observation
that for all i < t, d(vi) = d(v0); this sequence then requires
O(t) steps and messages. The last routing step from pt−1 to
pt requires at most log n steps and messages, and pt has an
edge to vt, the node responsible for the desired object. Since
t = O(log n) by Lemma 5.3, the total cost is O(log n). �	

6 Recursive divide-and-conquer applications

This network is suitable for many types of distributed
applications. One class for which it performs well are re-
cursive divide-and-conquer applications, because of its uni-
form task assignment and its ability to recursively spawn
subtasks as well as its ability to avoid repeating subtasks. It
is also able to take much of the load of these computations
off the central task coordinator. While these applications
can in principle be performed with any DHT, they implic-
itly use a single collection or starting point and are natural
candidates for a supervised network.

6.1 Dynamic programming

Our network allows efficient parallel recursive compu-
tation of dynamic programming problems. In some dy-
namic programs, the domain of cases is so large that a ta-
ble of computed results cannot be handled by a single com-
puter; our network allows this table to be divided among
the nodes. At all but the bottom level (the level where tasks
complete locally), each task spawns logically separate sub-
tasks, waits for them to return, and then combines the re-
sults. Our network maps each subtask to a point in a uni-
versal address space (in this paper the [0, 1) real line) which
is then mapped to a node in the network. Computation re-
sults are cached when completed. When some other node
needs the result of a computation, it sends the request for
the task to the appropriate node. If this is the first execution
of this task, it is executed. If the task has already been com-
pleted, the answer is returned immediately. If the task is in
progress, the node is added to a set of nodes waiting for the
response to the task. No subtask is ever computed twice, as
long as results of computations are exchanged along with
ranges when nodes join and leave the network.

6.2 Backtrack distributed tree search

A similar approach can be used to solve the backtrack
search problem, discussed in [12] and many other papers.
The backtrack search problem involves a parallel traversal
of a search tree to find the minimum cost leaf, where each
internal node represents a partial solution to a problem and
each leaf represents a full solution and its associated cost.
Backtrack searches are easy to implement in this setting,
since a search beginning at each child can be considered a
new object. When a leaf is discovered its cost is returned,
and when all the children of a task corresponding to an inter-
nal node computation have returned the minimum of their
values is then returned.

The paper by Liu et al. [12] proves that distributed back-
track search can be performed under a very conservative
network model in time O(n/p + h) with high probability,
for an n-item tree of maximum depth h using p processors,
assuming that task assignment is random. This is asymptot-
ically optimal since at least h time must be used to explore
the full depth of the tree, and at least n

p nodes need to be
explored by one of the p processors. Using the same analy-
sis, when static our system is asymptotically work-optimal
since node workloads within a factor of 2 can at most in-
crease the total computation time by a factor of 2. Under
dynamic network conditions, our system maintains this op-
timality with respect to any online algorithm; the only addi-
tional cost comes from task movement away from departing
nodes and to joining nodes, which at each step is at most
twice what a best-possible online algorithm would move.

6.3 Web crawling

An immediate practical application for the use of this
network is distributed web crawling. A web crawler tra-
verses readable directories and links from HTML files to
try to explore the entire World Wide Web. This is similar
to the process of tree exploration, except that the underly-
ing graph contains cycles. A central database of already
explored links or sites can be used to prevent a web crawler
from repeating itself, but on the scale of the entire web this
is very expensive. An alternate solution is to consider each
web page to be an object, and to assign the responsibility
for exploring it to the node responsible for the hash of the
object. In this way, every link to that web page would be
sent to the same node for exploration, which could locally
keep track of whether or not it had already explored those
sites which it is responsible for, thus avoiding repeated ex-
plorations while requiring each participant to keep only its
share of the crawl history. If this is too fine a discretization,
directories or domains could be considered objects instead
of individual pages.

7 Extensions

7.1 Increased fault tolerance

If we remove the graceful departure assumption, we
must make the structure more fault-tolerant. To accomplish
this, each node can be replaced by a complete graph con-
taining O(log n) nodes, and each edge can be replaced by
a full bipartite graph; then with high probability the sys-
tem can tolerate a constant fraction of random failures in
the network. The supervisor can be contacted to refill heav-
ily depleted clusters with new nodes or nodes acquired by
removing whole clusters from the topology. This increases
some costs in the network by a logarithmic factor. It also in-
troduces inefficiency into the object management, since the
same objects must be stored in O(log n) places (causing ei-
ther redundant data storage or redundant computation).

7.2 Broadcasting

In addition to the aforementioned uses, the network also
supports broadcasting in logarithmic time with linear mes-
sage complexity. Some applications could benefit from this
capacity, for example to transfer universal update informa-
tion through the network. Details are omitted due to space
considerations.

Acknowledgements

The authors would like to thank Jonathan Shapiro and
Brian Wingenroth for their suggestions and comments.

References

[1] G. Ateniese, C. Riley, and C. Scheideler. Survivable moni-
toring in dynamic networks. In Proceedings of the Interna-
tional Information Assurance Workshop, 2004 (to appear).

[2] A. Brinkmann, K. Salzwedel, and C. Scheideler. Efficient,
distributed data placement strategies for storage area net-
works. In Proceedings of the 12th Annual ACM Symposium
on Parallel Algorithms and Architectures , pages 119–128,
2000.

[3] CERN. http://public.web.cern.ch/public/.
[4] distributed.net. http://www.distributed.net/.
[5] Folding@home. http://folding.stanford.edu/.
[6] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the

grid: Enabling scalable virtual organizations. International
J. Supercomputer Applications, 15(3), 2001.

[7] P. Fraigniaud and P. Gauron. The content-addressable net-
work D2B. Technical Report LRI 1349, Univ. Paris-Sud,
2003.

[8] The Globus Alliance. http://www.globus.org.
[9] Gnutella. http://gnutella.wego.com.

[10] D. Jefferson et al. Distributed simulation and the Time Warp
operating system. In Proceedings of the Eleventh ACM Sym-
posium on Operating Systems Principles, 1987.

[11] F. Kaashoek and D. Karger. Koorde: A simple degree-
optimal distributed hash table. In Second International
Workshop on Peer-to-Peer Systems, 2003.

[12] P. Liu, W. Aiello, and S. Bhatt. Tree search on an atomic
model for message passing. SIAM J. Comput., 31(1):67–85,
2001.

[13] M. Naor and U. Wieder. Novel architectures for p2p appli-
cations: the continuous-discrete app roach. In Proceedings
of the 15th Annual ACM Symposium on Parallelism in Al
gorithms and Architectures, 2003.

[14] Napster. http://www.napster.com.
[15] OptimalGrid.

http://www.alphaworks.ibm.com/tech/optimalgrid.
[16] G. Pandurangan, P. Raghavan, and E. Upfal. Building low-

diameter p2p networks. In IEEE Symposium on Foundations
of Computer Science, pages 492–499, 2001.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network. In
Proceedings of ACM SIGCOMM, pages 161–172. ACM
Press, 2001.

[18] P. L. Reiher. Parallel Simulation Using the Time Warp Op-
erating System. In Proceedings of the Winter Simulation
Conference, pages 38–45, 1990.

[19] C. Riley and C. Scheideler. Guaranteed broadcasting using
SPON: Supervised P2P Overlay Network. In International
Zurich Seminar on Communications, 2004 (to appear).

[20] A. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems. In Proceedings of the 18th IFIP/ACM Int’l Conf.
on Distributed Systems Platforms, 2001.

[21] SETI@home. http://setiathome.ssl.berkeley.edu/.
[22] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-

akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of the 2001 ACM
SIGCOMM Conference, pages 149–160, 2001.

