
Robust Distributed Name Service

Baruch Awerbuch� and Christian Scheideler��

Department of Computer Science, Johns Hopkins University, 3400 N. Charles Street,
Baltimore, MD 21218, USA, {baruch,scheideler}@cs.jhu.edu

Abstract. This paper suggests a method called Trust-but-Verify that,
under certain simplifying assumptions, provides robust distributed name
service even under massive adversarial attacks.

1 Introduction

The Internet was originally designed for the purpose of being extremely robust
against hardware attacks, such as natural disasters or wars. However, software
attacks (such as viruses, worms, or denial-of-service attacks) have become in-
creasingly severe over the past few years, whereas hardware attacks are negligi-
ble. Thus, for any distributed application to run reliably on the Internet, it is of
utmost importance that it is robust against adversarial software attacks. This is
especially important for critical applications such as name service, i.e. a service
that translates names such as “machine.cs.school.edu” into IP addresses so that
machines can communicate with each other.

The current way name service is provided in the Internet is server-based.
However, server-based architectures are vulnerable to attacks. A much more
robust alternative appears to be the recently emerged peer-to-peer paradigm
with its strictly decentralized approach. Unfortunately, despite the appeal of a
decentralized approach, it appears to be a daunting task to develop peer-to-
peer networks that are robust against adversarial attacks. Obviously, in an open
environment any attempt to keep adversarial peers out of the network is doomed
to failure because a priori there are no trust relationships that would allow to
distinguish adversarial peers from honest peers. So one approach has been to
at least limit the number of identities adversarial peers can obtain. Here, the
use of a certification authority was suggested that requires credentials, sensitive
information, or a payment to obtain an identity that allows the peer to join
the system [4]. However, being overly restrictive here would not only prevent
adversarial peers but also many honest peers from joining the system, either
because they cannot provide the necessary credentials or they are not willing
to reveal sensitive information or to pay for their membership. Thus, it should
be clear that without being overly restrictive, a certification authority will be
ineffective in limiting the number of identities adversarial peers may obtain,
allowing them to start so-called Sybil attacks [7] that can cause severe problems
� Supported by NSF grant ANIR-0240551 and NSF grant CCR-0311795.

�� Supported by NSF grant CCR-0311121 and NSF grant CCR-0311795.

to all structured peer-to-peer systems that have been suggested so far. Hence,
new designs are needed that provide reliability despite adversarial peers with a
potentially unlimited number of identities.

The goal of this paper is to demonstrate that it is possible, under certain
simplifying assumptions, to design completely open peer-to-peer systems that are
provably robust against adversarial peers of arbitrary behavior with an unlimited
number of identities, as long as the adversarial peers in the system (or more
precisely, their currently active identities) are in the minority.

1.1 Distributed name service

A peer is defined as an entity with a unique identity, i.e. each peer p is uniquely
identified by a tuple (Name(p), IP(p)) where Name(p) represents the name of p
and IP(p) represents the IP address of p. In order to provide a distributed name
service, the following operations have to be implemented:

– Join(p): peer p wants to join the system.
– Leave(p): peer p wants to leave the system.
– Lookup(Name): returns the IP address of the peer p in the system with

Name(p) = Name, or NULL if there is no such peer.

These operations must be implemented so that they can be run concurrently
and reliably in an asynchronous environment without any trust relationships in
which adversarial peers have an unlimited number of identities at their disposal
and behave in an arbitrary way (i.e. we allow Byzantine peers). To formalize
this goal, we need a model.

1.2 Security model

We consider a peer to be adversarial if it belongs to an adversary or it is sim-
ply unreliable. Otherwise, a peer is called honest. We do not assume any prior
trust relationships between the peers. Hence, a priori honest peers cannot be
distinguished from adversarial peers.

Certification authority. A necessary requirement for a name service as defined
above to work correctly is that every possible name x has at most one peer p
with Name(p) = x, i.e. the Lookup operation provides a unique peer for a given
name (if such a peer is currently in the system). To guarantee this property,
an authority is needed that resolves conflicts among the peers and that prevents
peers from taking over names of other peers. Thus, we assume that a certification
authority is available that issues certified names to peers that want to enter the
system and that only provides such a name if no peer has registered under that
name before. Certified names allow peers to prove that they are the rightful
owner of a name, which prevents peers from taking over the identities of other
peers. However, this does not prevent the adversary from registering a large

number of adaptively chosen names that are different from names of the honest
peers.

Notice that the certification authority does not need to be online during the
operation of the peer-to-peer system if all peers have registered names with it
before. Hence, it does not introduce a single point of failure for the operation of
that system and therefore does not undermine the benefits of having a decen-
tralized peer-to-peer system.

Semantics of Join, Leave, and Lookup. Recall that a peer p is defined as an
entity with a unique, certified identity, i.e. p = s(Name, IP) where s is a signature
scheme, Name is the name of p, and IP is the IP address of p. Join, Leave, and
Lookup are operations acting on a name service relation DNS ⊆ Names× IPs in
the following way:

– Join(p): if this operation was initiated by IP(p) and p is correctly certified
then DNS← DNS ∪ {(Name(p), IP(p))}

– Leave(p): if this operation was initiated by IP(p) then DNS← DNS\{(Name(p),
IP(p))}

– Lookup(Name): if there is a peer q with (Name, IP(q)) ∈ DNS then return
IP(q) and otherwise return NULL

Given that the certification authority maintains a mapping CA : Names → IPs
that is well-defined at any time (i.e. each name is associated with at most one IP
address), also the lookup operation will be well-defined. Indeed, if the operations
above are correctly implemented and executed, then DNS ⊆ CA at any time and
DNS consists of all identities currently present in the peer-to-peer system.

Notice, that there are many ways for adversarial peers to attack the correct-
ness of DNS: adversarial peers may execute Join(p) for honest peers currently
not in the system or Leave(p) for honest peers currently in the system, or may
leave the system without notice. Also, adversarial peers may attempt to provide
a wrong answer to a lookup operation. So countermeasures have to be taken to
protect the system against these attacks.

Resources. We allow arbitrary adversaries with bounded presence, i.e. the
number of adversarial identities or peers is at most an ε-fraction of the peers in
the system at any time. Such adversaries are called ε-bounded.

We consider asynchronous systems in which every honest peer has roughly the
same clock speed but there is no global time. Since honest peers are considered
reliable, we assume that at any point in time, any message sent by an honest peer
p to another honest peer q will arrive at q within a unit of time. (Other message
transmissions may need any amount of time.) Furthermore, honest peers have
unbounded bandwidth and computational power, i.e. an honest peer can receive,
process, and send out an unbounded number of messages in a unit of time.
The latter assumption allows us to ignore denial-of-service attacks, but it does
not simplify the task of securing an overlay network against legal attacks (i.e.
attacks exploiting security holes in its protocols). As long as adversarial peers

do not transmit unnecessary packets, the number of messages an honest peer
will have to deal with in a time unit will normally be low so that we believe that
our protocols are practical despite this assumption. Designing provably secure
overlay networks for honest peers with bounded bandwidth is very challenging
and needs further research.

Bootstrap peers. We assume that the certification authority provides a limited
number of so-called bootstrap peers that are always part of the overlay network.
This list of peers may be downloaded by a new peer when it registers its name so
that it can contact one of the bootstrap peers without contacting the certification
authority again. Bootstrap peers are like normal peers. For the Join protocol to
work correctly we assume that at least one of the bootstrap peers is honest.
Otherwise, there is no reliable way for a new peer to join the system. However,
the Leave and Lookup protocols should not rely on the bootstrap peers so that
the system is scalable and can work correctly under ε-bounded adversaries even
if all bootstrap peers are adversarial.

To simplify the Join protocol in this extended abstract, we will assume that
all bootstrap peers are honest.

Notice that the concept of bootstrap peers is necessary because somehow new
peers have to be able to find out about peers already in the system. Assump-
tions like “peers contact random peers in the system” are not realistic because
how should a peer find this random peer over the Internet? Furthermore, it is
important to have peers that are permanently present in the overlay network
because otherwise a server would have to be established that is always accessible
and that provides a continuously updated list of peers currently in the system,
which introduces a single point of failure.

Messages. Finally, we need some assumptions about how messages are passed.
We assume that the (IP address of the) source of a message cannot be forged so
that adversarial peers cannot forge messages from honest peers. Also, a message
sent between honest peers cannot be deleted or altered by the adversary.

Notice that the source issue can actually be solved easily without cryptogra-
phy as long as adversaries cannot hijack IP addresses or listen to communication
between honest peers: if a message arrives from IP address x, then the receiver
y asks x for a confirmation that contains a secret (for example, a random key).
Only if y receives an acknowledgement from x containing the secret, y will ac-
cept the message. The assumption that messages cannot be deleted or altered by
the adversary is realistic in our case because we assume the peers of our overlay
network to sit at the edge of the Internet, and therefore peers cannot manipulate
communication between other peers.

1.3 Security goal

Recall that our security goal is to implement the Join, Leave, and Lookup op-
erations so that they can be run concurrently and reliably in an asynchronous

environment. More precisely, any of these operations executed by any of the
honest peers in the system should be executed in a correct and efficient way. “In
the system”, “correct” and “efficient” require precise definitions.

A Join(p) (resp. Leave(p)) operation is called completed if any Lookup(Name(p))
operation executed afterwards by an honest peer in the system (and before an-
other Join(p) or Leave(p) operation) returns IP(p) (resp. NULL). A peer p belongs
to the system if Join(p) has been completed and Leave(p) has not been initiated
yet. A Lookup(Name) operation is called completed once the peer initiating the
request accepts the return value.

An overlay network operation is said to execute correctly if it completes within
a finite amount of time. Furthermore, an overlay network operation is called

– work-efficient if it is completed using at most polylog(n) messages and
– time-efficient if it is completed using at most polylog(n) time,

where n be the current number of peers in the overlay network.
Finally, we call an overlay network survivable if it can guarantee the cor-

rect and (time and work) efficient execution of any overlay network operation
initiated by an honest peer, with high probability, for at least 1/polylog(n)-
bounded adversaries and a join/leave rate of at least 1/polylog(n), i.e. at least
n/polylog(n) peers may join or leave the network in a time unit.

This definition implies that in a survivable network, any overlay network
operation initiated by an honest peer can be executed correctly for at least
poly(n) time units, with high probability, where n is the minimum number of
peers in the system during that time.

Notice that we only require correct and efficient executions for honest peers,
i.e. we do not care whether the semantics of Join, Leave, or Lookup are violated for
adversarial peers. For example, a Lookup(Name) request for some Name owned
by an adversarial peer q is allowed to give inconsistent answers, i.e. some honest
peers may receive the answer IP(q) and others receive the answer NULL.

Also, notice that we have to add the term “with high probability” above,
because we said that a priori, it is not possible to distinguish between honest and
adversarial peers. So no absolute guarantees can be given, unless we completely
interconnect all peers, which is highly inefficient and therefore out of question.

An overlay network is called weakly survivable if it can only guarantee cor-
rectness and time-efficiency, but no work-efficiency. In this paper we propose a
design called Trust-but-Verify that provides weak survivability as long as the ad-
versarial peers are in the minority. Recently, the authors also managed to design
overlay networks that are survivable in the strong sense. See [1, 2] for details.

1.4 Existing work

Classical distributed computing methods [13, 5, 14, 17] use Byzantine agreement
and two-phase commit approaches with inherently linear redundancy and over-
head to maintain a safe state.

The proactive security approach in [16, 12, 11, 3, 10] uses different coding tech-
niques to protect unreliable data in reliable networks; applying these methods
in our context still yields linear overhead.

Fixed topology networks as in [9], will work only for non-Byzantine peers, and
only allow fail-stop faults; the construction cannot handle malicious behavior of
even a few malicious players.

The reliability of hash-based peer-to-peer overlays (or DHT’s) such as Chord
[18], Pastry [8], and Tapestry [19] hinges on the assumption that the IDs given to
the nodes are pseudo-random, so that they can cope with a constant fraction of
the nodes failing concurrently, with only logarithmic overhead. While this may
seem to perfectly defeat massive attacks under these randomness assumptions,
DHT’s cannot handle even small-scale adaptive adversarial attacks involving
the selection of adversarial IP addresses (to get close to desired IDs). One such
“Sybil” attack is described in [7]. Remarkably, the attackers do not need to do
anything complex such as inverting the hash function; all that is needed is to get
hold of a handful (actually, logarithmic) number of IP addresses so that IDs can
be obtained that allow to disconnect some target from the rest of the system.
This can be accomplished by a linear number (i.e. O(n)) of offline trial/errors.
For similar attacks, see [6].

Random or unpredictable placement of data in a logarithmic size subset of
locations (as in Freenet) ensures that data is difficult to attack, but also makes it
difficult to retrieve. Specifically, data retrieval of randomly placed data requires
a linear number of queries, which is definitely unscalable.

2 The Trust-but-Verify approach

The basic approach of our Trust-but-Verify scheme is similar to previous hash-
based overlay networks such as Chord [18]. All hash-based overlay networks are
based on the concept of a virtual space. The basic idea underlying these systems
is that peers are given virtual locations in some space, and the overlay network
is constructed based on these virtual locations. That is, depending on its virtual
location, a peer aims to maintain connections to other virtual locations and does
this by establishing pointers to the peers closest to these locations. See, e.g. [15]
for a general framework behind this approach. To illustrate this approach, we
give the Chord network as an example.

2.1 The Chord overlay network

Suppose that we have a system currently consisting of a set V of n peers, and
further suppose we have a (pseudo-)random hash function h : Names → [0, 1)
that maps peers to real values in the interval [0, 1). The real value a peer p is
mapped to is called its identification number or ID and denoted by ID(p). The
basic structure of Chord is a doubly-linked cycle, the so-called Chord ring, in
which all peers are ordered according to their IDs. In addition to this, every peer

p has edges to peers fi(p), called fingers, with fi(p) = argmin{q ∈ V | ID(q) ≥
ID(p) + 1/2i} for every i ≥ 1.

To avoid identity theft, h is usually assumed to be a one-way hash function
so that it is hard to find a name Name �= Name(p) for some peer p so that
h(Name) = h(Name(p)).

2.2 Problems with the Chord overlay network

Using a pseudo-random hash function allows to assume that IDs of honest peers
are distributed uniformly at random in [0, 1), but it does not allow to assume that
also IDs of adversarial peers are distributed uniformly at random in [0, 1). The
problem is that adversarial peers may pick names deliberately for the purpose
of getting very close to some values in [0, 1).

For example, by generating a set A of adversarial peers with IDs in [x− ε, x],
[x, x+ ε], and [x+1/2i, x+1/2i + ε] for all relevant i with ε < 1/n2, peer p with
ID(p) = x will have no honest peer pointing to it any more, and all peers p is
pointing to belong to A, with high probability. Hence, if the peers in A leave,
p will be disconnected from the system, with high probability. Notice that even
a relatively modest adversary can come up with such a set A, even if the hash
function is not invertible. It just has to try enough names.

Once p is isolated, overlay network operations cannot be executed successfully
any more, because p is not able to communicate with other honest peers in the
system. Thus, the Chord overlay network is not survivable in our sense.

2.3 An approach robust against isolation attacks

The Trust-but-Verify overlay network also uses a pseudo-random one-way hash
function to map peers to IDs in [0, 1). (Recall that the pseudo-randomness makes
sure that IDs of honest peers are random, and the one-way property makes sure
that if the name of a peer cannot be taken over, it is also hard to take over its
ID.) However, peers are interconnected in a different way.

A region is an interval in [0, 1) of size 1/2r for some r ∈ IN0 starting at an
integer multiple of 1/2r. Imagine for a moment that every peer knew the current
number of peers, n, in the system, and that every peer p aims to maintain
connections to all peers in the system with IDs in the regions Ri(p), i ∈ ZZ,
where Ri(p) is the unique region of size closest from above to (c log n)/n, for
some fixed constant c, that contains ID(p) + sgn(i)/2|i|(mod 1).

Suppose now that the ID of every honest peer is like an independent, random
value in [0, 1) (but hash values of adversarial peers may be any values different
from the values of honest peers). Then the well-known Chernoff bounds imply
the following result:

Theorem 1. For any (1 − ε)-bounded adversary for some constant ε > 0 there
is a constant c = O(1/ε) so that in every region of size closest from above to
(c log n)/n there are Ω(log n) honest peers, with high probability.

It follows from the theorem and the way the regions are selected that no
matter how the IDs of adversarial peers are distributed in [0, 1), the honest peers
in the system will form a single connected component. However, just having
connectivity among the honest peers does not seem to suffice to achieve the
desired semantics of Join, Leave, and Lookup. The problem here is that in a
Lookup(Name) execution adversarial peers may claim that a certain peer with
that name is in the system, and there does not seem to be a reliable way for
an honest peer to verify this claim because adversarial peers may represent the
majority in the region containing h(Name). So a different approach is needed to
achieve survivability.

2.4 Outline of Trust-but-Verify approach

The main idea of our Trust-but-Verify approach is that honest peers will organize
in regions R ⊆ [0, 1) they consider to be safe (i.e. the honest peers are in the
majority) and not just some regions of size (c log n)/n. If an honest peer feels
that one of its regions is no longer safe, it will change it to a larger region. On
the other hand, if an honest peer feels that a subregion within one of its regions
is now safe, it will move to the subregion. Each honest peer will continuously
probe peers it knows in its regions. If some peer does not respond, the honest
peer will drop its connection to it. Since we assume honest peers to be reliable,
this will not happen to honest peers. Messages are routed along safe regions to
make sure that adversarial peers cannot alter, delay, or delete them. Next we
give a more detailed description of how to maintain regions, how to interconnect
the peers, and how to join, leave, and search in the overlay network.

3 The Trust-but-Verify scheme

3.1 Safe regions

Recall that a region is an interval in [0, 1) of size 1/2r for some r ∈ IN0 starting
at an integer multiple of 1/2r. Suppose that every peer p knows the current
number n of peers in the system. Given a peer p and a region R, let V p

R denote
p’s view of R, i.e. the set of peers p knows in R. p considers R to be safe if, for
some fixed constants c > 1 and ε ≤ 1/12,

1. |R| ≥ (c log n)/n and
2. |V p

R | ≤ (1 + ε)|R| · n.

Safe regions have the following nice property when given an ε-bounded adversary:

Theorem 2. Let 0 < ε ≤ 1/12 and c > 0 be constants. If for some peer p and
region R, p considers R to be safe, V p

R contains all honest peers in R, and c is
sufficiently large compared to ε, then at least 3/4 of the peers in V p

R are honest,
with high probability.

The theorem directly follows from the well-known Chernoff bounds because
if |R| ≥ (c log n)/n for a sufficiently large c, then the number of honest peers in
R is at least (1 − 2ε)|R| · n, with high probability. In this case, the fraction of
adversarial peers in V p

R can be at most 3ε ≤ 1/4 if ε ≤ 1/12.

3.2 Maintaining safe regions

Since the membership of regions can change rapidly, each honest peer p will
keep safe snapshots (Si(p), rs

i (p)) and current versions (Ci(p), rc
i (p)) of regions

containing ID(p) + sgn(i)/2|i|, where Si(p) is the view and 1/2rs
i (p) is the size of

the snapshot region Rs
i (p) and Ci(p) is the view and 1/2rc

i (p) is the size of the
current region Rc

i (p) of p. These regions are updated as follows.

1. A subregion R ⊆ Rc
i (p) containing ID(p) + sgn(i)/2|i| is now safe: then p

executes (Si(p), rs
i (p)) ← (V p

R ,− log |R|) and (Ci(p), rc
i (p)) ← (Si(p), rs

i (p)),
i.e. p updates its snapshot and current region to R.

2. Rc
i (p) is unsafe: then p executes Ci(p) ← Ci(p) ∪ View(R) and rc

i (p) ←
rc
i (p) − 1, i.e. p doubles the size of its current region and extends its view

by requesting a view of the unknown half, R, of the new region (the View
command is specified below).

3. A new peer q joins Rc
i (p): then p executes Ci(p)← Ci(p) ∪ {q}.

4. An old peer q leaves Rc
i (p): then p executes Ci(p)← Ci(p) \ {q}.

5. An old peer q leaves Rs
i (p): then p executes Si(p)← Si(p) \ {q}.

p maintains connections to all peers it knows of in every Rc
i (p) and Rs

i (p) (and
some limited number of older versions of Rs

i (p) to preserve the correctness of
overlay network operations) and all peers q it knows of with p in Rc

i (q) or Rs
i (q).

Notice that there can be different values i1 and i2 with Rc
i1(p) ⊆ Rc

i2(p), so
regions may sometimes be contained in other regions, but for any two active
regions R1 and R2 of a peer p it must hold that either R1 ⊆ R2 (resp. R2 ⊆ R1)
or R1 ∩ R2 = ∅. Those regions R1 with R1 ⊆ R2 only have to be maintained
implicitly, so that p only has to explicitly store O(log n) regions at any point in
time.

Also, notice that Rs
i (p) ⊆ Rc

i (p) at any time. New peers are only added
to Ci(p) because safe snapshots have to preserve the safeness condition at any
time, and therefore new peers should not be added there. However, peers may
still leave safe snapshots. Hence, they have to be updated quickly enough to
make sure that honest peers always represent the majority. Fortunately, if the
departure rate of honest peers is limited to ε/ log2 n for some small constant
ε > 0, then the honest peers will be able to find new safe snapshots quickly
enough. More precisely, the following result can be shown.

Theorem 3. If the adversary is ε-bounded for some sufficiently small constant
ε > 0 and the arrival and departure rate of (honest and adversarial) peers is
at most ε′/ log2 n for some sufficiently small constant ε′ > 0, then our region
update rules ensure that for every honest peer p and every i, at least 2/3 of the
peers in Rs

i (p) are honest at any time, with high probability.

To be able to verify this result, we describe below how to execute the View(R)
operation. Notice that Rs

i (p) ⊆ Rc
i (p) at any time. It is not difficult to check

that this operation is well-defined and completes in O(log n) time.

View(R):
// p: peer initiating the view request
if ∃i ∈ ZZ : R ⊆ Rs

i (p) then return V p
R (w.r.t. Ci(p))

else
if ID(p) ∈ R then

// R1, R2: two halfs of R, i.e. R1 ∪R2 = R
for each i ∈ {1, 2}:

if ∃j ∈ ZZ : Ri ⊆ Rs
j(p) then Vi = V p

Ri
(w.r.t. Cj(p))

else
fix any Rs

j(p) ⊆ Ri

send to all peers in Sj(p): (View, Ri)
wait until (View, Ri, Vi(q)) from ≥ 2/3 of peers q ∈ Sj(p)
Vi ← {q′ : |{Vi(q) | q′ ∈ Vi(q)}| ≥ |Sj(p)|/3}

return V1 ∪ V2

else
send to all peers in the Sj(p) closest to R: (View, R)
wait until receiving (View, R, V (q)) from ≥ 2/3 of peers q ∈ Sj(p)
V ← {q′ : |{V (q) | q′ ∈ V (q)}| ≥ |Sj(p)|/3}
return V

Upon receiving (View, R) from some peer p′:
// q: peer receiving the region request
if ∃i ∈ ZZ : R ⊆ Rs

i (q) then send to p′: (View, R, V q
R)

else
if ID(q) ∈ R then

// use same strategy as above to compute V1 and V2

send to p′: (View, R, V1 ∪ V2)
else

// use same strategy as above to compute V
send to p′: (View, R, V)

It remains to show how to execute Join, Leave, and Lookup operations and
how to estimate n.

3.3 Join and Leave

If a new peer p wants to join via some bootstrap peer q, q starts with requesting
views for regions of p of lowest possible size, i.e. (c log n)/n. If this does not
provide a safe region for some Si(p), q moves to a larger region for that i until
it obtains views satisfying the requirements of a safe region for every relevant i
(here, i ∈ {− logn, . . . , log n} is sufficient). Afterwards, q passes these views to
p. p uses these views to integrate itself into the system.

The Leave(p) operation is straightforward: p just cuts all connections it has
in the overlay network. Join takes O(log2 n) time and Leave takes O(1) time.

3.4 Lookup

Next we specify the Lookup operation. It is not difficult to check that it completes
in O(log n) time.

Lookup(Name):
// p: peer initiating the lookup request
if ∃i : h(Name) ∈ Rc

i (p) then
if ∃q ∈ Ci(p) : Name(q) = Name then return q
else return NULL

else
send to all peers in the Si(p) closest to h(Name): (Lookup, Name)
wait until receiving (Lookup, Name, a) from > 1/2 of peers in Si(p)
return a

Upon receiving (Lookup, Name) from some peer p′:
// q: peer receiving the lookup request
if ∃i : h(Name) ∈ Rc

i (q) then
if ∃q′ ∈ Ci(q) : Name(q′) = Name then

send (Lookup, Name, q′) to p′

else send to p′: (Lookup, Name,NULL)
else

send to all peers in the Si(q) closest to h(Name): (Lookup, Name)
wait until receiving (Lookup, Name, a) from > 1/2 of peers in Si(q)
send to p′: (Lookup, Name, a)

3.5 Estimating n

Size(r):
// p: peer executing the operation
R← unique region of size r containing ID(p)
(R1, R2)← two halfs of R
for each i ∈ {1, 2}:

if ∃j ∈ ZZ : Ri ⊆ Rs
j(p) then vi = |V p

Ri
| (w.r.t. Cj(p))

else
fix any Rs

j(p) ⊆ Ri

wait until receiving (Size, vq, r + 1) from ≥ 2/3 of peers q ∈ Sj(p)
vi ← median({vq : q ∈ Sj(p) and q sent message})

if r = 0 then return v1 + v2

else
R′ ← unique region of size r − 1 containing ID(p)
send to all q ∈ V p

R′ : (Size, v1 + v2, r)

Finally, we show how to estimate n. This is done recursively, starting with
each peer p executing Size(r0) for r0 = log(n

c log n)�. Size(r0) never has to wait for
incoming messages and therefore terminates for all honest peers. This will then
allow Size(r0− 1)-calls to terminate, which allow Size(r0 − 2)-calls to terminate,
and so on until an estimate of the number of peers in the system is returned by
Size(0). To make sure that this estimates n sufficiently well, only estimates from
honest peers are accepted by using the median rule in each stage.

It is not difficult to show that these operations make the Trust-but-Verify
approach weakly survivable.

References

1. B. Awerbuch and C. Scheideler. Enforced Spreading: An improved protocol for provably secure
distributed name service. Technical report, Johns Hopkins University, February 2004.

2. B. Awerbuch and C. Scheideler. Group Spreading: A protocol for provably secure distributed
name service. In Proc. of the 31st International Colloquium on Automata, Languages and
Programming (ICALP), 2004.

3. R. Canetti, R. Gennaro, A. Herzberg, and D. Naor. Proactive security: Long-term protection
against break-ins. RSA CryptoBytes, 3(1):1–8, 1997.

4. M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wallach. Secure routing for structured
peer-to-peer overlay networks. In Proc. of the 5th Usenix Symp. on Operating Systems Design
and Implementation (OSDI), 2002.

5. M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Proc. of the 2nd Usenix
Symp. on Operating Systems Design and Implementation (OSDI), 1999.

6. S. Crosby and D. Wallach. Denial of service via algorithmic complexity attacks. In Usenix
Security, 2003.

7. J. R. Douceur. The sybil attack. In Proc. of the 1st International Workshop on Peer-to-Peer
Systems (IPTPS), 2002.

8. P. Druschel and A. Rowstron. Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. In Proc. of the 18th IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware 2001), 2001.

9. A. Fiat and J. Saia. Censorship resistant peer-to-peer content addressable networks. In Proc. of
the 13th ACM Symp. on Discrete Algorithms (SODA), 2002.

10. Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Optimal resilience proactive public-
key cryptosystems. In Proc. of the 38th IEEE Symp. on Foundations of Computer Science
(FOCS), pages 384–393, 1997.

11. A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive public key and
signature systems. In Proc. of the ACM Conference on Computer and Communications
Security (CCS), pages 100–110, 1997.

12. A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or: How to cope
with perpetual leakage. In CRYPTO ’95, pages 339–352, 1995.

13. L. Lamport. The weak Byzantine generals problem. Journal of the ACM, 30(3):669–676, 1983.
14. L. Lamport and N. Lynch. Distributed computing. Chapter of Handbook on Theoretical

Computer Science. Also, to be published as Technical Memo MIT/LCS/TM-384, Laboratory
for Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 1989.

15. M. Naor and U. Wieder. Novel architectures for P2P applications: the continuous-discrete
approach. In Proc. of the 15th ACM Symp. on Parallel Algorithms and Architectures (SPAA),
2003.

16. R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In Proc. of the 10th ACM
Symp. on Principles of Distributed Computing (PODC), pages 51–59, 1991.

17. R. De Prisco, B. W. Lampson, and N. Lynch. Revisiting the Paxos algorithm. In Workshop
on Distributed Algorithms, pages 111–125, 1997.

18. I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-
to-peer lookup service for Internet applications. In Proc. of the ACM SIGCOMM ’01, 2001.

19. B.Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-tolerant wide-
area location and routing. Technical report, University of California at Berkeley, Computer
Science Department, 2001.

