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Abstract

We present a monitoring system for a dynamic network,
in which a set of domain nodes shares the responsibility
for producing and storing monitoring information about a
set of visitors. This information is stored persistently when
the set of domain nodes grows and shrinks. Such a system
can be used to store traffic or other logs for auditing, or
can be used as a subroutine for many applications to al-
low significant increases in functionality and reliability.
The features of our system include authenticating visitors,
monitoring their traffic through the domain, and storing
this information in a persistent, efficient, and searchable
manner. The storage process is O(log n)-competitive in
the number of network messages with respect to an op-
timal offline algorithm; we show that this is as good as
any online algorithm can achieve, and significantly better
than many commonly used strategies for distributed load
balancing.

Keywords: monitoring, audit logs, survivable storage,
network intrusion detection, emergency communication

1 Introduction

This paper presents a theoretically well-founded, prov-
ably efficient monitoring system over a dynamic overlay
network. A monitoring system collects and stores infor-
mation about visiting participants in a network. The infor-
mation is made available upon request and can be subse-
quently analyzed and used for any purpose by an admin-
istrator, for example to assign or revoke certain privileges
for specific monitored nodes which have behaved well or
badly.

A monitoring system can be run on a single machine
or on several machines (nodes) connected through a net-

work. We assume that such a network is dynamic, i.e.,
it constantly changes its characteristics. In particular, we
focus our attention on unreliable wireless networks, which
can be structured (e.g., P2P) or unstructured (e.g., ad-hoc),
that support a very dynamic environment where nodes can
leave or join and are allowed to move from one point to
another.

The set of nodes forming the monitoring system is
called domain and the nodes inside the domain are re-
ferred to as domain nodes. The nodes being monitored are
known as visitors, and are considered to be outside the do-
main. We use an adversarial approach which considers an
adversary that is able to disconnect any targeted nodes of
the domain. However, we assume that the attacker is not
able to impersonate any domain node. In particular, we
assume that an attacker cannot compromise a trusted node
to the extent that secret keys of that node are exposed.

1.1 Assurance Argument

The goal of this paper is to guarantee the collection and
availability of monitoring information for activity by vis-
itors in a network. Our solution uses a dynamic set of
domain nodes to share the tasks of monitoring the visitors
and of storing the generated monitoring information. This
information can be used for the detection of a variety of
threats, some of which are discussed in the paper. More
directly, the technical contributions of the paper consist of
preventing disruptions of the monitoring process. Such a
disruption could have significant security implications, de-
pending on the application. For example, when using our
system to aid network intrusion detection, a disruption of
monitoring could allow attackers to cause significant dam-
age in the network before being detected.

The threats to the monitoring process addressed by this
paper take three primary forms. First, attacks can cause
node failures in the system, which may cause data loss or



other disruptions of the storage process. The technique
presented in this paper solves this problem by providing
a mechanism for efficient data reallocation across domain
node joins and leaves, and can also support abrupt node
failures through redundancy in connections and data stor-
age. The provable efficiency of the reallocation process
also reduces the ability of attackers to overload the system
by causing thrashing (repeatedly bringing down and/or in-
serting domain nodes to cause excessive data movements).
Second, excessive information can be generated through
malicious overactivity to overload a monitoring node. Our
technique solves this by distributing the monitoring infor-
mation across all participant nodes without overloading
any; the information is distributed as closed pages (with
no later additions or modifications) so that fixed amounts
of storage can be used. Third, nodes can attempt to hide
themselves to avoid identification and monitoring. We
present one method for preventing such stealth, designed
for very low powered devices and small networks such as
would be used in an emergency communication system;
similar methods are possible in larger networks of devices
with greater computational ability using fairly standard
cryptographic techniques.

We claim that no monitoring information is lost un-
der the assumption that nodes depart gracefully (with ad-
vance notice), or that with high probability no information
is lost when nodes are allowed to depart without notice;
in addition to this we claim that no node is ever asked to
store more information than it is capable of storing (or has
stated that it is capable of storing). We also claim that no
traffic is allowed to travel through the domain nodes that
is unmonitored. We assume that we have a reliable and
trusted supervisor node to manage the organization of the
network of domain nodes, though when a multicast group
of spare supervisors is kept only one needs to remain to
keep the system intact. We also assume that domain nodes
are trusted (though they do not need to be reliable).

Attempts to tamper with the system or bypass the
monitoring activity are met with cryptographic solutions.
Methods for authentication ensure that visitor nodes are
identified before being allowed to communicate; message
encryption within the network ensures that no node can
impersonate a domain node or send messages through the
domain nodes except through the proper monitoring pro-
cess. While there are many valid solutions to these prob-
lems, a sample solution based on low-powered small net-
works (such as ad-hoc networks of cellular phones and
PDA’s) is presented.

1.2 Applications

Depending on how the information collected by the
monitoring system is used, there are several applications

that could benefit from our strategy. In this section we
consider three such applications: persistent audit logs, net-
work intrusion detection, and emergency systems.

Persistent Audit Logs. Audit logs of activity in networks
can be considered a type of monitoring information, so our
system can be used with no modifications to address this
concern. The generic monitoring process involves using a
domain node to intercept visitor traffic and process it to ac-
quire the application-defined monitoring information; this
can be used to perform any desired auditing. Our system
produces audit information locally and then stores it per-
sistently and efficiently in a highly dynamic set of nodes.

Network Intrusion Detection. The primary goal of a net-
work intrusion detection system is to collect information
on entities specified by a system administrator or by a pol-
icy and to analze this information against a set of filters.
Each node in the network contributes to the collection ef-
fort. There are two types of network detection systems,
depending on where the analysis occurs. In the first type
of system, nodes collect the information and send it to a
central database where the information is analyzed. In the
second type of system, each node analyzes the information
locally and notifies all nodes if a problem is found.

Our system could be used as an information collector
for a system of the first type. Network intrusion detection
systems focus on protocol flow analysis with the purpose
of determining whether some entity has attempted to gain,
or has gained, unauthorized access to the system; our sys-
tem would provide the intrusion detector with the needed
information to perform its analysis, and would ensure that
the information was not lost. Our model allows adversar-
ial disabling of nodes in the network without losing infor-
mation. Therefore, our monitoring system combined with
network intrusion detection techniques can be used as a
survivable intrusion detector that can withstand network
failures and malicious node disabling.

Emergency System. In emergency situations, such as
transportation strikes, terrorism attacks, and natural dis-
asters, an emergency response information system is em-
ployed to coordinate the activities of several individuals
from different organizations. Emergency systems are de-
signed as structured group communication systems with
an integrated electronic library of external data and infor-
mation sources [37]. Future scenarios may force such sys-
tems to extend their requirements to consider new threats
that were not considered before. For example, terrorist
organizations could create an emergency situation and at
the same time destroy any communication systems used
by rescue or reporting teams, consequently amplifying the



terror effect. A communication infrastructure is a rela-
tively easy target and can be disrupted without much ef-
fort. Thus, emergency systems should not rely exclusively
on communication networks containing critical compo-
nents with geographically fixed positions. Even distribut-
ing a component by splitting its role among several nodes
spread around the globe may not be sufficient, since it
is possible to isolate an entire geographic area where the
emergency is taking place. Even if the rest of the commu-
nication network works properly outside this area thanks
to the distribution, local emergency operators (such as res-
cue teams) will not be able to communicate within the
area. Next generation emergency systems must be de-
signed to support a dynamic set of members that includes
low powered and sporadically connected participants such
as cellular phones and PDAs; systems must be able to use
whatever resources are available and must be able to tol-
erate their weaknesses.

Current emergency systems are closed by design, i.e.,
only a predetermined set of experts are allowed to ex-
change information [37]. However, it is impossible to pre-
dict how a crisis situation might evolve. It is impossible
to completely predetermine the roles and responsibilities
of participants in the network or even the set of individu-
als or organizations allowed to use the system. An open
approach would provide several benefits by allowing new
members from different organizations to use the commu-
nication infrastructure provided by the emergency system
and contribute to the crisis management process. How-
ever, external members (i.e., members that are allowed to
use the system only because of the emergency situation)
should at least initially be restricted or monitored to avoid
any abuse of the network.

Our monitoring system allows untrusted nodes to com-
municate while enforcing that their behavior is monitored
by the domain nodes. Furthermore, our system is toler-
ant of changes to the set of trusted participants as well as
to a wide range of capacities. This makes it particularly
suitable for serving as the monitoring process for future
emergency communications systems running on ad-hoc
networks that allow open but monitored communication.

1.3 Related Work

Emergency communication systems are becoming in-
creasingly popular but, to the best of our knowledge, none
of the existing and proposed systems operates over a dy-
namic network and provides an open access policy that
allows visitors to communicate; see [37] for a survey of
existing emergency systems.

There has been extensive research in intrustion detec-
tion for at least the past twenty years, see for instance
[1, 4, 7, 14, 15, 16, 17, 19, 21, 22, 32, 38]. In particular,

intrusion detection for distributed systems is a very active
research area and several systems have been proposed that
can be classified based on the approach employed by the
detector. For instance, DIDS [33] and NSTAT [18] are
systems based on the centralized analysis approach where
audit data is collected on individual nodes and then re-
ported to a centralized location where the intrusion detec-
tion analysis is performed. In GrIDS [34] and EMERALD
[26], systems based on the hierarchical analysis approach,
audit data is collected and analyzed by each node and the
results of the analysis is reported according to some hier-
archical structure.

The technical contribution of our paper is represented
by the load balancing and recovery mechanisms built on
top of the overlay network SPON [29], which was de-
signed for reliable broadcasting in dynamic networks. Ex-
tensive research has been recently carried out on the de-
sign of overlay networks that support arrivals and depar-
tures of nodes. Recent systems projects on such networks
include Freenet [9], Ohaha [24], Archival Intermemory
[8], and the Globe system [3]. Theoretically well-founded
peer-to-peer networks have also been presented, such as
Pastry [30], Tapestry [20], Chord [36], and a network pre-
sented by Pandurangan et al. [25], along with SPON.
With the exception of SPON, the topologies of these net-
works are based on either DNS-like, hypercubic, or ran-
dom constructions, which are either not useful or far too
complex for our particular environment. Recently, a new
backup system based on peer-to-peer overlay networks
has been proposed in [10], similar to an approach previ-
ously suggested in other works, including, for example,
[5, 11, 12, 28, 31]; the scope of these systems is to backup
entire file systems. The storage component of our system,
designed solely to store monitoring information, allows us
to fulfill our requirements while achieving provable effi-
ciency, which more expensive systems cannot.

1.4 Problem description

We assume that there are two different kinds of nodes,
visitors and domain nodes, and that the visitors are un-
trusted and the domain nodes are trusted. The task of the
domain nodes is to monitor all activities of the visitors
which involve the network. They also store a distributed
database containing recorded monitoring information for
all visitors.

There are three components to this monitoring process:

1. All traffic of the visitor has to be intercepted.

2. The intercepted traffic must be processed to produce
relevant monitoring information.



3. This information must be stored permanently.

This paper focuses primarily on the last of these,
proposing a distributed database and algorithms for the
storage of this information. The requirements of such a
database are as follows:

1. Authentication: The system must be able to identify
visitors accurately to ensure that stored information
can be correctly matched to a visitor.

2. Searchability: The database must be searchable, in
the sense that an administrator must be able to ac-
quire all information about a particular visitor wish-
ing to connect to the network.

3. Persistence: The database must be persistent, in the
sense that no entries in the database can be lost by
network disruptions.

4. Efficiency: The algorithms for maintaining and us-
ing the database should run with minimal communi-
cation and computational overhead.

1.5 Model

We assume that we have available a dynamic set of do-
main nodes which can be used to store the database. These
nodes may depart the network at any time, but for most of
this paper we assume that node departures are graceful,
or that each node requests permission to depart and does
so only when told. This allows the analysis to be less de-
pendent on a sensitive failure model for nodes. It is not a
limiting assumption, as the algorithms presented here can
be extended through redundancy to limit the probability of
node failure through ungraceful departures. See Section 5
for details.

For clarity we will not concern ourselves with network
layer details. We assume that all domain nodes participate
in some network which supports broadcast and unicast
message passing; if the underlying network supports only
unicasting, a separate SPON can be used for broadcast-
ing. We do not consider latency across edges, edge band-
width, or edge failures. The performance metric we are
concerned with is the number of bits transferred through
the network in the monitoring system, which includes con-
trol information and any data movements used to rebal-
ance the system or to move data to a new node or from a
departing node.

We assume that each domain node has a limit on its
capacity for storage, to make the storage problem non-
trivial; for analysis purposes we will assume that these
capacities are identical for all nodes, but the system func-
tions without modification with varying capacities. We as-
sume that the sum of the capacities of the domain nodes is

more than the amount of information being stored in the
database, so that the system never runs out of space.

We assume an adversarial event model, where an ad-
versary is allowed to request node join and leave events.
This adversary can be used, for example, to always re-
quest that the most heavily loaded node leave, causing all
the data stored at the node to be moved elsewhere. Within
this model we will prove competitive ratios comparing our
algorithm to an optimal offline algorithm which knows the
entire sequence of events. More details on this analysis
method can be found in Section 4.1.

We assume that there is a single supervisor node, which
can be of low bandwidth, storage, and processing power.
To ensure reliability, we also assume that a constant-sized
multicast group of spare supervisor nodes is maintained.
When communications are sent to the supervisor we as-
sume they are sent to the multicast group address. All
nodes in the group except the active supervisor ignore traf-
fic in the group not sent by the active supervisor. The ac-
tive supervisor multicasts updates in its stored information
to the group to keep the spares up to date; then if the ac-
tive supervisor fails, any one of the spares can take over
transparently. Central organization is integral to the per-
formance of our algorithms; there are no known symmet-
ric techniques which satisfy all our requirements.

1.6 New results

We present a design for a system which is capable
of authenticating visitor nodes, monitoring their traffic
through a network of domain nodes, and storing this mon-
itoring information in a persistent and efficient manner.
The system supports searching for data collection through
network broadcast. Our system can be used as a compo-
nent of an emergency communications system or an intru-
sion detection system or many other systems, depending
on the analysis performed on the collected information.

Our system provides an online algorithm for data stor-
age which is O(log n)-competitive against an optimal of-
fline algorithm1, or that any algorithm which knows the
future sequence of visitor communications and node de-
partures and joins is at most a factor of O(log n) more effi-
cient in network communication, where n is the number of
domain nodes (or the maximum number in a relevant time
interval). Furthermore, we show that this competitive ra-
tio is asymptotically as good as any online algorithm (one
which does not know the future), and is notably better than
many commonly used strategies.

1See Section 4.1 for a more thorough description of competitive anal-
ysis



2 System Overview

2.1 Motivation

Clearly the nearest domain node to the visitor at the
time of communication must be the one to intercept the
visitor’s messages, since if the messages passed the first
domain node without being caught they would be consid-
ered to have entered the network without being monitored.
Beyond this, there are a number of simple solutions to the
problems described above which fail to achieve the desired
objectives; their failings motivate our solution. As one ex-
ample, after being produced, all monitoring information
for all visitors could be immediately sent to a single do-
main node to be stored. This is unsatisfactory because it
would almost certainly overload the node. Obviously, it is
better to divide the data storage among all domain nodes.
One method would be to select a single domain node for
each visitor, for example through distributed hashing[36],
and to send all monitoring information to that node. But
some visitors may generate much more monitoring infor-
mation than others, and some domain nodes may have
multiple high traffic visitors assigned to them, potentially
exceeding the capacity of the node.

Another solution is to let the domain node nearest
the visitor store the monitoring information for the vis-
itor. But the visitor may move to other places in the net-
work, and the nearest domain node may change frequently.
The monitoring information could be exchanged, but this
would generate significant communication overhead. The
monitoring information could be left at the domain node
that collected it, and collected only when needed; this
saves unnecessary message passing, but can cause load
imbalances and can exceed the capacity of domain nodes.

The system presented in the following sections does not
have any of the problems of these strategies.

2.2 Components

This section discusses the visitors, the domain nodes,
and the supervisor, mentioning their responsibilities and
providing sample interfaces.

2.2.1 Visitors

The visitor is responsible for authenticating its messages
by signing them, so that a domain node receiving them
can properly match the traffic to the node. Any unsigned
messages from a visitor are ignored.

VISITOR INTERFACE

sign(): authenticate itself in its messages

Guard

Guard
Manager

Vault
Process

Applications

Monitoring Transport Layer

Network

Guard

Figure 1. Layers of the Secure Monitoring
Protocol

2.2.2 Domain nodes

An overview of the protocol for an ordinary domain node
is given in Figure 1.

The monitoring transport layer receives all messages
arriving from the network. It passes messages which
are not valid domain messages to the guard process, and
routes valid domain messages to the guard and vault pro-
cesses and to any applications in use (and to the supervisor
process in the supervisor node) according to their destina-
tion. It also signs all messages from the node, from any
process, to mark them as valid domain messages.

MONITOR TRANSPORT LAYER INTERFACE

sign(): sign all outgoing messages as valid
domain messages
route(): route incoming messages to appropriate
processes
˜Monitor: destructor process, calls other destruc-
tors

The guard process verifies the identity of a visitor and
clears it with the supervisor when it first connects. On
the first and subsequent connections, the guard forwards
the visitor’s messages into the network, and also produces
monitoring information about the visitor’s messages. We
use a single guard manager in the domain node which
spawns independent guard processes for each visitor con-
necting through it.



GUARD MANAGER INTERFACE

new(): spawn a new guard process to handle
a new visitor
delete(): delete a guard process
˜Guard-Manager: destructor process, delete all
guards

GUARD INTERFACE

check(): query the supervisor regarding a
visitor
monitor(): produce monitoring information
forward(): send a visitor’s message through the
network
page(): request a node to send monitoring infor-
mation to
upload(): send monitoring information to a vault
˜Guard: destructor process, send partial informa-
tion to a vault

The vault process is responsible for the storage of mon-
itoring information assigned to it. It also participates in an
overlay network organized into a distributed heap for the
purpose of allocating monitoring information to vaults in
a balanced way.

VAULT INTERFACE

join(): join a heap
leave(): leave a heap, for example when full
page(): request a node to send monitoring infor-
mation to
move(): move data to another vault
heapify(): rearrange with neighbors in heap
search(): search locally stored information for a
specific node
write(): write monitoring information locally
˜Vault: destructor; call leave(), move data away
with page() and move()

2.2.3 Supervisor

The supervisor is a single domain node known by all other
domain nodes, and is also a process running on that node
which performs the supervisor functions. The supervisor
process serves as the maintainer of the heap of vault nodes.
It also stores a blacklist of visitors which are not allowed
to send messages through the domain, though it is not re-
sponsible for determining the list; traffic analysis is be-
yond the scope of this paper.

For fault-tolerance, we use a constant sized multicast
group as the network supervisor. A single node in the

group serves as the active supervisor, and the other nodes
ignore multicast messages from outside the group. When
the active supervisor changes its stored information about
the network, it multicasts the updates to the other nodes in
the group; if the group is constant-sized this is at most a
constant multiple overhead. If the active supervisor should
fail any node in the group is capable of taking over trans-
parently and with no communication overhead.

SUPERVISOR INTERFACE

insert(): add a vault to the backup heap
remove(): remove a vault from its heap
check(): see if a visitor is in the blacklist
update-list(): update the blacklist when told
get-lightest(): return the top vault in the active
heap
switch-heap(): activate the backup heap

2.2.4 Administrator

The exact functioning of the administrator is beyond the
scope of this paper. In general, the administrator initiates
data collection through broadcasts through the domain, in
order to retrieve all monitoring information about a set of
visitors. If broadcasting is not a primitive in the domain,
a strategy such as [29] can be used to perform reliable
broadcasting using a unicast primitive.

2.3 Flow path of messages

Messages can be freely exchanged between domain
nodes. A message from a visitor node is stopped at the first
domain node it reaches (which may change over time as
the visitor and domain nodes move around), and the node
determines whether or not to let the visitor send to the net-
work by contacting the network supervisor. The domain
node monitors the traffic of the visitor after it is cleared
by the supervisor. Monitoring information is distributed
through the domain by being sent piecemeal through the
network to vaults, and can be accessed and used by an
administrator, for example to update the network’s accep-
tance policies for visitors.

A sample overview of the flow of a message is given in
Figure 2.

3 Algorithms

3.1 Cryptographic Algorithms

Effective monitoring is only possible if untrusted nodes
cannot create multiple or false identities, and if the com-
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Figure 2. The flow of a message from a vis-
itor through the network to another visitor.
The solid path is the message path, and the
dotted path is the path of some monitoring
information.

plete traffic to and from an untrusted node is monitored,
filtered, and stored.

Central requirements for a monitoring system are:

1. Untrusted nodes must be uniquely identifiable.
This can be achieved via a wide range of standard
authentication techniques, from password-based sys-
tems to digital certificates that bind node identifiers
to public keys. (This is similar to the unique network
identifier in intrusion detection systems [33, 18].)

2. Domain nodes should be able to communicate se-
curely. Domain nodes should be able to commu-
nicate so that outsiders cannot read, modify or in-
ject messages. This can be achieved via standard
techniques although techniques based on public-key
cryptography should be kept at minimum whenever
domain nodes are mobile, since mobile nodes often
rely on battery power which can be consumed rapidly
by CPU-intensive operations.

Depending on network conditions there are a number of
standard solutions to these requirements, including public-
key cryptography, shared keys, and group key communi-
cation protocols. In Section 6 we discuss a set of solutions
to these issues, designed for a single application. This sec-
tion by no means represents the only way to implement the
general system presented in this paper.

3.2 Data Management Algorithms

3.2.1 Guards, pages of logs, and temporary page stor-
age

As the guard monitors the visitor, it stores this informa-
tion in a temporary fixed size page of storage space; when
this page is filled, the guard requests a destination from
the supervisor through page(), receives a network address,
and calls upload() to send the page to the address to be
stored in that node’s vault process. The guard’s temporary
page can then be erased and reused. Collecting the data
into pages improves the efficiency of the supervisor, since
each store operation includes a certain overhead cost inde-
pendent of the amount of data being stored. But if a page
is too large, or if all data is stored at the guard, then the
load can become unbalanced.

3.2.2 Vaults and SPON-based heaps

For permanent storage of pages, vaults are organized into
heaps based on the SPON network presented in [29].
SPON stands for “Supervised Peer Overlay Network”, and
is a topology and algorithms to maintain a broadcast group
in a dynamic network where nodes join and leave fre-
quently. The SPON topology includes a single reliable
supervisor, which is responsible for network repair and
for initiating broadcast messages. The supervisor stores
2 log n root slots organized into log n pairs labelled from
0 to (log n−1). These slots each can either hold a node or
be empty; a node in a root slot is a root node, and other
nodes are tree nodes. If a slot in pair i holds a node,
then this node is the root of a distributed full binary tree
of depth i; it maintains a connection to two other nodes,
each of which maintains a connection to two other nodes,
and so forth. This is an invariant in the structure of the
network, such that after join and leave operations are fully
processed this condition still holds. The relevant prop-
erties of SPON are that each node has a constant max-
imum degree2, the network has O(log n) diameter, and
node join and graceful leave operations can be fully pro-
cessed in O(1) rounds with O(1) messages (with very low
constants).

In this paper we consider right siblings of root nodes in
the SPON topology to be parents, and left siblings of root
nodes to be children, so that nodes are only connected to a
single parent and have up to three children, and all nodes
but the rightmost root node have a parent; this does not
change the functionality of the network in any way, but
allows us to treat the entire graph as a single tree.

2The supervisor stores the slots and the nodes within them, but only
needs to maintain an edge to the end nodes, though it communicates in
response to a direct contact with other nodes.
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Figure 3. A sample SPON

On top of this topology a heap is maintained, where
heaping is performed according to the maximum space
available at a node, such that each node has at least as
much free space for storage as its children. This is done
through the heapify() calls of each node, which need to
occur only when a node joins or leaves (when its replace-
ment is inserted) or when a node is given additional load.
An inserted node queries its new parent and children (as
applicable). If it has more free space than its parent, they
exchange places by exchanging adjacent node information
and informing their neighbors as well; this requires O(1)
rounds and messages. Then the node continues to move it-
self up the tree querying its new parent and exchanging un-
til a terminal location is found; each round requires O(1)
messages and rounds of communication, and the supervi-
sor does not need to be involved in any of the operations.
If an inserted node or a node given additional load has less
free space than its children, it exchanges places with the
child of most free load, and continues to query its new
children and exchange until it is in place. In this way the
root of the rightmost tree is always the node with the most
room.

3.2.3 Types of vaults and heaps

There are three types of vaults: old, spare, and active.
There are also two separate heaps maintained in the sys-
tem, the active heap and the backup heap. Active vaults
are connected to the active heap, and spare vaults are con-
nected to the backup heap; old vaults are not in a heap.
The root node of the active heap is sent by the supervisor
to the next guard node to request storage for a page.

3.3 Event processing

There are several events which may occur. The events
and the processes for handling them are as follows:

1. First contact: A visitor contacts a domain node
which is not currently monitoring it and wishes to
connect to the network.
The guard monitor running on the domain node

spawns a new guard process for the visitor. If too
many guards are running, the guard manager can
delete the least recently accessed guard to make
room. The guard process checks with the adminis-
trator to see if the node is allowed to participate. If
okay, then the guard creates a temporary page for the
node and begins monitoring it.

2. Stop contact: A visitor currently being monitored by
a guard node moves to another guard node or leaves
entirely.
The guard does not need to perform any action to re-
spond to this. It may not even be able to detect such
movement.

3. Guard’s temp page full: The page being used by a
guard to monitor a node fills.
Request a domain node address from the supervisor,
send the full page to the node and erase the temporary
page for reuse. The vault receiving the page reheaps
itself.

4. Supervisor receives a request for storage: A guard
asks for a node to store a page.
The supervisor replies with the address of the node at
the top of the active heap.

5. Vault receives a page to store: A vault receives a
page of monitoring information to store.
Store the page and then reheap with children until the
heap property is restored.

6. Guard departs: A guard process wishes to leave
the network.
The pages in the node must be placed elsewhere in
the network before the node can depart. It requests
nodes from the supervisor for each page.

7. Old vault departs: An old vault (not in the active
or the backup SPON) wishes to leave the network.
This is identical to a guard departing the network.

8. Spare vault departs: A vault in the backup heap
wishes to leave the network.
The vault has no data to be moved, but it is a part of
a heap, so the SPON leave procedure must be used to
repair the overlay network.

9. Active vault departs: A vault in the active heap
wishes to leave the network.
First, the node must be extracted from its heap like a
spare vault. Its replacement must reheap itself either
up or down as appropriate. Second, its data must be
replaced into the system like an old vault and guard.



10. Node joins: A new vault joins the network.
The node is integrated into the backup heap through
SPON’s join procedure, and if needed reheaps itself.

11. Active vault fills: An active vault fills its storage
space (has less than a page free).
Nothing different is done; the node is rotated down
the heap as in ordinary operation.

12. Active heap full: The supervisor cannot place a
page into the active heap because all nodes are full.
The active heap is dissolved, through a broadcast
message or implicitly, and all active vault nodes be-
come old vault nodes. The backup heap becomes the
active heap, and a new, empty, backup heap is cre-
ated. Any data which could not be stored in the pre-
vious heap is stored in the new heap, which by as-
sumption must have room for the data.

4 Analysis

4.1 Tools

We use competitive analysis as our measurement of the
efficiency of our algorithm. Competitive analysis is a stan-
dard measure in theoretical computer science for evaluat-
ing online algorithms. It compares the work performed
by the given algorithm to the minimum amount of work
that an optimal offline algorithm must perform in the same
setting, where the offline algorithm receives the entire se-
quence and timings of operations in advance. By proving
an upper bound on the ratio between these costs, one can
show that there are no “bad” cases where the algorithm
performs arbitrarily badly.

Formally, for any instance (sequence of operations) I ,
for an optimal offline algorithm OPT , for a costI() func-
tion measuring the work performed by an algorithm to
process instance I , and for an appropriate parameter n,
to say that algorithm A is O(f(n))-competitive is to say
that:

costI(A)
costI(OPT )

= O(f(n))

In addition, constant-competitive says that O(f(n)) =
O(1).

In this paper, the instance I represents a sequence of
node join and leaves and data write requests interspersed.
The cost() function counts the number of distinct mes-
sages which must be sent through the network to process
the instance; it does not attempt to count the number of
hops each message takes or the edge latency or total time
of message transfer, as these are beyond the scope of this

paper. The parameter n is the maximum number of do-
main nodes in the network at any given time.

The cost in network traffic of our algorithm can be bro-
ken into two types, control messages and data movements.
Control messages include, for example, a guard request-
ing a node from the supervisor to store a page, as well as
the supervisor’s response. Data movements occur when
a page of data is exchanged between nodes, either from
a guard to a vault or from a vault to another vault before
departing.

4.2 Control messages

We analyze the cost of control messages through the
following comparison to the cost of data movements.

Lemma 4.1 Except for messages to process nodes join-
ing and leaving heaps, control message cost is at most a
constant multiple of data movement cost.

Proof. Other than nodes joining and leaving heaps, con-
trol messages are triggered by two types of events, visitor
communication and page movement. The initial commu-
nication of a visitor to a guard causes the guard to check
with the supervisor to see if the node is okay; this is a con-
stant overhead. But an optimal algorithm still must send
the messages from the visitor to a node, and since each
message can only generate a constant overhead, the algo-
rithm is constant competitive.

Page movement control messages are identical regard-
less of whether a page is moved from a guard to a vault
or from one vault to another. The source process must
request a destination node from the supervisor, which re-
sponds, and then after moving the data the destination
node may need to heapify itself. This total process re-
quires up to O(log n) messages. But a page of data is
moved in the process, so if we assume a page is of size
Ω(log n), the total cost of control messages in page move-
ment is a constant multiple of the cost of data movement.
Since page size is arbitrary the lemma holds. ��

In addition to this lemma, node join and graceful
leave operations can be processed with O(1) messages in
SPON.

4.3 Data movements

We will compare our algorithm to an optimal offline
algorithm OPT which knows the entire sequence of oper-
ations. We consider our vaults to have an additional page
of storage beyond the vaults in OPT ; this prevents bin
packing problems from causing competitive ratios to be
unbounded.



When data is written to the active heap in our algo-
rithm, the optimal algorithm OPT may instead write the
data to a different node in the active heap or to a node in
the backup heap. Let us consider a suboptimal extension
of OPT , SUB, which always writes the data first to a
node in the active heap; this is always possible since the
active heap is by definition not full, since if it fills it stops
being active. If OPT would have assigned that data to a
node currently in the backup heap, then SUB moves the
data to that node when its first node fails. Clearly the cost
of SUB is at most twice the cost of OPT under any cir-
cumstances.

Lemma 4.2 The amount of data in the vaults in the
backup and active heaps in our algorithm is at most the
amount in the same vaults in SUB.

Proof. This holds because in our algorithm all nodes not
in the backup and active heaps are full (in the sense of
having less than a page free), and consequently are holding
at least as much information as in SUB. This holds for
OPT as well. ��

Lemma 4.3 Data movements caused by departures of
vaults not in the active heap is constant competitive to
SUB.

Proof. At time t, let A be the set of vaults in the active
heap, B the vaults in the backup heap, S the set of all old
vaults (not in either heap), and V the entire set of vaults,
so that V = A∪B∪S. Of the load stored in A∪B in both
algorithms, some will have been first placed in A ∪B and
some will have been moved in when a vault in S departed.
Because SUB places data first in the currently active set,
the amount of load in A∪B placed in A∪B to begin with
is the amount of load placed in A to begin with, which is
the same in both algorithms since both first place all load
in A. According to Lemma 4.2, SUB must have at least
as much load in A ∪ B as our algorithm. Therefore SUB
must have moved at least as much data into the active heap
from vaults not in the active heap as our algorithm. ��

Lemma 4.4 Data movements produced by the departure
of a vault in the active heap are O(log n)-competitive to
SUB.

Proof. Consider the maximum load L∗ being stored in
any active heap at any point in time while it is active. The
active heap begins with n0 nodes and ends with nf nodes
when the system fills, where n0 ≥ nf , since it can only
lose nodes; also, since n0 −nf nodes failed while the sys-
tem was active, n0 − nf movements of data within the
active heap occurred.

The properties of the heap imply that if there are k
pages being stored in n nodes in the active heap, every
node will have at least � k

n� and at most � k
n	 pages. We as-

sume that the load is sufficient to avoid severe discretiza-
tion effects; in particular, k ≥ n. Then if there are n nodes
currently in the active heap storing up to L∗ load, the cost
of a node failure is at most � L∗

n 	 ≤ 2 ∗ L∗
n . The total cost

of all data movements within the active heap is at most:

nf∑

i=n0

2
L∗

i
= 2L∗ · (log n0 − log nf ) = O(L∗ · log n)

According to Lemma 4.2, SUB must also store at least
L∗ load in A ∪ B, which must first have gone through A.
Then SUB required messages proportional to L∗ either
to move the data into A or to transfer the original visitor
messages generating the load. ��

The above lemmas allow us to show the following the-
orem:

Theorem 4.5 The load balancing algorithms are
O(log n)-competitive to an optimal offline algorithm
OPT .

Proof. Lemmas 4.2, 4.3, and 4.4 show that the algo-
rithms are O(log n)-competitive to SUB with respect to
data movements. Lemma 4.1 shows that the cost of most
control messages is a constant multiple of the cost of data
movements, so the algorithms are O(log n)-competitive to
SUB with respect to all messages. Control messages used
to support vaults joining and leaving heaps require only
O(1) messages. When a vault leaves a heap because it is
full, the messages can be absorbed within the data move-
ment cost needed to fill the vault. When a vault leaves a
heap because its parent node leaves, any algorithm needs
to support the node leaving the network, and would need
to inform some other node with at least a message. Since
SUB is 2-competitive to OPT , the theorem holds. ��

We also have the following lower bound:

Theorem 4.6 For any online algorithm it is possible to
construct a situation for which the algorithm is at best
Ω(log n)-competitive.

Proof. We give an example for which an optimal offline
algorithm can store a load of amount L with work O(L)
but any online algorithm must invest effort Ω(L · log n).
Initially n nodes are available to store a load of amount
L, but only any k for some constant k are needed to store
the load. An adversary for any online algorithm would se-
quentially delete n − k nodes by deleting a node of max-
imum load at each step (causing that node’s load to be



moved to other nodes). The minimum cost of an online al-
gorithm comes from distributing the load evenly at every
step, so that when there are i disks still in the system at
least L

i needs to be performed at the next step. In sum:

k∑

i=n

L

i
= L · (log n − log k) = Ω(L · log n)

Since an offline algorithm can store the load initially at
the last surviving k nodes for any sequence of deletions, it
only exerts L effort, and the competitive ratio is Ω(log n).

��

Techniques such as distributed hash tables [36] are even
worse. DHT’s and many similar strategies attempt to in-
clude a node in the load balance as soon as it joins the
network, moving load away from others to redistribute the
load. This contrasts with our algorithm, which only re-
balances on node departures and not on node joins. This
turns out to be provably inefficient compared to an offline
algorithm:

Theorem 4.7 Any strategy which restores an even dis-
tribution of load after nodes join and leave has an un-
bounded competitive ratio.

Proof. We give an example sequence with unbounded
competitive ratio. Suppose n nodes are sharing some load
L such that each has load L

n . A new node joins the system,
and the load is redistributed by moving L

n+1 load to the

new node. The new node then departs, returning the L
n+1

load to the original n nodes before doing so. This process
can be repeated, with the original n nodes remaining con-
nected. An optimal algorithm would leave the load at the
original n nodes, and does not need to send any messages.

��

This theorem can be trivially extended to include any
strategy which moves any load to a new node as soon as it
joins.

5 Full persistence

Full persistence in real-world situations requires the
network to tolerate ungraceful node departures as well as
graceful. For the sake of simplicity, we will only briefly
discuss the changes which allow our system to be fully
robust.

Replace each node in the SPON data structure (Fig. 3)
with a cluster of nodes connected in a complete graph; re-
place each edge with a full bipartite graph between the two
node clusters. Assuming that each node fails with constant

probability α ∈ (0, 1), a cluster of size O(log n) is suffi-
cient to say that with high probability no entire cluster will
fail. The information assigned to each node can be stored
in every node in the cluster, so that if a single node remains
the information is not lost. Clusters depleted by node fail-
ures request additional nodes from the supervisor, which
removes entire clusters from the active heap (and replaces
the cluster data in the system) and uses the nodes con-
tained in them.

If one assumes that an optimal offline algorithm would
also need to keep O(log n) copies of each data item, it
is easy to extend Theorem 4.5 to show that the load bal-
ancing algorithm based on node clusters is still O(log n)-
competitive. To preserve the competitiveness of the anal-
ysis, nodes used to refill clusters in the active heap must
be drawn from the active heap, though in practice using
nodes from the backup heap may be preferable since they
are not currently storing any information.

6 System Design and Implementation

6.1 Design assumptions

We initially target our system design towards a small
set of low-powered mobile domain nodes such as sen-
sors, cellular phones, or PDA’s connecting in an ad-hoc
network. As a consequence of this, domain nodes cannot
afford the battery power or computational effort required
to use public-key cryptography, and simpler hash-based
methods for authentication must be used. Specifically, our
system uses cryptographic mechanisms based on Message
Authentication Code (MAC) functions, such as HMAC [6]
based on the hash function SHA-1 [23]. Given some input
x and key k, Hk(x) represents the outcome of applying
the MAC function Hk to x.

We assume that the domain nodes share a key KD

which is only known to them. If the group of domain
nodes is static, the key KD can be stored on each node
during the system setup. In scenarios where the group
of nodes is dynamic, group key agreement protocols that
support dynamic groups (such as CLIQUES[35, 2] cou-
pled with a group communication system) can be used to
compute the group key KD.

6.2 Cryptographic protocols

We assume that every message has the following form:

source ID dest ID payload security info

Registration. Before a visitor can get access to a domain,
it has to receive a secret key from the domain. For in-
stance, a visitor v may receive a key Kv = HKD(ID(v)),



where ID(v) is v’s identifier; since KD is shared by the
domain nodes any one can provide such a key. This key
will be used by the visitor to authenticate its messages
and compute other secret keys. Notice that this registra-
tion phase is performed only once (as long as the key KD

does not change) and can thus be performed via traditional
public-key based techniques; in particular, the use of a
public-key certificate to prove ID(v) keeps a visitor from
acquiring multiple identities from the perspective of the
domain.

Authentication. After registering, a visitor v has to au-
thenticate itself to a domain node d by proving ownership
of the identifier. To achieve this, it sends out a message of
the form:

ID(v) ID(d) MID Time
HKv(ID(v), ID(d), MID, T ime)

where MID is a random number used as message ID to
uniquely identify the transaction. The use of the time in-
formation precludes replay attacks. Since d knows KD, it
can compute Kv and therefore immediately authenticate
v.

Once d has verified that the message sent by v is cor-
rect, it checks whether v has already authenticated itself
with d (not too long ago). If not, then d sends a message 3:

ID(d) ID(v) MID Time
HKD(ID(d), ID(v), MID, T ime)

to the supervisor (or to any node which has a copy of the
blacklist, or to any node which is capable of deciding ac-
cess permission). If the supervisor responds negatively, d
will not give v the permission to access the domain.

If v’s authentication is valid and v has permission to
access the domain, d acknowledges this to v and becomes
its guard (if it has not already done so). Afterwards, both
d and v compute HKv (ID(v), ID(d), T ime) and store it
as the key Kv,d. Kv,d will be used by v and d to commu-
nicate with each other.

Communication between visitor and guards. Suppose
that a visitor v wants a message M to be transmitted to
node w via domain node d. In this case, it sends out the
message:

ID(v) ID(w) M MID Time
HKv,d

(ID(v), ID(w), M, MID, T ime)

3If confidentiality is required, the message can be first encrypted and
the MAC can be computed over the resulting ciphertext

The domain node d computes the MAC function and
verifies that the message is coming, intact, from the node
v. Any domain node that is not a guard of v would reject
this message.

The node d would then transform the message into:

ID(v) ID(w) M MID Time
HKD(ID(v), ID(w), M, MID, T ime)

to inform other domain nodes that the message has been
authenticated and it is valid so that it can travel through the
domain network without being dropped. As noted before,
if confidentiality is required, the message can be first en-
crypted and the MAC can be computed over the resulting
ciphertext.

Suppose now that a message M is sent to visitor v by
some node w. If before reaching v the message arrives at a
domain node d that is already a guard of v, then d will for-
ward the message to v. Otherwise, d asks v to authenticate
itself, using the authentication scheme described earlier. If
this is successful, d will become a guard and forward the
message to v.

If the traffic from or to a visitor node ceases for a cer-
tain period of time, the corresponding guard nodes may
decide to deny the visitor node access to the network and
change their status accordingly (requiring reauthentication
with the next communication).

Sharing identities. As long as secret keys are never re-
vealed, malicious nodes cannot take over the identity of
any legitimate visitor. However, once receiving a key K v,d

a malicious visitor v may share its identity with other
unauthorized nodes. If time stamps are monitored and
transmissions are concurrent, this can be easily detected
by the domain nodes. If transmissions are not concurrent,
then the group of visitors may simply be treated as one
by the system. No monitoring system can prevent visitors
from frequently exchanging their identities; see [18, 33]
for discussions of this issue.

6.3 Implementation notes

It is important to remark that the design above cannot
be extended to work with a large set of domain nodes. In-
deed, techniques based on symmetric cryptography do not
usually scale well unless the network has some specific
structure. Also, assuming that each domain node stores
the same key may be troublesome as it would be enough
to compromise one single node to recover such a key.

Nevertheless, it works well for a small set of domain
nodes and we want to minimize the use of techniques
based on public key cryptography. In addition, it sim-
plifies the creation of a prototype implementation of the
system, which is currently in progress.



As first step, we have implemented one the most im-
portant components of our system, the SPON network.
It has been implemented as a Java socket program that
builds an overlay network based on UDP unicast primi-
tives. Currently, the SPON network has been successfully
tested on a network of Sun Ultra 5 (UltraSPARC-IIi 360
MHz) workstations connected over a 100baseT LAN; a
small test network performed node join and leave opera-
tions and broadcast message passing with no visible delay.

The current usage of SPON’s implementation is a
broadcast-based “chat” program, built as a proof-of-
concept and test vehicle for the network. For space con-
siderations, a screenshot and explanatory details are in an
appendix.
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Appendix: SPON screenshot

Figure 4. A screenshot of the SPON network in operation.

In the screenshot, the three similar windows correspond to separate peers being executed by remote terminals operating
through SSH; these windows show the current SPON GUI. The lower right window is the supervisor window, which is
text-only. In the peer GUI, the bottom field is for text input. Typing text and pressing “enter” will broadcast the text to
all other peers and the supervisor. The “join” and “leave” buttons join and leave the network, respectively; since only one
is possible at a time, the other is grayed out. The screenshot represents an arbitrary sequence of communications between
Alice (218), Bob (217), Carl (219), and the Supervisor (220), interspersed with join and leave operations by Bob and Carl.


