
The Hyperring: A Low-Congestion Deterministic
Data Structure for Distributed Environments

Baruch Awerbuch∗ Christian Scheideler†

Abstract
In this paper we study the problem of designing searchable
concurrent data structures with performance guarantees
that can be used in a distributed environment where data
elements are stored in a dynamically changing set of nodes.
Searchable data structures are data structures that provide
three basic operations: Insert, Delete, and Search. In
addition to searching for an exact match, we demand that
for a data structure to be called “searchable”, Search also has
to be able to search for the closest successor or predecessor
of a data item. Such a property has a tremendous advantage
over just exact match, because it would allow to implement
many data base applications.

We are interested in finding a searchable concurrent
data structure that has (1) a low degree, (2) requires a small
amount of work for Insert and Delete operations, and
(3) is able to handle concurrent search requests with low
congestion and dilation.

We present the first deterministic concurrent data struc-
ture, called Hyperring, that can fulfill all of these objectives
in a polylogarithmic way. In fact, the Hyperring has a degree
of O(log n), requires O(log3 n) work for Insert and Delete
operations, and can handle concurrent search requests to
random destinations, one request per node, with congestion
and dilation O(log n) w.h.p.

Most of the previous solutions for distributed environ-

ments are not searchable (in our sense) but only provide ex-

act lookup, and those that are searchable do not have proofs

about the congestion caused by concurrent search requests.

1 Introduction
A searchable data structure has to provide three basic
operations: Insert(d), Delete(name), and Search(name).
Insert(d) inserts a data item d with some name into
the structure, Delete(name) removes the data item with
a given name from the structure, and Search(name)
returns the data item representing the closest match
(e.g. the closest prefix) to name that has been inserted
and has not been deleted (e.g.,[4]).

A precise-lookup dictionary is a data structure that
looks up exact matches only. It is relatively easy to
implement such a data structure via oblivious methods
such as hashing. Examples of concurrent data struc-

∗Dept. of Computer Science, Johns Hopkins University, Balti-
more, USA. Email: baruch@cs.jhu.edu. Supported by NSF grant
ANIR-0240551 and NSF grant CCR-0311795.

†Dept. of Computer Science, Johns Hopkins University, Bal-
timore, USA. Email: scheideler@cs.jhu.edu. Supported by NSF
grant CCR-0311121 and NSF grant CCR-0311795.

tures with this approach are Chord, CAN, Pastry, and
Tapestry [22, 18, 19, 23]. However, the resulting struc-
tures do not have the ability to run range queries, fuzzy
search, database queries, etc in an efficient way. It takes
more work to implement searchable data structures ca-
pable of supporting predecessor or successor search. In
the sequential domain, these can be implemented via
adaptive methods such as 2-3 trees, B-trees, and red-
black trees.

Implementing adaptive, searchable data structures
in a distributed system poses some challenges. A 2-
3 tree, for example, is inappropriate for a distributed
environment because of high congestion at the root.
What is needed is a distributed, low-congestion analog
of 2-3 trees. Many attempts have been made to solve
this problem. Work on concurrent variants of search
trees has been reported in [10, 13, 16, 21]. However,
instead of parallelizing the data structure itself, these
approaches only parallelize the way it is accessed, which
is not suitable for a dynamic and error-prone distributed
environment.

Recently, randomized solutions for concurrent and
searchable data structures suitable for a distributed
environment were suggested, essentially independently,
by Li and Plaxton [11], Aspnes and Shah [1] and Harvey
et al [8]. The underlying pointer structures are called
“hyperdelta networks”, “skip graphs” and “skip nets”.
They constitute a simple and elegant extension of a
randomized skip list data structure of Pugh [17] to the
distributed environment. In [11, 1, 8], only some basic
properties of these data structures such as diameter
and expansion were shown, leaving the following issues
open: How to keep the congestion low for concurrent
search, insert, or delete operations, and how to get rid of
randomization in the construction of the data structure?

The contribution of this paper is to propose solu-
tions to these problems. More precisely, we present
local, deterministic update rules for insert and delete
operations and prove upper and lower bounds on their
effect on the data structure. The outcome of our inves-
tigations is a searchable deterministic data structure,
called Hyperring, that can be viewed as a low-congestion
version of a 2-3 tree or the deterministric skip list pro-

posed by Munro et al [14].
Independently of our work, Harvey and Munro

[9] also proposed a deterministic searchable concurrent
data structure that is similar to our structure. However,
as it turns out from our results, their structure does not
even guarantee a polylogarithmic congestion whereas we
can show logarithmic congestion bounds.

An obvious advantage of a local deterministic over a
randomized solution is the ability to locally self-correct
the data structure in order to return the data structure
to a low-congestion state after an adversarial disruption
or unlucky combination of keys. This property is called
self-stabilization by Dijkstra in his 1974 paper [6] and
is considered an important property in existing peer-
to-peer systems [22, 18, 19]. We comment that by
definition, pseudo-random constructions cannot be self-
correcting. However, the work in [22, 18, 19] deals with
some systems aspects of self-correction.

1.1 Existing work on concurrent searchable
data structures Imagine a collection of data items
Data being sorted in a doubly-linked list based on their
names. To make searching efficient, we need shortcut
pointers. A naive way of doing this is to assign ranks
to the items based on some global (e.g. lexicographi-
cal) ordering of their names. Each item d ∈ Data keeps
pointers to all items d′ whose ranking is exactly 2i larger
than its own for all i. The pointer graph is essentially
a hypercube. Because of the expansion properties of
the hypercube, it can be shown that, in a data struc-
ture with n data items, n concurrent search requests to
random items can be executed with congestion and di-
lation O(log n), w.h.p. However, ranking is a very sensi-
tive function; each data item that joins or leaves changes
the ranking, making dynamic operations (Insert, Delete)
expensive if a perfect ranking is to be maintained: the
update work would be Ω(n).

To solve this problem, consider the approach in
[11, 1, 8] of interconnecting nodes in a hierarchy of
cycles on top of a cycle C containing all data items (or
nodes) in sorted order. Each node pads its name with
a random bit string. First, we decompose C into two
sorted cycles: C0, which contains all nodes with first
bit 0, and C1, which contains all nodes with first bit
1. We continue this process recursively on C0 and C1,
generating even smaller cycles in the next higher level,
namely C00, C01, C10, and C11, etc. That is, at level
i of the recursion, a cycle Cb1,b2...bi is a doubly-linked
cycle of all nodes with the padding sequence b1, b2 . . . bi.
Since the padding sequences are chosen at random, it is
not hard to show that the work for inserting or deleting
a data item is O(log n) w.h.p., and searching for a data
item only requires to traverse O(log n) edges w.h.p.

1.2 The Hyperring data structure Next, we out-
line informally the main ideas of our construction. The
exact model, the problem and complexity measures are
defined in Section 2. One of our main results is:

Theorem 1.1. The Hyperring is a deterministic con-
current data structure with the following features:

• the degree of each node in the data structure is at
most O(log n)

• the work required is O(log n) for a Search operation
and O(log3 n) for Insert and Delete

• the congestion for n concurrent Search operations
forming a permutation, or one operation per node
with random destination, is O(log n) w.h.p. (where
the probability only depends on the search algo-
rithm)

• the node expansion of the data structure is
Ω(1/ logn).

The degree of a node and the expansion match the
bounds known for skip graphs [11, 1, 8]. However, the
congestion created by concurrent operations has not
been shown to be even polylogarithmic in [11, 1, 8],
and our results imply that the only previously known
deterministic concurrent data structure suitable for a
distributed environment [9] does not even guarantee a
polylogarithmic congestion.

Recall the bit padding approach for skip graphs.
In the Hyperring, we use a deterministic rule for bit
padding (see also [9]): there can be at most two
consecutive 0’s and 1’s in each ring. Pictorially, links
corresponding to two consecutive 0’s or 1’s, e.g. 1, 0, 0, 1,
look like a bridge (see Figure 1).

bridge 2

bridge 1

Figure 1: An example of a Hyperring. Padding creates 0 and 1
sub-rings. Notice bridge 1 with sub-sequence 1, 0, 0, 1 and bridge
2 with 0, 1, 1, 0. The bridges have a distance of 5 from each other.

In addition to requiring at most two consecutive 0’s
or 1’s, we also require that these sequences, respectively
their corresponding bridges, are sufficiently far apart

from each other in each ring. We call a Hyperring k-
separated if the minimal distance between two bridges
on a ring is at least k (i.e. there are at least k − 1
nodes between them). The Hyperring in Figure 1 is, for
example, 5-separated. It turns out that separation is
crucial for handling congestion.

1.3 Main insights In Section 2 we state the formal
specifications of a concurrent data structure and state
precisely the measures used in Theorem 1.1 and the
theorems below. In Section 3, we prove:

Theorem 1.2. A Hyperring with a constant separation
has, in the worst case, a poor expansion (i.e. α =
O(1/nε)).

This also implies a bad congestion for routing re-
quests. Hence, a Hyperring must have a non-constant
separation to be useful for concurrent operations. How-
ever, here we face a dilemma. If the separation we re-
quire is, for example, log n, then updates to the Hy-
perring done at some previous time might have used a
completely different n than the n used by current up-
dates. It may seem like a disaster, since we may be
forced from time to time to revisit old insertions and
deletions once the system grows beyond a certain size.
Fortunately, we can show in Section 4 that this is not
necessary.

Theorem 1.3. Logarithmic separation at the time the
request was executed is sufficient to guarantee α =
Ω(1/ logn).

In other words, it is sufficient that a bridge is a
logarithmic number of nodes away from existing bridges
at the time when it is created, where the logarithm is
taken to the current number of nodes, and it is OK if
this is not true any more in the future.

2 Model and statement of the problem
The following model and measures need to be defined
in order to formally state Theorem 1.1.

2.1 Searchable concurrent data structure and
performance metrics We require a (concurrent)
searchable data structure C to offer the following op-
erations

• Insert(d): adds data item d with name (identifier)
Name(d) to C.

• Delete(name): removes d with Name(d) = name
from C.

• Search(name) retrieves from C the closest successor
d∗ of name, i.e.

d∗ = argmin{Name(d′) | d′ ∈ Data, Name(d) ≥ name}

For simplicity, we assume that every name is only once
in the system at any time.

We use the standard performance metrics in com-
munication theory to analyze our data structures. All
metrics are meant for the worst case, where by “worst
case” we mean the worst case over all possible inputs
(i.e. selections of names for the data items).

• degree: this measures the maximum degree of a
node in the data structure, and thus the space
necessary to maintain it.

• work: this measures the number of times a message
has to be sent over a link in a Insert, Delete, or
Search operation. We assume that messages can
carry at most O(log n) bits.

• (node) expansion: this measures the connectivity
or fault-tolerance of the data structure. The ex-
pansion α of a graph G = (V, E) is defined as
α = minU⊂V, |U|≤|V |/2 |N(U)|/|U | where N(U) =
{w ∈ V \ U | ∃v ∈ U : (v, w) ∈ E} is the neighbor
set of U .

• congestion γ(G): this measures the (expected value
of the) maximum number of Search operations
traversing a node in G for the case that every node
has a Search request to a random destination.

To give some examples, the best expansion a constant
degree graph can have is a constant (and these graphs
are known as expanders), whereas the hypercube with
n nodes is known to have an expansion of O(1/

√
log n).

The best congestion a constant degree graph with n
nodes can have is Θ(log n), and there is an easy search
strategy for the hypercube with congestion Θ(log n).
(However, the hypercube is not optimal because it has
logarithmic degree.) In contrast, a complete binary tree
has an expansion of O(1/n) and a congestion of Ω(n).

The expansion and congestion of a graph are closely
related to each other.

Claim 2.1. For every graph G of size n with congestion
γ(G), α(G) = Ω(1/γ(G)).

Proof. Suppose that there is a set U ⊆ V with |U | ≤
|V |/2 and |N(U)| = o(|U |/γ(G)). Then consider the
experiment of choosing a random search problem with
n requests, one per node. It is easy to see that the
expected number of requests that have to cross the cut
(U, Ū) is equal to |U |. Thus, there must be a node in
N(U) that is passed by |U |/|N(U)| = ω(γ(G)) requests
on expectation. However, according to the definition
of the congestion, every node in G should only be
passed by O(γ(G)) requests on expectation, creating a
contradiction. �	

Notice that it is not possible in general to conclude
from the expansion of a graph about its congestion,
because just knowing that a data structure has a good
expansion does not necessarily imply that it allows
efficient searching. For the congestion to be low, it
is important to select the right paths, which is a non-
trivial task in dynamic networks.

We note that [12, 15] are the only results in the
peer-to-peer literature so far addressing the congestion
of concurrent searching (which they only do for DHT-
based approaches).

3 Hyperrings of constant separation

In this section we present a family of dynamic graphs
called k-separated Hyperrings. It offers two primitives:

• Add(v): This adds node v to the Hyperring next to
the node that v contacted.

• Remove(v): This removes node v from the Hyper-
ring.

Detailed proofs of this section can be found in [3].

3.1 The basic construction The basic idea behind
the Hyperring is similar to [1, 8, 9, 11]: it is organized
as a hierarchical structure of rings. Suppose it currently
contains n nodes. Then the Hyperring consists of
approximately log n levels of rings, starting with level 0.
Each level i ≥ 0 consists of approximately 2i directed
cycles of approximately n/2i nodes, which we call rings.
All rings have the same orientation. For every ring R
at level i, two rings of level i + 1 share its nodes in
an intertwined fashion. A ring at level i will also be
called an i-ring in the following, and a level i edge will
simply be called an i-edge. Consider some i-ring R and
let (u, v, w, x) be four consecutive nodes on R. We say
that (u, v, w, x) form an i-bridge (or simply a bridge if i
is clear from the context) if there is an (i+1)-edge from
u to x and an (i + 1)-edge from v to w. An (i + 1)-edge
is called perfect if it bridges exactly two i-edges.

It is possible to maintain a Hyperring with at most
one bridge in every ring. However, in this case we
would create too much update work for Insert or Delete
operations. Instead, we only demand that i-bridges are
sufficiently far apart from each other. A Hyperring is
called k-separated if in every i-ring R the i-bridges on
R are at least k nodes apart from each other, which
means that there are at least k − 1 nodes between the
quadruples of nodes forming a bridge. We start with a
few properties of Hyperrings which are easy to prove.

Lemma 3.1. For every k ≥ 0, the k-separated Hyper-
ring has a maximum degree of at most 2(1 + 2/(k +
1)) log n and a diameter of at most 3 logn.

So concerning the degree and diameter, k-separated
Hyperrings look appealing even for k = 0. Unfortu-
nately, we can also show the following main result.

Theorem 3.1. For every k ≥ 0, the k-separated Hy-
perring has, in the worst case, an edge expansion of

O(1/n1/(2(3(k+4))2)) .

Proof. To simplify the calculations, we will ignore
rounding effects throughout the proof because they turn
out to be insignificant.

We will construct a Hyperring that gives a node set
of size n/2 with a poor expansion. For this we need the
following lemma.

Lemma 3.2. Consider some ring R and some set S of
consecutive nodes in R with |S| ≤ |R|/2. Then two
intertwined rings R′ and R′′ can be constructed on top
of R so that

|V (R′) ∩ S| =
1
2

(
1 − 1

3(k + 4)

)
|S|

and

|V (R′)| =
1
2

(
1 +

1
3(k + 4)

)
|V (R)|

and R′ and R′′ do not violate the k-separation.

Proof. Consider some set S′ of consecutive nodes on R.
If we require the Hyperring to be k-separated, then we
can minimize the number of nodes in V (R′)∩S′ by using
sequences of 1 + �k/2� edges where one edge bridges
three edges and the �k/2� others bridge two edges in
R. Hence, R′ and R′′ can be constructed on top of R
without violating the k-separation so that

|V (R′) ∩ S′| ≤ |S|
3 + 2 · �k/2� · (1 + �k/2�)

=
(

1
2
− 1

4(�k/2�+ 1) + 2

)
|S|

≤ 1
2

(
1 − 1

k + 4

)
|S′| .

Now, select a set S′ ⊆ S of |S|/3 consecutive nodes in
S. Then it is possible to construct a ring R′ on top of
S without violating the k-separation so that

|V (R′) ∩ S| =
1
2
· |S \ S′| + 1

2

(
1 − 1

k + 4

)
|S′|

=
1
2

(
1 − 1

3(k + 4)

)
|S|

We now search for an ε so that if R′ covers
1
2 (1 + ε

k+4)|V (R) \ S| nodes in |V (R) \ S| then

|V (R′)| = 1
2

(
1 + 1

3(k+4)

)
|V (R)|. It holds that

1
2

(
1 + ε

k+4

)
· (|V (R)| − |S|) + 1

2

(
1 − 1

3(k+4)

)
|S| =

1
2

(
1 + 1

3(k+4)

)
|V (R)|

⇔ 3ε − 1
3(k + 4)

· |V (R)| =
3ε + 1

3(k + 4)
|S|

⇔ ε =
|R| + |S|

3(|R| − |S|) ≤ 1

because we assumed that |S| ≤ |V (R)|/2. Hence, it is
possible to obtain the equations stated in the lemma,
which completes the proof. �	

Consider some set S of consecutive nodes on the
0-ring R0 of size n/2. We construct a k-separated
Hyperring with a bad expansion for S inductively.

Consider some i-ring R. If |V (R) ∩ S| ≤ |V (R)|/2,
then we apply Lemma 3.2 to SR = V (R) ∩ S to obtain
two intertwined rings on top of R. Otherwise, we apply
Lemma 3.2 to S̄R = V (R) \S to obtain two intertwined
rings on top of R.

Using this construction, we prove the following
lemma.

Lemma 3.3. For every i-ring R with i ≥ (log n)/(1 +
1/(2(3(k + 4))2)), either SR = V (R) or SR = ∅.
Proof. We can view the Hyperring as a tree T =
(VT , ET) with its 0-ring representing the root and edges
directed towards the leafs. For every node vR at level
i representing an i-ring R, its sons represent the i + 1-
rings on top of R. Consider now an edge (vR, vR′) (i.e.
R′ is on top of R). If |SR| ≤ |V (R)|/2, then it follows
from the inductive construction that

|SR′ | = 1
2

(
1 − 1

3(k+4)

)
|SR|

and |V (R′)| = 1
2

(
1 + 1

3(k+4)

)
|V (R)|

⎫⎬
⎭ (3.1)

and hence,

|SR′′ | = 1
2

(
1 + 1

3(k+4)

)
|SR|

and |V (R′′)| = 1
2

(
1 − 1

3(k+4)

)
|V (R)|

⎫⎬
⎭ (3.2)

If |SR| > |V (R)|/2, it follows that

|S̄R′ | = 1
2

(
1 − 1

3(k+4)

)
|S̄R|

and |V (R′)| = 1
2

(
1 + 1

3(k+4)

)
|V (R)|

⎫⎬
⎭ (3.3)

and hence,

|S̄R′′ | = 1
2

(
1 + 1

3(k+4)

)
|S̄R|

and |V (R′′)| = 1
2

(
1 − 1

3(k+4)

)
|V (R)|

⎫⎬
⎭ (3.4)

Consider now any path p through T from the root to
some node vR at level i = (log n)/(1+1/(2(3(k+4))2)).
We cut p into subpaths p1, p2, . . . , pk at those nodes vR̃

with |SR̃| = |V (R̃)|/2. Then it must hold for each pi

that either |SR′ | ≤ |V (R′)| for every node vR′ in pi or
|SR′ | ≥ |V (R′)| for every node vR′ in pi. Furthermore,
to get back to |SR′ | = |VR′ |/2 at the end, half of the
edges in pi must be of type (3.1) resp. (3.3), and the
other half of the edges in pi must be of type (3.2) resp.
(3.4). Hence, if mi is the size of the ring Ri at the
beginning of pi and �i is the number of edges in pi, then

mi+1 =
1

2�i

(
1 − 1

3(k + 4)

)�i/2(
1 +

1
3(k + 4)

)�i/2

mi

=
1

2�i

(
1 − 1

(3(k + 4))2

)�i/2

mi

for all i < k − 1. Furthermore, if si = |SRi |, then

si+1 =
1

2�i

(
1 − 1

(3(k + 4))2

)�i/2

si .

For the last subpath pk we distinguish between two
cases. Suppose that at least half of the times in pk,
(3.1) resp. (3.3) applies. Then it holds for the final ring
R that for S′ = SR resp. S′ = S̄R,

|S′| ≤ 1
2�k

(
1 − 1

(3(k + 4))2

)�k/2

· sk

=
1
2�

(
1 − 1

(3(k + 4))2

)�/2

· |S|

≤ 2−�
(
1+ 1

2(3(k+4))2

)
· |S|

where � is the length of p. Since |S| = n/2 and
� = (log n)/(1+1/(2(3(k+4))2)), it follows that |SR| < 1
resp. |S̄R| < 1 and therefore SR = ∅ resp. SR = V (R).

Otherwise, suppose that at least half of the times in
pk, (3.2) resp. (3.4) applies. Then it holds for the final
ring R that

|V (R)| ≤ 1
2�k

(
1 − 1

(3(k + 4))2

)�k/2

· mk

=
1
2�

(
1 − 1

(3(k + 4))2

)�/2

· n

≤ 2−�
(
1+ 1

2(3(k+4))2

)
· n .

Since � = (log n)/(1 + 1/(2(3(k + 4))2)), it follows that
|V (R)| ≤ 1, and therefore R does not exist. Combining
the cases proves the lemma. �	

Since for every ring R with SR �= ∅ and SR �= V (R),
SR can only be connected to two outside nodes via edges

in R, it follows from Lemma 3.3 that S is connected to
at most

2 ·
log n

1+1/(2(3(k+4))2)∑
i=0

2i ≤ 2 · 2(log n)/(1+1/(2(3(k+4))2))+1

= 4 · n1−1/(2(3(k+4))2)

outside nodes. This proves the theorem. �	
Theorem 3.1 and Claim 2.1 together imply the

following result.

Corollary 3.1. For every k ≥ 0, the k-separated
Hyperring has a congestion of Ω(n1/(2(3(k+4))2)).

Hence, no k-separated Hyperring with k =
O((log n)1/2−ε) for some constant ε > 0 can have a
polylogarithmic congestion. Hence, to have a good con-
gestion, we need k = Ω(

√
log n). However, notice that

when k depends on the size of the Hyperring, node in-
sertions and deletions that have been performed in the
past might have used a k that significantly differs from
the k used by current insertions and deletions. Hence,
parts of the Hyperring may be out of date. So the ques-
tion is whether it is necessary to revisit these parts in
order to bring the Hyperring up to date. Fortunately,
as one of our main results, we show in the next section
that this is not necessary.

3.2 Adding and removing nodes First, we intro-
duce some notation. Let succi(v) be the successor of v
in its i-ring and predi(v) be the predecessor of v in its
i-ring. For every node v on R, its > i-endpoints repre-
sent all endpoints of edges in v with level more than i.
Notice that each node has two endpoints in each level.
By “moving” the i-endpoints from u to v, we mean that
we replace the i-edges (predi(u), u) and (u, succi(u)) by
the i-edges (predi(u), v) and (v, succi(u)). By “permut-
ing” the i-endpoints of u and v, we mean that we move
the i-endpoints of u to v and the i-endpoints of v to
u. Due to space limitations, we omit the proofs of the
theorems in this subsection. See [3] for details.

Adding a node The basic approach behind Add is that
we integrate a node u into the Hyperring level by level,
starting with level 0. In each level i, we integrate the
node by either removing an already existing bridge in
its k + 2-neighborhood or by creating a new bridge.
A bridge is removed by first dragging it over to u by
permuting > i-endpoints (see Figure 3). Then case
(b) or (c) in Figure 2 is applied. Otherwise, we just
apply case (a). Add terminates once we reach a ring of
size in {4, . . . , 7} (for larger rings, two new subrings are
created).

(a)

(b)

(c)

Figure 2: The three cases when adding a node. Case
(c) reduces to case (b).

bridge

Figure 3: Permuting > i-endpoints drags the bridge
over to obtain, e.g., case (c) in Figure 2.

Theorem 3.2. Add preserves the k-separation of the
Hyperring and requires O(k log2 n) work.

Removing a node We also remove a node u from the
Hyperring level by level, starting with level 0. In each
level, we remove the node by either removing an already
existing bridge in its k+2-neighborhood or by creating a
new bridge. A bridge is removed by first dragging it over
(Figure 3) and then applying case (b) or (c) in Figure 4.
Otherwise, we just apply case (a). Remove terminates
once we reach a ring of size in {4, . . . , 7} (rings smaller
than 4 are removed).

Theorem 3.3. Remove preserves the k-separation of
the Hyperring and requires O(k log2 n) work.

4 Hyperrings of non-constant separation

For every ring R, |R| denotes the number of edges (or
nodes) it consists of, and for every edge e, |e| denotes
the number of 0-edges bridged by it. For every node v,
�(v) denotes the number of levels it participates in.

Consider the case that every node v initiating Add
or Remove sets kd = 6(d + 3) as separation, where
d = �(v) + 2. Since d = O(log n), Theorems 3.2 and
3.3 imply that Add and Remove operations require a
work of at most O(log3 n). (Although this bound may

(a)

(b)

(c)

Figure 4: The three cases when removing a node. Case
(c) reduces to case (b).

sound large, we note that with the help of some tricks,
the work can be parallelized so that Add and Remove
need O(log n) time to complete.) The tricky aspect
with using such a separation parameter is that it is not
a fixed, global parameter. Different nodes may use a
different kd, and the value of kd can vary significantly
over time. Nevertheless, we show that the following
properties can be guaranteed at any time:

Proposition 4.1.

1. the ring distortion is low, i.e. for every i-ring R,
|R| ∈ [12 · n/2i − 1, 2 · n/2i + 1] and

2. the edge distortion is low, i.e. for every i-edge e,
|e| ≤ 4 · 2i.

For this we need some notation. For every set of
consecutive nodes S on an i-ring R and every integer
d ≥ 0, bS

d denotes a class of bridges that have a distance
of at least kd to other bridges in S, where kd = 6(d+3).
The main invariants we want to prove are:

Invariant 4.1. For every i ≥ 0 and every set of
consecutive nodes S on an i-ring R with

∑
d bS

d ≥ 2
it holds:

1. For every bridge B in bS
d , no bridge is in the kd-

neighborhood of B and

2. bS
d ≤ min{|S|,2d−i+2}

kd
.

We prove this invariant by complete induction on
the number of operations: Suppose that after operation
q the invariant is still true. Then we can show the
following lemma.

Lemma 4.1. Suppose that Invariant 4.1 holds. Then,
for every i ≥ 0 and every i-ring R, |R| ∈ [1√

e
· n
2i −1,

√
e·

n
2i +1]. Furthermore, it either holds for all nodes v that
�(v) ∈ [�log n� − 1, �log n� + 1] or for all nodes v that
�(v) ∈ [�log n�, �logn� + 2].

Proof. Let R be some i-ring and R′ be some (i + 1)-
ring on top of R. Let bR =

∑
j bR

j be the total number
bridges on R. Suppose that b′ of the bridges assign the
inner edge to R′ and the remaining b′′ bridges assign the
outer edge to R′. Each time R′ uses an inner edge, its
offset to traverse R is reduced by one, and each time R′

uses an outer edge, its offset is increased by one. Hence,
it holds that

|R′| =
|R| + b′ − b′′

2
=

|R| + b′ − (bR − b′)
2

=
|R| − bR

2
+ b′ .

Notice that this is always an integer since bR is even if
and only if |R| is even, because otherwise R′ would not
be able to go around R just once (which is guaranteed
by the algorithm). Now, bR =

∑
d bR

d and from
Invariant 4.1 it follows (for bR ≥ 2) that

∑
d

kd · bR
d ≤ |R| and bR

d ≤ min{|R|, 2d−i+2}
kd

.

Obviously, bR is maximized if using as many bR
d with

small d as possible, i.e.

bR ≤ max

⎧⎨
⎩1,

∑
j≤log |R|+i−2

min{|R|, 2j−i+2}
kj

⎫⎬
⎭ .

Hence,

|R′| ≤ |R| + bR

2

≤ 1
2

⎛
⎝|R| + max

⎧⎨
⎩1,

∑
j≤log |R|+i−2

min{|R|, 2j−i+2}
kj

⎫⎬
⎭
⎞
⎠

≤ 1
2

⎛
⎝|R| + max

⎧⎨
⎩1,

∑
j≤log |R|+i−2

2j−i+1

3(j + 3)

⎫⎬
⎭
⎞
⎠

≤ 1
2

(
|R| + max

{
1,

2log |R|−1

log |R| + i + 1

})

≤ 1
2
· max

{
|R| + 1,

(
1 +

1
2(log |R| + i + 1)

)
|R|
}

Since R decomposes into exactly two (i + 1)-rings, it
also holds that

|R′| ≥ 1
2
·min

{
|R| − 1,

(
1 − 1

2(log |R| + i + 1)

)
|R|
}

.

This allows us to prove the following claim.

Claim 4.1. For every i-ring R with i ≥ 1,

|R| ∈
[(

1 − 1
2 log n

)s
n

2i
− 1,

(
1 +

1
2 logn

)s
n

2i
+ 1
]

for some s < log n (which represents the switching point
from the right term of the max (resp. min) expression
to the left.

Proof. The claim can be shown by complete induction
on i. First we show that for all i ≤ s,

(4.1) |R| ∈
[(

1 − 1
2 log n

)i
n

2i
,

(
1 +

1
2 log n

)i
n

2i

]
.

This is certainly true for i = 0. Given that it is true for
some i, it is also true for i+1, because for any i-ring R,

log |R| + i + 1 ≥ log

((
1 − 1

2 logn

)i
n

2i

)
+ i + 1

≥ log n

for all i ≤ log n. Consider now some i-ring R with i ≥ s.
Then it holds for any i + 1-ring R′ on top of R that

|R′| ∈ [12 (|R| − 1), 1
2 (|R| + 1)

]
.

Using this it follows by complete induction that for any
i + s-ring R′ on top of an s-ring R,

(4.2) |R′| ∈
[

1
2i
|R| −

(
1 − 1

2i

)
,

1
2i
|R| +

(
1 − 1

2i

)]
.

Combining (4.1) with (4.2) yields the claim. �	
It is well-known that for all s < log n,(

1 − 1
2 logn

)s

> e−1/2 and
(

1 +
1

2 logn

)s

< e1/2

Hence, for every i-ring R with i ≥ 1,

|R| ∈
[

1√
e
· n

2i
− 1,

√
e · n

2i
+ 1
]

.

According to our rules for Add and Remove, the second
highest ring R must have a size in [8, 15]. If there are
two second highest rings R1 and R2 at different places of
the Hyperring where R2 is more than two levels higher
than R1, then there must be an i with

1√
e
· n

2i
− 1 ≤ 15 and

√
e · n

2i+3
+ 1 ≥ 8 .

This means that 2i ≥ n/(16
√

e) and 2i ≤ √
e · n/56,

which is not possible. Hence, the highest rings can
be by at most two levels apart. Thus, the number of
levels in which the nodes participate must be either all
in [�log n�− 1, �logn�+ 1] or all in [�log n�, �log n�+ 2].

�	

With the help of Lemma 4.1 we can prove that the
invariant also holds after operation q + 1.

Lemma 4.2. If Invariant 4.1 is true after operation q,
then Invariant 4.1 remains true after operation q + 1.

Proof. Suppose that operation q + 1 is an insertion of
a node u in R. Let the neighbors of u be v and w.
According to Lemma 4.1, it holds for every node v
that �(v) ≥ log n − 2. Hence, our topology control
scheme will check a neighborhood of kd nodes around
u with d ≥ (log n − 2) + 2 = log n. If a bridge is
found, it is removed, which certainly does not endanger
Invariant 4.1. If no bridge is found in this neighborhood,
then a bridge is created on top of u. If this bridge is
in the kd′ -neighborhood of some existing bridge in R
with d′ > d, then we downgrade this bridge to d. This
does not endanger Invariant 4.1(1) since we get back to
neighborhoods of bridges that do not contain any other
bridges. It therefore remains to check Invariant 4.1(2),
i.e. for the d chosen by u it must hold that bS

d ≤
min{|S|, 2d−i+2}/kd.

Since on one hand |S| ≤ |R| and |R| ≤ √
e ·n/2i +1

and on the other hand d ≥ log n and therefore 2d−i+2 ≥
4 ·n/2i, it holds that min{|S|, 2d−i+2} = |S|. Hence, we
only have to show that bS

d ≤ |S|/kd. This is certainly
true, because if no bridge is in the neighborhood of
another bridge, then the bridges counting for bS

d must
be by at least kd nodes apart, which proves the lemma
for the case that a node is inserted.

It remains to consider the event that some node u
has to be deleted in R. The proof for this follows along
the same lines as for an insertion event and is therefore
omitted here. �	

Finally, using the invariant, we can prove a bound
on the distortion of edges.

Lemma 4.3. For every i, the number of 0-edges bridged
by an i-edge is at most 2

√
e · 2i.

Proof. Consider some fixed i-edge e. For some fixed
j ∈ {0, . . . , i− 1}, let S be the sequence of (j + 1)-level
edges bridged by e and S′ be the sequence of j-level
edges bridged by S. Then it holds that

|S′| ≤ 2|S| +
∑

d

bS
d .

From Invariant 4.1 and the proof of Lemma 4.1 it follows
that

∑
d

bS
d ≤ max

{
1,

|S|
2(log |S| + j + 1)

}
.

Hence,

|S′| ≤ 2|S|+ max
{

1,
|S|

2(log |S| + j + 1)

}

= max
{

2|S| + 1, 2
(

1 +
1

2(log |S| + j + 1)

)
|S|
}

Thus, using complete induction similar to the proof of
Claim 4.1 it follows that for every i-level edge e, the
amount of 0-edges that are bridged by e is at most

2 · 2i

(
1 +

1
2i

)i

≤ 2
√

e · 2i .

�	

4.1 Randomized Hyperrings At the end of this
section, we also address the issue of randomizing Hy-
perring updates. Suppose that we modify Add for the
case that there is no bridge in the k + 2-neighborhood
of u in some ring R in the following way: u chooses a
random number in {0, 1}. If it is 0, then u includes itself
in the ring of its left neighbor, and otherwise u includes
itself in the ring of its right neighbor on top of R.

If each node now chooses kd = 15(log d + 2), then
the same invariant as in the deterministic case can
be used to show that Proposition 4.1 also holds, with
high probability, in the randomized case. One may ask
whether for random updates kd can be further reduced.
However, kd has to be Ω(log d) to avoid a more than
constant factor ring and edge distortion.

5 The Hyperring data structure

In this section we show how to use the Hyperring as a
data structure. We assume that every node represents
a data item and that data items are sorted on the 0-ring
according to their names.

5.1 The Search operation Consider the Search algo-
rithm in Figure 5. Since Search prefers edges of higher
level and every i + 1-edge bridges at most 3 i-edges for
every i, we obtain the following facts.

Fact 5.1. Any Search request moves along a sequence
of edges of non-increasing level and uses at most two
edges in each level.

Combining these facts with Proposition 4.1, we
immediately obtain the following lemma.

Lemma 5.1. Every Search request uses a path of length
at most O(log n).

Furthermore, we get the following result.

Search(name):
A request P is sent to name with the help of the fact
that the names of the nodes are in a sorted order on the
0-ring: Suppose that v is currently the node storing P .
As long as name �∈ [Name(v), Name(succ0(v))), forward
P to the node w with maximum i so that w = succi(v)
and Name(w) ≤ name (if there is no such w, choose the
w among v’s successors with maximum name). If this
rule stops at a node w with Name(w) < name, then go
to succ0(w) and stop.

Figure 5: The Search algorithm.

Lemma 5.2. The congestion caused by n Search re-
quests with random destinations is O(log n), w.h.p.

Proof. Fact 5.1 implies that every i-ring R can only
receive requests from rings on top of it. Thus, it can only
receive requests from its own nodes. Consider now an
arbitrary node v in R. It is easy to check that only those
requests will be sent to v whose destination is bridged
by the i-edge e leaving v in R. From Proposition 4.1
we know that e bridges at most 4 · 2i nodes and that R
consists of at most 3 · n/2i nodes. Since every node is
the starting point of one request and every request has
a random destination, the expected number of requests
that want to reach v in R is at most (4·2i/n)·(3·n/2i) =
12. Combining this with the fact that every request only
uses at most 2 edges in R (see Fact 5.1), the expected
number of requests that traverse v in R is at most 24.
Because every node participates in at most log n+O(1)
levels, the overall expected number of search requests
passing through v is O(log n). Using the fact that every
request picks a random destination independently from
other requests, it follows from the Chernoff bounds (e.g.,
[7]) that the congestion caused by Search is also O(log n)
with high probability. �	

This result can be extended to routing requests
according to arbitrary permutations π : V → V on the
set of nodes V . The problem here is that we cannot just
use Valiant’s trick of first routing the packets to random
intermediate destinations before routing them to their
correct destinations, because in an order-based network
(where the nodes do not necessarily have uniformly
distributed names as in DHT-based approaches) it is not
obvious how to select a random destination. However,
the following trick works instead:

A request P for name is sent to a random ring in
each level, starting with level 0. In level 0, the source
node s of P decides with probability 1/2 whether to
keep P or to forward it to its closest predecessor in level
0 that belongs to the 1-ring s does not belong to. Once

P has reached the node it is supposed to reach in level
i − 1, it enters level i. In level i, the node v currently
storing P decides with probability 1/2 whether to keep
P or to forward it to its closest predecessor in level i that
belongs to the (i + 1)-ring v does not belong to. Once
P reaches the highest possible level, it chooses a node
in the ring belonging to this level uniformly at random
as its intermediate destination.

Arguments based on the structural properties of
the Hyperring suffice to show that this results in a
near-uniform, random request distribution and creates
a congestion of O(log n), w.h.p.

5.2 Insert and Delete operations The Insert(Name)
and Delete(Name) operations are simply a combination
of Search(Name) and Add resp. Remove. Hence, they
achieve the following result.

Theorem 5.1. The work for an Insert and Delete op-
eration is O(log3 n).

6 Conclusions

In this paper, we presented the first deterministic data
structure suitable for distributed environments that can
route Search requests with low congestion. The major
drawback of this data structure is that Insert and Delete
operations need O(log3 n) work. It would be interesting
to come up with deterministic data structures that
only need O(log2 n) or even O(log n) work for this.
Techniques similar to transforming a hypercube into a
butterfly may help.

References

[1] J. Aspnes and G. Shah. Skip graphs. In Proc. of
14th ACM/SIAM Symposium on Discrete Algorithms
(SODA), pages 384–393, 2003.

[2] Y. Aumann and M. A. Bender. Fault tolerant data
structures. In Proc. of 37th IEEE Symposium on
Foundations of Computer Science (FOCS), pages 580–
589, 1996.

[3] B. Awerbuch and C. Scheideler. The Hyperring: A low-
congestion deterministic data structure for distributed
environments. Technical report, Johns Hopkins Uni-
versity, 2003. See http://www.cs.jhu.edu/∼scheideler.

[4] P. Beame and F. Fich. Optimal bounds for the
predecessor problem. In In Proc. of the 31st ACM
Symposium on Theory of Computing (STOC), pages
295–304, 1999.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press/McGraw-Hill,
1990.

[6] E. W. Dijkstra. Self stabilization in spite of distributed
control. Communications of the ACM, 17:643–644,
1974.

[7] T. Hagerup and C. Rüb. A guided tour of Chernoff
bounds. Information Processing Letters, 33:305–308,
1989/90.

[8] N. J. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman. Skipnet: A scalable overlay network with
practical locality properties. In USITS 2003.

[9] N. J. Harvey and I. Munro. Brief Announcement:
Deterministic SkipNet. To appear in Proc. of the
ACM/SIAM Symp. on Principles of Distributed Com-
puting (PODC), 2003.

[10] P. Krishna. Highly Scalable Data Balanced Distributed
Search Structures. Ph.D. thesis, University of Florida,
1995.

[11] X. Li and C. Plaxton. On name resolution in peer-
to-peer networks. In Proc. of the 2nd Workshop on
Principles of Mobile Computing, pages 82–89, 2002.

[12] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A
scalable and dynamic emulation of the butterfly. In
Proc. of the 21st ACM Symposium on Principles of
Distributed Computing (PODC), 2002.

[13] X. Messeguer. Skip trees, an alternative data structure
to skip lists in a concurrent approach. Informatique
Theorique et Applications 31(3):251–269, 1997.

[14] I. Munro, T. Papadakis, and R. Sedgewick. Deter-
ministic skip lists. In Proc. of the ACM/SIAM Sym-
posium on Discrete Mathematics (SODA), pages 367–
375, 1992.

[15] M. Naor and U. Wieder. Novel architectures for p2p
applications: the continuous-discrete approach. In
SPAA Proceedings, 2003.

[16] W. Paul, U. Vishkin, and H. Wagener. Parallel compu-
tation on 2-3 trees. RAIRO – Theoretical Informatics
17(4):397–404, 1983.

[17] W. Pugh. Skip lists: A probabilistic alternative to
balanced trees. In Workshop on Algorithms and Data
Structures, pages 437–449, 1989.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network.
In SIGCOMM 2001.

[19] A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale
peer-to-peer systems. In IFIP/ACM International
Conference on Distributed Systems Platforms (Middle-
ware), 2001.

[20] C. Scheideler. Universal Routing Strategies for Inter-
connection Networks. Lecture Notes in Computer Sci-
ence 1390. Spinger, 1998.

[21] D. Shasha and N. Goodman. Concurrent search struc-
ture algorithms. TODS 13(1):53–90, 1988.

[22] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In SIGCOMM
2001.

[23] B. Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location
and routing. UCB Technical Report UCB/CSD-01-
1141, 2001.

