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ABSTRACT

In this paper we consider the problem of maintaining a con-
sistent mapping of a virtual object space to a set of memory
modules, i.e. the object space can be decomposed into a
set of ranges where every module is responsible for exactly
one range. A module owning some range R is responsible
for storing all objects in R. Besides consistency, we require
the mapping to be compact, i.e. any object or consecutive
range of objects should be spread out over as few memory
modules as possible. A compact mapping is important for
many applications such as efficiently executing programs us-
ing a large amount of space or complex search queries such
as semi-group range queries. Our main result assumes a
static set of memory modules of uniform capacity, but we
also show how to extend this to a dynamic set of memory
modules of non-uniform capacity in a decentralized environ-
ment.

In both settings, new objects may be added, old objects
may be deleted, or objects may be modified over time. Each
object consists of a set of data blocks of uniform size. So
insert, delete, or modify operations on objects can be seen
as insert or delete operations of data blocks. Each module
can send or receive at most one data block in each unit of
time and the injection of insert or delete requests for data
blocks is under adversarial control. We prove asymptotically
tight upper and lower bounds on the maximum rate at which
the adversary can inject requests into the system so that a
consistent and compact placement can be preserved without
exceeding the capacity of a module at any time. Specifically,
we show that in a (1 — ¢)-utilized system (i.e. the available
space is used up to an e fraction) the maximum injection
rate that can be sustained is ©(e).

*Supported by NSF grant ANIR-0240551 and NSF grant
CCR-0311795.
TSupported by NSF grant CCR-0311121 and NSF grant
CCR-0311795.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

SPAA' 04, June 27-30, 2004, Barcelona, Spain.

Copyright 2004 ACM 1-58113-840-7/04/0006 ...$5.00.

Christian Scheidelert
Dept. of Computer Science
Johns Hopkins University
3400 N. Charles Street
Baltimore, MD 21218, USA

scheideler@cs.jhu.edu

Categories and Subject Descriptors

F.2.8 [Analysis of Algorithms and Problem Com-
plexity]: Non-numerical Algorithms and Problems; H.2.4
[Database Management]: Systems—Distributed databas-
es; H.3.2 [Information Storage and Retrieval]: Infor-
mation Storage—File organization

General Terms
Algorithms, Theory

Keywords

distributed data management, peer-to-peer systems, range
queries, load balancing

1. INTRODUCTION
1.1 Motivation

The concept of virtualization or indirection is a basic con-
cept in computer science. Perhaps one of its most basic
manifestations is the invention of wvirtual memory. That is,
program variables (resp. array entries or file blocks) are re-
ferred to by their virtual name, rather then by their physical
address. Consider a program that performs a loop over an
array. From the point of view of correctness of this program,
it does not matter where the array elements are stored. How-
ever, from the point of view of performance, it is desirable
to map entries of an array into the same memory module,
or at least to try to minimize the number of memory mod-
ules that store the array’s entries, so that the entries can be
accessed with low overhead.

Locality also plays an important role in information re-
trieval. Imagine a geographic range or a time range, and
values being assigned to certain points in this range, e.g. the
temperature, stock quotes, etc. Consider the problem of per-
forming, upon request, range operations like computing the
average temperature in a geographic region or determining
the maximum weekly fluctuation of a stock. This is known
as semi-group range queries. Semi-group range queries are
useful for web search engines, geographic information sys-
tems, inventory control, and consistency checks of file sys-
tems. To achieve a high efficiency, it is important to keep
objects that are close to each other in the object space also
close to each other when mapping them to memory mod-
ules, i.e. to store them in a compact way. The reason for



this is that the work for locally processing semi-group range
queries usually scales logarithmic with the number of objects
(e.g., [1, 5, 31, 33]), whereas the work for aggregating the
results from different memory modules scales linearly with
the number of modules involved in a range query. Thus,
uniform hashing, i.e. globally scattering objects over the
modules, makes range queries very expensive. Instead, this
paper accomplishes the goal of compact data storage using
a deterministic, adaptive memory assignment strategy that
keeps the objects in order and that is efficiently manageable
under adversarially generated requests in concurrent envi-
ronments.

1.2 Our approach: modelsand results

We assume that objects are splittable into data blocks of
uniform size and updates are done block-wise. Hence, insert,
delete, or update requests of objects can be seen as insert
and delete requests of data blocks. Each memory module
can send or receive one data block in a time unit and has
infinite processing power (i.e. we can neglect internal com-
putation). Memory modules are simply denoted by nodes
in the following, and instead of objects and object space we
are just talking about data and data space, meaning here
the individual data blocks the objects are composed of. We
assume that all nodes have a capacity of L, i.e. they can
store up to L data blocks.

Consistency. Let V be a set of memory modules and D be
the virtual data space. Consider any one-to-one mapping
ID:VUD — [0,1) and let ID(x) denote the identification
number, or ID, of x. Similar to [19] and follow-up work in
the area of peer-to-peer systems [30, 27, 34, 9], we say that
a set of data is stored consistently among a set of nodes if
each data item d is stored at the node v whose ID is the
closest successor to the ID of d, i.e.

v = argmin{ID(w) | w € V and ID(w) > ID(d)}

However, our approach significantly differs from these ap-
proaches in the following way:

e data IDs: in [19, 30, 27, 34, 9], the IDs of the data
blocks are static hash values of their addresses. In
the current paper, the IDs represent the original ad-
dresses in order to avoid fragmentation and enable
(one-dimensional) range queries.

e node IDs: in [19, 30, 27, 34, 9], the IDs of the nodes
are static hash values of their IP addresses or random
values. In the current paper, the IDs of the nodes
are dynamically changed to adapt the mapping to a
changing set data items.

Compactness. A consistent data placement is called (1 +
~)-compact if for any set S of k consecutive data blocks, S is
distributed across at most (1 + «)(k/L) + ¢ nodes for some
constant c¢. Obviously, v = 0 is best possible. Thus, being
(14 ~y)-compact means, for example, that semi-group range
queries cost only a 1 + « factor more work than in the best
possible case.

Operational and transient consistency. To be able to
adapt to a changing set of data items, the following two
operations are necessary:

e renaming of node IDs and

e migrating data, i.e. moving data from one node to
another.

We call these operations critical because they can get the
system into an inconsistent state when not used carefully.

As a minimum requirement, the system should return to a
consistent state after the completion of any insert or delete
operation of a data item because otherwise data cannot be
found efficiently any more. This property is called opera-
tional consistency. In the transient state, i.e., during the ex-
ecution of insert/delete operations, the storage system may
be inconsistent. A stronger (i.e. more restrictive) model of
transient consistency requires consistency even in the tran-
sient state. That is, after every execution of a critical opera-
tion the system must be back in a consistent state. Transient
consistency is important to make sure that the system can
process read requests at any time and recover easily from a
crash.

Notice that transient consistency requires a node to be
empty before it can take over a new range that is not in the
neighborhood of its old range.

Generation of insert/delete requests. Recall that every
node has a capacity of L. We are interested in the dynamic
setting where continuously new data items are inserted and
old data items are deleted. We assume that the generation
of insert/delete requests is under adversarial control. A A-
bounded adversary is allowed to generate an arbitrary set
of insert/delete requests in each time step as long as for any
range R that currently contains L data items, the average
number of insert/delete requests injected by the adversary
in a unit of time for blocks in R, i.e. its injection rate, is
at most A. If this holds for all time windows of size T, we
call such an adversary a (A, T)-bounded adversary. (\,T)-
bounded adversaries allow us, for example, to insert or delete
objects consisting of up to AT data blocks.

Given such an adversary, an algorithm is called stable if
it can preserve a consistent mapping without exceeding the
capacity of a node at any time. Since we assume that every
node can receive or send at most one data block per time
unit, A can be at most 1 for a l-compact algorithm to be
stable.

Memory utilization vs. update rate. The memory uti-
lization of a system denotes the degree to which it is filled,
ie. for o € [0,1], a o-utilized system needs a o fraction of
its resources to store the current data.

Given a static set of nodes, we are interested in deter-
mining the maximum rate of requests that can be sustained
given a certain memory utilization to keep the assignment of
data to nodes consistent and compact without exceeding the
capacity of a node. The main contributions of this paper are
matching upper and lower bounds on the rate of insert and
delete requests that can be sustained for a given memory
utilization. Specifically, in Section 2 we show

THEOREM 1.1. There is a ©(¢€)-bounded adversary so that
any operationally consistent online algorithm is unstable in
a (1 — €)-utilized system.

For our model, that demands memory consistency even in
transient state, we show:



THEOREM 1.2. For any 0 < € < 1, the online algorithm
in Figure 1 is maintaining a consistent and 1 4+ e-compact
mapping under any « - e-bounded adversary (for some con-
stant o > 0) as long as the system is at most (1 — €)-utilized
at any point in time.

Thus, our upper and lower bounds for stability are essen-
tially tight.

Dynamic systems and dynamic capacities. We also con-
sider the case that nodes continuously join and leave the
system and that the nodes have arbitrary, non-uniform ca-
pacities. Supporting non-uniform capacities has the benefit
that also other criteria than just compactness can be consid-
ered. For example, if the goal is to balance the data evenly
among the nodes, the capacities of the nodes can be lowered
so that a compact storage also implies a balanced storage.
Furthermore, nodes with a better connection can be given
a larger capacity because they can serve more requests, or
nodes that want to leave the system can gradually lower
their capacity to limit the influence of data movements on
the performance of the system. To adjust our adversarial
injection model to this setting, we assume that L is the
maximum capacity of a node.

By viewing the data movements necessary to cope with a
dynamic set of nodes and capacity changes as injections of
requests, we can reduce these cases to the case of insertions
and deletions of data in a static system, allowing us to carry
over our stability result for a static system to a dynamic
system of non-uniform capacities. Specifically, we prove (see
Sections 3.1 and 3.2):

THEOREM 1.3. A modification of the online algorithm in
Figure 1 can maintain a consistent mapping under any o - €-
bounded adversary (for some constant o > 0, considering
both insert/delete requests and capacity changes) as long as
the system is at most (1 — €)-utilized at any point in time.

Certainly, considering 1 + e-compactness does not make
sense in a heterogeneous environment because the number
of nodes storing a range of data blocks depends on their
capacities.

Decentralized storage systems. Finally, we will address
the issue of how to turn our online algorithm into a decen-
tralized storage system. We will distinguish between “busy”
nodes, i.e. nodes storing information, and “idle” nodes, i.e.
empty nodes that will be taken whenever nodes are needed
to help out busy nodes. The busy nodes and the idle nodes
are organized in suitable overlay networks, with links from
busy nodes to random idle nodes so that nodes can be trans-
ferred between the busy and the idle structures as necessary
(see Section 4 for details).

1.3 Previouswork

We first discuss prior work in the centralized setting, i.e.
there is a central dispatcher that inserts and deletes data at
the nodes and moves data between the nodes to prevent the
data load at a node from exceeding its capacity. That is,
all the work is done by the dispatcher. For this model, con-
sistent search structures have been presented in the context
of balanced search trees and monotonic list labeling. Sev-
eral papers independently presented solutions for maintain-
ing embedded balanced search trees so that, in our context,

the dispatcher needs an amortized work of O(log® n) per in-
sert and delete operation to keep data distributed among
the nodes in a consistent way without exceeding the capac-
ity of a node [2, 4, 17]. This bound holds as long as at most
a constant fraction of the storage capacity of the system is
utilized at any time. Subsequently, Brodal et al. [6] gener-
alized the bound to O((log?®n)/e) as long as the system is
at most (1 — €)-utilized at any time.

Also lower bounds have been investigated. Dietz and
Zhang [11] showed that for the case that the order of the
node IDs cannot be changed, any smooth, consistent data
management algorithm has an amortized cost of Q(log?n)
at the dispatcher per insertion. In words, an algorithm is
called smooth if the items moved before each insertion form
a contiguous neighborhood of the position for the new item,
and the new positions are as equally distributed among the
nodes as possible. The algorithms in [4, 6, 17] fulfill these
properties, and their upper bound is therefore best possible.
Later, Dietz et al. [10] showed that any online consistent
placement strategy that preserves the order of the node IDs
needs an amortized work of Q(logn).

The lower bounds for the case of a single dispatcher also
hold for the case that the nodes do the work, i.e. each
node can send or receive a data block in a time unit, be-
cause the work obviously remains the same irrespective of
who is doing it. Hence, the maximum injection rate any
smooth, consistent online data management algorithm can
sustain is O(1/log® n) and the maximum injection rate any
consistent online data management algorithm can sustain is
O(1/logn). Our algorithm can break through these lower
bounds because it allows the order of the node IDs to be
changed, i.e. node IDs can be renamed to help out over-
loaded nodes in another area.

Also concurrent forms of search trees have been reported
[21, 25, 18] though they seem to be more suitable for a paral-
lel processing environment than a distributed environment.
Our algorithm can easily be adapted to a completely decen-
tralized environment, and due to the lower bounds above it
can achieve a better work overhead than achievable by these
trees.

The issue of memory allocation preserving data locality
has also been extensively investigated in the systems com-
munity. A recent work [12] attempts to achieve locality
properties for SHA-1 hashing to support range queries in
Chord [30]. Work on other variants of local hashing includes
Linear Hashing (LH) [32], LH* [23], and hQT* [20]. Data
clustering on a single disk is best described in the “Fast-file”
system which keeps all of the data in a single file contiguous
(up to 64K at a time) [24]. More recent work at AT&T deals
with clustering of all the data in the same web page together
on a disk [29]. Other relevant work includes striping file sys-
tems [7, 16]. Zebra [16], for example, is a log-structured file
system that stripes data across multiple disks for efficient
parallel writes. GPFS [28] is a high-performance file system
that stripes data across multiple disk servers each of which
is a RAID array. Other work includes [3, 8, 13, 14, 15, 22,
26].

2. INSTABILITY

We start with a result that provides an instability bound
for arbitrary consistent placement methods when using op-
erational consistency.



THEOREM 2.1. For any operationally consistent online
algorithm and any € < 1/2 with e = w(1/n) there is an
(adaptive) ©(c)-bounded adversary so that the algorithm is
unstable in a (1 — €)-utilized system.

PROOF. (Sketch) Let V' be the set of nodes in the system,
|V| = n. Consider any € < 1/2 with e = w(1/n). Recall that
L denotes the capacity of the nodes.

We assume that we have a (1 — ¢)-utilized system. In
this case, we must have m = en/3 clusters Ci,...,Cn of
1/(2€) nodes with consecutive IDs where each C; is at least
(1 — 2e)-utilized. This is because even if we remove n/6
1-utilized nodes, the average utilization of the remaining
nodes is still at least 1 — ge. Since the total utilized capac-
ity in a cluster is at least (1 — 2€)L/(2¢) but the available
capacity is only L/(2¢), every node in a cluster must have a
load of at least L/4. So each node represents a well-defined
range. For each of these ranges, the adversary injects 3e
insert requests, which means that at most ©(e) requests are
injected into any range containing L existing data items.
Overall, the adversary injects (n/6) - 3¢ = en/2 insert re-
quests, and therefore, afterwards, we have a system that is
at most (1 —¢€) +¢/2 = (1 — €/2)-utilized.

We are interested in proving a lower bound for the num-
ber of data blocks that need to move to handle the insertions
without exceeding the capacity of a node. Let Vi, = J]., C;
denote the set of heavy nodes and V; = V'\ V}, denote the set
of light nodes. To simplify the proof, we consider only so-
called lazy reassignment algorithms that first place all the
inserted blocks before moving any blocks to other nodes.
Since an optimal algorithm may have moved the newly in-
serted blocks immediately to different nodes, an optimal lazy
algorithm moves at most L - en/2 more data blocks than an
optimal algorithm.

Let Rp, C [0,1) denote the set of ranges covered by Vj
and R, denote the set of ranges covered by Vy. Consider
the assignment of ranges to nodes in V), at the beginning
(i.e. after inserting the new data) and the end of the data
movement phase. We do some modifications to the data
movements to make our life easier.

First of all, at the end there must be nodes in V; that
take over ranges inside R to cope with the overload in V.
Suppose that there are also nodes in V}, that take over a
range inside Ry. Then any such node can replace its role
with a node moved from R, into Rj without increasing the
number of data blocks that have to move. Hence, we only
have to consider data movements where at the end every
node in V}, has a range that is at least partly in Rj.

Next, consider the set S of all nodes with ranges inter-
secting with Rj. For every range R covered by a node in
S, let the node v € V}, that before the data movements had
the most data blocks in R be called its owner. Then we will
rearrange the nodes in V), so that every range R is taken
over by its owner, if possible. Since every node can store at
most L data blocks, for every node in V; that was initially
more than (1—3e)-utilized, there must be a range at the end
for which it is the owner. If there is more than one, then we
assign the owner to the range with the most data blocks of
which it is the owner. However, there may also be nodes in
V4. that were initially less than (1 — 3¢)-utilized and that do
not own any range. If such a node is currently at a position
not intersecting with the range of its original cluster, say C,
then it aims to replace its position with any V;-node (with

preference given to Vp-nodes with ranges completely inside
Ry) or any other displaced Vj-node with a range currently
intersecting with the range of C'. Such a node must always
exist because otherwise the range of C' would be shared by
too few nodes. Thus, at the end, every V,-node has a range
that intersects with the range of its original cluster. Also,
it can be ensured that for any non-owning Vj,-node, there is
no Vy-node between its current range and its original range
(if so, exchange positions).

For the nodes in Vj, this replacement strategy can only
decrease the number of initial blocks that have to be moved
out of them and therefore only lowers the total number of
blocks that have to be moved w.r.t. nodes in V}. But for
some of the nodes in V; that are in S, this may increase the
number of moved data blocks that were initially stored in
them. This increase, however, is bounded by m-2L (L data
blocks to the lower and higher end of every R¢;), which is
at most L - en/3.

Next, we bound |S N V|. The nodes in V}, were originally
at most 1-utilized. Hence, the average utilization of nodes
in V; must be at least ((1 — €)n —n/6)/(5n/6) = 1 — 6¢/5.
Therefore, at most (6¢/5) - (5n/6) = en nodes can be moved
from V; to a range inside Rj without overloading the re-
maining nodes in V;. Hence, at most 2m + en < 2en nodes
in Vg can be in S. Thus, |S N V| < 2en.

Since there are en/3 clusters, there must be at least en/6
clusters C; with at most 12 nodes v € V; with R, N R¢, #
() because otherwise we have a contradiction to the upper
bound on |S N V.

Let C; be any one of these clusters. C; can be uniquely
decomposed into sequences of Vj-nodes that are separated
by Ve-nodes. Consider any such sequence, and suppose that
it consists of the Vj-nodes vi,...,vr. For simplicity, we
assume that all of these nodes are owners, i.e. they cover a
part of their original ranges (the general case is shown in a
full paper). Then we perform the following rearrangement
again and again until it cannot be used any more:

Suppose that there is a node v; that is (at most) 1 — J-
utilized and has 0 L data blocks at v;—1 or v;11 that originally
belonged to v;. Then v; moves these dL blocks to itself.
Certainly, this can only reduce the number of blocks that
have to be moved.

At the end, any node v; that is not fully utilized must
store all of its blocks. Also, it may own some blocks from
v;—1 or viy1. If so, it transforms these blocks into v;-blocks.
This does not cause the load of any node to violate the load
limit of L and can only reduce the number of moved blocks.
Thus, the original sequence of k nodes is perfectly parti-
tioned by not fully utilized nodes v; into subsequences of
nodes that are completely utilized. Let v;,...,v; be any
such subsequence in the middle (if such a subsequence ex-
ists). Because v; has no original block in v; 1 and v;» has no
original block in v;/41, the blocks stored in every node be-
tween v; and v;s can be declared its original blocks without
violating the capacity limit. Thus, for any such subsequence
no movement has to be performed, and therefore only the
first and the last subsequence require movements.

Since any node in a middle subsequence must have had
a load of 1 — 3¢ before the data insertions, and the average
utilization in every cluster is 1— %e, at most half of the nodes
in a cluster can be in such subsequences.

Consider now any of the other subsequences, say again,
nodes v1,...,v;. Then we use the following strategy again



and again until no improvement is possible:

Go from v; to vk, and while at v;, convert a maximum
number of blocks in v; into v;-blocks without violating the
original capacity limit of v;. This only reduces the number
of blocks that have to be moved.

At the end, we obtain a consecutive sequence of d < k orig-
inally (i.e. before the insertion events) 1-utilized nodes, and
the remaining nodes were originally 1 — 3e-utilized. Thus,
the amount of data that has to be moved between the nodes
can easily be calculated to be Q(d? - L) for that sequence.
Since the number of originally 1—3e-utilized nodes is limited
to 1/(4¢), summing up over all sequences in C; gives a lower

bound of
1 1\

Hence, on average, a node in V4, has to spend Q(L) time on
moving data blocks for the system to be stable, whereas the
number of requests injected for each range of size L is only
O(eL). Thus, there is a ©(e)-bounded adversary causing
more data movements than the system can handle without
exceeding the capacity of a node, and therefore causing in-
stability. [

The question is, what kind of properties does an algorithm
have to fulfill to be stable under a ©(¢)-bounded adversary.
A placement algorithm is called (14 §)-faithful if every node
has a number of data blocks that is at least £/(1 + ¢) and
at most (1 4 )¢ where ¢ is the average load in the sys-
tem. Furthermore, a placement algorithm is called order
preserving if it imposes a fixed order on the node IDs, or
equivalently, a fixed numbering from 1 to n, so that for all
i € {1,...,n — 1}, the ranges of the nodes fulfill R; < R,
at any time. Notice that a faithful algorithm is always order
preserving since nodes can never be empty and therefore can
never change their position in the node ordering. However,
order preserving algorithms may not be faithful.

THEOREM 2.2. For any constant 0 < € < 1, any (offline
or online) operationally consistent and faithful placement al-
gorithm in a (1 —e€)-utilized system is already unstable under
O(1/n)-bounded adversaries.

PROOF. Also here, the adversary works in rounds. Sup-
pose that initially we have (1 — €)n - L data blocks in the
system. In each round, the adversary cuts the current set of
data blocks into three sets Si,S2, 53 where S1 contains the
lowest third, S2 contains the middle third, and S3 contains
the highest third of the IDs. Now, the adversary removes
eL blocks every L consecutive blocks in S; and inserts eL
blocks every L consecutive blocks in Ss.

Recall that the nodes are numbered from 1 to n with node
i always having a lower range than node i+ 1. Consider any
round r and any data block d that is in set Sz at round
r. Suppose that d is the block with kth smallest ID in the
system. Then, the node of smallest ID at which d can be
at round r is k/L. On the other hand, the node of largest
ID at which d can be at round 7+ j isn — ((1 —€)n- L —
k+jL-en/3)/L = en+k/L —j-en/3. It holds that k/L >
en +k/L — j-en/3 if and only if j > 3(1 + d/(en)). Hence,
after 9 rounds, each data block in S2 must have moved to a
node of distance at least d = 2en of its original node. Thus,
the total work for moving the blocks in S over 9 rounds is

at least ((1 — €)n/3)L - 2en. Therefore, on average we need
O((1 — €)en) data movements per node for the requests to
maintain a consistent data placement. On the other hand,
every node only receives O(eL) requests within 9 rounds.
Thus, the maximum rate that can be sustained is ©(e/((1 —

en)) = O(1/((1 - n)). O

Hence, faithful algorithms perform poorly. What about
order preserving algorithms? The results in the previous
work section imply the following theorem.

THEOREM 2.3. There is an operationally consistent order
preserving online algorithm so that for any 0 < € < 1 it holds
that as long as the system is at most (1 — €)-utilized, the
algorithm is stable under any o - €/ log® n-bounded adversary
for some constant o > 0.

Thus, the ability to make nodes empty is crucial for a high
efficiency. However, due to the lower bounds in [11, 10],
these algorithms cannot be stable under any ©(1/logn)-
bounded adversary because of a work overhead of Q(logn),
and it is conjectured in [10, 4] that the correct lower bound
is actually Q(log? n). In any way, it appears to be necessary
to reorder nodes in order to obtain Theorem 2.1. This is
exactly our approach.

3. ANASYMPTOTICALLY OPTIMAL
PLACEMENT ALGORITHM

We assume that we have a static system of n nodes of
uniform capacity that is at most (1 — ¢)-utilized at any time
and that insert/delete requests are generated by a (A, T)-
bounded adversary. Later, we also show how to extend the
algorithm to a dynamically changing set of nodes and nodes
of non-uniform capacity.

We propose a protocol called smoothing algorithm (see
Figure 1) to keep the system consistent and compact. The
basic approach of the smoothing algorithm is to partition
the nodes into two sets, B and I. B represents the set of
busy nodes, and I represents the set of idle nodes. Data
items are only stored in the busy nodes. Busy nodes are
organized in clusters of size ©(1/¢€). Each cluster consists of
nodes with consecutive ranges.

The smoothing algorithm works in rounds, where each
round needs a constant amount of time. In each round, every
node v in a cluster C first checks whether a more balanced
state of C' can be obtained by moving a data block to its
predecessor or successor in C'. If yes, it does so. In addition,
the last node in C' checks whether C' has too much data, and
if so, it pulls a new node from I into C. Afterwards, each
node in C receives a pending insert/delete request belonging
to its range. Finally, C checks whether it has too many
nodes or too few nodes. If it has too many nodes, it splits
into two clusters, and if it has too few nodes, it merges with
(or obtains nodes from) one of its neighboring clusters.

To understand the parameters in Figure 1, we need some
notation. In the smoothing algorithm, the number of nodes
in a cluster is kept between s(€)/2 and 2s(e), where s(e) is
specified later. As mentioned above, each cluster consists of
nodes with consecutive ranges. The range in [0,1) a node
v is responsible for is denoted by R,, and the range of a
cluster C' is defined as Rc = [J,cc Rv- |C]| denotes the
number of nodes in ', and the nodes in C' are denoted by
o€ 0§, . vS.



For any node v and cluster C, let £;(v) denote the load (i.e.
the number of data blocks) of v. Furthermore, we define the
load of C, £;(C), and the safe load L as

0(C) =Y li(v)

veC

and L=(1-%)L.

1. Each node vkc computes
S =(k—1)L— Y t:(vF) and
6r=3F 4(E) —k- L.

(a) If k> 1 and §; > 1 then
{too litte data in v¥, ..., v5 1}
i. the block with lowest ID in v is moved to
Vg
ii. If k= |C| and vy, is empty, v< is taken out
of C' and inserted as an idle node in I.

(b) If k < |C| and 4, > 1 then

{too much data in v¥,... v}
i. the block with highest ID in v{ is moved
to kaH.

(c) If k=|C|, §, > 1, and £;(vS) > L then
{cluster has too much data}

i. an idle node is fetched from I and inte-
grated into C' with number k + 1.

ii. the block with highest ID in v{ is moved
t (e
o ’Uk+1.

2. Each node in C receives the data block moved to it
and updates its ID accordingly.

3. Each node processes the newly injected data blocks
belonging to its range.

4. If |C] = 2s(€) then  {cluster is too large}
(a) C is split into two clusters of size s(e).

5. If |C| = s(e)/2 then  {cluster is too small}

(a) apply Procedure MERGE to C (Fig. 2).

Procedure MERGE:

1. Group the clusters C' with |C| = s(€)/2 into groups
of 2 or 3 consecutive clusters so that one of the fol-
lowing two cases is fulfilled for each group.

2. For all groups (C,C") in which C or both have a size
of s(e)/2:

(a) If |C| +|C’| < 3s(e)/2 then C and C" are com-
bined into a single cluster.

(b) Else, nodes are moved between C' and C’ so
that both have the same number of nodes.

3. For all groups (C,C’,C") in which all clusters have
a size of s(e)/2:

(a) merge the group into a single cluster.

Figure 1: The smoothing algorithm, which is con-
tinuously executed in every cluster C.

In the following, we assume that 0 < € < 1, s(e) = 6/,
L>T, and A < ¢/90. It should be possible to get a much
better constant for A\, but we did not try to optimize it here
to keep the proof at a reasonable length. The following fact
is easy to check.

Fact 3.1. The smoothing algorithm achieves transient
consistency.

Next we prove a lemma about the number of data blocks
in the nodes that holds as long as the system is at most
(1 — €)-utilized. For each node v{, let its ideal load at time
t be defined as

. o [ L _ifk<|C|

b (v )—{ 0(C) = (IC] = DL otherwise ()
The next lemma bounds the maximum deviation of the load
of a node from its ideal load and is therefore crucial for

Figure 2: The cluster merging procedure.

stability. A node vS of some cluster C' is called an inner
node if k < |C].

LEMMA 3.2. At any time t, it holds for every inner node
v that £y(v) € [L — AT, L + AT.

PROOF. We first show some basic facts about the behav-
ior of the algorithm.

CLAIM 3.3. For every node vS it holds that if £;(vS) >
0; (vY), then data movements do not increase £;(vS), and
if L:(vg) < £ (vS), then data movements do not decrease

ét(vf).

PROOF. First, consider the case that £;(vS) > € (vS). If
k =|C|, then it follows that Zli‘fl Le(vf) < (|C)=1)L and
therefore no block is moved to v{. So suppose that k < |C].
If a data block is moved from v$_; to v, then also a data
block is moved from vf to vfy; because Ef:_ll L(vf) >
(k — 1)L + 1 and therefore Zleét(vic) >k-L+1 Ifa
data block is moved from v,?H to v, then a block is also
moved from v{ to vS_; because Zle L:(v€) <k-L—1and
therefore > ¥~ ¢,(vF) < (k — 1)L — 1.

The proof for £;(vy) < £;(v) is similar. [J

CrLAM 3.4. At any time t in which there is at least one
node in a cluster C' which deviates by at least one from its
ideal value, there is a node v with k < |C| whose deviation
from its ideal load is reduced by 1.

PROOF. Let v¢ be the node of lowest & < |C| with
£:(vS) # L. (If there is no such node, the distribution is
already perfect.) It follows from our balancing rules that
v will gain a block if £(vf) < L and will lose a block if
£(v) > L. Hence, its deviation is reduced by 1. [

This motivates the use of the following potential function
for every cluster C":

ICl-1

$:(C) = Z e (vf) — £ (v))] .

Claims 3.3 and 3.4 immediately imply the following result.



CrLaM 3.5. If at the beginning of step t, ¢+(C) > 1, then
stages 1 and 2 of the smoothing algorithm decrease ¢+(C') by
at least 1.

Our aim is to show that if A is sufficiently small, then for
every time frame F of size T and every node v<, there is
a time step t € F at which £,(v$) = £ (vS). Suppose for
now that this is correct. Then it follows from Claim 3.3 that
the deviation of an inner node v§ from £; (v$) can only be
increased by requests to v§. Furthermore, a final node v
only becomes an inner node if £;(v) > L (see stage 1.(c)).
Since at most AT requests can be injected per node in T
steps, the number of data blocks in an inner node v can be
at most AT away from its ideal load. Hence, for these nodes,
it follows that at any time t, £;(v) € [L — AT, L+ AT]. Thus,
it remains to prove the following claim.

CLAIM 3.6. If A < ae for some sufficiently small constant
a > 0, then it holds: For every time frame F of size T

and every node vS, there is a time step t € F at which
(o) = 65 (vF).

Proor. We will prove the lemma by induction, using a
stronger property than in the claim above, namely that for
every time frame F' of size T and every cluster C there is
a time step ¢t € F with ¢(C) = 0. For this statement to
make sense, we have to specify how to adapt C' to split and
merge events. Consider any time frame F' of size T' and
some fixed cluster C' existing at the beginning of F. If C
merges with another cluster during F', we identify C' with the
resulting cluster. Also, if C' passes nodes to its predecessor
or receives nodes from its successor during F', we identify C
with the resulting cluster. If C' splits into two clusters C1
and Ca2, we will still view for the analysis the two clusters
as a single cluster C' in F, but redefine in this case ¢(C) as
?(C) = ¢(C1) + ¢(C2). Hence, if ¢(C) = 0 for some time
in F, then it is also true that ¢(C1) = ¢(C2) = 0 for that
time. Thus, all clusters that are newly created in F' are still
covered so that a proof by induction can be constructed for
our claim.

Since at the beginning we start out with an empty system
(i.e., B just consists of a single empty node), the induction
hypothesis is correct for all clusters currently in the system
when considering the earliest time frame of size T'. So let
us consider now any cluster C' and any time frame F' of size
T with ¢(C) = 0 at the beginning of F. Then we will show
that there is also a later time step in F with ¢(C) = 0,
completing the induction.

We need several facts for the induction step. We define
any node v{ in some cluster C with k < |C| at the beginning
of a round of our protocol to be an inner node and otherwise
a final node.

Facrt 3.7. In the smoothing algorithm, the only case
where a final node of a cluster becomes an inner node is
in stage 1.(c).

PrROOF. We consider all relevant cases in which a cluster
C may change:

e ( splits: this will only create a new final node.

e (' merges with some other cluster(s): If C is the first in
a merge group (C’, C") or the first or second in a merge
group (C’,C"”,C""), then C must have just shrunk to
a size of s(e€)/2 (see Figure 2) and therefore the last
node in C' has been an inner node at the beginning of
the round. Therefore, no final node becomes in inner
node in this case.

e (C gains some nodes from cluster C’: C’ must have just
shrunk to a size of s(€)/2, so its last node has been an
inner node at the beginning of the round.

e C loses some nodes to cluster C’: See the previous
case.

O

Now, recall that we consider a cluster C' with ¢(C) = 0 at
the beginning of F. (Notice that by our arguments above,
C is a real cluster, and every cluster emerging from C in F
will be covered by C.) Going through all possible cases for
C in F, one can show the following fact.

Fact 3.8. At any time during F, |C| < 3s(e).

Proor. If C does not participate in MERGE during F,
then C' can only reach a size of 2s(e€). Otherwise, C' may
undergo the following events:

e ( first splits: Then C decomposes into two clusters,
C1 and Cq, of size s(€) each. C1 may participate in
MERGE again. If it loses nodes, it will not participate
in MERGE again during F. If it merges, its size will
grow by s(€)/2, and afterwards, it will also not partici-
pate in MERGE again during F', because the smoothing
algorithm can only cause it to grow or shrink by one
node during F' (if A < 1/(2s(e))). C2 cannot partici-
pate in MERGE again during F.

e (C first merges with other clusters: This increases its
size to at least s(e) and at most (3/2)s(e), which is also
valid if it merges again. Apart from merging, C' may
only lose nodes in another participation in MERGE.

e ( gains nodes from some cluster or loses nodes to some
cluster: This can be handled with similar arguments
as above.

In any case, |C| < 3s(e). O

Next, we go through all possible events in F' that can
possibly increase the potential of C.

e Injections of requests: Since |C] < 3s(e), the number
of data blocks in C' can change by at most AT - 3s(e),
and therefore ¢(C') can increase by at most

3AT - s(e) (2)

e Split events: This does not increase the nodes under
consideration in ¢(C), and final nodes do not count in
¢(C). Thus, a split event does not increase ¢(C).

e Merge events: Going through all possible cases, C' can
gain at most s(e) nodes due to merge events. Using
Fact 3.7 and the fact that every node can receive at
most AT requests in F', it holds that the potential in-
crease due to merge events is at most

AT - s(e) (3)



e Events in which C loses nodes: This does not increase
the nodes under consideration in ¢ and hence does not
increase ¢(C).

e Events in which C gains nodes: This only happens
once in F and only if C is in a merge pair (C,C").
Since |C'] < 2s(e), C gains at most (3/4)s(e) nodes,
causing a potential increase of at most

AT - (3/4)s(e) < AT - s(e€) (4)

Combining (2) to (4), the total increase of ¢(C) in F' can be
at most

3AT - s(€) + AT - s(€) + AT - s(€) = BAT - s(e)

This is less than 7'/3 if A < 1/(15s(e)). Since each round of
the smoothing algorithm needs (at most) 3 time steps and
according to Claim 3.4, ¢(C) decreases in each round as long
as ¢(C) > 0, there must be a later time point in F' where
¢(C) = 0, completing the proof. [

The proof of the claim ends the proof of Lemma 3.2. [l

Next we show that there are always sufficiently many idle
nodes in [.

LEMMA 3.9. For all € < 1 it holds: If s(e) > 6/e¢ then
at any point in time, |I| is at least the current number of
clusters in the system.

ProOF. It follows from Lemma 3.2 that the load of every
inner node is at least L — AT at any time, and L — AT > (1 —
€/3)L for our choices of L, L, and \. Because every cluster
has a size of more than s(e)/2 at any time, the average
number of blocks in a node in B is at least

gz (g ez (1-5)

Because the system is at most (1— e€)-utilized, it follows that

(I1—€e)L-n €
Bls G=23L = (17§>"'

Thus, |I| > (¢/3)-n. Since the number of clusters is at most
n/(s(e)/2) < (¢/3) - n at any time, the lemma follows. [

Combining the lemmata yields the following theorem.

THEOREM 3.10. For any 0 < € < 1, the smoothing al-
gorithm is maintaining a consistent and (1 4 €¢/2)-compact
mapping under any €/90-bounded adversary as long as the
system is at most (1 — €)-utilized at any point in time.

PRrROOF. The stability follows from the previous lemmata.
Hence, it remains to bound the compactness. According to
Lemma 3.2 every inner node has a load of at least L — AT >
(1—¢/3)L at any time. In the worst case, the final node has
load 0. Hence, k consecutive blocks are spread out over at
most

k € k
_r < A
(176/3)L+3—<1+2) Tt

nodes. [

Next, we discuss some extensions of the algorithm.

3.1 Handlingarrivalsand departuresof nodes

Suppose that we allow nodes to join and gracefully leave
the system. If a node joins, it is initially declared an idle
node. If a node v wants to leave, the following strategy is
used.

If v is an idle node, it can just leave. Otherwise, suppose
v is a busy node in some cluster C'. Then v fetches an idle
node w and moves all of its data in decreasing order to w.
While these movements are happening, v will still accept all
data from its predecessor in C, but w will receive all data
from v’s successor. Once v is empty, it can leave the system.

From Lemma 3.9 and Theorem 3.10 it follows:

THEOREM 3.11. As long as the system is at most (1 —€)-
utilized and the rate of node departures in a cluster is at most
p - €/L for some constant p > 0, the smoothing algorithm
achieves the same performance as in Theorem 3.10.

3.2 Nodeswith non-uniform capacities

Suppose we have a system of non-uniform nodes, i.e. each
node has a different capacity, and this capacity may change
over time. Let L:(v) be the capacity of v at time ¢. Then
we can show the following result:

THEOREM 3.12. As long as the system is at most (1 —€)-
utilized and Cy(v) changes by at most AT in T steps for any
v and X = O(e) is sufficiently small, the smoothing algorithm
1s stable against arbitrary (X, T)-bounded adversaries.

Notice that considering 1 4+ e-compactness does not make
sense in a heterogeneous environment because the number of
nodes storing a range of objects depends on their capacities.

4. DECENTRALIZED STORAGE

Notice that the smoothing algorithm does not require
global parameters and therefore can be turned into an algo-
rithm for the distributed setting. For this, we combine vari-
ous overlay networks — one for managing the busy nodes, one
for managing the idle nodes, and one for connecting the busy
nodes with idle nodes to turn idle nodes into busy node or
vice versa. This represents the first alternative to the DHT-
based peer-to-peer systems that can use the real names of
the objects instead of their hashed names for a consistent
mapping while preserving a compact distribution.

In order to convert the smoothing algorithm into a local
control algorithm for decentralized storage systems such as
peer-to-peer systems, several issues have to be addressed,
such as:

e How to organize busy and idle nodes in a distributed
setting? Busy and idle nodes have to be interconnected
to allow fast access to busy and idle nodes and to move
nodes between the two sets.

e How to break symmetry? Merge candidates need a
mechanism to decide with whom to merge. Clusters
have to coordinate their selection of idle nodes.

41 Thebasc structure

Recall that the algorithm in Figure 1 partitions the nodes
into two classes: busy nodes and idle nodes. The busy nodes
represent the group of nodes responsible for storing the ob-
jects, and the idle nodes do not store any objects and will
be used as floating resources.



Let V be the set of all nodes, B be the set of busy nodes,
I be the set of idle nodes, and F' be the set of busy nodes
representing the last node of a cluster. We will use the
following graphs to interconnect the nodes:

e Gp = (B, Ep): This graph consists of a cycle in which
the busy nodes are ordered according to their IDs
(resp. the ranges that they represent). Also, every
cluster of busy nodes is completely interconnected.

e Gr = (F,Er): This graph interconnects the final
nodes of each cluster in a way that allows to break
the symmetry for merge operations.

e G; = (I,Er): This graph contains all idle nodes.

e Gpr = (B, I,FEpr): This is a bipartite graph assigning
a random idle node to each busy node.

First, we describe how new nodes join the system and old
nodes leave the system, and then we describe in detail how
each of the graphs our system is composed of works.

4.2 Joining and leaving the system

If a new node u joins the system by contacting some node
v, then v calls the join operation of Gy, i.e. u is initially an
idle node.

If a node u wants to leave the system and w is currently
an idle node, then u starts the leave operation in G;. Oth-
erwise, u fetches a node in Gy via Gpr to exchange their
roles and then starts the leave operation in Gj.

4.3 Thegraph ¢z

Recall that Gg = (B, ER) consists of a cycle in which the
busy nodes are ordered according to their IDs, and every
cluster of busy nodes is completely interconnected. Hence,
if (due to the smoothing algorithm) some cluster integrates
a new node u, u will be inserted into the cycle and will
be given edges to all other nodes in that cluster. This can
certainly be done with constant time and work.

4.4 Thegraph ar

In order to break the symmetry of merge operations, we
form groups of 2 or 3 final nodes in the following way. FEach
node in G has a color specified by the mapping c : F' —
{black, white}. We want to maintain the following invariant
for c:

GF contains at most two consecutive nodes
of the same color.

In order to maintain this invariant, we use the following
rules when a new node w joins Gr: If uw’s neighbors have
the same color, or one of u’s neighbors has a neighbor with
the same color, then u uses the other color. Otherwise, u
chooses any color. If a node u leaves, then its right neighbor,
v, checks whether afterwards the invariant is violated. If so,
it changes its color.

The colors allow the clusters to be organized in groups of
size 2 or 3:

e For every white node v € F where the predecessor u
and successor w of distance 2 fulfill c¢(u) = ¢(v) = c(w),
v and its successor form a group.

e For every white node v € F that has a white successor
w, v, w, and the successor of w form a group.

e For every white node v € F' that has two black succes-
sors, v and its two successors form a group.

The following lemma is not hard to check:

LEMMA 4.1. The coloring scheme breaks symmetry in a
unique way so that every node belongs to exactly one group
of size 2 or 3.

Once these groups are established, merge groups can be
quickly built by either using these groups directly or (in case
of item 2 in Figure 2) by coordinating with the next group
to the right.

45 Thegraph a;

For G1 we can use any DHT-based overlay network, such
as Chord [30], i.e. every node receives a random number in
[0,1) as its ID. The nodes are ordered on a cycle according
to their IDs, and every node with ID z has shortcut pointers
to the closest successors of z+1/ 2% for every i € IN. Joining
and leaving G1 can be done as in Chord.

4.6 Thegraph Gs;

Every busy node v selects a random number z,, and main-
tains a pointer to the closest successor in Gr to x,. This
makes sure that the edges are randomly distributed among
the idle nodes. The edges are used whenever a final node
of a cluster becomes idle and therefore wants to join G, or
a final node of a cluster wants to integrate a new idle node
into it, or a busy node simply wants to leave the system.
Since there are more idle nodes than final nodes and busy
nodes rarely leave, it is not difficult to see that it only takes
O(log n) time and work for any one of the cases above to be
processed, w.h.p. Details will be given in a final paper.

5. CONCLUSIONS

In this paper, we only looked at the problem of main-
taining a low fragmentation for one-dimensional data with
a small work overhead. An interesting future problem would
be to look also at problems for higher-dimensional data,
since they have many interesting applications in data bases
and geographic information systems. Furthermore, we only
looked at worst case scenarios concerning the injection of
update requests. In scenarios in which the distribution of
update requests is highly concentrated on certain areas in
the name space, it should be possible to obtain stability for
much higher injection rates than just O(e). Exploring these
issues would be particularly interesting for single-disk sys-
tems because a work overhead of ©(1/e€) as implied by our
results is unacceptable for single disk management.
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