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Abstract

We study the problem of how resilient networks are to node faults. Specifically, we investigate the question
of how many faults a network can sustain and still contain a large (i.e., linear-sized) connected component with
approximately the same expansion as the original fault-free network. We use a pruning technique that culls away
those parts of the faulty network that have poor expansion. The faults may occur at random or be caused by an
adversary. Our techniques apply in either case. In the adversarial setting, we prove that for every network with
expansion, a large connected component with basically the same expansion as the original network exists for up
to a constant timea - n faults. We show this result is tight in the sense that every gtauti sizen and uniform
expansioru(-) can be broken into components of size) with w(a(n) - n) faults.

Unlike the adversarial case, the expansion of a graph gives a very weak bound on its resilience to random faults.
While it is the case, as before, that there are networks of uniform expafigigtiog n) that are not resilient again-
st a fault probability of a constant timég log n, it is also observed that there are networks of uniform expansion
O(1/+/n) that are resilient against a constant fault probability. Thus, we introduce a different parameter, called the
spanof a graph, which gives us a more precise handle on the maximum fault probability. We use the span to show
the first known results for the effect of random faults on the expansidrdifensional meshes.

Introduction

Network nodes and communication links have always been susceptible to failure. Software or hardware faults (or
phenomena outside the control of a network operator such as caterpillars) may cause nodes or links to go down. To be
able to adapt to faults without serious degradation in service, fault-tolerant networks and routing protocols have to be
set up. Although the study of communication in faulty networks is a classical field in network theory, there has been a
recent renewal of interest in fault-tolerant routing due to the tremendous rise in popularity of mobile ad-hoc networks
and peer-to-peer networks. In these networks, faults are actually not an exception but a frequently occurring event: in
mobile ad-hoc networks, users may run out of battery power or may move out of reach of others, and in peer-to-peer
networks, users may leave without notice.

Central questions in the theoretical study of faulty networks have been:

e How many faults can a network sustain and still have a large connected component that is a constant fraction of
the original size?

e How many faults can a network sustain and still emulate its ideal counterpart with constant slowdown?

The first question has been heavily studied in the graph theory community, and the second question has been

investigated by the parallel computing community in an attempt to find the point up to which a faulty parallel computer
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can still emulate an ideal parallel computer with the same topology with constant slowdown. We refer the reader to
[31] for a survey of results in these areas.

In this paper, we navigate a path between these two extremes. The fact that the network is still connected gives
little solace if it has a severe bottleneck (e.g., one half is connected to the other by a single edge). At the other end,
we might not need the property that we can fully emulate the original network in its faulty counterpart; all we might
need is that the network’s routing properties do not degrade excessively. We focus on this question: what happens
to a network’s routing capabilities when faults occur. To get a handle on the routing capabilities of the network we
focus on a parameter that has been widely used - both in graph theory and in network theory - to measure the routing
quality of a graph: expansion. More specifically, we are interested in the effect of faults on the expansion of a network,
showing bounds on the number of adversarial faults and the fault probability that a network can suffer and still retain
a large component with good enough expansion.

Before we proceed to our results, we discuss previous work related to connectivity and emulation in the face of
faults.

1.1 Large connected components in faulty networks

We start with an overview of previous results for random faults and subsequently consider adversarial faults.
Given a graptG and a probability value, let G(») be the random graph obtained frairby keeping each edge of
G alive with probabilityp (i.e., p is thesurvival probability in the rest of the paper we considault probabilities,
but in this section we talk in terms of survival probabilities.) Given a gr@pkety(G) € [0, 1] be the fraction of the
nodes ofG contained in a largest connected component.
LetG = {G, | n € IN} be any family of graphs with parameter We callp* the critical probability for the
existence of a linear-sized connected component if for every constartit holds:

1. For everyp > (1 + ¢)p* there exists a constaat> 0 with lim,,_, Pr[y(Gﬁ{’)) >cl=1.
2. For all constantg > 0 and for allp < (1 — ¢€)p* it holds thatlim,, ., « Pr[y(Gﬁf’)) >l =0.

Of course, it is not obvious whether critical probabilities exist. However, results st Rnyi [13] and their
subsequent improvements (e.g. [8, 25]) imply that for the complete grapmodesp™ = 1/(n — 1), and that for a
random graph withl - n/2 edgesp* = 1/d. For the 2-dimensional x n-mesh, Kesten showed thait = 1/2 [19].

Ajtai, Komlbés and Szemédi proved that for the hypercube of dimensionp* = 1/n [1]. For then-dimensional
butterfly network, Karlin, Nelson and Tamaki showed tha87 < p* < 0.436 [18]. Leighton and Maggs [21] showed

that there is an indirect constant-degree network connegtinguts withn outputs vialog n levels ofn nodes each,

called the multibutterfly, that has the following property: Up to a constant fault probability it is still possible to find
O(logn) length paths from a constant fraction of the inputs to a constant fraction of the outputs. Subsequently Cole,
Maggs and Sitaraman [10] extended this result for the butterfly.

Adversarial fault models have also been investigated. Leighton and Maggs [21] showed that no matter how an
adversary choosesfailed nodes, there will be a connected component left in the multibutterfly with atleaéi( f)
inputs and at least — O(f) outputs. They further show that it is even possible to route packets between the inputs
and outputs in this component in almost the same amount of time steps as in the ideal case. Subsequently Leighton,
Maggs and Sitaraman [23] extended this result for the butterfly.

Upfal [32], following up on work by Dwork et. al. [12] and Alon and Chung [2], showed that there is also a direct
constant-degree network ennodes, a so-called expander, that has the property: no matter how an adversary chooses
/ failed nodes, there will be a connected component left in it with at leas® (/) nodes. Both results are optimal up
to constants. Upfal uses a pruning technique, similar in spirit to the one we use later in this paper, to achieve his bound.
Upfal gives a polynomial-time algorithm for pruning while we do not. But Upfal’s pruning does not guarantee a large
component of good expansion, while ours does. In fact, recent work indicates that there might not be any constant
approximation algorithm to determine the expansion of a graph [20].

1.2 Simulation of fault-free networks by faulty networks

Next, we look at the problem of simulating fault-free networks by faulty networks. Let us suppose that there can be up
to f node faults in the system at any time. One way to find out whether the largest remaining component still allows
efficient communication is to check whether it is possible to embed a fault-free network of the same size and kind into



the largest connected component of a faulty networkefeddingf a graphG into a graphH maps the nodes @

to non-faulty nodes off and the edges @¥ to non-faulty paths iff. An embedding is callestaticif the mapping of

the nodes and edges is fixed. A good embedding is one with minimum load, congestion, and dilation, wiback the

of an embedding is the maximum number of nodeé&/dhat are mapped to any single nodeldf the congestiorof

an embedding is the maximum number of paths that pass through any etigg and thedilation of an embedding

is the length of the longest path. The load, congestion, and dilation of the embedding determine the time required to
emulate each step ¢ on H. In fact, Leighton, Maggs, and Rao have shown [22] that if there is an embedd#g of

into H with load ¢, congestiore, and dilationd, then H can emulate any communication step (and also computation
step) onG with slowdownO (¢ + ¢ + d).

Only a few results are known so far for constant slowdown in the worst-case faults setting. Leighton, Maggs and
Sitaraman used dynamic embedding strategies to show thairgsut butterfly withn!—< worst-case faults (for any
constant) can still emulate a fault-free butterfly of the same size with only constant slowdown [23]. Furthermore,
Cole, Maggs and Sitaraman showed thahan n mesh can sustain up t0'—¢ worst-case faults and still emulate a
fault-free mesh of the same size with (amortized) constant slowdown [11]. It seems thahdte hypercube can
also achieve a constant slowdown fgr—< worst-case faults, but so far only partial answers have been obtained [23].

Random faults have also been studied. For examgietdd, Leighton and Newman [15] showed that if each edge
of the hypercube fails independently with any constant probahility1, then the functioning parts of the hypercube
can be reconfigured to simulate the original hypercube with constant slowdown. Leighton, Maggs and Sitaraman
[23] showed that a butterfly network whose nodes fail with some constant probabdiéty still emulate a fault-free
butterfly of the same size with slowdovef’(°s” ) Interestingly, in the conference version of [11], Cole, Maggs and
Sitaraman claim that an x n mesh in which each node is faulty independently with a constant fault probability is
able to emulate a fault-free mesh with a constant slowdown [9]. The proof of this claim, which is stronger than the
theorem we prove about thex n mesh in this paper, is omitted in [9] and has not appeared elsewhere to the best of
our knowledge.

For a list of further references concerning embeddings of fault-free into faulty networks see the paper by Leighton,
Maggs and Sitaraman [23].

1.3 Our approach

The two common approaches — connectivity and emulation of fault-free by faulty networks — are too extreme for many
practical applications. Knowing how long a network is still connected may not be very useful, because in extreme cases
(just a single line connects one half to the other) the speed of communication may be reduced to a crawl, making it
useless for applications that need fast interaction or large bandwidth such as interactive gaming or video conferencing.
On the other hand, emulating a fault free network on a faulty network is like using a giant hammer to crack a small
nut, so to speak. Emulation may not be needed when all we want is good routing properties in the faulty network ,i.e.,
reduced congestion or good expansion.

In ad-hoc network settings or peer-to-peer systems, applications are usually not concerned with the exact network
topology. An application typically just requires that the network provides sufficient bandwidth and ensures sufficiently
small delays. In this scenario, a more relevant question is:

How many faults can a network sustain and still contain a network at least a constant fraction of its
original size with approximately the same expansion?

An answer to this question would have many useful consequences for distributed data management, routing, and
distributed computing. Research on load balancing has shown that if the expansion basically stays the same, the
ability of a network to balance single-commodity or multi-commodity load basically stays the same, and this ability
can be exploited through simple local algorithms [14, 5, 3]. Also, the ability of a network to route information is
preserved because it is closely related to its expansion [29]. Furthermore, as long as the original network still has a
large connected component of almost the same expansion, one can still achieve almost everywhere agreement, which
is an important prerequisite for fundamental primitives such as atomic broadcast, Byzantine agreement, and clock
synchronization [12, 32, 7].

In a work published after the conference version of this paper, Angel et. al. [4] have also taken the view that it is
important to study routing in faulty networks. The main difference is that they study the properties of faulty networks
in terms of the algorithmic complexity of finding paths between vertices. Our approach is less direct than theirs,



but somewhat more general and widely applicable. We will discuss some specific implications of their work and its
relation to our techniques in the concluding section of this paper.

Many different fault models have been studied in the literature: faults may be permanent or transient, nodes and/or
edges may break down, and faults may happen at random or may be caused by an adversary or attacker. The former
are calledandom faultsand the latter are calleativersarial faults We will concentrate on situations in which there
arestaticnode faults, i.e., once a node has become faulty either randomly or adversarially it remains faulty, and a node
which is not faulty remains not faulty. A central parameter we will use in our investigations is the expansion.

Given a graplG = (V, E) and a subsdl’ C V, theexpansiorof U is defined as

)l
=0
whereT'(U) is the set of nodes i \ U that have an edge froli and|S| denotes the size of a sét Theexpansion
of G is defined ag(G) = miny,jy|<|v|/2 a(U). If G is clear from the context, we will also just write

We also use theniform expansiomf a graph. Suppose that we have a family of gra@hd et 5 be a function
such that3(|G|) < «(G) for all graphsG € G, where|G| denotes the number of nodesGh Then we say thaf has
a uniform expansion of if for all subgraphs of all graphsG in G it holds thata(H) = O(B(| H])).

Notice thato(H) = ming, y|<|v(m)| /2 @(U), i.e., it should not be confused with V' (H)) in G. The uniform ex-
pansion definition implies that the expansion of a subgidf G cannot be asymptotically better than the expansion
of G (which also implies that(|G|) = ©(«a(G)) for all G € G).

Despite its seemingly complex definition, the uniform expansion property is a quite natural property. In fact, all
commonly used graph topologies in interconnection networks such asdrdeagnsional meshes (with equal side
length in each dimension), the hypercube, the butterfly, and the de Bruijn graph fulfill this uniform expansion property.

Uniform expansion is well illustrated by the example of the mesh. If we considet the.-mesh (i.e., the 2-
dimensional mesh of side lengtf), we can see that it has a uniform expansiog@f) = 1/+/x. This is demonstrated
by observing that any subgraph of sizein that mesh can have a bisection width, defined as the minimum cut
separating the graph into two subgraphs of approximately equal size, of at/fmoand therefore an expansion of at

mostO(1//m).

1.4 Our main results
Adversarial faults

We give general upper and lower bounds for the number of node faults a graph can sustain and still retain a large
component with basically the same expansion. The bounds are tight up to constant factors. More specifically, we
show that the number of adversarial node faults a graph with expansam » nodes can sustain, with only a
constant factor decrease in its expansion, is a constant times For (families of) graphgs of sizen and uniform
expansion3, this result is best possible up to a constant factor in the sense(ft) - n) faults can break into
components of size(n).

Random faults

We also study random faults. We find that that tight dependence between the robustness of a network and the expansion
that is observed in the case of adversarial faults is absent here. Although we are able to show examples of networks
with expansiom which fall apart with high probability given a fault probability of a constant timesve also find
that there are networks which retain their expansion at fault probabilities which(aje Hence we need a better way
of studying the robustness of networks to random faults. This motivates our main contribution: a new parameter for
the study of the effect of random faults on network expansion. This parameter, cgflahenay be of independent
interest.

Consider a grapliy = (V, E). LetU C V be any subset of node$! is defined to beompactif and only if U
andV \ U are connected if. Letl/ be the set of all compact sets@f Let P(U) be the smallest tree i& which
connects every node IR(U) (i.e., it essentially spans the boundarylf. Note that the set of nodes (U) need
not be fromU alone or fromV \ U alone. Then thepanof a graph is defined as:

o=y ro ) @
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The span helps us characterize the resilience of the expansion to random faults. We show that a graph with maximum
degreed, spang, and expansiom (fulfilling certain, weak conditions) can tolerate a fault probability of up to a
constant time¢ /§°() and still retain an expansion of at leasts.

We also show thad-dimensional meshes have constant span. The proof of this theorem is of independent value as
it establishes an interesting property of thdimensional mesh: The boundary of any set of connected vertices in the
d-dimensional mesh, whose complement is also connected, can be spanned by a tree of size at most twice the size of
the boundary.

1.5 Ouitline of the paper

The rest of the paper is organized as follows: In Section 2, we consider adversarial faults, and in Section 3, we consider
random faults. The paper ends in Section 4 with a discussion of how our results are related to previous research and
some open problems.

2 Adversarial faults

In this section, we assume that a malicious adversary decides which nodes are faulty. More formally, we are given
a graphG = (V, E) with n nodes and expansiam. An adversary gives us a faulty version of this graph, called

Gy = (Vy, E¢), with f faulty nodes removed. An edde, v} € E remains inEy if and only if bothu andv are non-

faulty. We first prove a general upper bound on the number of adversarial faults a graph can sustain, and afterwards
we also prove asymptotically matching lower bounds for certain classes of graphs.

2.1 Upper bound on adversarial faults

We show that if an adversary is allowed no more thHu - n) faults, there always exists a subgraptCof called H
which hasO(n) nodes and an expansion@f«).

An adversary can simply disconnect parts of the graph by making a small number of nodes faulty, causing the
expansion ofG¢ to be 0. Therefore, the subgraph with good enough expansion is constructed by pruning away
those parts ofy; whose expansion has degraded too much. This is a critically important step in our analysis. We
formalize it as an algorithm calld@runedescribed in Figure 1.

Note that the running time d®runeis not necessarily polynomial, nor are we claiming itBsunesimply helps
us prove an existential result. We discuss the algorithmic aspePtain€in greater detail in Section 2.3

Before we get to the algorithm, we need to introduce some notation. Given a@rapi definel'¢(S) to be the
set of nodes in the neighborhood of a nodeSit G. The algorithm generates a sequence of gréph® G, where
the final graph=,,, is the graphH we are looking for.

Algorithm Prune(e)

1 Go — Gf; 70
Gi+1 — G; \ Si
1—1+1

end while
H—G;;m—1

o g A wDn

Figure 1: The pruning algorithm

Theorem 2.1 LetG be any graph withh nodes, maximum degréeand expansiom.. Suppose that the adversary can
select up tof = ;575 faulty nodes for some constaint> 1. Then,Prune{ — %) returns a subgrapti of size at least

f k. .
n — L with expansion at leagtl — 1) - .

Proof. DenoteG; \ H by S, i.e.,S is the union of all the regions culled Brune We will show that|S| < ’“a—f by
contradiction. For this we need the following lemma.



Lemma 2.2 For all j with0 < j < m,

L, ( U Si) <> |FGi(5i)|§oz-(1—]1€>-

0<i<j 0<i<j

U sil-

0<i<j

Proof. Consider the first inequality. Any nodethat lies in the neighborhood ¢f, S; in Gy must lie in the neigh-
borhood of somes; in Gy. Thus, because is outside ofl J, S; and therefore belongs td, there must be an;
with v € ', (S;). Thereforel'c,(U; Si) € U, I'c,(S:). Hence the first inequality. Each sgt that is culled by
Prune(l — 1) has the property thaf'c;, (S;)| < a- (1 — 1) - |5;|. Since the sets; are disjoint,y", |5;| = |U, Sil.
Hence the second inequality. O

Suppose now thdS| > % Since eaclb; has a size of at most/2, there must be & so that one of the two
following cases is true:

k-
1. Tf < ’UOSiSj S;

2. ’U0§i<j S;

In the case (1), it follows from Lemma 2.2 that #f = J,,<; Si,

<n/2

< ELandn/2 - EL < |S;| < nj/2.

1
o) < (1-1) 15

We know by the definition of the expansion thatGh |T'(S")| is at leasty - |S’|. Hence, the number of faulty nodes in
S’s neighborhood must be at leasfl — (1 — 1)) - |S’|, which is greater than - 7 - ’“&f = f. Since the total number
of faults the adversary is allowed to create is at mfgste have a contradiction.

Suppose now that case (2) above is true. &et= |J,,.,S;. It follows from Pruneg) that |T'c, (S;)] <
(1 —1/k)a|S;|. However, in order to upper bount, (S;)|, we also have to consider the neighbSgsmight have
in §’. According to Lemma 2.2I'¢;, (S')| < a|S’| < k - f, and therefore, there can be at mbstf nodes inS; that
have neighbors i$’. Since the maximum degree @fis 4, it follows that

1
|I‘Gf(5j)|§a- (1_kj> |Sj|+(5kf

On the other hand, we know thait; (S;)| > «|S;|. Hence, the number of faults @, must be atleast|S;|/k—d-k-f.
From case (2) and the definition ¢fit follows that|S;| > n/2 — n/(46k) > 3n/8 becaus& > 2. Furthermore,
d-k-f=an/(4k). Hence,

alS;|/k—0-k-f>3an/(8k) —an/(4k) > an/(8k) .

But fromk > 1 andé > 2 it follows that f = an/(46k?) < an/(8k), a contradiction.
Hence,H is at least — %f in size and has an expansion of at ledst- ) - a. O

2.2 Lower bounds for adversarial faults

The result given in Theorem 2.1 is the best possible up to constant factors in the sense that farev@ismaller
than some constant there is an infinite family of graphs with expanmsiohich disintegrate into components of size
o(n) if f > ¢- an for some sufficiently large constant

Theorem 2.3 There exists a constantsuch that, given any < ~, there is an infinite family of graphs with expansion
« for which there is an adversarial selection of « - n faulty nodes causing the graph to break into components of
sizeo(n), wheren is the number of nodes in the graph ani$ an appropriately chosen constant.

Proof. Consider an infinite family of §-regular expander graphs with constant dedrdee., §-regular graphs with
the property that every subset of nodes containing at most half of the nodes in the graph has a constant expansion. It
is well-known that random-regular graphs witli > 3 almost surely have this property.
For any fixedG € G of sizen and anyk, let graphH be a copy of7 with each edge being replaced by a chain of
k nodes (between its two endpoints), whers even. Therf] hask - (dn)/2 +n = ©(k - n) nodes.



Claim 2.4 Graph H has expansio®(+).

Proof. We first prove a lower bound, i.e., every sub8edf the node set off such thatU| < |H|/2 has expansion at
leastQ(|U|/k). Then we show an upper bound, i.e., there is a subsEt wfth expansiorO(|U|/k). These together
will prove the claim.

Figure 2: Distinguishing between two kinds of vertices for the lower bound.

For the lower bound, we have to show that every subset of noddsadhsize at mostH|/2 has an expansion of
Q(1/k). Consider any subsét of H-nodes withU| < |H|/2. We differentiate between two sets of nodes within
To do this we start by defining a s€tas the set of allz-nodes with the property that all nodes within a distance of
k/2 from them inH are inU. We name a#/¢ the set consisting of al7-nodes within a distance @f/2 of the nodes
in C. Note thatUx C U. The other set of nodes we will considelli$ = U \ Uq. See Figure 2 for an illustration of
this division ofU into two subsets.

Let us first considet/c. Since everyG-node has exactly - £/2 + 1 many nodes within a distance bf2 in H
and|U| < |H|/2, it follows that|C| < |G|/2. HenceC has an expansion of at leastn G for some constant > 0.
For every node € I'(C) there must be af/-nodew within a distance of:;/2 from v that is not inU. LetT'Y, (Uc)
denote the set of all of these nodesSince|U¢| = (d - k/2 + 1)|C], it holds that

MU 2 Na(€) 2110 = 57— Vel @)

Next, consider the séf’ = U\ U¢ and letC’ be the set of al-nodes that have at least obiénode within a distance
of k/2in H. From the definition o/’ andC” it follows that for eachy € C’ there is at least on&-nodew within a
distance of:/2 from v that is not inU. LetT'%; (U’) denote the set of all of these nodesSince|U’| < (5 - k/2)|C’,
we get

oY) > ] > —

> 53 101 3)

Combining inequalities (2) and (3), it follows that

1
[0 (U)] = max { L5 (Vo) 5 (U]} = max{é,k]2+1 el 575 |U’|}
and sincdJ = Uc U U’, we immediately get thal’ i (U)| = Q(|U|/k). Hence, the lower bound holds.

To show that the upper bound holds as well, we just need to show that there exists a set &f modesf size at
most| H|/2 with an expansion o®(1/k). Consider any two adjacent nodesin These two nodes are end points of a
chain of lengtht + 2 in H. Assigning the middlé: nodes of this chain to the node gégives a set with an expansion
of 2/k. Hence, the expansion &f is O(1/k), which completes the proof of the claim. O



Now, from each chain of nodes, we remove a central node. Then each connected component remaining has at
mostl + 4 - £ nodes left, which is(n), and the total number of nodes remove§ isn, which is ¢ times the number
of nodes in the graph. O

We now show a more far-reaching lower bound: For families of graphs that hawifoam expansionour upper
bound on the maximum number of node faults is not only true in some pathological cases,dwarj@ase, i.e., for
every graph in every such family of graphs. In the following, whenever we speak about a graph of uniform expansion,
we assume that it belongs to a suitable family of graphs.

Theorem 2.5 For every connected graph of sizeand uniform expansior$ there is an adversarial selection of
w(B(n) - n) faulty nodes that causes the graph to break into components af(size

Proof. Let G = (V, E) be any graph of uniform expansighthat consists of: nodes. Then there must be a set
Uy CV,|U1i] < n/2,sothatl’(Uy)| < B(n) - |U1|. Removingl'(U;) leavesG with a sety; = {V’,V"} of two
node setsV’ = U; andV” = V \ (U; UT(U;)). LetV; be a set inv; of maximum size. It follows from the
uniformity of G that there must be a séb C V4, |Us| < |V1|/2, so thatiT[(Us)| w.r.t. G(V1) is O(B(|V4])) - |Ua|-
RemovingU; results in a new sat, of sets of nodes which is equal ¥ with V; being replaced by the node séts
andV; \ (U UT'(Us)). (Thatis,V, contains three node sets.) We continue to take a nodé sétargest size out of
V;, remove nodes at the minimum expansion par{i¥;), and replacé’/; by the two resulting node sets i) to get
a setV; 1, until there is no subset iV; left of size at leastn.

Our goal is to show that this process only remo(/}:(éw - B(n) - n) nodes fromG. If this were true, the
theorem would follow immediately. We prove the bound with a charging strategy: Each tim&aseselected from
V;, we charge all nodes ifi(U;,1) taken away fron¥/; to the nodes if/; ;. Since

B(n
)] = O(en)) - Uil = 0 (212 07
for any 8(z) > 1/, this means that every node i, is charged with a value ab(¢~! - 3(n)). Every node can
be charged at mostg(1/¢) times because each time a node is charged, it ends up in a nddg s¢hat is at most
half as large a¥;, and we stop splitting a node set once it is of size less thatence, at the end, every nodelin
is charged with a value (ﬂ)(% - B(n)). Summing up over all nodes, the total charge is

O<10g<1/6>.5(n).n>7

€

which represents the number of nodes that have been removed from the graph. O

The proof of this theorem indicates that families of graphs with uniform expansion may have a smooth degradation
in the size of their largest connected component. This is in fact true for the familyxof. meshes. However, since
there are also families of graphs with a threshold behavior, like the graphs used in Theorem 2.3, Theorem 2.1 is, up to
constant factors, the best one can show in general.

2.3 Algorithmic pruning

The pruning step is crucial to the results discussed in this section and it will be central to the handling of random
faults in the next section. Before proceeding to that section, we briefly discuss the possibility of actually performing a
pruning step in polynomial time.

The pruning algorithm can be seen as a solution to the decision version of the sparsest cut problem which can be
stated as follows.

Sparsest Cut:
Given a graplG = (V, E) with arbitrary non-negative edge capaciti¢s), e € E,
and some3 > 0, find a set/ C V with |U| < |V|/2 and

> cluv)<p-UL
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The sparsest cut problem is known to be NP-hard. However, if there existeghproximation algorithm for the
optimization version of the sparsest cut problem, we could use it in the following way for the pruning:

e Find ay-approximate sparsest c{f, S) of the faulty graph.

o If S satisfiesy(S) < € - « for some small constamt> 0, pruneS away, otherwise stop.

Since the expansion of the cut found by the algorithm is at mdsnes the expansion of the faulty graph, we
know that the expansion of the remaining grapfis./v).

The proof that the size of this component is at least a constant fraction of the original size of the graph when
allowing ¢ - an faults for a sufficiently small constantfollows from the existential proof above.

Recently, the best known approximation to the sparsest cut problem was improyéskto by Arora, Rao and
Vazirani [6]. They had also conjectured that the sparsest cut problem should be approximable in polynomial time to
within a constant factor. This would have had the effect of turning the existential results in this paper into algorithmic
ones, making it possible to actually find large components with good expansion whose existence is proved here in
polynomial time. However, recently obtained lower bounds indicate that this might not be possible [20].

3 Random faults

We now direct our attention to the case of random faults. We assume that each node in the graph can become faulty
independently with a given probabilipy

3.1 Random faults are not always easier to handle

Intuitively, it appears that random faults are easier to handle than adversarial faults, i.e., a graph should retain a linear
sized component in the face of many more random faults than adversarial faults. However, as we will see in this
section, this is not true in general. In fact, there are families of graphs for which a fault probabifitypfcauses

the graph to disintegrate into components of si@e), wherea is the expansion of the graph. In other words, in these
graphsO(an) random node failures can be as bad as adversarial node failures.

Theorem 3.1 There exists a constantsuch that, given any < ~, there is an infinite family of graphs with expansion
O(«) for which a fault probability of9(«) causes the graph to disintegrate into components ofcgizg with high
probability.

Proof. We use the family of graphs constructed in the proof of Theorem 2.3, i.€. Hetan infinite family of constant
degree expander graphs with constant expangiand constant degree Further, letH be the graph resulting from
G by replacing every edge iff by a chain ofi nodes (between its two endpoints). Grdpthas© (k- n) nodes. From
Claim 2.4, we know that{ has an expansion (ﬁ(%). We need to establish some important propertieH diefore
we can complete the proof of this theorem. For this we need to defirmtderof a node sef as the set of all nodes
in .S which have an edge to a vertex outsitle

The following lemma helps us to count subgraphgiofvith a certain property.

Lemma 3.2 The number of connected subgrapts of H containing exactly- nodes ofG and whose border lies
entirely inG is at mostn - 52071,

Proof. It suffices to count all possible connected subsets of nodes of sizé/. This is because all the subgraphs

we are concerned with are bordered by nodeS ofny connected subset of nodes of sizean be spanned by a tree

with » — 1 edges. This tree can be traversed by an Eulerian tour in which each edge is used at most twice. Hence, all
nodes of the subset can be visited by a walk along at 2{est 1) edges inG. Since the starting point of the walk

can be any one of the vertices, there are at most 52"~ ways of generating a connected subset of size O

Now, let us consider any subgraphi of H with the properties of Lemma 3.2, i.€d’ contains exactly: nodes
of G and its border lies entirely it¥. Consider a spanning tree &F. Since each node i’ N G has to be spanned,
the tree must contain at least- 1 “edges” of G which are chains iffif’. Each chain contains vertices ofH’ \ G.



Further we can associate at least one verteX @fith each chain. Hencé]’ contains at leastk + 1)(r — 1) nodes.
With this observation in place we are ready to proceed with the proof.

Let the failure probability of the nodes i bep = (21nd + 2)/k. We say that a subgraurvivesif none of its
nodes become faulty. HencH; survives with probability at mogtl — p)(*+D(—1) < ¢=k(—1)» By Lemma 3.2,
there are no more than- §2"—1) such subgraph&’. Hence, for- = Inn + 1, the probability that any such subgraph
survives is at most

n- 62(7"—1) . e—k(T—l)'p =n. 62(7"—1) . e—(r—l)(21116+2) =n- e—21nn — 1/n ]

But if no such subgraph survives, then a connected componéhtian have a size of at moSX(6 - klnn). Thus,H
breaks down into components of siz@:), with high probability. O

However, the expansion of a graphrist necessarily the critical point (i.e., the point at which the graph disin-
tegrates into components of sizén), with high probability) for all graphs. There are several important classes of
graphs which can sustain a much higher fault probability and still yield a linear sized connected component with good
expansion. One specific case is the mesh. In the following, we describe a general technique to quantify this higher
fault probability.

3.2 Extracting a large subgraph from a graph with random faults

Consider any grapti = (V, E) with n nodes, maximum degréeexpansiony, and spaw. LetG; = (V, E;) be the
faulty version ofG where each node is made faulty independently with probabili§n edge{u, v} € E remains in
E; if and only if bothu andv are non-faulty.
We want to find a graplf C G of size®(n) with expansiorf2(«/§) for values ofp up to a constant timely/5* 7
wherec is another constant. Here is a road map that might make it easier for the reader to follow as we attempt to find
such anH.

¢ Recall the definition otompact setssets in the graph which are connected and whose complement is also
connected. These sets will prove extremely useful for us. One convenient feature they have is that they are easy
to count in terms of the span. (SBeoposition 3.3)

e Ease of counting in itself is not of much use. But we will also show that compact sets are the bottlenecks which
determine the expansion of the graph. Formally, we will prove that if a graph has a set with expansfon
any value ofy > 0 then it has a compact set of expansiom - . (SeeLemma 3.4)

e Hence, we know that pruning compact sets with bad expansion achieves what we want: the remaining graph has
good expansion. So we will modifgyruneg) to prune only compact sets of bad expansion from a faulty graph .
(See algorithnPruneCompact in Figure 4.)

e We take care of an important technicality by showing that the connected components over the sets pruned by
PruneCompact) are also compact. (Sédaim 3.7.)

¢ Finally, we show that the probability of the number of nodes culled being large is very small for values of the
fault probability below a certain threshold. (SBeeorem 3.6)

To show this, we handle two cases separately.

1. There is one pruned component with a large neighborhatd.limit the probability of this by using the
inclusion-exclusion principle. The fact that it is easier to count compact sets plays a major part here.

2. Each pruned component has a small neighborhdddre we have to make a careful counting argument
looking at independent sets in the set of pruned connected components.

Now let us execute this road map.

Let/ be the set of all compact sets@f Recall that a set is compact if it and its complement are connected. In
the following, given any grapli’, V(G’) denotes the node set 6f, ', (U) denotes the neighborhood of node set
U with respect ta7’ andag (U) denotes the expansion of node Betvith respect ta&’.

We begin by relating the number of compact sets with a given neighborhood to two graph parameters: maximum
degree and span.
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Proposition 3.3 For a graphG with spano and maximum degree> 3, there are at most - §37°* compact sets with
k nodes in their neighborhood.

Proof. Consider compact sets with boundaries of sizeThe proof of Lemma 3.2 implies that there are at most
n - §27°F ways of generating a tree of size- k in G. Note that a tree of size - k can span up tc(",’v’“) sets ofk
vertices each. Hence, it can span at rr(d,g’i) < (ec)* compact sets withk nodes in their neighborhood. Therefore,
for § > 3 > e, there are at most - (ea)* - 627°% < n - §37'F compact sets wittt nodes in their neighborhood. O

Before we describe the modified pruning algorithm, we set the stage for it. The following lemma will be used
to show that our new pruning algorithm, callBduneCompacf{see Figure 4), will find suitable candidates at every
instance by showing that whenever a graph has a subset with bad expansion, it has a compact subset whose expansion
is not much better.

Lemma 3.4 LetG = (V, E) be a connected graph with maximum degfemd G’ = (V, E’) be a subgraph off. For
any subsef C V with |S| < |V|/2 there exists a compact sBi;. (5) in G with | K/ (S)| < |V|/2 whose expansion
in G’ is at mos® - ag (S).

Figure 3: Note that though is nhot compact, botli’, andS U C;, U Cy U Cy are.

Proof. Throughout this paper we have used the term expansion to mean node expansion, i.e., we have looked at
expansion in terms of the size of the neighborhood of sets. However, to prove this lemma we will use the concept of
edgeexpansion, which is defined as follows. Given alset V', we denote by (U) the set of edges with one endpoint
in U and the other endpoint i \ U. Theedge expansioof U is asg(U) = |e(U)|/|U|. Theedge expansioof a
graphG = (V, E) is

B(G) = min B(U)

IR
The edge expansion of a set and its node expansion are related as follows:
Fact 3.5 For any setU/ C V with |U| < |V]/2,
a(U) < BU) <6-a(U).
We will now show that for any s C V with |S| < |V|/2 we can find a compact s8t’ such thap3(S”) < 3(95).
This coupled with Fact 3.5 gives us the proof of the lemma.

Suppose first thaf contains multiple connected componefts S, ..., S,. Since no two of these connected
components can share an edge ), it is clear that

le(S1)| + le(S2)| + - -~ + [e(Sk)]
|S1| + S| + - -+ + | Sk

B(S) =

11



Hence, by a simple averaging argument, there must bielar i < k, for which 5(S;) < 5(S). Let us denote this
S; ass’.

If S’ is compact, we are done ard; (S) = S’. So let us assume that is not compact. Suppose thet\ S’
has connected componertts, Cs, ... C,. Figure 3 clearly shows that evefy; is a compact set. That is because
has connections to all the other components. Simildtly= (S’ U C, UCs--- U Cy) \ C; is a compact set for each
i, 1 < ¢ < £. Figure 3 also shows us two other properties of each of thes&sdF) ¢(T;) < e(S’) because some of
the edges of(S’) may now have become internal®®, and (2)|7;| > |S’| because each; containsS’ in its entirety
and may contain some more nodes from the componerits\o$’.

Hence, it follows that if there is aif for which |T;«| < |V|/2, then

B(Ti-) < B(S")

and theS” we are looking for is thig;-.
If |T;| > |V|/2 for everyl < i < ¢, this means thdtC;| < |V|/2 for eachl < i < ¢, becauseT;| + |C;| = |V].
Now, let us look at the edge expansion®fagain:
N e8] [e(C)l + le(Ca)l +-- - + [e(Ce)|
A= et T 51
le(C1)l + le(Ca)| + - - + [e(Co)|
|C1| + |Co| + -+ + |Cy]

since|S’| < |V|/2. By an averaging argument as before, there must big,dan< i* < ¢ such that

le(C1)] + |e(Co)| + - - - + e(Ch)] S le(Cix)
|Cy| + [Co] + -+ + |Cel ~ |G

and since we havig’;| < |V|/2 for eachy, it follows that3(C;+) < 3(S’). Hence, our choice o§” is C-.
This S” we have chosen is thE¢ (S) we set out to find. We have shown théfe (S)| < |V|/2 in each case,
and Fact 3.5 ensures that it has the propertydliats: (S)) < d - a(9). |

Algorithm PruneCompact)
1 Go—Gyi—0
while 35; C V(G;) s.t.|Tg, (S:)| < (¢/0) - aS;] and|S;| < |G;]/2
K; — Kg,(5))
Git1 — G\ K;
7—1+1
end while
H — Gi

N o g A w DN

Figure 4: The pruning algorithm

Consider now the algorithrRruneCompacin Figure 4. We use the notation from this algorithm in the proof of
Theorem 3.6. Recall that the initial graply = G ; containsall nodes ofG, but the faulty nodes are isolated. In each
iteration of the algorithm in which the expansionf is still poor, a node sek ¢, (.S;) is pruned away frond;. Due
to Lemma 3.4 K¢, (S;) is compact inG restricted to the nodes ii;. Notice thatK, (.S;) may contain faulty nodes.

Theorem 3.6 Consider any grapléz = (V, E) with maximum degre& spano, and expansioa > (v¢ In® n)/n for
some sufficiently large constapaind |T'(U')| > log; |U| for every node séf C V with |U| < |V/|/2. Then, with high
probability, provided the fault probability < 1/(16¢ - 6%) ande < 1/4, PruneCompact] returns a graphH C G
of size|H| > n/3 with expansion at leagt/J) - o.

Proof. In the following we will always assume that> 3 since otherwise the lower bound aris violated. We begin
the proof by showing that the regions pruned are compact. Formally, {etG \ H. Hence,T is the union of all the
culled regions. To prove the result, we will show that, with high probability, the siZ€ isfno more tham /2. Let
T1,T5,...,T, be the connected componentsiofn G.
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Claim 3.7 EveryT}; € T is compact inG.

Proof. We will denote byG (V' (G;)) the graphG induced byV (G,), i.e., the graph that contains all nodesinand
all edges inG that have both endpoints ;. Hence G(V (G;)) is the non-faulty version ofr;.

First of all, notice that3(V (G;)) is connected for every. This is true because only sets that are compact in
G(V(G,)) are removed fronds; for everyi, andG(V (Gy)) = G. Moreover, every compact sé&f; pruned away from
G, has at least one edge int6 \ K; in G(V(G;)). Also, everyK; must be completely contained in one of the
This holds because tl%§'s are connected components. lika were distributed among at least t@y's, then it cannot
be connected, violating the compactness property.

Consider now any séf;. Because it is a (maximal) connected component, it has no edges i, avith k£ # ;.
But T’; must represent the union of compact sets that were culled away, and the last of these that was culled away must
have at least one edge intb\ 7; because otherwigg would be disconnected. Hencg, must have at least one edge
into H for everyj. Thus,G \ T is connected for every; implying that everyl’; is compact inG. O

We now establish a bound on the probability that a giverYsgets culled. This bound is in terms &fo and the
size of the neighborhood d@f;.

In the following, letl’(U') denote the neighborhood 6f in G andI';(U) denote the neighborhood 6f in G .
From the definition ofy it follows that |T'(T;)| > «|T;| for every:i. Furthermore, it follows from Lemma 3.4 that

TAT) < Y ITa, (Kl < Y ealK;| = eal T3] < e|T(Ti)] -
KJ'ETL' KjETL

Hence |I'(T;)| — |T'¢(T3)] > (1 — ¢)|T'(T3)|. A setT; is part of the culled region only in the event that the size of its
neighborhood reduces froffi(7;)| to |T's(T;)|. This probability is at most

T(Ts)|—|T (T
( IT(T3)] >,pr<m—rf<n> < ( ep[I(T,)] >( SR (4)
[0(T)| = |04(T) = D@ = T4 (7))
(1-0)[T(T)]
€p
- (1_6) (5)
If we set
<1 and e <;
€= P= 1655
then it follows that
3/4|T(T)| 1 6o|0(T)|
PHT; is culled byPruneCompagt< ( —-— ST
[T} is culled byPruneCompagt< <12580> - 12

In order to establish that the probability that the sizes offffeecumulatively add up to more th&m/3 is low,
we need to distinguish between two cases based on the size of the neighborhood’ . thie the following, let
k = ﬂog(; n1 .

Case 1:There exists anwith |T'(T;)| > k, i.e. there is &; with a large neighborhood.

From above we know that a given compact subgrépts culled with probability at mosi—67I"(T:)!, We multiply

this probability with the number of ways of choosing such a subgraph. This gives us the probability that tHEre is a
with such a large neighborhood. Lemma 3.2 implies that there are atrmagt”I'(7:)| compact sets withl'(T;)|
nodes in the neighborhood. By definitian> 1. Hence,

PAST, : [D(T)| > ] < Yo yn- g0 - 500 ©
<p2.§d0k < % . @)

Case 2:For all, |T'(T;)| < k.

Without loss of generality, suppose that we traiitneCompact) once more thafn /3 nodes have been pruned away.
Let 7 be the union of the culled sets before that round, andléte the set of nodes pruned away so thatxhg3
bound is exceeded. Then it holds the3 < |7| < 2n/3 because if7T| < n/3, then|K| > n/3 > (n — |T])/2,
which would violate the choice dk; in step 3 ofPruneCompact{ (see also Lemma 3.4).
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Our goal is to show that a s&t of pruned sets witm/3 < |7| < 2n/3 cannot exist, with high probability. Let
T1,...,T, be the connected components of suéh.&Recall thatl, . . ., T, are compact sets. First, suppose that there
is aT; with |T;| > |V'|/2. From the definition of the expansion it holds that

ID(T)] = 6 D(V\T3)| > 6~ an/2

because every node IV \ T;) must be inT; and must have a neighborI{T;). Thus, from the lower bound om
in Theorem 3.6 it follows that

3
I0(Ty)| > 51 v¥§In”n

n/2=(y/2)In®n >k

and, hence, we are back to case 1 above.

Therefore, we can assume in the following tH&t < |V|/2 for everyi. In this case, we show that it is unlikely
thatX,;|T;| is more tham /3 with high probability. This is done by looking at the s&sof all possible candidate sets
for the T;'s with ¢ neighborst € {1,..., k}. For technical reasons, we count separately thideewhich it is likely
that we have)(log® n) candidate sets: we show that the total number of nodes in these candidate sets is bounded by
n/6, with high probability. We also show the same result for the remaining valugsdéling these up with the earlier
nodes to a total of at most/3 nodes that can be culled, with high probability.

Let S; be the collection of all compact sets@with a neighborhood of size exactty We know from above that
|S;| < n - 837t A subsetS] of S; is called avalid candidatefor PruneCompact] if and only if for any two sets
T,T" € S, T andT’ do not intersect each other’s neighborhoods (L& T'(7”) = @ andT' NT(T) = (). Only in
this case” andT” are separate connected components. AlsetS, is calledbadif [T';(T)| < e - a|T|. Certainly,
if PruneCompact| culls s compact set§” with |I'(T)| = ¢, then there must exist a valid candid&ein S; of size at
leasts in which all sets are bad. But then, there must exist &8eif size at least/(0t) in S; with the property that
all sets inS;’ are bad and for all sef, T € S}’ it holds that(T' U I'(T)) N (T" UT(T")) = 0. (A setS} fulfilling the
latter property is also called andependent collectiom the following.) This holds because for every node, a valid
candidateS; can have at most sets that have this node in their neighborhood, and therefore aSgtan share its
neighborhood with at mogt — 1)t < §t — 1 other sets irS;.

Independent collections of compact sets have the advantage that the events that compact sets are bad are indepen-
dent. So our goal will be to bound the probability that there exists an independent coll8£tiorS; of size at least
s” in order to bound the number of compact sets with neighborhadlegt PruneCompact) may cull.

Let the random variabl& denote the maximum number of bad independent sef.irSince there are at most

(”"ji”) ways of choosing an independent collection of siZgit holds forn/(4637t) > 121Inn that

- n- 5% A
> M < "\ 12660t
Pr[X >n/(46°")] < (n/(453”t)> (1266“)

e-n - 630t n/(45%7%) 1 n/(46%)
<n/(4530t)) ' (1256“)

<§>n/(453at) < e—l.llnn _ L

nl1

Hence, for these values tfthe maximum size of an independent collectiosjris bounded by /(453°%), with high
probability. From the previous arguments this implies that the maximum number of sets with neighbothabd
PruneCompact) can cull is at mostdt) - n/(4637%), with high probability. Since we assumed thatU)| > log; |U|
for every node sdl/ C V with |U| < |V|/2, it further holds that

IT| < min [T, orl|r(T)|] ‘
Hence, for any so thatn/(4§3°t) > 121nn, PruneCompact) can cull at most
my = 0 - (6t) - n/(46%7%) < n/(46°")

nodes, with high probability.
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Let to be the smallest so thatn/(463°) < 12Inn (i.e., the bounds above do not apply). Then we define
the random variabléX as the maximum number of bad independent setsfi_qOSt. Suppose that we have some
canonical rule of specifying a unique independent collection of bad sets of maximum size (for example, add a bad set
that is independent to the selected ones one by one, taking the one with lowest node ID if there is more than one).
For anyi € Uf:tost, let the binary random variabl&; be 1 if and only ifi belongs to the canonical independent
collection of bad sets. Then it holds thdt= ). X;. Certainly,Pr[X; = 1] < p; wherep; is the probability that set

1 is bad, and
E[J] xi] <[] »:
i€S i€S

for any subsefs C UthOSt because only independent sétsan be in the canonical set. Hence, for an upper bound
on X we can viewX as the sum of negatively correlated random variallesvith Pr[X; = 1] = p;. In this case,

k k
EX] <) n-d%"-(1/12)- 67" =3 " n/(126%°") < n/(85°") < 6Inn

t=to t=to

and we can use the Chernoff bounds for sums of negatively correlated random variables in [30] (which are identical to
the standard Chernoff bounds for an upper bound) to get

Pr[X > 12Inn| < e~ (6Inn)/3 — % .
Hence PruneCompact{ can cull at most
a 'k (6k)-12Inn < n/6
nodes inU;_, S;, with high probability, ifoc > (72 §1n®n) /n. Thus, overallPruneCompact) can cull at most

to

imt +n/6= Zn/(45‘7t) +n/6 <n/6+n/6=n/3

t=1
nodes in case 2, with high probability, which implies tliatust have at least/3 nodes, with high probability.

Combining the two cases, we get

1
Prinumber of nodes pruned »n /3] < Pr[Case 1+ Pr[Case 2< -

which completes the proof. O

3.3 Span of the mesh

Theorem 3.8 Thed-dimensional mesh has span

Proof. Consider al-dimensional mesi/ with vertex set V. Supposg is a compact set in this mesh. Létbe the
set of vertices inV/ and letB C V' \ S be the neighborhood nod€$S). We place virtual edges between nodesin
Two distinct nodes: = (ug, . ..uq4—1) andv = (vo, ...vq—1) have a virtual edge between theml|iff — ;| = 0 for
at leastd — 2 of its dimensions anb; — u;| < 1 for the rest. Call the set of such virtual edgés. In Lemma 3.9,
stated below, we claim that the graphB, F,) is connected. Therefore, we can find a spanning tre&fahich has
exactly| B| — 1 virtual edges. Since each edgeRp can be simulated by at most 2 edges\éf we can say that there
is a spanning tree if/ for the nodes oB with at most2 - (|B| — 1) edges. O

Lemma 3.9 LetS ¢ Z¢ be a finite compact set in&dimensional mesh/, let B be the set of neighborhood nodes
I'(S), and letE, be the set of virtual edges. Then the grggh £, ) is connected.

Proof. We will show that for any two points andv in B, there is a path ifZ,, connecting the two; if this can be done
for every two points, the® is connected as we hope to prove.
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Our proof uses some basic and standard homology theory of cell complexes, which can be found in any introduc-
tory topology text; for instance, see [16]. Specifically, we useAhtiomology ofd-dimensional Euclidean spaé.
We partitionR¢ into a complex of unit hypercube cells having the pointszéfas their vertices. Eaafrdimensional
unit hypercube cell has as its neighborhood a s@uofd — 1)-dimensional unit hypercube facets, again havifg
as vertices, and so on. In this complexi-ghainis defined to be any finite set éfdimensional unit hypercubes
having points ofZ? as vertices. Thaeighborhoof a k-chainC' is the symmetric difference of the boundaries of
its hypercubes; that is, it is the set(@f — 1)-dimensional hypercubes that are on the neighborhood of an odd number
of the k-dimensional hypercubes ii. A k-cycleis defined to be &-chain that has an empty neighborhood, and a
k-neighborhoods defined to be &-chain that is the neighborhood of soifie+ 1)-chain. For quite general classes of
cell complexes ink? (and even more complicated topological spaces), ekargighborhood is &-cycle, but inR?,
the reverse is also known to be true: evirgycle is ak-neighborhood.

Now, note that the given pointsandv are in the complement &, i.e., inV \ S whereV is the set of vertices in
M. SinceV \ S is connected, we can find a path connectingu to v by a sequence of adjacent pointsiin, S. We
also find an edge; connecting: to an adjacent point af“ in S, an edge:, connecting to an adjacent point of ¢
in S, and a pathpy, connecting these two interior points by a sequence of adjacent points fitecesS is connected
as well). The union op1, p2, and{ey, e} forms a 1-chain in the cubical complex described above. Moreover, this is
a 1-cycle, because it has degree two at every vertex it touches. Therefore, it is the neighborhood of & 2tbtla&in
is, C'is a set of squares and U ps U {e1, e2} is the set of edges in the cubical complex that touch odd numbers of
squares irC.

Next, letU be the subset ak? formed by a union of axis-aligned unit hypercubes, one for each memBbek of,
and having that member as its centroid; note that these hypercubes do not have integer vertiggesd te(d — 1)-
neighborhood olU, i.e., By consists of a collection ofd — 1)-dimensional unit hypercubes that again do not have
integer vertices. Now look upofi and By, as two sets of points i?. Let G be the intersection of these two sets,
i.e.,G = CnN By.

To understand the structure 6f consider the intersection of a squaref C' and a(d — 1)-dimensional hypercube
h of By. Observe the following: (1) all points is have at leastd — 2) coordinates with integer values, (2) the
locus of points ink that have at leaqld — 2) coordinates with integer values is a set(df— 1) line segments that
intersect at the centroid @&f, and (3) ifs intersectsh, there are two adjacent verticesso$uch that one is i$ and the
other in the complement &f. Thus, ifs andh meet, they (see Figure 5) do so in a line segment of lehgththat
connects the centroid @f (where it is crossed by one edge of the square) to the centroid of one of its neighborhood
(d—2)-dimensional hypercubes. Therefdrethe union of these line segments, can be viewed as a graph that connects
vertices at these points. The degree of a vertex at the centraidsoéqual to the number of squares@that touch
that point (which is at most(d — 1)), and the degree of the other vertices can only be two or four depending on which
of the four vertices of the square defining the vertex is interidr to

7 t?\\/ertices of G

Figure 5: Vertices and edges @fformed by the intersection of squaresirand(d — 1)-hypercubes irBy .

Since the neighborhood @f crossesBy only on the two edges; ande,, these two crossing points have odd
degree and all the other vertices@fhave even degree. Any connected component of any graph must have an even
number of odd-degree vertices, so the two odd vertiges B, andes N By must belong to the same component and
can be connected by a pathin G.

16



Each lengtht1/2) segment ops belongs to the neighborhood of a single hypercub& jmvhich, in turn, has as
its centroid a point of3, our boundary of5S. Let p, be the sequence of centroids corresponding to the sequence of
edges irp3. Thenp, starts atu, and ends at. Further, at each step, from one edge4rto the next, either the current
point from B in p, does not change, or it changes from one poinBito an adjacent point (when the corresponding
pair of edges irp, form a180° angle on two adjoining hypercubes), or it changes from one poiit ia a point at
distancey/2 away (when the corresponding edgegijrform a270° angle across a concavity on the neighborhood of
U). Corresponding to both these changes there is a virtual edggtimat can be used to connect the distinct points in
P4.

So, we have constructed a pathdp between an arbitrarily chosen pair of points in B, and therefore the graph
(B, E,) is connected. ]

Theorem 3.8 implies that th&dimensional mesh can sustain a fault probability inversely polynomighind still
have a large component whose expansion is no more than a facterarke than the original. In the next section, we
elaborate on the significance of this result.

4 Conclusion

In this paper, we presented a general technique for determining the robustness of the expansion of different graphs
against both adversarial and random faults. For random faults, we have come up with a new parameter, the span,
which allows us to prove a strong result regarding the robustness of high dimensional meshes. Among other things,
this result can provide useful insights into the robustness of peer-to-peer networks like CAN [28], which behaves like
ad-dimensional mesh in its steady state. Basically, we have shown that CAN can tolerate a fault probability which is
inversely polynomial in its dimension without losing too much in its expansion properties.

For the 2-dimensional mesh, our result is related to the line of research followed by Raghavan [27], Kaklamanis
et. al. [17] and Mathies [26] who show that despite a constant fault probability (of as high as 0.4) a mesh with random
failures can emulate a fault free mesh using paths with stretch factor atitiogtn). Since the diameter in a graph of
expansiony is O(a ! log n) [24], our technique gives essentially the same result albeit with a lower fault probability.
Additionally, for meshes of constant dimension greater than 2 our results in(p{yog ») dilation for path lengths,
and hence a way to generalize these earlier results to higher dimensions.

The strength of our technigue is that it is able to yield results for the 2-dimensional mesh which are comparable to
previous results while giving new results for higher dimensional meshes and providing a general method suitable for
analyzing any network whose span can be estimated.

As an aside we note that in an exciting new work, Angel et. al. [4] have shown that the dilation of the mesh does
not suffer up to the critical probability and additionally it is possible to find paths between connected vertices which
are no more than a constant times the length of the paths between them in the fault-free mesh. However, their work is
silent on the question of congestion of path systems in the faulty network.

Open problems

We conjecture that the butterfly, shuffle-exchange, and de Bruijn graph all have a $pgél) ofrhich means that they

can tolerate a constant fault probability. Though the span may provide tight results for these graphs, the exponential
dependency of the fault probability on the span does not really give useful results if the span islbeyaridence,

either a better dependency result or a parameter better than the span is needed. Clearly, as mentioned in the introduc-
tion, having a parameter that can accurately describe the fault tolerance of graphs w.r.t. expansion under random faults
would be very useful for many applications.
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