
The Effect of Faults on Network Expansion

Amitabha Bagchi∗ Ankur Bhargava† Amitabh Chaudhary‡ David Eppstein§

Christian Scheideler¶

February 2, 2006

Abstract

We study the problem of how resilient networks are to node faults. Specifically, we investigate the question
of how many faults a network can sustain and still contain a large (i.e., linear-sized) connected component with
approximately the same expansion as the original fault-free network. We use a pruning technique that culls away
those parts of the faulty network that have poor expansion. The faults may occur at random or be caused by an
adversary. Our techniques apply in either case. In the adversarial setting, we prove that for every network with
expansionα, a large connected component with basically the same expansion as the original network exists for up
to a constant timesα · n faults. We show this result is tight in the sense that every graphG of sizen and uniform
expansionα(·) can be broken into components of sizeo(n) with ω(α(n) · n) faults.

Unlike the adversarial case, the expansion of a graph gives a very weak bound on its resilience to random faults.
While it is the case, as before, that there are networks of uniform expansionΩ(1/ log n) that are not resilient again-
st a fault probability of a constant times1/ log n, it is also observed that there are networks of uniform expansion
O(1/

√
n) that are resilient against a constant fault probability. Thus, we introduce a different parameter, called the

spanof a graph, which gives us a more precise handle on the maximum fault probability. We use the span to show
the first known results for the effect of random faults on the expansion ofd-dimensional meshes.

1 Introduction

Network nodes and communication links have always been susceptible to failure. Software or hardware faults (or
phenomena outside the control of a network operator such as caterpillars) may cause nodes or links to go down. To be
able to adapt to faults without serious degradation in service, fault-tolerant networks and routing protocols have to be
set up. Although the study of communication in faulty networks is a classical field in network theory, there has been a
recent renewal of interest in fault-tolerant routing due to the tremendous rise in popularity of mobile ad-hoc networks
and peer-to-peer networks. In these networks, faults are actually not an exception but a frequently occurring event: in
mobile ad-hoc networks, users may run out of battery power or may move out of reach of others, and in peer-to-peer
networks, users may leave without notice.

Central questions in the theoretical study of faulty networks have been:

• How many faults can a network sustain and still have a large connected component that is a constant fraction of
the original size?

• How many faults can a network sustain and still emulate its ideal counterpart with constant slowdown?

The first question has been heavily studied in the graph theory community, and the second question has been
investigated by the parallel computing community in an attempt to find the point up to which a faulty parallel computer

∗Dept. of Computer Science and Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India. Email:
bagchi@cse.iitd.ac.in
†Google, 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA. Emailankurb@google.com
‡Dept. of Computer Science and Engineering, Notre Dame University, Notre Dame, IN 46556, USA. Email:achaudha@cse.nd.edu
§Dept of Computer Science, University of California, Irvine, 92697. Email:eppstein@ics.uci.edu
¶Insitut für Informatik, Technische Universität München, Boltzmannstr. 3, D-85748 Garching, Germany. Email:scheideler@in.tum.de

1

can still emulate an ideal parallel computer with the same topology with constant slowdown. We refer the reader to
[31] for a survey of results in these areas.

In this paper, we navigate a path between these two extremes. The fact that the network is still connected gives
little solace if it has a severe bottleneck (e.g., one half is connected to the other by a single edge). At the other end,
we might not need the property that we can fully emulate the original network in its faulty counterpart; all we might
need is that the network’s routing properties do not degrade excessively. We focus on this question: what happens
to a network’s routing capabilities when faults occur. To get a handle on the routing capabilities of the network we
focus on a parameter that has been widely used - both in graph theory and in network theory - to measure the routing
quality of a graph: expansion. More specifically, we are interested in the effect of faults on the expansion of a network,
showing bounds on the number of adversarial faults and the fault probability that a network can suffer and still retain
a large component with good enough expansion.

Before we proceed to our results, we discuss previous work related to connectivity and emulation in the face of
faults.

1.1 Large connected components in faulty networks

We start with an overview of previous results for random faults and subsequently consider adversarial faults.
Given a graphG and a probability valuep, letG(p) be the random graph obtained fromG by keeping each edge of

G alive with probabilityp (i.e., p is thesurvival probability, in the rest of the paper we considerfault probabilities,
but in this section we talk in terms of survival probabilities.) Given a graphG, let γ(G) ∈ [0, 1] be the fraction of the
nodes ofG contained in a largest connected component.

Let G = {Gn | n ∈ IN} be any family of graphs with parametern. We callp∗ the critical probability for the
existence of a linear-sized connected component if for every constantε > 0 it holds:

1. For everyp > (1 + ε)p∗ there exists a constantc > 0 with limn→∞ Pr[γ(G(p)
n) > c] = 1.

2. For all constantsc > 0 and for allp < (1− ε)p∗ it holds thatlimn→∞ Pr[γ(G(p)
n) > c] = 0.

Of course, it is not obvious whether critical probabilities exist. However, results by Erdős and Ŕenyi [13] and their
subsequent improvements (e.g. [8, 25]) imply that for the complete graph onn nodes,p∗ = 1/(n− 1), and that for a
random graph withd · n/2 edges,p∗ = 1/d. For the 2-dimensionaln × n-mesh, Kesten showed thatp∗ = 1/2 [19].
Ajtai, Komlós and Szemerédi proved that for the hypercube of dimensionn, p∗ = 1/n [1]. For then-dimensional
butterfly network, Karlin, Nelson and Tamaki showed that0.337 < p∗ < 0.436 [18]. Leighton and Maggs [21] showed
that there is an indirect constant-degree network connectingn inputs withn outputs vialog n levels ofn nodes each,
called the multibutterfly, that has the following property: Up to a constant fault probability it is still possible to find
O(log n) length paths from a constant fraction of the inputs to a constant fraction of the outputs. Subsequently Cole,
Maggs and Sitaraman [10] extended this result for the butterfly.

Adversarial fault models have also been investigated. Leighton and Maggs [21] showed that no matter how an
adversary choosesf failed nodes, there will be a connected component left in the multibutterfly with at leastn−O(f)
inputs and at leastn − O(f) outputs. They further show that it is even possible to route packets between the inputs
and outputs in this component in almost the same amount of time steps as in the ideal case. Subsequently Leighton,
Maggs and Sitaraman [23] extended this result for the butterfly.

Upfal [32], following up on work by Dwork et. al. [12] and Alon and Chung [2], showed that there is also a direct
constant-degree network onn nodes, a so-called expander, that has the property: no matter how an adversary chooses
f failed nodes, there will be a connected component left in it with at leastn−O(f) nodes. Both results are optimal up
to constants. Upfal uses a pruning technique, similar in spirit to the one we use later in this paper, to achieve his bound.
Upfal gives a polynomial-time algorithm for pruning while we do not. But Upfal’s pruning does not guarantee a large
component of good expansion, while ours does. In fact, recent work indicates that there might not be any constant
approximation algorithm to determine the expansion of a graph [20].

1.2 Simulation of fault-free networks by faulty networks

Next, we look at the problem of simulating fault-free networks by faulty networks. Let us suppose that there can be up
to f node faults in the system at any time. One way to find out whether the largest remaining component still allows
efficient communication is to check whether it is possible to embed a fault-free network of the same size and kind into

2

the largest connected component of a faulty network. Anembeddingof a graphG into a graphH maps the nodes ofG
to non-faulty nodes ofH and the edges ofG to non-faulty paths inH. An embedding is calledstaticif the mapping of
the nodes and edges is fixed. A good embedding is one with minimum load, congestion, and dilation, where theload
of an embedding is the maximum number of nodes ofG that are mapped to any single node ofH, thecongestionof
an embedding is the maximum number of paths that pass through any edgee of H, and thedilation of an embedding
is the length of the longest path. The load, congestion, and dilation of the embedding determine the time required to
emulate each step ofG on H. In fact, Leighton, Maggs, and Rao have shown [22] that if there is an embedding ofG
into H with load`, congestionc, and dilationd, thenH can emulate any communication step (and also computation
step) onG with slowdownO(` + c + d).

Only a few results are known so far for constant slowdown in the worst-case faults setting. Leighton, Maggs and
Sitaraman used dynamic embedding strategies to show that ann-input butterfly withn1−ε worst-case faults (for any
constantε) can still emulate a fault-free butterfly of the same size with only constant slowdown [23]. Furthermore,
Cole, Maggs and Sitaraman showed that ann × n mesh can sustain up ton1−ε worst-case faults and still emulate a
fault-free mesh of the same size with (amortized) constant slowdown [11]. It seems that then-node hypercube can
also achieve a constant slowdown forn1−ε worst-case faults, but so far only partial answers have been obtained [23].

Random faults have also been studied. For example, Håstad, Leighton and Newman [15] showed that if each edge
of the hypercube fails independently with any constant probabilityp < 1, then the functioning parts of the hypercube
can be reconfigured to simulate the original hypercube with constant slowdown. Leighton, Maggs and Sitaraman
[23] showed that a butterfly network whose nodes fail with some constant probabilityp can still emulate a fault-free
butterfly of the same size with slowdown2O(log∗ n). Interestingly, in the conference version of [11], Cole, Maggs and
Sitaraman claim that ann × n mesh in which each node is faulty independently with a constant fault probability is
able to emulate a fault-free mesh with a constant slowdown [9]. The proof of this claim, which is stronger than the
theorem we prove about then × n mesh in this paper, is omitted in [9] and has not appeared elsewhere to the best of
our knowledge.

For a list of further references concerning embeddings of fault-free into faulty networks see the paper by Leighton,
Maggs and Sitaraman [23].

1.3 Our approach

The two common approaches – connectivity and emulation of fault-free by faulty networks – are too extreme for many
practical applications. Knowing how long a network is still connected may not be very useful, because in extreme cases
(just a single line connects one half to the other) the speed of communication may be reduced to a crawl, making it
useless for applications that need fast interaction or large bandwidth such as interactive gaming or video conferencing.
On the other hand, emulating a fault free network on a faulty network is like using a giant hammer to crack a small
nut, so to speak. Emulation may not be needed when all we want is good routing properties in the faulty network ,i.e.,
reduced congestion or good expansion.

In ad-hoc network settings or peer-to-peer systems, applications are usually not concerned with the exact network
topology. An application typically just requires that the network provides sufficient bandwidth and ensures sufficiently
small delays. In this scenario, a more relevant question is:

How many faults can a network sustain and still contain a network at least a constant fraction of its
original size with approximately the same expansion?

An answer to this question would have many useful consequences for distributed data management, routing, and
distributed computing. Research on load balancing has shown that if the expansion basically stays the same, the
ability of a network to balance single-commodity or multi-commodity load basically stays the same, and this ability
can be exploited through simple local algorithms [14, 5, 3]. Also, the ability of a network to route information is
preserved because it is closely related to its expansion [29]. Furthermore, as long as the original network still has a
large connected component of almost the same expansion, one can still achieve almost everywhere agreement, which
is an important prerequisite for fundamental primitives such as atomic broadcast, Byzantine agreement, and clock
synchronization [12, 32, 7].

In a work published after the conference version of this paper, Angel et. al. [4] have also taken the view that it is
important to study routing in faulty networks. The main difference is that they study the properties of faulty networks
in terms of the algorithmic complexity of finding paths between vertices. Our approach is less direct than theirs,

3

but somewhat more general and widely applicable. We will discuss some specific implications of their work and its
relation to our techniques in the concluding section of this paper.

Many different fault models have been studied in the literature: faults may be permanent or transient, nodes and/or
edges may break down, and faults may happen at random or may be caused by an adversary or attacker. The former
are calledrandom faults, and the latter are calledadversarial faults. We will concentrate on situations in which there
arestaticnode faults, i.e., once a node has become faulty either randomly or adversarially it remains faulty, and a node
which is not faulty remains not faulty. A central parameter we will use in our investigations is the expansion.

Given a graphG = (V, E) and a subsetU ⊆ V , theexpansionof U is defined as

α(U) =
|Γ(U)|
|U |

whereΓ(U) is the set of nodes inV \ U that have an edge fromU and|S| denotes the size of a setS. Theexpansion
of G is defined asα(G) = minU,|U |≤|V |/2 α(U). If G is clear from the context, we will also just writeα.

We also use theuniform expansionof a graph. Suppose that we have a family of graphsG. Let β be a function
such thatβ(|G|) ≤ α(G) for all graphsG ∈ G, where|G| denotes the number of nodes inG. Then we say thatG has
a uniform expansion ofβ if for all subgraphsH of all graphsG in G it holds thatα(H) = O(β(|H|)).

Notice thatα(H) = minU,|U |≤|V (H)|/2 α(U), i.e., it should not be confused withα(V (H)) in G. The uniform ex-
pansion definition implies that the expansion of a subgraphH of G cannot be asymptotically better than the expansion
of G (which also implies thatβ(|G|) = Θ(α(G)) for all G ∈ G).

Despite its seemingly complex definition, the uniform expansion property is a quite natural property. In fact, all
commonly used graph topologies in interconnection networks such as trees,d-dimensional meshes (with equal side
length in each dimension), the hypercube, the butterfly, and the de Bruijn graph fulfill this uniform expansion property.

Uniform expansion is well illustrated by the example of the mesh. If we consider then × n-mesh (i.e., the 2-
dimensional mesh of side lengthn), we can see that it has a uniform expansion ofβ(x) = 1/

√
x. This is demonstrated

by observing that any subgraph of sizem in that mesh can have a bisection width, defined as the minimum cut
separating the graph into two subgraphs of approximately equal size, of at most

√
m and therefore an expansion of at

mostO(1/
√

m).

1.4 Our main results

Adversarial faults

We give general upper and lower bounds for the number of node faults a graph can sustain and still retain a large
component with basically the same expansion. The bounds are tight up to constant factors. More specifically, we
show that the number of adversarial node faults a graph with expansionα and n nodes can sustain, with only a
constant factor decrease in its expansion, is a constant timesα · n. For (families of) graphsG of sizen and uniform
expansionβ, this result is best possible up to a constant factor in the sense thatω(β(n) · n) faults can breakG into
components of sizeo(n).

Random faults

We also study random faults. We find that that tight dependence between the robustness of a network and the expansion
that is observed in the case of adversarial faults is absent here. Although we are able to show examples of networks
with expansionα which fall apart with high probability given a fault probability of a constant timesα, we also find
that there are networks which retain their expansion at fault probabilities which areω(α). Hence we need a better way
of studying the robustness of networks to random faults. This motivates our main contribution: a new parameter for
the study of the effect of random faults on network expansion. This parameter, call thespan, may be of independent
interest.

Consider a graphG = (V, E). Let U ⊆ V be any subset of nodes.U is defined to becompactif and only if U
andV \ U are connected inG. Let U be the set of all compact sets ofG. Let P (U) be the smallest tree inG which
connects every node inΓ(U) (i.e., it essentially spans the boundary ofU). Note that the set of nodes inP (U) need
not be fromU alone or fromV \ U alone. Then thespanof a graph is defined as:

σ = max
U∈U

{ |P (U)|
|Γ(U)|

}
(1)

4

The span helps us characterize the resilience of the expansion to random faults. We show that a graph with maximum
degreeδ, spanσ, and expansionα (fulfilling certain, weak conditions) can tolerate a fault probability of up to a
constant times1/δO(σ) and still retain an expansion of at leastα/δ.

We also show thatd-dimensional meshes have constant span. The proof of this theorem is of independent value as
it establishes an interesting property of thed-dimensional mesh: The boundary of any set of connected vertices in the
d-dimensional mesh, whose complement is also connected, can be spanned by a tree of size at most twice the size of
the boundary.

1.5 Outline of the paper

The rest of the paper is organized as follows: In Section 2, we consider adversarial faults, and in Section 3, we consider
random faults. The paper ends in Section 4 with a discussion of how our results are related to previous research and
some open problems.

2 Adversarial faults

In this section, we assume that a malicious adversary decides which nodes are faulty. More formally, we are given
a graphG = (V,E) with n nodes and expansionα. An adversary gives us a faulty version of this graph, called
Gf = (Vf , Ef), with f faulty nodes removed. An edge{u, v} ∈ E remains inEf if and only if bothu andv are non-
faulty. We first prove a general upper bound on the number of adversarial faults a graph can sustain, and afterwards
we also prove asymptotically matching lower bounds for certain classes of graphs.

2.1 Upper bound on adversarial faults

We show that if an adversary is allowed no more thanO(α · n) faults, there always exists a subgraph ofGf calledH
which hasΘ(n) nodes and an expansion ofΩ(α).

An adversary can simply disconnect parts of the graph by making a small number of nodes faulty, causing the
expansion ofGf to be 0. Therefore, the subgraphH with good enough expansion is constructed by pruning away
those parts ofGf whose expansion has degraded too much. This is a critically important step in our analysis. We
formalize it as an algorithm calledPrunedescribed in Figure 1.

Note that the running time ofPruneis not necessarily polynomial, nor are we claiming it is.Prunesimply helps
us prove an existential result. We discuss the algorithmic aspects ofPrunein greater detail in Section 2.3

Before we get to the algorithm, we need to introduce some notation. Given a graphG, we defineΓG(S) to be the
set of nodes in the neighborhood of a node setS in G. The algorithm generates a sequence of graphsG0 to Gm, where
the final graphGm is the graphH we are looking for.

Algorithm Prune(ε)
1: G0 ← Gf ; i ← 0
2: while ∃Si ⊆ V (Gi) such that|ΓGi(Si)| ≤ ε · α|Si| and|Si| ≤ |V (Gi)|/2
3: Gi+1 ← Gi \ Si

4: i ← i + 1
5: end while
6: H ← Gi; m ← i

Figure 1: The pruning algorithm

Theorem 2.1 LetG be any graph withn nodes, maximum degreeδ and expansionα. Suppose that the adversary can
select up tof = αn

4δk2 faulty nodes for some constantk > 1. Then,Prune(1− 1
k) returns a subgraphH of size at least

n− f ·k
α with expansion at least(1− 1

k) · α.

Proof. DenoteGf \H by S, i.e.,S is the union of all the regions culled byPrune. We will show that|S| ≤ k·f
α by

contradiction. For this we need the following lemma.

5

Lemma 2.2 For all j with 0 ≤ j < m,
∣∣∣∣∣∣
ΓGf


 ⋃

0≤i≤j

Si




∣∣∣∣∣∣
≤

∑

0≤i≤j

|ΓGi
(Si)| ≤ α ·

(
1− 1

k

)
·
∣∣∣∣∣∣

⋃

0≤i≤j

Si

∣∣∣∣∣∣
.

Proof. Consider the first inequality. Any nodev that lies in the neighborhood of
⋃

i Si in Gf must lie in the neigh-
borhood of someSi in Gf . Thus, becausev is outside of

⋃
i Si and therefore belongs toH, there must be anSi

with v ∈ ΓGi(Si). Therefore,ΓGf
(
⋃

i Si) ⊆
⋃

i ΓGi(Si). Hence the first inequality. Each setSi that is culled by
Prune(1 − 1

k) has the property that|ΓGi
(Si)| ≤ α · (1 − 1

k) · |Si|. Since the setsSi are disjoint,
∑

i |Si| = |⋃i Si|.
Hence the second inequality. ut

Suppose now that|S| > k·f
α . Since eachSi has a size of at mostn/2, there must be aj so that one of the two

following cases is true:

1. k·f
α <

∣∣∣⋃0≤i≤j Si

∣∣∣ ≤ n/2

2.
∣∣∣⋃0≤i<j Si

∣∣∣ ≤ k·f
α andn/2− k·f

α < |Sj | ≤ n/2.

In the case (1), it follows from Lemma 2.2 that forS ′ =
⋃

0≤i≤j Si,

|ΓGf
(S ′)| ≤ α ·

(
1− 1

k

)
· |S ′|.

We know by the definition of the expansion that inG, |Γ(S ′)| is at leastα · |S ′|. Hence, the number of faulty nodes in
S ′s neighborhood must be at leastα(1− (1− 1

k)) · |S ′|, which is greater thanα · 1
k · k·f

α = f . Since the total number
of faults the adversary is allowed to create is at mostf , we have a contradiction.

Suppose now that case (2) above is true. LetS ′ =
⋃

0≤i<j Si. It follows from Prune(ε) that |ΓGj (Sj)| ≤
(1 − 1/k)α|Sj |. However, in order to upper bound|ΓGf

(Sj)|, we also have to consider the neighborsSj might have
in S ′. According to Lemma 2.2,|ΓGf

(S ′)| ≤ α|S ′| ≤ k · f , and therefore, there can be at mostk · f nodes inSj that
have neighbors inS ′. Since the maximum degree ofG is δ, it follows that

|ΓGf
(Sj)| ≤ α ·

(
1− 1

k

)
· |Sj |+ δ · k · f .

On the other hand, we know that|ΓG(Sj)| ≥ α|Sj |. Hence, the number of faults inGf must be at leastα|Sj |/k−δ·k·f .
From case (2) and the definition off it follows that |Sj | ≥ n/2 − n/(4δk) ≥ 3n/8 becauseδ ≥ 2. Furthermore,
δ · k · f = αn/(4k). Hence,

α|Sj |/k − δ · k · f ≥ 3αn/(8k)− αn/(4k) ≥ αn/(8k) .

But fromk > 1 andδ ≥ 2 it follows thatf = αn/(4δk2) < αn/(8k), a contradiction.
Hence,H is at leastn− k·f

α in size and has an expansion of at least(1− 1
k) · α. ut

2.2 Lower bounds for adversarial faults

The result given in Theorem 2.1 is the best possible up to constant factors in the sense that for everyα > 0 smaller
than some constant there is an infinite family of graphs with expansionα which disintegrate into components of size
o(n) if f ≥ c · αn for some sufficiently large constantc.

Theorem 2.3 There exists a constantγ such that, given anyα < γ, there is an infinite family of graphs with expansion
α for which there is an adversarial selection ofc · α · n faulty nodes causing the graph to break into components of
sizeo(n), wheren is the number of nodes in the graph andc is an appropriately chosen constant.

Proof. Consider an infinite familyG of δ-regular expander graphs with constant degreeδ, i.e.,δ-regular graphs with
the property that every subset of nodes containing at most half of the nodes in the graph has a constant expansion. It
is well-known that randomδ-regular graphs withδ ≥ 3 almost surely have this property.

For any fixedG ∈ G of sizen and anyk, let graphH be a copy ofG with each edge being replaced by a chain of
k nodes (between its two endpoints), wherek is even. ThenH hask · (δn)/2 + n = Θ(k · n) nodes.

6

Claim 2.4 GraphH has expansionΘ(1
k).

Proof. We first prove a lower bound, i.e., every subsetU of the node set ofH such that|U | < |H|/2 has expansion at
leastΩ(|U |/k). Then we show an upper bound, i.e., there is a subset ofH with expansionO(|U |/k). These together
will prove the claim.

C

G H

U
U

Figure 2: Distinguishing between two kinds of vertices for the lower bound.

For the lower bound, we have to show that every subset of nodes inH of size at most|H|/2 has an expansion of
Ω(1/k). Consider any subsetU of H-nodes with|U | ≤ |H|/2. We differentiate between two sets of nodes withinU .
To do this we start by defining a setC as the set of allG-nodes with the property that all nodes within a distance of
k/2 from them inH are inU . We name asUC the set consisting of allH-nodes within a distance ofk/2 of the nodes
in C. Note thatUC ⊆ U . The other set of nodes we will consider isU ′ = U \ UC . See Figure 2 for an illustration of
this division ofU into two subsets.

Let us first considerUC . Since everyG-node has exactlyδ · k/2 + 1 many nodes within a distance ofk/2 in H
and|U | ≤ |H|/2, it follows that|C| ≤ |G|/2. Hence,C has an expansion of at leastγ in G for some constantγ > 0.
For every nodev ∈ ΓG(C) there must be anH-nodew within a distance ofk/2 from v that is not inU . Let ΓU

H(UC)
denote the set of all of these nodesw. Since|UC | = (δ · k/2 + 1)|C|, it holds that

|ΓU
H(UC)| ≥ |ΓG(C)| ≥ γ|C| = γ

δ · k/2 + 1
· |UC | . (2)

Next, consider the setU ′ = U \UC and letC ′ be the set of allG-nodes that have at least oneU ′-node within a distance
of k/2 in H. From the definition ofU ′ andC ′ it follows that for eachv ∈ C ′ there is at least oneH-nodew within a
distance ofk/2 from v that is not inU . Let ΓU

H(U ′) denote the set of all of these nodesw. Since|U ′| ≤ (δ · k/2)|C ′|,
we get

|ΓU
H(U ′)| ≥ |C ′| ≥ 1

δ · k/2
· |U ′| . (3)

Combining inequalities (2) and (3), it follows that

|ΓH(U)| ≥ max
{|ΓU

H(UC)|, |ΓU
H(U ′)|} ≥ max

{
γ

δ · k/2 + 1
· |UC |, 1

δ · k/2
· |U ′|

}

and sinceU = UC ∪ U ′, we immediately get that|ΓH(U)| = Ω(|U |/k). Hence, the lower bound holds.
To show that the upper bound holds as well, we just need to show that there exists a set of nodesU in H of size at

most|H|/2 with an expansion ofO(1/k). Consider any two adjacent nodes inG. These two nodes are end points of a
chain of lengthk + 2 in H. Assigning the middlek nodes of this chain to the node setU gives a set with an expansion
of 2/k. Hence, the expansion ofH is O(1/k), which completes the proof of the claim. ut

7

Now, from each chain ofk nodes, we remove a central node. Then each connected component remaining has at
most1 + δ · k

2 nodes left, which iso(n), and the total number of nodes removed isδ
2 · n, which is 1

k times the number
of nodes in the graph. ut

We now show a more far-reaching lower bound: For families of graphs that have auniform expansion, our upper
bound on the maximum number of node faults is not only true in some pathological cases, but foreverycase, i.e., for
every graph in every such family of graphs. In the following, whenever we speak about a graph of uniform expansion,
we assume that it belongs to a suitable family of graphs.

Theorem 2.5 For every connected graph of sizen and uniform expansionβ there is an adversarial selection of
ω(β(n) · n) faulty nodes that causes the graph to break into components of sizeo(n).

Proof. Let G = (V, E) be any graph of uniform expansionβ that consists ofn nodes. Then there must be a set
U1 ⊆ V , |U1| ≤ n/2, so that|Γ(U1)| ≤ β(n) · |U1|. RemovingΓ(U1) leavesG with a setV1 = {V ′, V ′′} of two
node sets,V ′ = U1 andV ′′ = V \ (U1 ∪ Γ(U1)). Let V1 be a set inV1 of maximum size. It follows from the
uniformity of G that there must be a setU2 ⊆ V1, |U2| ≤ |V1|/2, so that|Γ(U2)| w.r.t. G(V1) is O(β(|V1|)) · |U2|.
RemovingU2 results in a new setV2 of sets of nodes which is equal toV1 with V1 being replaced by the node setsU2

andV1 \ (U2 ∪ Γ(U2)). (That is,V2 contains three node sets.) We continue to take a node setVi of largest size out of
Vi, remove nodes at the minimum expansion part inG(Vi), and replaceVi by the two resulting node sets inVi to get
a setVi+1, until there is no subset inVi left of size at leastεn.

Our goal is to show that this process only removesO(log(1/ε)
ε · β(n) · n) nodes fromG. If this were true, the

theorem would follow immediately. We prove the bound with a charging strategy: Each time a setVi is selected from
Vi, we charge all nodes inΓ(Ui+1) taken away fromVi to the nodes inUi+1. Since

|Γ(Ui+1)| = O(β(εn)) · |Ui+1| = O

(
β(n)

ε
· |Ui+1|

)

for anyβ(x) ≥ 1/x, this means that every node inUi+1 is charged with a value ofO(ε−1 · β(n)). Every node can
be charged at mostlog(1/ε) times because each time a node is charged, it ends up in a node setUi+1 that is at most
half as large asVi, and we stop splitting a node set once it is of size less thanεn. Hence, at the end, every node inV

is charged with a value ofO(log(1/ε)
ε · β(n)). Summing up over all nodes, the total charge is

O

(
log(1/ε)

ε
· β(n) · n

)
,

which represents the number of nodes that have been removed from the graph. ut

The proof of this theorem indicates that families of graphs with uniform expansion may have a smooth degradation
in the size of their largest connected component. This is in fact true for the family ofn × n meshes. However, since
there are also families of graphs with a threshold behavior, like the graphs used in Theorem 2.3, Theorem 2.1 is, up to
constant factors, the best one can show in general.

2.3 Algorithmic pruning

The pruning step is crucial to the results discussed in this section and it will be central to the handling of random
faults in the next section. Before proceeding to that section, we briefly discuss the possibility of actually performing a
pruning step in polynomial time.

The pruning algorithm can be seen as a solution to the decision version of the sparsest cut problem which can be
stated as follows.

Sparsest Cut:
Given a graphG = (V,E) with arbitrary non-negative edge capacitiesc(e), e ∈ E,
and someβ > 0, find a setU ⊆ V with |U | ≤ |V |/2 and

∑

u∈U,v∈V \U
c(u, v) ≤ β · |U |.

8

The sparsest cut problem is known to be NP-hard. However, if there existed aγ-approximation algorithm for the
optimization version of the sparsest cut problem, we could use it in the following way for the pruning:

• Find aγ-approximate sparsest cut(S, S̄) of the faulty graph.

• If S satisfiesα(S) ≤ ε · α for some small constantε > 0, pruneS away, otherwise stop.

Since the expansion of the cut found by the algorithm is at mostγ times the expansion of the faulty graph, we
know that the expansion of the remaining graph isΩ(α/γ).

The proof that the size of this component is at least a constant fraction of the original size of the graph when
allowing c · αn faults for a sufficiently small constantc follows from the existential proof above.

Recently, the best known approximation to the sparsest cut problem was improved to
√

log n by Arora, Rao and
Vazirani [6]. They had also conjectured that the sparsest cut problem should be approximable in polynomial time to
within a constant factor. This would have had the effect of turning the existential results in this paper into algorithmic
ones, making it possible to actually find large components with good expansion whose existence is proved here in
polynomial time. However, recently obtained lower bounds indicate that this might not be possible [20].

3 Random faults

We now direct our attention to the case of random faults. We assume that each node in the graph can become faulty
independently with a given probabilityp.

3.1 Random faults are not always easier to handle

Intuitively, it appears that random faults are easier to handle than adversarial faults, i.e., a graph should retain a linear
sized component in the face of many more random faults than adversarial faults. However, as we will see in this
section, this is not true in general. In fact, there are families of graphs for which a fault probability ofΘ(α) causes
the graph to disintegrate into components of sizeo(n), whereα is the expansion of the graph. In other words, in these
graphsΘ(αn) random node failures can be as bad as adversarial node failures.

Theorem 3.1 There exists a constantγ such that, given anyα < γ, there is an infinite family of graphs with expansion
Θ(α) for which a fault probability ofΘ(α) causes the graph to disintegrate into components of sizeo(n), with high
probability.

Proof. We use the family of graphs constructed in the proof of Theorem 2.3, i.e., letG be an infinite family of constant
degree expander graphs with constant expansionγ and constant degreeδ. Further, letH be the graph resulting from
G by replacing every edge inG by a chain ofk nodes (between its two endpoints). GraphH hasΘ(k ·n) nodes. From
Claim 2.4, we know thatH has an expansion ofΘ(1

k). We need to establish some important properties ofH before
we can complete the proof of this theorem. For this we need to define theborderof a node setS as the set of all nodes
in S which have an edge to a vertex outsideS.

The following lemma helps us to count subgraphs ofH with a certain property.

Lemma 3.2 The number of connected subgraphsH ′ of H containing exactlyr nodes ofG and whose border lies
entirely inG is at mostn · δ2(r−1).

Proof. It suffices to count all possible connected subsets of nodes of sizer in G. This is because all the subgraphs
we are concerned with are bordered by nodes ofG. Any connected subset of nodes of sizer can be spanned by a tree
with r − 1 edges. This tree can be traversed by an Eulerian tour in which each edge is used at most twice. Hence, all
nodes of the subset can be visited by a walk along at most2(r − 1) edges inG. Since the starting point of the walk
can be any one of then vertices, there are at mostn · δ2(r−1) ways of generating a connected subset of sizer. ut

Now, let us consider any subgraphH ′ of H with the properties of Lemma 3.2, i.e.,H ′ contains exactlyr nodes
of G and its border lies entirely inG. Consider a spanning tree ofH ′. Since each node inH ′ ∩G has to be spanned,
the tree must contain at leastr − 1 “edges” ofG which are chains inH ′. Each chain containsk vertices ofH ′ \ G.

9

Further we can associate at least one vertex ofG with each chain. Hence,H ′ contains at least(k + 1)(r − 1) nodes.
With this observation in place we are ready to proceed with the proof.

Let the failure probability of the nodes inH bep = (2 ln δ + 2)/k. We say that a subgraphsurvivesif none of its
nodes become faulty. Hence,H ′ survives with probability at most(1 − p)(k+1)(r−1) ≤ e−k(r−1)·p. By Lemma 3.2,
there are no more thann · δ2(r−1) such subgraphsH ′. Hence, forr = ln n + 1, the probability that any such subgraph
survives is at most

n · δ2(r−1) · e−k(r−1)·p = n · δ2(r−1) · e−(r−1)(2 ln δ+2) = n · e−2 ln n = 1/n .

But if no such subgraph survives, then a connected component inH can have a size of at mostO(δ · k ln n). Thus,H
breaks down into components of sizeo(n), with high probability. ut

However, the expansion of a graph isnot necessarily the critical point (i.e., the point at which the graph disin-
tegrates into components of sizeo(n), with high probability) for all graphs. There are several important classes of
graphs which can sustain a much higher fault probability and still yield a linear sized connected component with good
expansion. One specific case is the mesh. In the following, we describe a general technique to quantify this higher
fault probability.

3.2 Extracting a large subgraph from a graph with random faults

Consider any graphG = (V,E) with n nodes, maximum degreeδ, expansionα, and spanσ. LetGf = (V,Ef) be the
faulty version ofG where each node is made faulty independently with probabilityp. An edge{u, v} ∈ E remains in
Ef if and only if bothu andv are non-faulty.

We want to find a graphH ⊆ Gf of sizeΘ(n) with expansionΩ(α/δ) for values ofp up to a constant times1/δc·σ

wherec is another constant. Here is a road map that might make it easier for the reader to follow as we attempt to find
such anH.

• Recall the definition ofcompact sets: sets in the graph which are connected and whose complement is also
connected. These sets will prove extremely useful for us. One convenient feature they have is that they are easy
to count in terms of the span. (SeeProposition 3.3.)

• Ease of counting in itself is not of much use. But we will also show that compact sets are the bottlenecks which
determine the expansion of the graph. Formally, we will prove that if a graph has a set with expansion< γ for
any value ofγ > 0 then it has a compact set of expansion< δ · γ. (SeeLemma 3.4.)

• Hence, we know that pruning compact sets with bad expansion achieves what we want: the remaining graph has
good expansion. So we will modifyPrune(ε) to prune only compact sets of bad expansion from a faulty graph .
(See algorithmPruneCompact(ε) in Figure 4.)

• We take care of an important technicality by showing that the connected components over the sets pruned by
PruneCompact(ε) are also compact. (SeeClaim 3.7.)

• Finally, we show that the probability of the number of nodes culled being large is very small for values of the
fault probability below a certain threshold. (SeeTheorem 3.6.)

To show this, we handle two cases separately.

1. There is one pruned component with a large neighborhood.We limit the probability of this by using the
inclusion-exclusion principle. The fact that it is easier to count compact sets plays a major part here.

2. Each pruned component has a small neighborhood.Here we have to make a careful counting argument
looking at independent sets in the set of pruned connected components.

Now let us execute this road map.
Let U be the set of all compact sets ofG. Recall that a set is compact if it and its complement are connected. In

the following, given any graphG′, V (G′) denotes the node set ofG′, ΓG′(U) denotes the neighborhood of node set
U with respect toG′ andαG′(U) denotes the expansion of node setU with respect toG′.

We begin by relating the number of compact sets with a given neighborhood to two graph parameters: maximum
degree and span.

10

Proposition 3.3 For a graphG with spanσ and maximum degreeδ ≥ 3, there are at mostn · δ3σ·k compact sets with
k nodes in their neighborhood.

Proof. Consider compact sets with boundaries of sizek. The proof of Lemma 3.2 implies that there are at most
n · δ2σ·k ways of generating a tree of sizeσ · k in G. Note that a tree of sizeσ · k can span up to

(
σ·k
k

)
sets ofk

vertices each. Hence, it can span at most
(
σ·k
k

) ≤ (eσ)k compact sets withk nodes in their neighborhood. Therefore,
for δ ≥ 3 ≥ e, there are at mostn · (eσ)k · δ2σ·k ≤ n · δ3σ·k compact sets withk nodes in their neighborhood. ut

Before we describe the modified pruning algorithm, we set the stage for it. The following lemma will be used
to show that our new pruning algorithm, calledPruneCompact(see Figure 4), will find suitable candidates at every
instance by showing that whenever a graph has a subset with bad expansion, it has a compact subset whose expansion
is not much better.

Lemma 3.4 LetG = (V, E) be a connected graph with maximum degreeδ andG′ = (V,E′) be a subgraph ofG. For
any subsetS ⊂ V with |S| ≤ |V |/2 there exists a compact setKG′(S) in G with |KG′(S)| ≤ |V |/2 whose expansion
in G′ is at mostδ · αG′(S).

4
C4

C

C

C

2

3

S’

1

T

Figure 3: Note that thoughS is not compact, bothC4 andS ∪ C1 ∪ C2 ∪ C3 are.

Proof. Throughout this paper we have used the term expansion to mean node expansion, i.e., we have looked at
expansion in terms of the size of the neighborhood of sets. However, to prove this lemma we will use the concept of
edgeexpansion, which is defined as follows. Given a setU ⊆ V , we denote bye(U) the set of edges with one endpoint
in U and the other endpoint inV \ U . Theedge expansionof U is asβ(U) = |e(U)|/|U |. Theedge expansionof a
graphG = (V, E) is

β(G) = min
U,|U |≤|V |/2

β(U)

The edge expansion of a set and its node expansion are related as follows:

Fact 3.5 For any setU ⊆ V with |U | ≤ |V |/2,

α(U) ≤ β(U) ≤ δ · α(U).

We will now show that for any setS ⊆ V with |S| ≤ |V |/2 we can find a compact setS′′ such thatβ(S′′) ≤ β(S).
This coupled with Fact 3.5 gives us the proof of the lemma.

Suppose first thatS contains multiple connected componentsS1, S2, . . . , Sk. Since no two of these connected
components can share an edge ofe(S), it is clear that

β(S) =
|e(S1)|+ |e(S2)|+ · · ·+ |e(Sk)|

|S1|+ |S2|+ · · ·+ |Sk|

11

Hence, by a simple averaging argument, there must be ani, 1 ≤ i ≤ k, for whichβ(Si) ≤ β(S). Let us denote this
Si asS′.

If S′ is compact, we are done andKG′(S) = S′. So let us assume thatS′ is not compact. Suppose thatV \ S′

has connected componentsC1, C2, . . . C`. Figure 3 clearly shows that everyCi is a compact set. That is becauseS′

has connections to all the other components. Similarly,Ti = (S′ ∪ C1 ∪ C2 · · · ∪ C`) \ Ci is a compact set for each
i, 1 ≤ i ≤ `. Figure 3 also shows us two other properties of each of these setsTi: (1) e(Ti) ≤ e(S′) because some of
the edges ofe(S′) may now have become internal toTi, and (2)|Ti| ≥ |S′| because eachTi containsS′ in its entirety
and may contain some more nodes from the components ofV \ S′.

Hence, it follows that if there is ani∗ for which |Ti∗ | ≤ |V |/2, then

β(Ti∗) ≤ β(S′)

and theS′′ we are looking for is thisTi∗ .
If |Ti| > |V |/2 for every1 ≤ i ≤ `, this means that|Ci| ≤ |V |/2 for each1 ≤ i ≤ `, because|Ti|+ |Ci| = |V |.

Now, let us look at the edge expansion ofS′ again:

β(S′) =
|e(S′)|
|S′| =

|e(C1)|+ |e(C2)|+ · · ·+ |e(C`)|
|S′|

≥ |e(C1)|+ |e(C2)|+ · · ·+ |e(C`)|
|C1|+ |C2|+ · · ·+ |C`|

since|S′| ≤ |V |/2. By an averaging argument as before, there must be ani∗, 1 ≤ i∗ ≤ ` such that

|e(C1)|+ |e(C2)|+ · · ·+ |e(C`)|
|C1|+ |C2|+ · · ·+ |C`| ≥ |e(Ci∗)|

|Ci∗ |
and since we have|Ci| ≤ |V |/2 for eachi, it follows thatβ(Ci∗) ≤ β(S′). Hence, our choice ofS′′ is Ci∗ .

This S′′ we have chosen is theKG′(S) we set out to find. We have shown that|KG′(S)| ≤ |V |/2 in each case,
and Fact 3.5 ensures that it has the property thatα(KG′(S)) ≤ δ · α(S). ut

Algorithm PruneCompact(ε)
1: G0 ← Gf ; i ← 0
2: while ∃Si ⊆ V (Gi) s.t. |ΓGi(Si)| ≤ (ε/δ) · α|Si| and|Si| ≤ |Gi|/2
3: Ki ← KGi(Si)
4: Gi+1 ← Gi \Ki

5: i ← i + 1
6: end while
7: H ← Gi

Figure 4: The pruning algorithm

Consider now the algorithmPruneCompactin Figure 4. We use the notation from this algorithm in the proof of
Theorem 3.6. Recall that the initial graphG0 = Gf containsall nodes ofG, but the faulty nodes are isolated. In each
iteration of the algorithm in which the expansion ofGi is still poor, a node setKGi(Si) is pruned away fromGi. Due
to Lemma 3.4,KGi(Si) is compact inG restricted to the nodes inGi. Notice thatKGi(Si) may contain faulty nodes.

Theorem 3.6 Consider any graphG = (V, E) with maximum degreeδ, spanσ, and expansionα ≥ (γδ ln3 n)/n for
some sufficiently large constantγ and|Γ(U)| ≥ logδ |U | for every node setU ⊆ V with |U | ≤ |V |/2. Then, with high
probability, provided the fault probabilityp ≤ 1/(16e · δ8σ) andε ≤ 1/4, PruneCompact(ε) returns a graphH ⊆ G
of size|H| ≥ n/3 with expansion at least(ε/δ) · α.

Proof. In the following we will always assume thatδ ≥ 3 since otherwise the lower bound onα is violated. We begin
the proof by showing that the regions pruned are compact. Formally, letT = G \H. Hence,T is the union of all the
culled regions. To prove the result, we will show that, with high probability, the size ofT is no more thann/2. Let
T1, T2, . . . , T` be the connected components ofT in G.

12

Claim 3.7 EveryTj ∈ T is compact inG.

Proof. We will denote byG(V (Gi)) the graphG induced byV (Gi), i.e., the graph that contains all nodes inGi and
all edges inG that have both endpoints inGi. Hence,G(V (Gi)) is the non-faulty version ofGi.

First of all, notice thatG(V (Gi)) is connected for everyi. This is true because only sets that are compact in
G(V (Gi)) are removed fromGi for everyi, andG(V (G0)) = G. Moreover, every compact setKi pruned away from
Gi has at least one edge intoGi \Ki in G(V (Gi)). Also, everyKi must be completely contained in one of theTj .
This holds because theTj ’s are connected components. If aKi were distributed among at least twoTj ’s, then it cannot
be connected, violating the compactness property.

Consider now any setTj . Because it is a (maximal) connected component, it has no edges to anyTk with k 6= j.
But Tj must represent the union of compact sets that were culled away, and the last of these that was culled away must
have at least one edge intoG \Tj because otherwiseG would be disconnected. Hence,Tj must have at least one edge
into H for everyj. Thus,G \ Tj is connected for everyTj implying that everyTj is compact inG. ut

We now establish a bound on the probability that a given setTi gets culled. This bound is in terms ofδ, σ and the
size of the neighborhood ofTi.

In the following, letΓ(U) denote the neighborhood ofU in G andΓf (U) denote the neighborhood ofU in Gf .
From the definition ofα it follows that|Γ(Ti)| ≥ α|Ti| for everyi. Furthermore, it follows from Lemma 3.4 that

|Γf (Ti)| ≤
∑

Kj∈Ti

|ΓGj
(Kj)| ≤

∑

Kj∈Ti

εα|Kj | = εα|Ti| ≤ ε|Γ(Ti)| .

Hence,|Γ(Ti)| − |Γf (Ti)| ≥ (1 − ε)|Γ(Ti)|. A setTi is part of the culled region only in the event that the size of its
neighborhood reduces from|Γ(Ti)| to |Γf (Ti)|. This probability is at most

(|Γ(Ti)|
|Γ(Ti)| − |Γf (Ti)|

)
· p|Γ(Ti)|−|Γf (Ti)| ≤

(
ep|Γ(Ti)|

|Γ(Ti)| − |Γf (Ti)|
)|Γ(Ti)|−|Γf (Ti)|

(4)

≤
(

ep

1− ε

)(1−ε)|Γ(Ti)|
(5)

If we set

ε ≤ 1
4

and ep ≤ 1
16 δ8σ

,

then it follows that

Pr[Ti is culled byPruneCompact] ≤
(

1
12δ8σ

)3/4|Γ(Ti)|
≤ 1

12
· δ−6σ|Γ(Ti)| .

In order to establish that the probability that the sizes of theTis cumulatively add up to more than2n/3 is low,
we need to distinguish between two cases based on the size of the neighborhood of theTi’s. In the following, let
k = dlogδ ne.

Case 1:There exists ani with |Γ(Ti)| > k, i.e. there is aTi with a large neighborhood.
From above we know that a given compact subgraphTi is culled with probability at mostδ−6σ|Γ(Ti)|. We multiply
this probability with the number of ways of choosing such a subgraph. This gives us the probability that there is aTi

with such a large neighborhood. Lemma 3.2 implies that there are at mostn · δ3σ·|Γ(Ti)| compact sets with|Γ(Ti)|
nodes in the neighborhood. By definition,σ ≥ 1. Hence,

Pr[∃Ti : |Γ(Ti)| > k] ≤ ∑n
t=k n · δ3σ·t · δ−6σ·t (6)

≤ n2 · δ−3σk ≤ 1
n . (7)

Case 2:For all i, |Γ(Ti)| ≤ k.
Without loss of generality, suppose that we haltPruneCompact(ε) once more than2n/3 nodes have been pruned away.
Let T be the union of the culled sets before that round, and letK be the set of nodes pruned away so that the2n/3
bound is exceeded. Then it holds thatn/3 ≤ |T | ≤ 2n/3 because if|T | < n/3, then|K| > n/3 ≥ (n − |T |)/2,
which would violate the choice ofKi in step 3 ofPruneCompact(ε) (see also Lemma 3.4).

13

Our goal is to show that a setT of pruned sets withn/3 ≤ |T | ≤ 2n/3 cannot exist, with high probability. Let
T1, . . . , T` be the connected components of such aT . Recall thatT1, . . . , T` are compact sets. First, suppose that there
is aTi with |Ti| ≥ |V |/2. From the definition of the expansion it holds that

|Γ(Ti)| ≥ δ−1|Γ(V \ Ti)| ≥ δ−1αn/2

because every node inΓ(V \ Ti) must be inTi and must have a neighbor inΓ(Ti). Thus, from the lower bound onα
in Theorem 3.6 it follows that

|Γ(Ti)| ≥ δ−1 · γδ ln3 n

n
· n/2 = (γ/2) ln3 n > k

and, hence, we are back to case 1 above.
Therefore, we can assume in the following that|Ti| ≤ |V |/2 for everyi. In this case, we show that it is unlikely

thatΣi|Ti| is more thann/3 with high probability. This is done by looking at the setsSt of all possible candidate sets
for theTi’s with t neighbors,t ∈ {1, . . . , k}. For technical reasons, we count separately thoset for which it is likely
that we haveΩ(log2 n) candidate sets: we show that the total number of nodes in these candidate sets is bounded by
n/6, with high probability. We also show the same result for the remaining values oft, adding these up with the earlier
nodes to a total of at mostn/3 nodes that can be culled, with high probability.

Let St be the collection of all compact sets inG with a neighborhood of size exactlyt. We know from above that
|St| ≤ n · δ3σt. A subsetS ′t of St is called avalid candidatefor PruneCompact(ε) if and only if for any two sets
T, T ′ ∈ S ′t, T andT ′ do not intersect each other’s neighborhoods (i.e.,T ∩ Γ(T ′) = ∅ andT ′ ∩ Γ(T) = ∅). Only in
this case,T andT ′ are separate connected components. A setT ∈ St is calledbad if |Γf (T)| ≤ ε · α|T |. Certainly,
if PruneCompact(ε) cullss compact setsT with |Γ(T)| = t, then there must exist a valid candidateS ′t in St of size at
leasts in which all sets are bad. But then, there must exist a setS ′′t of size at leasts/(δt) in St with the property that
all sets inS ′′t are bad and for all setsT, T ′ ∈ S ′′t it holds that(T ∪ Γ(T)) ∩ (T ′ ∪ Γ(T ′)) = ∅. (A setS ′′t fulfilling the
latter property is also called anindependent collectionin the following.) This holds because for every node, a valid
candidateS ′t can have at mostδ sets that have this node in their neighborhood, and therefore a set inS ′t can share its
neighborhood with at most(δ − 1)t ≤ δt− 1 other sets inS ′t.

Independent collections of compact sets have the advantage that the events that compact sets are bad are indepen-
dent. So our goal will be to bound the probability that there exists an independent collectionS ′′t in St of size at least
s′′ in order to bound the number of compact sets with neighborhoodt thatPruneCompact(ε) may cull.

Let the random variableX denote the maximum number of bad independent sets inSt. Since there are at most(
n·δ3σt

s′′
)

ways of choosing an independent collection of sizes′′, it holds forn/(4δ3σt) ≥ 12 ln n that

Pr[X ≥ n/(4δ3σt)] ≤
(

n · δ3σt

n/(4δ3σt)

)
·
(

1
12δ6σt

)n/(4δ3σt)

≤
(

e · n · δ3σt

n/(4δ3σt)

)n/(4δ3σt)

·
(

1
12δ6σt

)n/(4δ3σt)

≤
(e

3

)n/(4δ3σt)

≤ e−1.1 ln n =
1

n1.1
.

Hence, for these values oft, the maximum size of an independent collection inSt is bounded byn/(4δ3σt), with high
probability. From the previous arguments this implies that the maximum number of sets with neighborhoodt that
PruneCompact(ε) can cull is at most(δt) ·n/(4δ3σt), with high probability. Since we assumed that|Γ(U)| ≥ logδ |U |
for every node setU ⊆ V with |U | ≤ |V |/2, it further holds that

|T | ≤ min
[
δ|Γ(T)|, α−1|Γ(T)|

]
.

Hence, for anyt so thatn/(4δ3σt) ≥ 12 lnn, PruneCompact(ε) can cull at most

mt = δt · (δt) · n/(4δ3σt) ≤ n/(4δσt)

nodes, with high probability.

14

Let t0 be the smallestt so thatn/(4δ3σt) < 12 ln n (i.e., the bounds above do not apply). Then we define
the random variableX as the maximum number of bad independent sets in∪k

t=t0St. Suppose that we have some
canonical rule of specifying a unique independent collection of bad sets of maximum size (for example, add a bad set
that is independent to the selected ones one by one, taking the one with lowest node ID if there is more than one).
For anyi ∈ ∪k

t=t0St, let the binary random variableXi be 1 if and only ifi belongs to the canonical independent
collection of bad sets. Then it holds thatX =

∑
i Xi. Certainly,Pr[Xi = 1] ≤ pi wherepi is the probability that set

i is bad, and
E[

∏

i∈S

Xi] ≤
∏

i∈S

pi

for any subsetS ⊆ ∪k
t=t0St because only independent setsi can be in the canonical set. Hence, for an upper bound

onX we can viewX as the sum of negatively correlated random variablesXi with Pr[Xi = 1] = pi. In this case,

E[X] ≤
k∑

t=t0

n · δ3σt · (1/12) · δ−6σt =
k∑

t=t0

n/(12δ3σt) ≤ n/(8δ3σt0) ≤ 6 ln n

and we can use the Chernoff bounds for sums of negatively correlated random variables in [30] (which are identical to
the standard Chernoff bounds for an upper bound) to get

Pr[X ≥ 12 ln n] ≤ e−(6 ln n)/3 =
1
n2

.

Hence,PruneCompact(ε) can cull at most

α−1k · (δk) · 12 lnn ≤ n/6

nodes in∪k
t=t0St, with high probability, ifα ≥ (72 δ ln3 n)/n. Thus, overall,PruneCompact(ε) can cull at most

t0∑
t=1

mt + n/6 =
t0∑

t=1

n/(4δσt) + n/6 ≤ n/6 + n/6 = n/3

nodes in case 2, with high probability, which implies thatH must have at leastn/3 nodes, with high probability.

Combining the two cases, we get

Pr[number of nodes pruned≥ n/3] ≤ Pr[Case 1] + Pr[Case 2] ≤ 1
n

which completes the proof. ut

3.3 Span of the mesh

Theorem 3.8 Thed-dimensional mesh has span2.

Proof. Consider ad-dimensional meshM with vertex set V. SupposeS is a compact set in this mesh. LetV be the
set of vertices inM and letB ⊆ V \ S be the neighborhood nodesΓ(S). We place virtual edges between nodes inB.
Two distinct nodesu = (u0, . . . ud−1) andv = (v0, . . . vd−1) have a virtual edge between them iff|vi − ui| = 0 for
at leastd − 2 of its dimensions and|vi − ui| ≤ 1 for the rest. Call the set of such virtual edgesEv. In Lemma 3.9,
stated below, we claim that the graph(B, Ev) is connected. Therefore, we can find a spanning tree forB which has
exactly|B| − 1 virtual edges. Since each edge inEv can be simulated by at most 2 edges ofM , we can say that there
is a spanning tree inM for the nodes ofB with at most2 · (|B| − 1) edges. ut

Lemma 3.9 LetS ⊂ Zd be a finite compact set in ad-dimensional meshM , let B be the set of neighborhood nodes
Γ(S), and letEv be the set of virtual edges. Then the graph(B,Ev) is connected.

Proof. We will show that for any two pointsu andv in B, there is a path inEv connecting the two; if this can be done
for every two points, thenB is connected as we hope to prove.

15

Our proof uses some basic and standard homology theory of cell complexes, which can be found in any introduc-
tory topology text; for instance, see [16]. Specifically, we use theZ2 homology ofd-dimensional Euclidean spaceRd.
We partitionRd into a complex of unit hypercube cells having the points ofZd as their vertices. Eachd-dimensional
unit hypercube cell has as its neighborhood a set of2d (d − 1)-dimensional unit hypercube facets, again havingZd

as vertices, and so on. In this complex, ak-chain is defined to be any finite set ofk-dimensional unit hypercubes
having points ofZd as vertices. Theneighborhoodof a k-chainC is the symmetric difference of the boundaries of
its hypercubes; that is, it is the set of(k − 1)-dimensional hypercubes that are on the neighborhood of an odd number
of thek-dimensional hypercubes inC. A k-cycle is defined to be ak-chain that has an empty neighborhood, and a
k-neighborhoodis defined to be ak-chain that is the neighborhood of some(k +1)-chain. For quite general classes of
cell complexes inRd (and even more complicated topological spaces), everyk-neighborhood is ak-cycle, but inRd,
the reverse is also known to be true: everyk-cycle is ak-neighborhood.

Now, note that the given pointsu andv are in the complement ofS, i.e., inV \ S whereV is the set of vertices in
M . SinceV \ S is connected, we can find a pathp1 connectingu to v by a sequence of adjacent points inV \ S. We
also find an edgee1 connectingu to an adjacent point ofZd in S, an edgee2 connectingv to an adjacent point ofZd

in S, and a pathp2 connecting these two interior points by a sequence of adjacent points insideS (sinceS is connected
as well). The union ofp1, p2, and{e1, e2} forms a 1-chain in the cubical complex described above. Moreover, this is
a 1-cycle, because it has degree two at every vertex it touches. Therefore, it is the neighborhood of a 2-chainC; that
is, C is a set of squares andp1 ∪ p2 ∪ {e1, e2} is the set of edges in the cubical complex that touch odd numbers of
squares inC.

Next, letU be the subset ofRd formed by a union of axis-aligned unit hypercubes, one for each member ofV \S,
and having that member as its centroid; note that these hypercubes do not have integer vertices. LetBU be the(d−1)-
neighborhood ofU , i.e.,BU consists of a collection of(d − 1)-dimensional unit hypercubes that again do not have
integer vertices. Now look uponC andBU as two sets of points inRd. Let G be the intersection of these two sets,
i.e.,G = C ∩BU .

To understand the structure ofG, consider the intersection of a squares of C and a(d−1)-dimensional hypercube
h of BU . Observe the following: (1) all points ins have at least(d − 2) coordinates with integer values, (2) the
locus of points inh that have at least(d − 2) coordinates with integer values is a set of(d − 1) line segments that
intersect at the centroid ofh, and (3) ifs intersectsh, there are two adjacent vertices ofs such that one is inS and the
other in the complement ofS. Thus, ifs andh meet, they (see Figure 5) do so in a line segment of length1/2, that
connects the centroid ofh (where it is crossed by one edge of the square) to the centroid of one of its neighborhood
(d−2)-dimensional hypercubes. ThereforeG, the union of these line segments, can be viewed as a graph that connects
vertices at these points. The degree of a vertex at the centroid ofh is equal to the number of squares ofC that touch
that point (which is at most2(d− 1)), and the degree of the other vertices can only be two or four depending on which
of the four vertices of the square defining the vertex is interior toU .

�
�
�
�

�
��

�
�
�
�

�
�
�
�

�
�
	
	

�
�

�
�

�
��

�
�
�
�

�
��

�
��

�
�� C

Z
d

U

Vertices of G

Edge of G

BU

Figure 5: Vertices and edges ofG formed by the intersection of squares inC and(d− 1)-hypercubes inBU .

Since the neighborhood ofC crossesBU only on the two edgese1 ande2, these two crossing points have odd
degree and all the other vertices ofG have even degree. Any connected component of any graph must have an even
number of odd-degree vertices, so the two odd verticese1 ∩BU ande2 ∩BU must belong to the same component and
can be connected by a pathp3 in G.

16

Each length-(1/2) segment ofp3 belongs to the neighborhood of a single hypercube inU , which, in turn, has as
its centroid a point ofB, our boundary ofS. Let p4 be the sequence of centroids corresponding to the sequence of
edges inp3. Thenp4 starts atu, and ends atv. Further, at each step, from one edge inp3 to the next, either the current
point fromB in p4 does not change, or it changes from one point inB to an adjacent point (when the corresponding
pair of edges inp4 form a180◦ angle on two adjoining hypercubes), or it changes from one point inB to a point at
distance

√
2 away (when the corresponding edges inp4 form a270◦ angle across a concavity on the neighborhood of

U). Corresponding to both these changes there is a virtual edge inEv that can be used to connect the distinct points in
p4.

So, we have constructed a path inEv between an arbitrarily chosen pair of pointsu, v in B, and therefore the graph
(B, Ev) is connected. ut

Theorem 3.8 implies that thed-dimensional mesh can sustain a fault probability inversely polynomial ind and still
have a large component whose expansion is no more than a factor ofd worse than the original. In the next section, we
elaborate on the significance of this result.

4 Conclusion

In this paper, we presented a general technique for determining the robustness of the expansion of different graphs
against both adversarial and random faults. For random faults, we have come up with a new parameter, the span,
which allows us to prove a strong result regarding the robustness of high dimensional meshes. Among other things,
this result can provide useful insights into the robustness of peer-to-peer networks like CAN [28], which behaves like
ad-dimensional mesh in its steady state. Basically, we have shown that CAN can tolerate a fault probability which is
inversely polynomial in its dimension without losing too much in its expansion properties.

For the 2-dimensional mesh, our result is related to the line of research followed by Raghavan [27], Kaklamanis
et. al. [17] and Mathies [26] who show that despite a constant fault probability (of as high as 0.4) a mesh with random
failures can emulate a fault free mesh using paths with stretch factor at mostO(log n). Since the diameter in a graph of
expansionα is O(α−1 log n) [24], our technique gives essentially the same result albeit with a lower fault probability.
Additionally, for meshes of constant dimension greater than 2 our results imply aO(log n) dilation for path lengths,
and hence a way to generalize these earlier results to higher dimensions.

The strength of our technique is that it is able to yield results for the 2-dimensional mesh which are comparable to
previous results while giving new results for higher dimensional meshes and providing a general method suitable for
analyzing any network whose span can be estimated.

As an aside we note that in an exciting new work, Angel et. al. [4] have shown that the dilation of the mesh does
not suffer up to the critical probability and additionally it is possible to find paths between connected vertices which
are no more than a constant times the length of the paths between them in the fault-free mesh. However, their work is
silent on the question of congestion of path systems in the faulty network.

Open problems

We conjecture that the butterfly, shuffle-exchange, and de Bruijn graph all have a span ofO(1), which means that they
can tolerate a constant fault probability. Though the span may provide tight results for these graphs, the exponential
dependency of the fault probability on the span does not really give useful results if the span is beyondlog n. Hence,
either a better dependency result or a parameter better than the span is needed. Clearly, as mentioned in the introduc-
tion, having a parameter that can accurately describe the fault tolerance of graphs w.r.t. expansion under random faults
would be very useful for many applications.

5 Acknowledgments

The authors would like to thank the anonymous referees for their patience with early drafts and for their valuable and
detailed comments.

17

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi. Largest random component of ak-cube.Combinatorica, 2(1):1–7, 1982.

[2] N. Alon and F.R.K. Chung. Explicit construction of linear sized tolerant networks.Discrete Math, 72:15–19,
1989.

[3] A. Anagnostopoulos, A. Kirsch, and E. Upfal. Load balancing in arbitrary network topologies with stochastic
adversarial input.SIAM Journal on Computing, 34(3):616–639, 2005.

[4] O. Angel, I. Benjamini, E. Ofek, and U. Wieder. Routing complexity of faulty networks. InProc. of 24th Annu.
ACM Symp.on Principles of Distributed Computing (PODC ’05), pages 209–217, 2005.

[5] E. Anshelevich, D. Kempe, and J. Kleinberg. Stability of load balancing algorithms in dynamic adversarial
systems. InProc. of the 34th ACM Symp. on Theory of Computing (STOC), 2002.

[6] S. Arora, S.B. Rao, and U. Vazirani. Expander flows, geometric embeddings and graph partitioning. InProc. of
36th Annual ACM Symp. on Theory of Computing, pages 222–231, 2004.

[7] M. Ben-Or and D. Ron. Agreement in the presence of faults, on networks of bounded degree.Information
Processing Letters, 57(6), 1996.

[8] B. Bollobas. The evolution of random graphs.Transactions of the AMS, 286:257–274, 1984.

[9] R.J. Cole, B.M. Maggs, and R.K. Sitaraman. Multi-scale self emulation: a technique for reconfiguring arrays
with faults. InProc. of the 25th ACM Symp. on Theory of Computing (STOC), pages 561–572, 1993.

[10] R.J. Cole, B.M. Maggs, and R.K. Sitaraman. Routing on butterfly networks with random faults. InProc. of the
36th IEEE Symp. on Foundations of Computer Science (FOCS), pages 558–570, 1995.

[11] R.J. Cole, B.M. Maggs, and R.K. Sitaraman. Reconfiguring arrays with faults part I: worst-case faults.SIAM
Journal on Computing, 26(6):1581–1611, 1997.

[12] C. Dwork, D. Peleg, N. Pippenger, and E. Upfal. Fault tolerance in networks of bounded degree.SIAM Journal
on Computing, 17:975–988, 1988.

[13] P. Erd̋os and A. Ŕenyi. On the evolution of random graphs.Publ. Math. Inst. Hungar. Acad. Sci., 5:17–61, 1960.

[14] B. Ghosh, F.T. Leighton, B.M. Maggs, S. Muthukrishnan, C.G. Plaxton, R. Rajaraman, A.W. Richa, R.E. Tarjan,
and D. Zuckermann. Tight analyses of two local load balancing algorithms.SIAM Journal on Computing,
29(1):29–64, 1999.

[15] J. Håstad, F.T. Leighton, and M. Newman. Reconfiguring a hypercube in the presence of faults. InProc. of the
19th ACM Symp. on Theory of Computing (STOC), pages 274–284, 1987.

[16] M. Henle.A Combinatorial Introduction to Topology. W. H. Freeman, San Francisco, CA, 1979.

[17] C. Kaklamanis, A.R. Karlin, F.T. Leighton, V. Milenkovic, P. Raghavan, S.B. Rao, and A. Tsantilas. Asymptoti-
cally tight bounds for computing with faulty arrays of processors. InProc. of the 22nd ACM Symp. on Theory of
Computing (STOC), pages 285–296, 1990.

[18] A.R. Karlin, G. Nelson, and H. Tamaki. On the fault tolerance of the butterfly. InProc. of the 26th ACM Symp. on
Theory of Computing (STOC), pages 125–133, 1994.

[19] H. Kesten. The critical probability of bond percolation on the square lattice equals1/2. Communication in
Mathematical Physics, 74:41–59, 1980.

[20] S. Khot and N. Vishnoi. The Unique Games Conjecture, integrality gap for cut problems and embeddability of
negative type metrics intol1. In Proc. 46th Annu. IEEE Symp. on Foundations of Computer Science (FOCS ’05),
pages 53–62, 2005.

18

[21] F.T. Leighton and B.M. Maggs. Fast algorithms for routing around faults in multibutterflies and randomly-wired
splitter networks.IEEE Transactions on Computers, 41(5):578–587, 1992.

[22] F.T. Leighton, B.M. Maggs, and S.B. Rao. Packet routing and job-shop scheduling inO(congestion + dilation)
steps.Combinatorica, 14(2):167–186, 1994.

[23] F.T. Leighton, B.M. Maggs, and R.K. Sitaraman. On the fault tolerance of some popular bounded-degree net-
works. SIAM Journal on Computing, 27(5):1303–1333, 1998.

[24] F.T. Leighton and S.B. Rao. An approximate max-flow min-cut theorem for uniform multicommodity flow
problems with applications to approximation algorithms. In29th Annual Symposium on Foundations of Computer
Science, pages 422–431, 1988.

[25] T. Luczak, B. Pittel, and J.C. Wierman. The structure of a random graph at the point of the phase transition.
Transactions of the AMS, 341:721–748, 1994.

[26] T.R. Mathies. Percolation theory and computing with faulty arrays of processors. InProc. of the 3rd ACM
Symp. on Discrete Algorithms (SODA), pages 100–103, 1992.

[27] P. Raghavan. Robust algorithms for packet routing in a mesh. InProc. of the 1st ACM Symp. on Parallel
Algorithms and Architectures (SPAA), pages 344–350, 1989.

[28] S. Ratnasamy, P. Francis, M. Handley, R.M. Karp, and S. Schenker. A scalable content-addressable network. In
Proc. of SIGCOMM 2001, pages 161–172, 2001.

[29] C. Scheideler.Universal Routing Strategies for Interconnection Networks. Lecture Notes in Computer Science
1390. Spinger, 1998.

[30] C. Scheideler.Probabilistic Methods for Coordination Problems. HNI-Verlagsschriftenreihe 78, University of
Paderborn, 2000.

[31] C. Scheideler. Models and techniques for communication in dynamic networks. InProc. of the 19th Symp. on
Theoretical Aspects of Computer Science (STACS), pages 27–49, 2002.

[32] E. Upfal. Tolerating a linear number of faults in networks of bounded degree.Information and Computation,
115(2):312–320, 1994.

19

