
Peer-to-Peer Systems for Prefix Search

Baruch Awerbuch∗

Department of Computer Science
Johns Hopkins University

3400 N. Charles Street
Baltimore, MD 21218, USA

baruch@cs.jhu.edu

Christian Scheideler†

Department of Computer Science
Johns Hopkins University

3400 N. Charles Street
Baltimore, MD 21218, USA

scheideler@cs.jhu.edu

November 24, 2004

Abstract

This paper presents a general methodology for building a peer-to-peer data structure for prefix search
for arbitrary user-defined names. The outcome of this is a peer-to-peer data structure that achieves (al-
most) the same performance as the best previously known peer-to-peer data structures for exact lookup.
Our data structure achieves this result with the help of a plug&play paradigm that combines a data struc-
ture for prefix search with a data structure for shared memory management in such a way that their
original performance is preserved. That is, we achieve a logarithmic search time for prefix search while
ensuring that the data is evenly distributed among the peers, and maintaining this distribution is (almost)
as cheap as in peer-to-peer systems for lookup. In order to prove the correctness of our plug&play
paradigm and bounds on the work and expansion of our construction, we introduce a general, so-called
spheres framework for the development of peer-to-peer data structures. The plug&play approach and the
framework are very general and should therefore be of independent interest.

1 Introduction

Consider data items d with names (or identifiers) Name(d) out of some universe Names. The prefix search
problem is to implement a tuple (D, Insert, Delete, Search) consisting of a data set D and three operations
Insert, Delete, and Search acting on D in the following way:

• Insert(d): this adds a data item d to the data structure, i.e. D = D ∪ {d}. (We assume here that if
there is already a data item d′ in the data structure with Name(d′) = Name(d), then this gets replaced
by d.)

• Delete(name): this removes the data item d with Name(d) = name from the data structure, if it
exists, i.e. D = D \ {d}.

• Search(name): this returns the data item d whose name is the closest prefix to the given name, i.e.

d = argmin{Name(d′) | d′ ∈ D, Name(d′) ≥ name}
where “≥” is with respect to lexicographical ordering. (If no such data item exists, “NULL” is re-
turned.)

∗Supported by NSF grant ANIR-0240551 and NSF grant CCR-0311795.
†Supported by NSF grant CCR-0311121 and NSF grant CCR-0311795.

1

These operations may be implemented so that they can be executed either sequentially or concurrently.
The three operations above are sufficient in order to implement a data structure for prefix search in

systems with a static set of resources. However, in systems with a dynamic set of resources, such as peer-
to-peer systems, we need two more operations: Join(p) and Leave(p). Join(p) allows a peer to join the data
structure (with its resources), and Leave(p) allows a peer to leave the data structure (with its resources).
To make sure that these operations do not create too much work, the data should be kept evenly distributed
among the peers. Thus, a data structure for prefix search in peer-to-peer systems, also called a peer-to-peer
data structure in the following, has to solve the following two tasks:

• How to organize the data so that the prefix search requirements are satisfied, and

• how to maintain an even distribution of the data items among the peers.

If only an exact lookup operation, instead of a prefix search operation, has to be provided, then the distributed
hash table approach of Chord, CAN, Pastry, or Tapestry [26, 22, 24, 28] can be used to construct and
maintain such a peer-to-peer data structure. In these approaches, an overlay network is maintained between
the peers, and dynamic hashing is used to map data to peers in a load-balanced manner. For example,
in Chord, every peer p obtains a hash value h(p) ∈ [0, 1) and every data item d obtains a hash value
g(d) ∈ [0, 1), and every data item d is mapped to the peer p that currently has the lowest hash value with
the property that h(p) ≥ g(d). Because hashing has the problem of destroying any relationship between the
data, it appears to be difficult to extend this dynamic hashing approach to more advanced search problems
such as prefix search. In fact, the task of constructing an efficient peer-to-peer data structure for prefix search
was considered an open problem [7].

We solve this problem by proposing a plug&play approach that allows to decompose the problem of
designing a peer-to-peer data structure for prefix search into two independent subproblems:

1. the problem of designing a data structure for prefix search, and

2. the problem of maintaining an even distribution of the data items among the peers.

Solutions to both problems already exist. For example, for the first problem, skip graphs [1] or hyperrings
[3] may be used, and for the second problem, any peer-to-peer system providing a distributed hash table
(e.g., [26, 22, 24, 28]) may be used. But nobody has previously managed to find out how to combine these
results efficiently. A straight-forward approach would certainly be to provide a shared space platform with
the help of a distributed hash table and then to map the nodes of the skip graph (pseudo-)randomly into the
shared space as this is done for data items for exact lookup in distributed hash tables. That is, each node
would be assigned to a fixed location in this shared space, and a node v establishes a connection to another
node w in the skip graph by storing w’s shared space location. However, the approach of combining two
data structures in a vertical way, as would be the case with this shared space approach, has the problem
that it significantly decreases the efficiency and expansion of the overall construction. For example, a pre-
fix search operation in the skip graph requires O(log n) message transmissions, and each of these message
transmissions requires O(log n) message transmissions within a distributed hash table such as Chord, re-
sulting in an overall O(log2 n) time bound for prefix search. In fact, in the original conference version of
this paper, we suggested such an approach. In this paper, however, we propose a plug&play approach that
allows to combine the two structures in a horizontal way, thereby preserving their original efficiency and
expansion. In fact, as long as the number of data items in the system is at most polynomial in the number of
peers, our approach achieves (almost) the same time and work bounds that were previously only known for
peer-to-peer systems for exact lookup.

In order to achieve a horizontal combination of data structures, we propose a new computational frame-
work for peer-to-peer systems, called the spheres framework. In its basic ideas, our approach is quite similar

2

to the actors model designed by Carl Hewitt in the 1970s in the area of artificial intelligence [10]. Both the
framework and our plug&play approach are very general and therefore should be applicable to many other
problems besides prefix search.

Before we go into details concerning our approach, we conclude this section with a survey of previous
work on search structures for peer-to-peer systems.

1.1 Previous work

In the following, a concurrent data structure denotes a data structure that allows the concurrent execution of
operations. Concurrent data structures have been heavily investigated in the area of shared memory machines
(e.g. [27, 6]). However, the problem with these data structures is that they only parallelize the way in which
the data structure is accessed instead of parallelizing its structure. That is, the parallel search tree in [27] is
still the tree, and the parallel skip list in [6] is still a skip list. This is acceptable in an environment with a
static set of resources, such as parallel machines, but certainly not in an environment with a dynamic set of
resources such as peer-to-peer systems. For peer-to-peer systems much more robust versions of concurrent
data structures are needed. Ideally, a concurrent data structure for peer-to-peer systems should be symmetric,
i.e. each node in it is equally important, and it should have a high expansion to make it very unlikely for it
to become disconnected.

Several symmetric data structures for prefix search have recently been proposed. Randomized versions
were found by Li and Plaxton [16], Aspnes and Shah [1], and Harvey et al [8], and deterministic versions
were found by Harvey and Munro [9] and the authors [3]. The resulting data structures were named skip
graphs [1], skip nets [8], or hyperrings [3], for example. They can all be seen as extensions of the randomized
skip list data structure proposed by Pugh [21] to a concurrent environment. In [16, 1, 8] the focus is on
proving upper bounds on the degree, path length, and expansion of these constructions. In addition to these,
[3] also provides bounds on the congestion of routing concurrent search requests in the data structure.

None of the concurrent data structure proposals above consider the problem of how to embed the data
structure into a dynamic peer-to-peer environment in a load-balanced way. The contribution of our paper
is a paradigm accomplishing such an embedding, thus making the results of [16, 1, 8, 9, 3] applicable to
peer-to-peer systems. Next, we describe the approach of [16, 1, 8, 9, 3].

Concurrent data structures for prefix search

All of the solutions in [16, 1, 8, 9, 3] are based on a doubly-linked list or cycle of data sorted in increasing
order of their names. Each data item y has a pointer to its successor z = succ(y) and predecessor x =
pred(y). This alone is not an ideal implementation, since in a list of n data items it can take Θ(n) steps to
go from one data item to another. Moreover, the concurrent execution of search operations by n processes
can cause a high congestion as a data item may be traversed by Θ(n) processes. There are several ways of
adding shortcut pointers to alleviate this problem.

Perfect chordal graphs Consider a doubly-linked cycle in which each data item d keeps pointers to all
data d′ whose ranking in this cycle is exactly 2i larger than its own, namely, pointi(d) = d′ with

rank(d′) = rank(d) + 2i (mod n)

where rank(d) = r − 1 if d has the rth smallest name. The pointer graph resulting from this belongs to the
class of chordal graphs and is close to a hypercube. Furthermore, it can be shown that in a data structure as
above with n data items stored along the cycle in the order of their names, n concurrent search operations
with constant contention at the endpoints can be routed so that an only logarithmic amount of traffic passes

3

through a single data item. However, maintaining perfect hypercubic pointers is very expensive since a
single insert or delete operation requires to update Θ(n) pointers.

Skip list based approaches Consider the sequential skip list data structure initially suggested in [21] and
extended to peer-to-peer environments in [16, 1, 8, 9, 3].

The basis of these data structures is a doubly-linked, sorted list � of all data items. Imagine that we
assign to each data item d an infinite bit string xd. Then we can decompose � into two sorted sublists: �0,
which contains all sorted data d whose xd starts with a 0, and �1, which contains all sorted data d whose xd

starts with a 1.
Now, we continue this process recursively on �0 and �1, generating even smaller sub-lists in the next

higher level, namely �00, �01, �10, and �11, etc. Under the assumption that sub-lists are more or less of equal
size, the recursion continues for a logarithmic number of levels. At level i of the recursion, a sublist �b1,b2...bi

is a doubly-linked list of all data d whose xd has the prefix b1, b2 . . . bi.
The following approaches of selecting the xd’s are possible.

• Alternate bit padding: Even-positioned nodes set their first bit to 0, and odd positioned nodes set their
first bit to 1. Then �0 will contain even-positioned nodes and �1 will contain odd-positioned nodes.
Continuing with this recursively, we obtain

pointi(d) = d′ where rank(d′) = rank(d) + 2i

i.e., we get a situation similar to the perfect chordal graphs above, with a high cost for insertions and
deletions.

• Random bit padding: If the bit strings are random, then on expectation, rank(pointi(d))− rank(d) =
Θ(2i), and we get an approximation to a hypercube. The advantage of random choices is that its
concurrent implementation of an Insert and Delete operation is much easier. For example, deleting
data item y with predecessor x and successor z in a sublist �b1,b2...bi

involves simply changing x’s
(resp. z’s) pointer pointi from y to z (resp. x). This is done for each one of the logarithmic number of
levels at overall logarithmic cost. This is essentially the algorithm in [16, 1, 8].

• Bounded bit padding: Another way of selecting the bits is to require that there can be at most 2
consecutive nodes in any list (or cycle) at level i with the same (i + 1)th bit value. This property can
be maintained with a low update cost and guarantees for every data item d and i that

pointi(d) = d′ with rank(d′) = rank(d) + O(2i)

This approach was taken in [9, 3].

Consistent Hashing: assignment of data to peers

Next we consider previous work on mapping data to a dynamic set of peers. Virtually all solutions presented
so far (e.g., [26, 22, 24, 28, 17]) use consistent hashing. Consistent hashing was introduced by Karger et al.
[13] as a means to manage the caching of web pages in a distributed environment. It works as follows:

Let V be the set of all possible web caches (or nodes) and D be the set of all possible data items.
Consider the two hash functions h : V → [0, 1) and g : D → [0, 1) that map each node resp. data item to
a real number in [0, 1). Then the consistency condition that has to be maintained at all times is that each
data item x ∈ D currently in the system must be stored at the node v ∈ V with minimum h(v) so that
h(v) ≥ g(x). If h and g are random or pseudo-random, it turns out that keeping the placement consistent is
very cheap: (Pseudo-)random functions h and g ensure that at any time, the expected number of data items

4

stored in a node is the same for all nodes. Hence, if the current number of nodes in the system is n, then the
expected amount of data replacements when including or excluding a node is roughly a 1/n fraction of the
total amount of data in the system.

The problem with using (pseudo-)random hash functions h and g is that this makes the data unsearchable
in our sense, since hashing scrambles the name space, making prefix search impossible (i.e. only precise
lookup operations can be supported). On the other hand, replacing hashing by a structure-preserving func-
tion g, such as the identity function, to enable prefix search may create a high load imbalance. This paper,
however, will get the best of both worlds: functionality (i.e., prefix search capability) of [16, 1, 8] and the
load balancing property of [26, 22, 24, 28, 17], thus solving the open problem in [7].

2 The Spheres Framework

In this section, we provide a formal framework for peer-to-peer computation that is necessary for our
plug&play approach. The framework goes in parts far beyond the scope of this paper, and therefore not
all aspects of the framework are discussed in detail here but only those relevant for the plug&play approach.
A manuscript presenting the framework in full depth is currently in preparation [19].

As mentioned previously, the basic ideas behind this framework are very close to the ideas behind
the actors model developed by Hewitt in the 1970s in the area of artificial intelligence [10]. Though his
approach has never made it into a mainstream approach in distributed computing, it appears to be extremely
useful for peer-to-peer computation. In fact, a small number of researchers has continued working on his
ideas which led, among other results, to the language E [18]. E has some remarkable features, especially
for robust and secure distributed computing, not shared by any other language and could be easily used to
implement our framework. However, since this paper is about data structures for prefix search, going into
implementation details here would be far beyond the scope of this paper. We refer instead the interested
reader to www.erights.org.

2.1 The spheres framework

The spheres framework consists of three layers:

• Network layer: this is the lowest layer. It handles the exchange of messages between peers.

• Contact layer: this handles the exchange of messages between spheres and allows spheres to locate
and interconnect to each other.

• Spheres layer: this is the layer for sphere-based applications.

In the network layer, any given communication mechanism may be used, such as TCP/IP, Ethernet, or
802.11. Its management is entirely an internal matter of the contact layer. Hence, the contact layer allows
to hide networking issues from the spheres so that sphere-based applications can be written in a clean way.
Thus, it remains to specify the spheres layer, the contact layer, and the interface between them.

2.2 The spheres layer

All computation and storage in the spheres layer is organized into so-called spheres. A sphere is an atomic
thread with its own, private resources that are only accessible by the sphere itself. “Atomic thread” means
that a sphere must be completely stored within a single peer and that operations within a sphere are executed
in a strictly sequential, non-preemptive way. A prerequisite for this approach to work is that all elementary
operations must be strictly non-blocking so that a sphere will never freeze in the middle of a computation.

5

A sphere cannot access any of the resources outside of its private resources. The only way a sphere can
interact with the outside world is by sending messages to other spheres. A sphere is bound to the peer
that created it. This is important to guarantee some basic properties for the exchange of messages between
spheres specified below, but it does not restrict the universality of our approach.

2.3 The contact layer

All communication in the contact layer is handled via so-called contact points. Contact points can be thought
of as ports but are much more general than that. A contact point is an atomic object that is bound to the
sphere that created it. Given a sphere s, let C(s) be the set of contact points created by it, and given a contact
point c, let R(c) be the set of spheres that have registered for it. Let Contact be the type of a contact point
and FarRef be the type of a far reference. Contact points are manipulated by the following operations:

• Contact NewContact(): this creates and returns a new contact point c to the sphere s calling the
operation. Formally, C(s) = C(s) ∪ {c}.

• FarRef Ref(Contact c): this returns a far reference to contact point c.

• void Register(Contact c): this allows a sphere s to register for contact point c. Formally, R(c) =
R(c) ∪ {s}.

• void Unregister(Contact c): this allows a sphere s to unregister for contact point c. Formally, R(c) =
R(c) \ {s}.

We demand that Register and Unregister operations from the same sphere to the same contact point are
executed in FIFO order, i.e. in the order they were called, so that eventually R(c) arrives at a correct state.

A contact point c does not need a destructor. As long as R(c) = ∅, c will not be stored explicitly but
only if some sphere registers for it. Variables of type Contact or FarRef can be passed from one sphere to
another. Ownership of a variable of type Contact allows to register and unregister for that contact point, and
ownership of a variable of type FarRef allows to send a message to the contact point. For those familiar
with capability-based systems, adding unguessable authentication information to these types turns them into
capabilities so that contact points are protected against unauthorized access.

Given a contact point c with far reference r, the “←” operator allows to send a message m to any sphere
that has registered for c, i.e. an anycast operation is performed. Or more precisely, if sphere s calls r ← m,
then the contact layer of s first checks whether s has already received a representative s′ ∈ R(c) from c.
If not, s sends a request to c which returns any s′ ∈ R(c). Afterwards, s forwards the message to s′. If s′

unregisters or becomes unavailable, the contact layer of s will request a new sphere from c.
The← operation is a non-blocking, eventual send operator that guarantees the following properties:

• FIFO ordering: Messages sent by sphere s to some sphere s′ via contact point c arrive at s′ in the
same order in which the r ← m operations were executed in s.

• At-least-once delivery: Messages are delivered to s′ in an at least once fashion. (Notice that exactly-
once delivery cannot be guaranteed in a potentially unreliable network.)

2.4 Creating and deleting spheres

Let S(p) be the set of spheres that are currently at peer p. Spheres are created and deleted via the following
operations.

6

• void Spawn(C(·)): this creates a new sphere s in the peer owning the sphere calling Spawn, using
constructor C(·) for initializing s. Formally, S(p) = S(p) ∪ {s}. Notice that no return value is
provided. This makes sure that Spawn is non-blocking and the sphere calling Spawn has no initial
access to s (which is useful for a formal security analysis).

• void Halt(D(·)): this unregisters the sphere s calling Halt from all contact points and waits until all
tasks have been processed. (Notice that this happens in the background, i.e. the sphere will go on
with executing code without waiting for the Halt operation to complete.) Afterwards, the destructor
D(·) is called in s (which can be used, for example, to save the final state information of s or move it
to another peer to recreate s there). Formally, S(p) = S(p) \ {s}.

For security reasons, the Spawn operation should only be allowed to be called by a special root sphere r
which is created when the peer belonging to r initiates the platform providing the contact layer. In this way,
the peer is under the control of which and how many spheres are spawned in it.

Notice that our model only requires seven primitives. All of these primitives are necessary in a sense
that they cannot be replaced by a combination of the other operations. On the other hand, the primitives
are also sufficient in a sense that they potentially allow a sphere to reside at any peer in the system and
to communicate with any other sphere in the system. Thus, our framework is universal. Furthermore, it
satisfies the demands we stated earlier on a distributed programming paradigm. Finally, notice its striking
similarity with peer-to-peer systems: spheres are connected by a pointer structure in a similar way as peers
are connected by an overlay network. In fact, the spheres framework allows to implement every peer-to-peer
system that has been proposed so far, and much more.

Of course, one may wonder at this point whether the spheres framework will ever be more than just
some thought experiment, but interestingly it is already much more than that. There is already a full-grown
language support for it, and it allowed to solve an open problem about searchable peer-to-peer systems.

3 The Plug&Play Paradigm

In order to keep the presentation of our plug&play paradigm simple, we assume in the following that all
peers and spheres behave correctly and depart gracefully, i.e. they use the Halt operation instead of just
leaving the contact layer without notice. Of course, in the real world this is not the case, but dealing with
these issues would certainly create an enormous overhead if not research problems by themselves. (In fact,
not even a provably robust peer-to-peer system for exact lookup is currently known, apart from first steps in
[5].)

In the following we describe how to use the spheres framework to combine two sphere structures in a
transparent way in order to obtain a peer-to-peer data structure for prefix search. The two sphere structures
we need are:

• a site structure for maintaining a load-balanced mapping of data items to peers and

• a data structure for organizing the data items in such a way that prefix search can performed efficiently
in it.

The two sphere structures have to adhere to the following specifications.

4 The site structure

Let cS be some predefined contact point for the site structure that every peer has access to when joining the
contact layer. A site sphere s has to provide the following operations:

7

• Site(kr, cs): this constructs a site s. kr is the far reference of some root sphere r that s can use to send
requests to r and cs is the contact point from which s can receive requests from r. To set this up, s
just has to execute Register(cs). s also calls Join.

• s.Join(): this lets s join the site structure by sending a corresponding request to contact point cS . Once
Join completes, s executes Register(cS) to allow other sites to join the site structure.

• s.Leave(): this lets s leave the site structure. It starts with s calling Unregister(cS) and ends with s
calling Halt().

• s.Insert(d) for some data item d: this initiates the insertion of d into the site structure. (If there is
already a data item in the system with the same name as d, the old data item is overwritten.)

• s.Delete(name): this initiates the deletion of the data item with name name in the site structure, if it
exists.

Notice that a Search operation is not necessary because we will use the search functionality of the data
structure to find data items. The site structure may implement the operations above in any way guaranteeing
(for graceful departures) an even load distribution and the correctness of the operations under the assumption
that the FIFO invariant holds.

Besides providing certain methods, site spheres also have to provide feedback to their roots. This hap-
pens in the following two cases:

• An Insert(d) request that started at site s reaches the site s′ in which d is to be placed. Then s′ invokes
the method Forward(kr , d) in r′, where r is the root of s and r′ is the root of s′. After the initial
placement of d, this is also done each time d is moved from a site s to a site s′.

• A data item d is deleted in site s with root r. Then s invokes the method Remove(d) in r.

Notice that these are not artificial requirements. Even if there is only a site structure, a peer may want to
know its current data load. The method invocations above are necessary for providing this feedback.

4.1 The data structure

Let kD be some predefined contact point for the data structure that every peer has access to when joining
the contact layer. A data sphere a has to provide the following operations:

• Data(kr, ca, d): this constructs a data sphere a. kr is the far reference of some root r that a can use to
send requests to r and ca is the contact point from which a can receive requests from r. d is the data
item a is supposed to represent. To set this up, a has to execute Register(ca). a also calls Join.

• Data(ka′ , S): this sets up data sphere a in state S. Once state S has been correctly set up (i.e. all
relevant Register operations have been called), the Ack method is invoked in the data sphere reachable
via ka′ .

• a.Join(): this lets a join the data structure by sending a corresponding request to cD . Once Join
completes, a executes Register(cD) to allow other data spheres to join the data structure.

• a.Leave(): this lets a leave the data structure. It starts with a calling Unregister(cD) and ends with a
calling Halt().

• a.Search(name): this initiates the prefix search for name name. a remembers the reference kr of its
current root in case it moves during the search operation.

8

• a.Forward(kr, kr′): this requests a to move from root r to root r′ (whose public keys are kr and kr′).
If a is currently at root r, it invokes the Gone((Name(a), p(ca))) method in r. Otherwise, it just stores
(kr, kr′) in a set M for now and will check again for the invocation of Gone((Name(a), p(ca))) once
it is executing Data(ka′ , S) in root r.

• a.Gone(): this is invoked by the Gone method in its root. a simply calls Halt(Frozen()) in this method.

• a.Frozen(): this initiates the movement for a. a picks the earliest method invocation of Forward(kr, kr′)
in M it got for its current root r, packs its entire state (apart from ca) into the state field S(a), then
calls c′a = NewContact() and Register(c′a) and finally invokes the Move(p(c′a), Name(a), ca, S(a))
method in r′ via kr′ .

• a.Ack(): this method is invoked once the new copy of a is ready to go. It simply consists of a executing
Unregister(c′a) and Halt().

The data structure may implement Join, Leave, and Search in any way guaranteeing the correctness of the
operations under the assumption that the FIFO invariant holds.

Also data spheres provide feedback to their roots. Apart from the Gone method above, we require that
whenever a data sphere a that initiated a Search(name) request on behalf of some root r got the data item d
returned whose name is the closest prefix to name, then it invokes SearchDone(name, d) in that root r.

Certainly, using an sphere for every data item may be much too fine-grained if the data items are small.
So we assume here for the moment that the data items are sufficiently large so that it is worth the effort. We
will explain in Section 4.4 how to adapt our data structure approach so that it also works well for small data
items.

4.2 Combining the site and data structure

Recall that every peer has a root sphere r that is the root of all spheres spawned in this peer. We will use
this root sphere to combine any site structure and data structure fulfilling the specifications above into a
peer-to-peer data structure for prefix search. r has a set of operations for this specified in Figure 1.

4.3 Correctness

Next we prove the correctness of the plug&play paradigm, i.e. we prove that

• the root spheres process the user-level operations according to their specification and that

• the root spheres correctly synchronize the site structure with the data structure.

The site structure and data structure are said to synchronize correctly if for every data item d whose insertion
was initiated by site s0 and that moved through sites s1, . . . , sk for some k ≥ 1 before it got deleted in site
sk (or stays there forever), the data structure will eventually move the data sphere a representing d through
the roots r0, . . . , rk and then remove a from the system (or keep it forever), where ri is the root of si for
every i ∈ {0, . . . , k}.

We will use the following definitions for our correctness proof.

Definition 4.1 For the site structure we define:

1. The Site constructor is completed once all operations in it are completed.

2. The Join operation of a site s is completed once s is fully integrated into the site structure.

9

Root():
cr = NewContact()
cs = NULL

Join():
if cs = NULL then

Register(cr)
cs = NewContact()
Spawn(Site(Ref(cr), cs)) // Ref(c): ref. of c
D = ∅ // set of data spheres in r

Leave():
if cs �= NULL then

Unregister(cr)
Ref(cs)← Leave()
cs = NULL

Insert(d):
if cs �= NULL then

ca = NewContact()
Spawn(Data(Ref(cr), ca, d))
d′ = (Name(d),Ref(ca))
D = D ∪ {d′}
Ref(cs)← Insert(d′)

Delete(name):
if cs �= NULL then

Ref(cs)← Delete(name)

Search(name):
if cs �= NULL then

if D �= ∅ then
k ← Search(Ref(cr), name) for any d = (n, k) ∈ D

else
Ref(cD)← Search(Ref(cr), name)

Move(k, name, ca, S): // data sphere requests copy in r
Spawn(Data(k, S))
D = D ∪ {(name, ca)}

Forward(kr′ , d): // site: move d = (n, k) from r′ to r
k ← Forward(kr′ ,Ref(cr))
D = D ∪ {d}

Gone(d): // data sphere of d = (n, k): gone
D = D \ {d}
k ← Gone()

Remove(d): // site: remove d = (n, k)
k ← Leave(Ref(cr))
D = D \ {d}

SearchDone(name, d): // data sphere: search done
deliver search result to user

Figure 1: The operations of the root sphere.

3. The Leave operation of a site s is completed once s is completely removed from the site structure.

4. An Insert(d) operation is completed once d has been inserted into the site structure so that d is the
only data item with name Name(d).

5. A Delete(name) operation is completed once there is no data item d in the site structure with Name(d) =
name.

Definition 4.2 For the data structure we define:

1. The Data constructor is completed once all operations in it are completed.

2. The Join operation of a data sphere a is completed once a is fully integrated into the data structure.

3. The Leave operation of a data sphere a is completed once a is completely removed from the data
structure.

4. A Search(name) operation is completed once the data sphere that initiated the search reports the
result back to its root.

Based on these definitions, we can prove a sequence of claims. An operation of a root sphere is defined
as being completed once all of the operations called in that operation are completed.

10

Claim 4.3 Once the Join operation of a root sphere r is completed, r has a site sphere that is fully integrated
into the site structure.

Proof. By inspection of the Join operation in Figure 1 and Definition 4.1(1) and (2). ��

Claim 4.4 Once the Leave operation of a root sphere r is completed, r’s site sphere is fully excluded from
the site structure.

Proof. By inspection of the Leave operation in Figure 1 and Definition 4.1(3). ��

Claim 4.5 Once the Insert(d) operation of a root sphere r is completed, r has a data sphere a for d that
is fully integrated into the data structure and a data item d′ = (Name(d), p(ca)) has been inserted into the
site structure so that d′ is the only data item with name Name(d).

Proof. By inspection of the Insert(d) operation in Figure 1 and Definitions 4.1(4) and 4.2(1) and (2). ��

Claim 4.6 Once the Delete(name) operation of a root sphere r is completed, there is no data item d in the
site structure with Name(d) = name.

Proof. By inspection of the Delete(name) operation in Figure 1 and Definition 4.1(5). ��

The claims above imply that the root spheres maintain a site structure that fulfills the specifications of
a peer-to-peer data structure for prefix search w.r.t. Join, Leave, Insert, and Delete. Given that the data
structure and the site structure synchronize correctly, this would also imply that the Search operation in the
root returns a correct result when completed. Thus, it remains to show:

Claim 4.7 The plug&play approach correctly synchronizes the data structure with the site structure.

Proof. Consider any data item d. Suppose that the insertion of d (or rather the short form d′ of d that
uniquely identifies d through its name) was initiated at site s0 and d went through sites s1, . . . , sk for some
k ≥ 1 before it got deleted at site sk (or stays there forever). In the following, let ri be the root of si

for all i ∈ {0, . . . , k}. The only situation in which s0 initiates the insertion of a data item d is when the
root r0 of s0 is executing Insert(d). But in this case d must have been part of the data structure when the
Insert(d) operation completed. Once the site structure places d in si for some i ≥ 1, si is required to invoke
the Forward method in ri with parameters kri−1 and d. This in turn causes the invocation of Forward with
parameters kri−1 and kri in the data sphere a of d. Thus, a receives move requests from ri−1 to ri for all i.
The order in which a receives these requests fulfills an important property:

For any site s for which there are i1, . . . , i� ∈ {1, . . . , k} with s = sij for all j ∈ {1, . . . , �}, the Forward
method in a for sij is invoked prior to the Forward method for sij+1 for all j ∈ {1, . . . , � − 1}.

This holds because of our FIFO Invariant: s reports movements to its root sphere r in the right order so
that, according to the FIFO Invariant, they will also arrive in the right order at r. But if they arrive in the
right order at r, then according to the FIFO Invariant, they will also arrive in the right order at a.

Hence, a knows the temporal relationship between move requests originating from the same site. This
allows a to uniquely recover the path s0, s1, . . . , sk the data item d went and therefore follow this path:
when currently at root r, take the earliest move request received for r, if it exists.

Whenever a decides moving from root r to r′, it invokes the Gone method in r which removes a from
the list D of data items in r and causes r to close its connection from a by unregistering for ca. Afterwards,
r invokes the Gone method in a which causes a to freeze (by calling Halt(Frozen())). Once a is frozen, a
transports its state over to root r′ by invoking the Move method in it. Notice that once a is frozen, its contact

11

point has no more messages to process and to send out, its root r will not send any further messages to a, and
all messages destined for the contact points c for which Out(c) = {a} will be buffered at c. Hence, when
the new copy a′ of a is spawned at r′ and the incoming connections are reestablished, a′ can start receiving
messages originally meant for a without the FIFO Invariant being violated when considering a and a′ as
a single sphere. Once a′ reestablished all incoming connections, it invokes the Ack method in a causing a
(and its contact point) to be removed from the system without losing any messages.

Finally, once sk decides to delete d, it invokes the Remove(d) operation in its root rk. rk in turn invokes
the Leave(Ref(crk

)) operation in sphere a. This tells a that the end of the path of d is at sk, and therefore a
can leave once it reaches sk and there are no more movements to process.

Hence, the data structure and the site structure synchronize correctly w.r.t. any data item d, which
completes the proof. ��

4.4 A data structure for small data items

At the end of this section, we describe how one can establish a more course-grained representation of the
data structure if the data items are small, i.e. it would be too much overhead to create a sphere for each data
item. Instead, the following approach can be used:

Organize the data structure into spheres we call buckets. Each bucket is identified by a name range so
that the name ranges of the buckets are pairwise disjoint and the union of the name ranges represents the
entire name space. Each bucket has to contain between k and 4k data items, for some suitably chosen k.
If a bucket has less than k data items, it merges with a neighboring bucket (we explain below how to do
this), and if a bucket has more than 4k data items, it splits into two buckets by splitting its name space so
that each of the two resulting buckets has the same amount of names. A bucket with name range [n1, n2] is
stored as a data item with name n1 in the site structure. Thus, merging a bucket with another bucket means
removing a data item from the site structure, and splitting a bucket means inserting a new data item into the
site structure. Whenever a bucket merges or splits, the data spheres can notify their root spheres about this
so that the root spheres can make sure that the corresponding data item is deleted from or inserted into the
site structure. This in turn allows the site structure to send placement updates to the root structure (such as
forwarding a data item from r to r′) so that the root structure can place the buckets by invoking the Forward
operation in them as this is done for the original data structure.

It remains to explain how to merge buckets. Here we can use a technique described, for example, in
[4]: Suppose that the buckets are organized in a doubly-linked cycle in the order of their ranges. In order
to break the symmetry of merge operations, we from groups of 2 or 3 buckets in the following way. Each
bucket chooses a color c ∈ {black,white}. The following invariant has to be maintained for these choices:

Coloring Invariant: There are at most two neighboring buckets with the same color at any time.

In order to maintain this invariant, we use the following rules when a new bucket b joins the cycle: If b’s
neighbors have the same color, or one of b’s neighbors has a neighbor with the same color, then b chooses the
other color. Otherwise, b may choose any color. If a bucket b leaves, then its successor, b′, checks whether
afterwards the invariant is violated. If so, it changes its color.

The colors allow the buckets to be organized in disjoint groups of size 2 or 3 by using the rule that any
consecutive group G of buckets starting with bucket b must fulfill that c(b) = black, the predecessor of b is
white, and there are no two black buckets in G that are separated by a white bucket.

If a bucket in a group G declares it wants to merge, then it is checked whether it can merge with its
neighbor in G without exceeding a capacity of 3k. If so, it is merged (which causes a data item to be deleted
in the site structure). Otherwise, the ranges are changed in the two buckets so that each of them has the same
load (of at least 3k/2, which causes an old data item to be deleted and a new data item to be inserted into
the site structure). Merge operations are coordinated by the first bucket in a group.

12

The bucketing strategy above has two important benefits. First of all, it reduces the overhead of manag-
ing the data structure and also the site structure because now the site structure only needs to get involved in
case of a merge or split event, reducing the number of method invocations in the site structure by a factor of
k. But larger data spheres also imply fewer data spheres, and therefore a faster search time, which is usually
the most important performance measure for peer-to-peer data structures for searching.

5 Performance of the Plug&Play Paradigm

Next we analyze the performance of our plug&play paradigm. We start with work bounds and then prove
bounds on the expansion of our approach.

5.1 Work

In order to bound the work of our operations, it suffices to bound the number of contact-layer operations
necessary to execute any of the user-level operations of a peer-to-peer data structure for prefix search using
our plug&play approach. This is indeed sufficient because all communication is handled by the contact
layer. Since each contact layer operation can be implemented with a constant communication work (given
that the messages and references have a constant size), our contact-layer bounds will provide us with upper
bounds on the total communication work for our operations.

In the following, let n be the current number of site spheres and m be the current number of data
spheres in the system. We assume for simplicity that m ≥ n. Let ws

o(n,m) denote an upper bound on the
work to execute operation o in the site structure and wd

o(m) denote an upper bound on the work to execute
operation o in the data structure. The work here counts all methods invoked from an actor in the specified
structure. That is, a Forward invocation of a site sphere counts towards the work in ws

Join(n,m), but not
the subsequent methods triggered by it because Forward is invoked in the root of the site. So the work
bounds for the site structure represent the amount of data movements and message transmissions necessary
to execute the operation within that structure. We assume that data is only moved in the site structure when a
site joins or a site leaves it, which is the case for all distributed hash tables. Then the following work bounds
can be obtained for our plug&play approach.

Theorem 5.1 Let Δ(m) be the maximum degree of an actor in the data structure. For our plug&play
approach it holds:

• Join needs O((wd
Join(m) + wd

Leave(m))ws
Join(n,m)) work,

• Leave needs O((wd
Join(m) + wd

Leave(m))ws
Leave(n,m)) work,

• Insert needs O(ws
Insert(n,m) + wd

Join(m)) work,

• Delete needs O(ws
Delete(n,m) + wd

Leave(m)) work, and

• Search needs O(wd
Search(m)) work.

Proof. We need the following lemma.

Lemma 5.2 Every operation that a site sphere invokes in a root sphere creates at most O(wd
Join(m) +

wd
Leave(m)) work.

13

Proof. A site sphere can only invoke two operations in its root r: Forward and Remove. Forward causes
r to invoke the Forward method in the corresponding data sphere a, which eventually moves to the new
root r′. When it decides to move, a chain of operations will be invoked: r.Gone, a.Gone, a.Halt(Frozen()),
a.Frozen, a.NewContact, a.Register, r′.Move, r′.Spawn, a.Ack, and finally a.Unregister and a.Halt. The
work in r′.Spawn is upper bounded by wd

Join(m). Thus, summing everything up, we obtain a work of
O(wd

Join(m)). The Remove operation invokes a.Leave whose work is upper bounded by wd
Leave(m).

Hence, combining the two work bounds results in the lemma. ��

A data sphere can only invoke the operations Gone and SearchDone in its root, but Gone is already
accounted for in the Forward operation above and SearchDone only delivers the search result. So we can
ignore the work for these operations.

Since Join (resp.) Leave can trigger at most ws
Join(n,m) (resp. ws

Leave(n,m)) data movements, the
bound in the theorem follows from Lemma 5.2. Insert requires the integration and movement of a single data
sphere and the insertion of a data item into the site structure whose work is bounded by O(ws

Insert(n,m) +
wd

Join(m)). Delete requires removing a data sphere from the data structure and removing a data item from
the site structure whose work is bounded by O(ws

Delete(n,m) + wd
Leave(m)). Finally, the Search operation

only needs O(wd
Search(m)) work because it only affects the data structure. ��

The work bounds above also translate into time bounds if we assume that it takes (at most) one unit of
time to execute one unit of work. However, measuring the work is usually more general than measuring time
since in asynchronous systems it is not guaranteed that operations finish within a certain amount of time.

Let us look now at an example to illustrate the bounds above. If we choose the Koorde network as the site
structure, then it follows from results in [12] that for any o ∈ {Join, Leave}, ws

o(n,m) = O(σ ·m/n+log n)
with high probability, and for any o ∈ {Insert, Delete}, ws

o(n,m) = O(log n) with high probability. The
reason for the high work bounds for Join and Leave is that up to O(σ ·m/n+log n) data items may have to
be moved, with high probability, due to a Join or Leave operation. The parameter σ denotes the imbalance
of the data distribution and can be bounded by O(log n), with high probability, for Koorde [12]. Using
better distribution schemes (e.g. [14, 23]), one can even achieve a constant σ without increasing the degree
of the nodes.

Using a skip graph [1] as the data structure, it follows that for any o ∈ {Join, Leave, Search} that
ws

o(m) = O(log m) with high probability. Thus, when recalling our assumption that m ≥ n, we obtain the
following result.

Corollary 5.3 Using Koorde as the site structure and the skip graph as the data structure, it holds that, with
high probability,

• Join needs O(σ · (m/n) log m) work,

• Leave needs O(σ · (m/n) log m) work,

• Insert needs O(log n + log m) work,

• Delete needs O(log n + log m) work, and

• Search needs O(log m) work.

As long as m is polynomial in n, this asymptotically (almost) matches the best bounds that were previ-
ously known only for peer-to-peer data structures for exact lookup.

14

5.2 Expansion

Finally, we bound the expansion of our construction.

Definition 5.4 Given a graph G = (V,E) and a subset U ⊆ V , the expansion of U is defined as α(U) =
|Γ(U)|/|U | where Γ(U) is the set of nodes in V \U that have an edge from U . The expansion of G is defined
as

α(G) = min
U,|U |≤|V |/2

α(U) .

We will investigate the expansion of horizontal peer-to-peer data structures, which is our approach, as
well as the expansion of vertical peer-to-peer data structures, which was the approach of the conference
version of this paper. “Horizontal” in our context means that the pointer structure of the data structure is
used independently of the site structure, and “vertical” means that the data structure is completely embedded
into the site structure, i.e. for every edge (v,w) that a request wants to traverse in the data structure, the
request has to travel along a path in the site structure from the site of v to the site of w.

Recall that our plug&play approach uses two sphere structures: a data structure, denoted by D, and a
site structure, denoted by S. Given any fixed sequence J of name insertions and removals, let αD(J) be the
median expansion of the pointer graph of D after executing J , i.e. the probability that the pointer graph of
D has an expansion of at least resp. at most αD(J) at the end is a least 1/2. Then the expansion αD(m) of
D is defined as

αD(m) = max
J∈Jm

αD(J)

where Jm is the set of all sequences J that end up with m data items.
We define the expansion of the site structure in a similar way. Given any fixed sequence K of site

insertions and removals, let αS(K) be the median expansion of the pointer graph of S after executing K,
i.e. the probability that the pointer graph of S has an expansion of at least resp. at most αS(K) at the end is
a least 1/2. Then the expansion αS(n) of S is defined as

αS(n) = max
K∈Kn

αS(K)

where Kn is the set of all sequences K that end up with n sites.
We need one more parameter for S called the imbalance that is relevant for horizontal and vertical peer-

to-peer data structures. Given a fixed mapping of data items to sites, let L(s) be the load (i.e. the number of
data items) at site s. Then the imbalance σ(S) of S is defined as

σ(S) = max
s

L(s)
m/n

where m is the number of data items and n is the number of sites.
Now, let H be the peer-to-peer data structure resulting from the horizontal composition of D and S and

V be the peer-to-peer data structure resulting from the vertical composition of D and S. We introduce the
following definitions of the expansion of H and V :

Definition 5.5 (Horizontal expansion) Consider the horizontal composition H of D and S. For any subset
D′ of data in D and any subset S′ of sites in S we say that S′ blocks D′, denoted as S′
 D′, if for every
d ∈ D′ it holds for a majority of data d′ ∈ D that for every path p in D from d′ to d there is at least one
datum d′′ in p that lies in S′. Then we define the expansion of H as

α(H) = E
[

min
S′�D′

|S′|/|S|
|D′|/|D|

]

where the expected value is over the uniform distribution of locations of the data items in the shared space
of the site structure.

15

Intuitively, the horizontal expansion gives the expected worst case ratio between the percentage of sites
(resp. peers) that are down and the percentage of data spheres in D that would be disconnected by this from
the rest of D.

Definition 5.6 (Vertical expansion) Consider the vertical composition V of D and S. For any subset D′ of
data in D and any subset S′ of sites in S we say that S′ blocks D′, denoted as S′
 D′, if for every d ∈ D′

it holds for a majority of sites s ∈ S that for every path p in D from a datum d′ in s to d there is at least one
edge (v,w) in p for which there is no path from v to w in S when removing S′. Then we define the expansion
of V as

α(V) = E
[

min
S′�D′

|S′|/|S|
|D′|/|D|

]

where the expected value is over the uniform distribution of locations of the data items in the shared space
of the site structure.

Thus, as for the horizontal expansion, the vertical expansion gives the expected worst case ratio between
the percentage of sites (resp. peers) that are down and the percentage of data spheres in D that would be
disconnected by this from the rest of D.

First we bound the horizontal expansion, and afterwards we bound the vertical expansion.

Theorem 5.7 (Horizontal Composition Theorem) For any data structure D and site structure S, it holds
for their horizontal composition H that

α(H) = Ω

(
1

σ(1 + 1
αD

)

)

where σ is an upper bound on the imbalance that holds with high probability.

Proof. Consider any fixed horizontal composition H , i.e. the imbalance of H and the expansion of D
are fixed and denoted by σ(H) and α(D). For a subset D′ (S′) of data (sites) denote by ||D′|| (||S′||) the
relative fraction of such data (sites) i.e., the ratio |D′|/|D| (respectively, |S′|/|S|). Let ΛS be the set of sites
removed from S and let ΛD be the set of data in ΛS . Then it follows from the definition of σ(H) that

|ΛD| =
∑

s∈ΛS

L(s) ≤ σ(H) · |D|
|S| · |ΛS |

and therefore
||ΛD|| ≤ σ(H) · ||ΛS ||

Furthermore, according to the definition of α(D), |ΛD|many data spheres can disconnect at most |ΛD|/α(D)
many other spheres from the majority of the data spheres. Hence, the set of data ΓD outside of ΛD that are
inaccessible from a majority of data spheres fulfills

||ΓD|| ≤ ||ΛD||/α(D)

Thus, it follows for α(H) that there is a set ΛS so that

α(H) =
||ΛS ||

||ΓD|| + ||ΛD|| ≥
1

σ(H)(1 + 1
α(D))

16

Now, notice that by definition, Pr[α(D) ≥ αD] ≥ 1/2. Hence,

Pr

⎡
⎣ 1

1 + 1
α(D)

≥ 1
1 + 1

αD

⎤
⎦ ≥ 1

2

This in turn implies that

E

⎡
⎣ 1

1 + 1
α(D)

⎤
⎦ ≥ 1

2
· 1
1 + 1

αD

Furthermore, we know that σ(H) = Θ(σ), w.h.p., and therefore 1/σ(H) = Ω(1/σ), w.h.p. Since σ(H) ≥
1, it also follows that

E [1/σ(H)] ≤
(

1 − 1
nk

)
· c

σ
+

1
nk

· 1

for some constants c and k. Hence, E[1/σ(H)] = Θ(1/σ). Plugging the bounds for E[1/σ(H)] and
E[1/(1 + 1/α(D))] into the inequality above results in the bound for α(H) in the theorem. ��

It follows from [3], for example, that the hyperring has an expansion of Ω(1/ log m). Hence, when
using the hyperring as the data structure, we obtain an expansion of Ω(log n · log m) for H , which can be
improved to Ω(log m) when using techniques in [14, 23]. If m is polynomial in n, this would match the best
bounds known for the expansion of distributed hash tables, which is Ω(1/ log n) for Chord, for example [2].

Theorem 5.8 (Vertical Composition Theorem) For any data structure D and site structure S, it holds for
their vertical composition V that

α(V) = Ω

(
1

σ · (1 + 1
αS

)(1 + 1
αD

)

)

where σ is an upper bound on the imbalance that holds with high probability.

Proof. Consider some fixed vertical composition V , i.e. σ(V), α(D) (the expansion of D), and α(S) (the
expansion of S) are fixed. Let ΛS be the set of sites removed and ΓS be the set of sites in S \ΛS inaccessible
in S from a majority in S. (I.e. for every site s ∈ ΓS there are more than |S|/2 sites that are disconnected
from s when removing ΛS .) Furthermore, let ΥS be the set of sites that can reach the majority in S. For a
subset D′ (S′) of data (sites) denote by ||D′|| (||S′||) the relative fraction of such data (sites) i.e., the ratio
|D′|/|D| (respectively, |S′|/|S|).

Since S has an expansion of α(S),

||ΓS || ≤ ||ΛS ||
α(S)

. (1)

Now, let ΛD be the set of data stored at ΛS and ΓD be the set of all data in D \ ΛD that are inaccessible
in D from a majority in S. (I.e. for every datum d ∈ ΓD there are more than |S|/2 sites s ∈ S so that for
every path p in D from a datum d′ in s to d there is at least one edge (v,w) in p for which there is no path
from v to w in S when removing S′.) Also, let ΥD be the set of those data which are accessible in V from
a majority in S. Note that the sets ΛD, ΥD, and ΓD are disjoint in D.

Next let us decompose ΓD = Γ1
D ∪ Γ2

D such that Γ1
D ∩ Γ2

D = ∅ and Γ1
D contains all data in ΓD stored

at sites in ΓS . By the definition of σ(V) and inequality (1), the fraction of such files is at most

||Γ1
D|| ≤ ||ΓS || · σ(V) ≤ ||ΛS ||

α(S)
· σ(V)

17

Now, consider any datum d ∈ Γ2
D, and suppose that d is stored at site s. By definition, s /∈ ΛS (since then

d ∈ ΛD) and also s /∈ ΓS since then we would have added d to Γ1
D. So s ∈ ΥS . Suppose now that d has a

neighbor d′ with d′ ∈ ΥD. Then, by definition, the site s′ of d′ must be in ΥS . But if both s and s′ are in ΥS ,
then there is a path from s to s′, which implies by the definition of ΥD that also d ∈ ΥD, a contradiction.

Hence, every neighbor of a datum d ∈ Γ2
D that is not in Γ2

D must be in ΛD ∪ Γ1
D. From above we know

that

||ΛD ∪ Γ1
D|| ≤ ||ΛS || · σ(V) +

||ΛS ||
α(S)

· σ(V) = σ(V) ·
(

1 +
1

α(S)

)
· ||ΛS ||

From the definition of α(D) it therefore follows that

||Γ2
D|| ≤ σ(V)

α(D)

(
1 +

1
α(S)

)
||ΛS ||

Summing it all up, ||ΓD|| is equal to

||Γ1
D|| + ||Γ2

D|| ≤ σ(V) · ||ΛS ||
α(S)

+
σ(V)
α(D)

(
1 +

1
α(S)

)
||ΛS ||

= σ(V) · ||ΛS || ·
(

1
α(D)

+
1

α(S)
+

1
α(D) · α(S)

)

According to the definition of α(V), there is a set ΛS so that

α(V) =
||ΛS ||

||ΓD|| + ||ΛD||
Using the fact that ||ΛD|| ≤ σ(V) · ||ΛS ||, it follows that

||ΛS ||
||ΓD|| + ||ΛD|| ≥

1
σ(V)(1 + 1

α(D))(1 + 1
α(S))

Now, notice that by definition, Pr[α(D) ≥ αD] ≥ 1/2 and Pr[α(S) ≥ αS] ≥ 1/2. Hence, it follows from
the proof of the previous theorem that

E

⎡
⎣ 1

1 + 1
α(D)

⎤
⎦ = Ω

(
1

1 + 1
αD

)
and E

⎡
⎣ 1

1 + 1
α(S)

⎤
⎦ = Ω

(
1

1 + 1
αS

)

Furthermore, it follows from the previous proof that E[1/σ(V)] = Θ(1/σ). Plugging these bounds into the
inequality above and using the fact that α(D) and α(S) are independent results in the bound for α(V) in
the theorem. ��

The two composition theorems demonstrate, not surprisingly, that horizontal designs should be preferred
over vertical designs because they are more robust.

6 Conclusions

In this paper we showed how to develop a peer-to-peer data structure for prefix search that (almost) achieves
the same performance that was previously only known for peer-to-peer data structures for exact lookup. We
introduced a new framework for the development of peer-to-peer data structures and a plug&play approach
for combining two independent data structures that are very general and therefore should be of independent

18

interest. Even if the reader may not be completely satisfied with our spheres framework, we hope that our
approach will lead to further, exciting work in developing a general, well-accepted framework for peer-to-
peer systems in the future that will allow rigorous, formal correctness and performance proofs for peer-to-
peer data structures and that is close enough to reality so that data structures that are efficient and robust in
this framework are also efficient and robust in real life.

7 Acknowledgements

We would like to thank the reviewers for their many critical and helpful comments on an earlier draft of
this paper. We also thank Andreas Terzis for many discussions on peer-to-peer systems and Mark Miller for
introducing us to the E language and helping us with the formulation of a general-purpose framework.

References

[1] J. Aspnes and G. Shah. Skip graphs. In Proc. of the 14th ACM/SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 384–393, 2003.

[2] B. Awerbuch and C. Scheideler. Chord++: Low-congestion routing in Chord. Unpublished manuscript,
2003. See http://www.cs.jhu.edu/∼scheideler.

[3] B. Awerbuch and C. Scheideler. The Hyperring: A low-congestion deterministic data structure for
distributed environments. In Proc. of the 15th ACM/SIAM Symposium on Discrete Algorithms (SODA),
pp. 318–327, 2004.

[4] B. Awerbuch and C. Scheideler. Consistent and compact data management in distributed storage
systems. In Proc. of the 16th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pp. 44–53, 2004.

[5] B. Awerbuch and C. Scheideler. Group Spreading: A protocol for provably secure distributed name
service. In Proc. of the 31st International Colloqium on Automata, Language, and Programming
(ICALP), pp. 183–195, 2004.

[6] J. Gabarro, C. Martnez, and X. Messeguer. A design of a parallel dictionary using skip lists. Theoretical
Computer Science, 158:1-33, 1996

[7] M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker, and I. Stoica. Complex queries in DHT-
based peer-to-peer networks. In 1st International Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[8] J.A. Harvey, M.B. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet: A scalable overlay network
with practical locality properties. In USITS 2003.

[9] N. J. Harvey and I. Munro. Deterministic SkipNet. Information Processing Letters, 90(4):205–208,
2004.

[10] C. Hewitt, P. Bishop, and R. Stieger. A universal modular Actor formalism for artificial intelligence.
In Proc. of the 1973 International Joint Conference on Artificial Intelligence, pp. 235–246.

[11] W. Hoeffding. Probability inequalities for sums of bounded random variables. American Statistical
Association Journal, 58:13–30, 1963.

19

[12] M. F. Kaashoek and D. R. Karger. Koorde: A simple degree-optimal distributed hash table. In 2nd
International Workshop on Peer-to-Peer Systems (IPTPS), 2003.

[13] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Consistent hashing and
random trees: Distributed caching protocols for relieving hot spots on the World Wide Web. In Proc.
of the 29th ACM Symposium on Theory of Computing (STOC), pp. 654–663, 1997.

[14] D. Karger and M. Ruhl. Simple efficient load balancing algorithms for peer-to-peer systems. In Proc.
of the 16th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 36–43, 2004.

[15] K. Lakshminarayanan, A. Rao, I. Stoica, and S. Shenker. Flexible and Robust Large Scale Multicast
Using I3. UCB Technical Report No. UCB/CSD-02-1187, May 2002.

[16] X. Li and C.G. Plaxton. On name resolution in peer-to-peer networks. In POMC 2002, pages 82–89.

[17] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and dynamic emulation of the butterfly.
In Proc. of the 21st ACM Symposium on Principles of Distributed Computing (PODC), pp. 183–192,
2002.

[18] M.S. Miller, C. Morningstar, and B. Frantz. Capability-based financial instruments. Financial Cryp-
tography 2000. See http://www.erights.org/elib/capability/ode/.

[19] M.S. Miller and C. Scheideler. Spheres: A new/old model for distributed computing. Manuscript,
Johns Hopkins University, October 2004.

[20] M. Naor and U. Wieder. Novel architectures for P2P applications: The continuous-discrete approach.
In Proc. of the 15th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp.
50–59, 2003.

[21] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. In WADS 1989, pages 437–449.

[22] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-addressable net-
work. In SIGCOMM 2001.

[23] C. Riley and C. Scheideler. Local load balancing in distributed hash tables. Technical report, Johns
Hopkins University, February 2004. See http://www.cs.jhu.edu/∼scheideler.

[24] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for large-scale
peer-to-peer systems. In Middleware 2001.

[25] C. Scheideler and W. Wei. A load-balanced peer-to-peer registration service and its applications to
anycasting and multicasting. Manuscript. Johns Hopkins University, September 2004. Available from
the authors on request.

[26] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In SIGCOMM 2001.

[27] U. Vishkin, W. J. Paul, and H. Wagener. Parallel dictionaries on 2-3 trees. In 10th International
Colloqium on Automata, Languages, and Programming (ICALP), pp. 597–609, 1983.

[28] B.Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubiatowicz. Tapestry: A Global-
scale Overlay for Rapid Service Deployment. IEEE Journal on Selected Areas in Communications,
Special Issue on Service Overlay Networks, 2003.

20

