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Abstract. Weinvestigate randomized processes underlying load bal ancing based
on the multiple-choice paradigm: m balls have to be placed in n bins, and each
ball can be placed into one out of 2 randomly selected bins. The aim is to dis-
tribute the balls as evenly as possible among the bins. Previoudly, it was known
that a simple process that places the balls one by one in the least loaded bin can
achieve amaximum load of m/n + log log n + ©(1) with high probability. Fur-
thermore, it was known that it is possible to achieve (with high probability) a
maximum load of at most [m/n] + 1 using maximum flow computations.

In this paper, we extend these results in several aspects. First of all, we show
that if m > ¢n logn for some sufficiently large ¢, then a perfect distribution of
balls among the bins can be achieved (i.e., the maximum load is [m/n]) with
high probability. The bound for m is essentialy optimal, because it is known
that if m < ¢’ n logn for some sufficiently small constant ¢/, the best possible
maximum load that can be achieved is [m/n] + 1 with high probability. Next,
we analyze a simple, randomized load balancing process based on alocal search
paradigm. Our first result here is that this process aways converges to a best
possible load distribution. Then, we study the convergence speed of the process.
We show that if m issufficiently large compared to n, then no matter with which
ball distribution the system starts, if the imbalance is A, then the process needs
only A-n®® stepsto reach aperfect distribution, with high probability. We also
prove a similar result for m = n, and show that if m = O(nlogn/loglogn),
then an optimal load distribution (which has the maximum load of [m/n] + 1)
is reached by the random process after a polynomial number of steps, with high
probability.
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1 Introduction

The study of balls-into-bins games or occupancy problems has along history (see e.g.
[1-5,8,10-12,18]). These problems have numerous applications, e.g., in graph theory,
gueueing theory, hashing, and randomized rounding. In general, the goal of aballs-and-
bins algorithm is to assign a set of independent objects (tasks, jobs, memory blocks) to
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aset of resources (servers, disks) so that theload is distributed among the bins as evenly
as possible.

In the classical single-choice game, each ball is placed into a bin chosen indepen-
dently and uniformly at random (i.u.r.). For the case of n binsand m > nlogn balsit
iswell knownthat there exists abin receiving m/n+ ©(+/mlogn/n) bals. Thisresult
holds not only in expectation but also with high probability. (We say that an event A oc-
curswith high probability (w.h.p.) if Pr[A] > 1—n "~ for an arbitrarily chosen constant
«a > 1.) Ontheother hand, it was shown by Azar et al. [1] and Berenbrink et al. [2] that
if the balls are placed in a sequential (on-line) fashion and each ball is assigned to the
currently least loaded of the two locations (ties broken arbitrarily), then the maximum
load of any binism/n + loglogn + ©(1) with high probability. It can also be proven
[1,2] that any protocol that assigns the balls to the bins in the on-line fashion (that is,
the decision where the ball is placed is performed only on the base of the placement of
the previoudly placed balls) cannot be stochastically better than the scheme above. In
particular, this implies that in any on-line scheme, with high probability, thereis abin
with the load m /n + loglog n + O(1).

On the other side, some authors have been studying off-line assignments. In off-line
assignments, after first selecting the two locationsfor all the balls, one seeks an optimal
placement of the balls assuming each ball can choose only among its two locations
and the locations of all balls are known to the algorithm (off-line case). This problem
arises naturaly in numerous applications, for example, in hashing, scheduling, load
balancing, and video on demand (see, e.g., [1, 7, 9, 14-16]). (For example, Sanderset al.
[16] discussed in depth applications to support fast parallel access to external memory
systems with parallel disks and Karp [7] discussed applications in video on demand;
Karp called our problem k-orientability.)

L et the minmax load be the minimum, over all possible placements of the ballsinto
bins, of the maximum load in the system. Azar et al. [1] showed that for n = ©(m), the
minmax load is ©(1), with high probability. Later, Frieze (persona communicationin
[1]) and, independently, Czumaj and Stemann [5], tightened this bound and, in particu-
lar, showed that for n = m, theminmax load is exactly 2, with high probability. Sanders
et al. [16] extended the result from[1, 5] to arbitrary m and proved the following result.

Theorem 1. [16] The minmax load is at most [m/n] + 1, with high probability. O

Notice that since the minmax load cannot be smaller than [m/n], this bound is
optimal up to an additive constant 1. Furthermore, it is easy to see that there exists a
positive constant ), such that if m < AnInn, then the bound in Theorem 1 is tight 3.
Our first contribution is that this bound for m is asymptotically tight in the following
sense: thereis aconstant ¢ such that if m > c¢n Inn, then aperfect balance is possible:

Theorem 2. There exists a positive constant ¢ such that for every m > cnlnn, the
minmax load is exactly [m/n], with high probability.

3 Indeed, if we choose at random two locations for each of the An In n balls, then there will be
abin that has not been chosen by any ball. Therefore, thereis abin whose load is 0 w.h.p. and
henceit isimpossible that all bins have identical load of m /n, w.h.p.



Next, we present anovel approach to off-line assignments and discuss anew stochas-
tic process (algorithm) that achieves optimal maximum load. Sanders et al. [16] de-
scribed a polynomial time algorithm that finds an optimal assignment of the balls into
bins minimizing the maximum load (which in this optimal alocation is equa to the
minmax load). Their algorithm uses maximum flow computations.

Stochastic load balancing. A drawback of the approach by Sanders et al. is that it
requires global (centralized) knowledge about locations of al balls, which is far too
space consuming if m islarge. This makes also the algorithm difficult (if suitable at all)
for implementationsin distributed or decentralized systems (like, for example, systems
of paralel disks as discussed in [9,16]). Therefore, as our second contribution, we
present a simple, memoryless, local search algorithm that can balance the load of the
bins in the system as much as this is possible. The idea behind our algorithm is to
begin with an arbitrary assignment of the balls to the bins, and then to use a stochastic
replacement process that gradually improves the balance of the bins' |oad.

Supposethat initially all the ballshave chosen their locationsin {1, . .., n} and each
ball is (arbitrarily) placed in one of its two locations. The Self-Balancing Algorithm
repeats the following Self-Balancing Step:

Self-Balancing Step:

Pick independently and uniformly at random a pair of bins (b1, b2).
If thereisaball placed in b; with dternative location in bin b, then
Pick any ball = that is placed in b, with aternative location in bin bo;
Place x into the least loaded bin (among b; and b);
If tie, that is, bin b; has (without x) the same load as bin b2, then
place z into arandomly chosen of the two bins.

We prove two theorems about the Self-Balancing Algorithm (throughout our anal-
ysis, unless stated otherwise, terms “with high probability” are with respect to the ran-
dom choices of the two locations of each ball, as well as the random choices of ballsin
the Self-Balancing Algorithm).

The first theorem shows that the Self-Balancing Algorithm will gradually converge
to states in which the maximum load is best possible.

Theorem 3. If the Self-Balancing Algorithm is run sufficiently long (i.e., the Self-Balan-
cing Step is repeated sufficiently many times), then the maximum load of any bin in the
system is equal to the minmax load with probability 1. (The probability 1 is with respect
to the random choices of balls in the Self-Balancing Algorithm only.)

In particular, if the Self-Balancing Algorithm is run sufficiently long then the max-
imum load of any bin in the system is smaller than or equal to [m/n] + 1 with high
probability. If, additionally, m > c¢n Inn for a sufficiently large constant ¢, then the
maximum load is exactly [m /n] with high probability.

The Self-Balancing Algorithm is asimple example of alocal search algorithm, sim-
ilar to load balancing algorithms existing in the literature before, see, e.g., [6,13]. The-
orem 3 shows the non-trivial property that no matter with which state (i.e., assignment



of ballsto bins) the Self-Balancing Algorithm starts, it will always convergeto a state
in which the maximum load is optimally small. Notice that in many local search ap-
proaches one frequently arrives at a“dead-lock” situation, in which the balancing may
be far away from optima and no re-balancing progress is possible (that is, a locally
optimal solution is not in agloba optimum). Theorem 3 shows that thisis not the case
for the Self-Balancing Algorithm. (Observe, however, that if we removed the random-
ized rule for tie breaking, then — as one can easily show — the algorithm would not
necessarily convergeto an optimal state.)

The next theorem considers the heavily loaded case and deals with the speed of the
“convergence” of the Self-Balancing Algorithm to a state in which the maximum load
is upper bounded by [m /n]. Let theimbalance of the system beits distance from a best
possible distribution, or more precisely, > | max{0, load of bini — [m/n]}.

Theorem 4. If m > n, then after a polynomial number (with respect to n only) of
Self-Balancing Steps the maximum load in the system is equal to [m/n], with high
probability. Furthermore, if the system imbalance is A, then the number of steps is
A -nPM with high probability.

Noticethat if the balls are alocated to the binsin the on-line fashion using the least
loaded bin approach, as in [1, 2], the system imbalance is A = O(nloglogn), with
high probability [2]. Therefore, Theorem 4 implies the following corollary.

Corollary 1. If m > n, then in time O(m) + n°(") one can find a perfect load distri-
bution with the maximum load of the system equal to [m/n], with high probability. O

As we argued before, one cannot extend the result from Theorem 4 to the case
m = n, because then the minmax load is expected to be equal to [m/n] + 1 (instead
of [m/n]). Our next theorem shows however that if m is close to n, then the Self-
Balancing Algorithm still rapidly convergesto the optimal distribution.

Theorem 5. If m = O(n logn/loglogn), then after a polynomial number (with re-
spect to n) of Self-Balancing Steps the maximum load in the system is smaller than or
equal to [m/n] + 1, with high probability.

Notational conventions. To simplify the presentation of the paper, we will use a short-
hand 1 to denote m /n and i to denote [m/n] = [u]. We shdl identify the balls with
theintegersin {1,...,m} = [m] and the bins with the integersin {1,...,n} = [n].
Let the load of abinb € [n] be equal to the number of balls placed in b. Notice that the
average load among all the binsis .

2 Perfect balancing for £2(n logn) balls

In this section we prove Theorem 2, that is, we show that if m > c¢n logn for certain
suitable constant ¢, then the minmax load is [m/n] = p, with high probability. It is
easy to seethat it is sufficient to prove this bound in the case i = i, and therefore from
now on we assume that y is an integer.



Let 9B denote the set of n binsin the system. Let us fix an allocation of m balls to
n binsin %5 such that each ball has two locations in % (we allow a ball to have both
locationsin the same bin). For any U C 9B, let ¥[U] denote the number of balls having
al locationsin thebinsin U. Then, one can show the following result (see [16, 17]).

Lemmal. [17, Theorem 1] The minmax load is equal to maxyc o, 20 [%] . 0O

Consider the stochastic process of assigning two locations of the m balls to the n
binsinB i.u.r. Forany set U C ‘B, let C'yy bethe random variable denoting the value of
Y [U]. Furthermore, let £y be the random indicator of the event that C'y > - |U| and
let € =\ ycom, yzp Eu- Our god isto show that

Pri&] < n77 . 1)

for a constant v depending on c.
Let B, = {U C B : |U| = k}. Then, by the union bound, to prove (1) it is enough
to prove the following bound for every* k, 1 < k < n — 1, andfor every set U € B

1
Pr[EU] S W .

@)

From now on, we concentrate on proving inequality (2). Let us observethat for any
set U € By, thevalue of Cy isabinomial random variable with the parameters m and
(k/n)?, which we denote by B(m, (k/n)?). Therefore, Pr[€y] = Pr[B(m, (k/n)?) >
m-k/n] < Pr[B(m, (k/n)?) > m-k/n] and our goal now is to investigate bounds for
Pr[B(m, (k/n)?) > m - k/n].

We beginwith three simple results about concentration of binomial random variables.

Lemma 2.
1. Foranyt > 6mq? Pr[B(m,q¢%) >t] < 27%L

2. Forany0 < q < 1, Pr[B(m,q?%) > q- 77_1] < exp(—2¢2 (1 —¢q)?m).
3. Forany 0 < ¢ < 1, if -5 < ¢ for certain u > 1, then Pr[B(m, ¢*) > ¢-m] <

(/e 09, D

Let m > cnlnn for alarge constant c. Let U € B, and ¢ = k/n. Let usfirst
consider the case k/n = ¢ < 0.1. Then, if we set ¢t = mk/n, then we have t >
6 - E[B(m, ¢*)], and hence by Lemma 2 (1) and by the inequality () < n*, we get
(provided c is alarge enough constant):

O

1 < 1
Lk = (1)

PI‘[EU] < 2—t _ 2—mk’/n < e—(’y+1)lnn—k, Inn _

3

Next, we consider 0.1 n < k < 2/3 n. Then, by Lemma2 (2) and by observing that
(1) < 2", we have (again, if we set m = cn Inn for alarge enough constant c)

_k ) 1
PI'[(S'U] < eXp(—Q(k(Zz k) )Qm) < e—0.00lm < e—('Y+1)lnn—k1nn < — (n) )
"k

(4)

4 We do not have to consider the case U = B,, because in that case &y trivially never holds.



Theremaining caseiswhen k/n = ¢ > 2/3. Then, we can apply Lemma 2 (3) with
u = 2.5 to obtain

Pri&y] < Pr[B(m,qQ) > gm] < (2.5/e)m/3 < e~ (yFDInn—kinn o % .
n'Y+1 . (k)
©)
Therefore, frominequalities (3—5), we havethat for every integer k,1 < k < n—1,
and for every U € B, we have Pr[&y| < ++() Thisimpliesthat Pr[l] < n™7,
ny (5
whichin turnsyields Theorem 2. a

3 Convergence to optimal assignment

In this section we sketch a proof of Theorem 3. We begin with basic definitions and no-
tation. A placement of the balls after performing ¢ repetitions of the Self-Balancing
Step, t > 0, is called the tth assignment, and is denoted by A,. To each assign-
ment A; we assign a load vector, which is vector L, = (L;(1),...,L:(n)) such that
L;(j) denotes the load of the jth fullest bin in A,. For any two load vectors L. =
(L(1),...,L(n)) and L* = (L*(1),...,L*(n)), we say L majorizes L*, denoted by
L = L%, if forevery j, 1 < j < n,wehave > 7_ L(r) > >7_, L*(r). Furthermore,
wewriteL > L* if L = L* and thereisat least one j with Y7 _ L(r) > >/ _ L*(r).

Our first lemma describes the way the load vector can change in the course of the
agorithm. Informally, it says that after any repetition of Self-Balancing Step the load
vector will never worsen.

Lemma 3. For any ¢t > 0, independently of the random choices performed by the Self-
Balancing Algorithm, we always have L, > L; 1. a

L et us observetwo important consequences of Lemma3. Firstly, thislemmaimplies
that the maximum load never increases. Secondly, Lemma 3 yieldsthe following claim:

Lemma4. The number of changes in the load vector is upper bounded by m -n. O

Now, since we know the algorithm gradually converges to a more balanced distri-
bution of the bins' loads, we formally describe the states to which it converges. We say,
a system is stable in step 7, if independently of the random choices performed in the
iterations T' > 7 of the Self-Balancing Algorithm we will have L, = Ly for every
T > 7. In order to characterize stable states formally, we define a directed multigraph
representing the state of the system (see aso, e.g., [5, 16], for similar representations).

Definition 1. A directed multigraph G = (V, E) representing the system is a directed
multigraph with the vertex set V' = {1,...,n} corresponding to the bins in the system
and the edge multiset £ (loops are allowed) corresponding to the assignment of the
balls in the system. Each edge is associated with a ball, has as the endpoints the two
locations of the associated ball, and it is directed from (outwards) the bin containing
the associated ball.



Wedenoteby G, = (V, E;) the directed multigraph representing .A . For any vertex
v of G we denote by out-deg(v) the out-degree of v in G; if G is not clear from the
context, then we use also notation out-deg; (v). The in-degree is defined analogously.
Notice that since the choices of the locations of each bin are performed at random,
the undirected version of any G, is arandom multigraph with » vertices and m edges
(where each endpoint of each edgeis selected independently and uniformly at random).
The following lemmafollows directly from Definition 1.

Lemmab. If G, = (V, E,) is a directed multigraph representing .A;, then for any j,
1 < j < n, the out-degree of vertex ; is equal to the load of bin j in A;. ad

Let G, = (V, E;) be the directed multigraph representing .4 ,. A directed path
(v1,v2,...,v¢) ING, iscaled aslope if out-deg(v;) > out-deg(v,)+2 and out-deg(v; )
> out-deg(v,41) forevery i, 1 < i < £.If (v1,vq,...,v¢) isaslopein G, thenwe can
straighten (v1, ve, ..., ve) by modifying the directions of the edgesin G - (following
the rules in the Self-Balancing Algorithm) so that the load vector will change (see aso
a scheme presented in Figure 1). Indeed, let us consider the case that ¢ > 3 (the case
£ = 2 can be handled similarly), and assume (actually, without loss of generality) that
out-deg(vy) = out-deg(ve) + 1, out-deg(v;) = out-deg(v;41) for2 < j < £ —1,
and that out-deg(v,—1) = out-deg(v,) + 1. Then, we reverse directions of the edges
(vj,vjy1) foral 1 < j < ¢ — 1 (this can be easily done according to the rules in the
Self-Balancing Algorithm). After applying these changes, the bin corresponding to the
vertex v; decreased its load by 1, the bin corresponding to the vertex v, increased its
load by 1, and the load of al other bins remains the same. This implies that the load
vectorsL of A, and I’ of the new system state fulfill L.~ IL'.

The following key lemma provides a necessary and sufficient condition for asystem
to be stable at step ¢. (Notice that the only if part follows from our arguments above.)

Lemma6. A system is stable at step 7 if and only if the directed multigraph G, =
(V, E;) representing .4, has no slope. O

The next lemma describes a relationship between stable states and the maximum
load in the system.

Lemma 7. Consider a system of m balls and »n bins with the minmax load . Then, if
the system is stable in step 7 then the maximum load of A is .

Proof. The proof is by contradiction. Let us consider a system of m balls and n bins
with the minmax load . Let us suppose the system is in a stable state A - represented
by the directed multigraph G- = (V, E..), and, for the purposes of contradiction, let us
assume that the maximum out-degreein GG - is greater than «.

Since A, is astable state, we know by Lemma 6 that G- has no slope. Let us pick
any vertex v € V' with out-deg, (v) > k. Let U bethe set of all verticesin G- (not
including v) that are reachable from v by adirected pathin GG .. Since G- has ho slope,
al verticesin U must have the out-degree at least out-deg; (v) — 1 > «. Therefore,
if wedefineU* = U U {v}, thenthereareat least |U| - k + (k + 1) balls having both
locations in the bins corresponding to the verticesin U *. This, however, by Lemma 1,
meansthat minmax load isat least 171 -(|U]-#+(r+1)) > &, whichisacontradiction
to our initial assumption that the minmax load of the system is «. O
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Fig. 1. lllustration describing the straightening procedure that changes the out-degrees of the
vertices v1, vz, ..., vs (With s = 5) on the slope performed in the proof of Lemma 6. In this
case, initially we have out-deg(v1) = r, out-deg(vz2) = out-deg(vs) = out-deg(vs) = 7 — 1,
and out-deg(vs) = r — 2.

Now we are ready to complete the proof of Theorem 3. By Lemma 7, the system is

not stable if and only if the directed multigraph G, = (V, E;) representing A, has a
slope (v1, . . ., ve) for certain positive £. Thus, if the system is not stable, then let us con-
sider any shortest slope. Then, with a positive probability, in the next £ — 1 iterations
in the Self-Balancing Algorithm we will perform slope straightening of (vq, ..., vs),
which will decrease the load of v, by 1, increase the load of v, by 1, and leave the
remaining loads the same. Hence, if A, is not stable, then after sufficiently many itera-
tions of Self-Balancing Step, with probability 1 the load vector will be modified. Since
the load vector may change at most n m times, if we combine the argumentsabove with
Lemma 7, after sufficiently many iterations in Self-Balancing Step, with probability 1
the system will bein a stable state in which the maximum load equal s the minmax load.
O

4 Convergenceto optimal assignment for m > n

In this section we briefly sketch the proof of Theorem 4, which estimates the conver-
gence speed of the Self-Balancing Algorithm for m > n. First of al, let usrecall that
by Lemma 4, the load vector may change at most n m times. Therefore, we only have
to show that if the system is not stable, then after a polynomial number of steps of the
Self-Balancing Algorithm the system will change its load vector with high probability.
Thefollowing isthe key theorem of our analysis (the proof is deferred to thefull version
of the paper).

Theorem 6. Let n°logm = o(u). Let € be an arbitrary constant. Let b be a bin with
any load greater than or equal to ; + £. Then, with probability at least 1 — m ~°(),

— either every bin has load greater than or equal to ¢ + &,

— or the directed multigraph representing the current state of the system has a di-
rected path of length at most 2 from the vertex corresponding to b to some other
vertex u whose out-degree is strictly smaller than p + &.



In view of this theorem, with high probability, as long as the maximum load in the
system is strictly larger than 1z, the directed multigraph representing the state of the
system has always aslope (v, . . ., v, ) with 7 < 2, no matter how the directions of the
edges are set. (Indeed, in that case there is a bin b with the load larger than /i, and if
weset £ = 0, then it isimpossible that every bin in the system has |oad greater than or
equal to u. Therefore, by Theorem 6, there must exist a directed path of length at most
2 from the vertex corresponding to b to some other vertex u, such that the out-degree of
u is strictly smaller than .. Therefore, either this path or its sub-path must be a slope.)
Therefore, with probability at least O(1/n*), the Self-Balancing Algorithm will, in at
most two steps, perform slope straightening of (vy, . . ., v,) such that the out-degree of
vg decreasesfrom some ¢ to £—1 and no other vertex on the path increasesits out-degree
to morethan ¢ — 1. Therefore, the system will changeits load vector with probability at
least O(1/n*). Hence, with high probability the system will changeitsload after O(n*)
Self-Balancing Steps, and thus, after O(mn ) steps the Self-Balancing Algorithm will
reach a state in which the maximum load equals to the minmax load.

Actualy, it is easy to see that our arguments above can be used to show that if the
imbalance of the systemis A (where A = Y7 | max{L(i) — 7i,0}), then the process
needs only A - n©(1) steps to reach a perfect distribution, with high probability. This
yields the proof in the heavily loaded case. O

5 Convergence to optimal assignment for m = O(n)

In this section we deal with the proof of Theorem 5 and consider the convergence speed
of the Self-Balancing Algorithm in the lightly loaded case. We focus only on the case
m = O(n); we believe that this is the most challenging case and therefore we will
elaborate on its proof. The analysis of the case m = O(n logn/loglogn), m = w(n),
is deferred to the full version of the paper.

The main idea behind the proof is to use similar arguments as in the previous sec-
tion, but this time we cannot assume that we have a slope of a constant length. The
analysis requires the following three key properties. The first property, provenin [16],
isthat if the pairsof locationsfor all the balls are choseni.u.r., then (with high probabil-
ity, depending only on the random choices of the locations) in any state of the system,
if thereisabinwith theload greater than 1z + 1 then thereis aslope of length O(log n).
The second property is that the sum of the degrees (in- and out-degrees) of all vertices
on this slope path is at most O(log n). The third property is that the probability that a
given slope path will be straightened is inversely proportional to the sum of the degrees
of the vertices on this path. With these properties, we can show that the probability that
in the next O(mn log n) Self-Balancing Steps a slope of length O(log n) is chosen and
then straightened by the algorithm (without interfering with the other bins (vertices))
isat least O(1/n°M). Thisimplies that (with high probability) in the next O(n©(™))
steps the Self-Balancing Algorithm will change the load vector. Therefore, (with high
probability) after n©(1) steps the Self-Balancing Algorithm will reach a state, in which,
by Theorem 1, the maximum load is at most iz + 1, with high probability.



We describe now our analysisin more details. We first develop some properties of
the directed multigraphs discussed in the Section 3. We begin with a lemma proven
implicitly in[16, Lemma 14].

Lemma8. [16] Let G; = (V, E;) be a directed multigraph representing certain A;.
Let m = O(n). Then, with high probability (depending only on the random locations of
the balls), either A; has the maximum load of at most 7z + 1 or G has a slope of length
O(logn). O

Our approach is to explore Lemma 8. First of al, from now on, we shall condition
on the fact that there is an assignment of the balls among the bins with maximum |oad
i + 1. (By Theorem 1, this fact holds with high probability.) Then, by Lemma 8, we
know that the system is either in the state when the maximum load is i + 1, in which
case we do not have to do anything to prove, or thereis slopein G ; of length O(log n).
We consider only the latter case.

We work in rounds, each round corresponding to O(nm log n) repetitions of Self-
Balancing Step. All rounds are independent. At the beginning of each round we take
any slope 7 in G of length O(logn) that is promised by Lemma 8 (if no such a path
exists, then we know that we are already in the state with maximum load smaller than
or equal to 71 + 1). We provein Lemma 10 that with probability greater than or equal to
m we will successfully straighten the slope in this round. From this, it follows
easily that after a polynomia number of rounds of the Self-Balancing Algorithm the
load vector will be modified, with high probability. Then, we use the same arguments
asthose in the proof of Theorem 3 (or Theorem 4) to conclude the proof of Theorem 5
that after a polynomial number of iterations of the Self-Balancing Algorithm we reach
a stable state having the maximum load at most zi + 1, with high probability.

Now, our ultimate goal is to analyze the probability that a slope of length O(log n)
will be straightened in O(nmlogn) iterations of the Self-Balancing Algorithm. We
begin with an auxiliary lemma about random (undirected) multigraphs (the proof is
deferred to the full version of the paper).

Lemma9. Let b and ¢ be arbitrary positive constants. If G is a random undirected
multigraph with n vertices and m < bn edges, then, with high probability G does not
have any simple path of length less than or equal to ¢ logn for which the sum of the
degrees of the vertices on the path is greater than d - logn, where d is a constant. O

Our next and key result showsthat the probability that the Self-Balancing Algorithm
will straighten a given slope path isinversely proportional to the sum of the degrees of
the vertices on this path.

Lemma 10. Let b and ¢ be arbitrary positive constants. Let G be an arbitrary directed
multigraph with n vertices and m < bn edges. Suppose there is a slope path 7 =
(v1,...,v¢) In G. Then, with probability greater than

1\ 1 (¢ 1
<1 B W) m <H 1+ out-deg(vy) + in—deg(v¢)>

=2

the load vector will change after less than or equal to 2 £ m log n iterations.



Proof. We only sketch the proof and defer more details to the full version of the paper.

First of all, if thereisacertain edge (y, z) in G with out-deg(y) > 1 + out-deg(z),
then the probability that the load vector will change in the next step is not smaller than
the probability that we will choose the edge {y, z}, which, in turns, is equal to 1/m.
Hence, in this case the lemma easily follows. Therefore, from now on, we shall assume
that for every edge (v, z) in G it holds out-deg(y) < 1 + out-deg(z). Furthermore, only
for simplicity of consideration, we assumethat on the path = we have out-deg(v,)—1 =
out-deg(vs) = out-deg(vs) = --- = out-deg(v,—1) = out-deg(v,) + 1. It is easy to
see that this is the most difficult case and the analysis from this case can be easily
generalized to the general case promised in the statement of the lemma.

S

Fig.2. A dopem = (v1,v2, ..., ve) Withincident edges.

We use terminology from Figure 2. We have initially aslope path 7 = (v1,...,v¢)
of length ¢ — 1. In each iteration of the Self-Balancing Algorithm we will hit certain
edge chosen at random and in this way we may modify the graph and the load vector.
We observe that if we hit an edge that does not belong to 7 nor is incident to =, then
any eventual modification of that edge will not influence path 7. Therefore we have to
consider only the following nine cases, when an edge of the following form is chosen:
(i) {v1, v}, (1) {v2, vs}, (iii) {ve—1,ve}, (V) {z1,v1}, (V) {1, 22}, (Vi) {23, v3}, (Vi)
{vs, x4}, (viii) {x5,v,}, and (iX) {ve, z6}. We say avery good edge is hit, if we hit an
edge from cases (iv) or (ix); agood edge is hit, if we hit an edge from cases (i), (iii),
(vi), or (vii); abad edge is hit, if we hit an edge from cases (v), or (viii).

Now, we consider around lasting 2 ¢ m log n iterations and observe only very good
edge hits, good edge hits, and bad edge hits. A roundis called successful if no bad edge
is hit until we either have a very good edge hit and then straighten the obtained path or
we modify the slope path (we straightenit) by only good edges. One can show that with
probability greater than or equal to 1 — 1/n° around is either successful or we made
a bad edge hit. Furthermore, straightforward analysis of the nine cases above implies
that the probability that around is successful (conditioned on the above event) is lower

bounded by L - (Hfzz - +0m_deg(v11) ) ) This completes the proof. i

Now, we are ready to complete the proof of Theorem 5 for m = O(n). We follow
the approach described above. Then, it is easy to see that we can reduce our analysisto
thecasewhenintheslopenr = (v1, ..., v¢) (With¢ = O(log n)) we haveout-deg(v;) =
fi + 2. Therefore, by Lemma 9 we know that >"'_, in-deg(v;) = O(log n), with high



probability. Hence, by Lemma 10, the probability that in a round lasting 2nm logn

iterations we change the load vector is greater than or equal to m Hence, after

poly(n,m) rounds (iterations) of the Self-Balancing Algorithm we shall modify the
load vector with high probability. Now, since the load vector can be modified at most
m - n times before we reach the stable state, the theorem follows. a
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