Improved Bounds for the Unsplittable Flow
Problem *

Petr Kolman?® Christian Scheideler?

& Institute for Theoretical Computer Science
Charles University
Malostranské ndm. 25
118 00 Prague, Czech Republic !

b Department of Computer Science
Johns Hopkins University
3400 N. Charles Street
Baltimore, MD 21218, USA

Abstract

In this paper we consider the unsplittable flow problem (UFP): given a directed or
undirected network G = (V, E) with edge capacities and a set of terminal pairs
(or requests) with associated demands, find a subset of the pairs of maximum total
demand for which a single flow path can be chosen for each pair so that for every
edge, the sum of the demands of the paths crossing the edge does not exceed its
capacity. We present a collection of new results for the UFP both in the offline
(all requests are given from the beginning) and the online (requests arrive at the
system one after the other) setting. A fundamental ingredient of our analysis is the
introduction of a new graph parameter, the flow number, that aims to capture global
communication properties of the network. With the help of the flow number we
develop a general method for transforming arbitrary multicommodity flow solutions
into solutions that use short paths only. This generalizes a well-known theorem of
Leighton and Rao [13] that applies to uniform flows only. Both the parameter and
the method may therefore be of independent interest.

* A preliminary version of this work appeared in the ACM-SIAM Symposium on
Discrete Algorithms, 2002

Email addresses: kolman@kam.mff .cuni.cz (Petr Kolman),
scheideler@cs. jhu.edu (Christian Scheideler).
I Institute for Theoretical Computer Science is supported by Ministry of Education
of Czech Republic as project LNOOAO56.

Preprint submitted to Elsevier Science 22 July 2004

1 Introduction

In the wunsplittable flow problem, denoted by UFP, we are given a directed
or undirected network G = (V, E), n = |V|, m = |E|, with edge capacities
prescribed by ¢ : E — IRy and a set T' = {(s;,t;) : 1 <i < k} of k terminal
pairs (or requests) with demands d; € [0, 1]. (The requirement that d; € [0, 1]
is not a restriction, since this can always be achieved by suitably scaling the
demands and capacities.) A feasible solution is a subset S C T of the requests
such that the demand of each request in S is satisfied by a single flow path
and the capacity constraints are fulfilled. The objective is to maximize the
total demand of the satisfied requests. The UFP is a natural generalization of
the classical edge disjoint paths problem.

One of the motivations for the UFP is the problem of allocating bandwidth
for traffic with different bandwidth requirements in heterogeneous networks.
Unfortunately, the UFP is MAXSNP-hard [6]. Therefore, the best one can
hope for (unless P = NP) is to find good approximate solutions. Approxi-
mation algorithms for the UFP and related problems have been presented in
several prior works [7,15,9,10,5,6,3,11]. Kleinberg [7] provides a comprehensive
background on these problems. Many of these algorithms begin with a linear
programming relaxation of the problem (i.e., instead of using a single path, a
commodity is shipped along multiple paths) and then round the solution in a
suitable way to obtain an approximate solution for the UFP.

Under the assumption that the maximum demand of a commodity, d,,,., does
not exceed the minimum edge capacity, called no-bottleneck assumption in the
following, Kleinberg [7] presented an O(y/m - ”ETTCX)) approximation algorithm
for the UFP. This was subsequently improved by Baveja and Srinivasan [3]
to O(y/m), by an LP-based algorithm. Azar and Regev [2] gave a simpler,
combinatorial algorithm with the same approximation guarantee. Kolliopoulos
and Stein [9] presented the first nontrivial approximation, O(logm+/m), for
a more general version of the UFP in which each request has an associated
profit p; and the goal is to maximize the total profit of accepted requests (UFP
with profits). They also showed that the total profit of a solution computed
by their algorithm is € (OPTQ/(m log® m log log m)) where OPT denotes the
total profit of the optimal solution; the above mentioned algorithm of Baveja
and Srinivasan [3] guarantees a solution of total profit Q(OPT?/m).

Without the no-bottleneck assumption, Guruswami et al. [6] gave a random-
ized algorithm with an approximation ratio of O(y/m log®/? m). The algorithm
is based on a suitable rounding of an LP relaxation of the UFP. Recently, Azar
and Regev [2] described a deterministic algorithm with an approximation ratio
of O(y/mlogm). Both of these results require the ratio between the largest
edge capacity and minimum demand to be polynomially bounded. We present

an algorithm with an essentially optimal approximation ratio of O(y/m), unless
P = NP, without using any assumption about the ratio of the edge capacities
and the demands. The bound is achieved with a simple greedy algorithm.

On the lower bound side, it was shown by Guruswami et al. [6] that on directed
networks it is NP-hard to approximate the UFP within a factor of m'/?~¢, for
any € > 0. Azar and Regev proved that without the no-bottleneck assumption,
it is NP-hard to approximate the UFP with profits within Q(m!~¢), for any
€ > 0. This paper does not deal with the UFP with profits.

The O(y/m) approximation and the matching m'/?=¢ lower bound [6] are not
very satisfying. However, it is important to correctly understand the meaning
of the lower bound: for any ¢ > 0 there exists a directed network for which
it is NP-hard to approximate the UFP within a factor of m!/?=¢. The lower
bound does not imply anything about the possibility to approximate the UFP
for most other networks (and, in fact, anything for any undirected network).
However, still if we think about general algorithms for arbitrary networks and
m is the only known parameter, we cannot get (much) better results than
O(y/m). Thus, it is necessary to use other graph parameters, for example the
edge expansion, to be able to get below the \/m approximation ratio for many
classes of networks. We will consider this approach for the rest of this section.
All the time we will assume that the no-bottleneck assumption holds.

For a special case of the UFP, the unit-capacity UFP (that is, all edges have
a capacity of one), Baveja and Srinivasan [3] gave an algorithm with an
O(A%a~%log® n) approximation ratio, where A is the maximum degree and
« is the edge expansion. A crucial building block of the paper is an observa-
tion of Kleinberg and Rubinfeld [8] that for a multicommodity flow problem
an almost optimal solution can always be obtained by flows of length at most
O(A%a%log®n). The algorithm itself is quite involved and the proof heav-
ily uses probabilistic tools like the FKG inequality. Combining the results of
Kleinberg and Rubinfeld [8] and Leighton and Rao [13], the approximation ra-
tio can be decreased to O(A%a~2log? n). Recently, Kolman and Scheideler [11]
improved this ratio to O(A%a~'logn), and for certain classes of graphs in
which the diameter is much lower than o~!, they even prove stronger results,
using a so-called Shrewd algorithm. Using a new parameter called the flow
number F' of a network, we improve the general approximation ratio further
to O(F) with F = O(A a 'logn). Redefining A and a with respect to the
different capacities (i.e., A as the maximum total capacity leaving or leading
to a node, and « respecting the capacities) the bound can be extended to
arbitrary undirected networks. In contrast to the results of Bajeva and Srini-
vasan [3] both our algorithm and its analysis are very simple and, especially,
they do not need tools from probabilistic analysis. Moreover, it is possible to
make the algorithm online.

Imposing a stronger restriction on the maximum demand than just the no-
bottleneck assumption (i.e., dyax < Cmin), namely, having the ratio ¢pin/dmax
lower bounded by a constant larger than 1, allows one to get much better
approximation ratios. This setting is sometimes called UFP with small or
bounded demands [2,3]. In our case (recall the d; € [0,1] assumption), the
minimum edge capacity cpi, itself serves as the lower bound, and it will be
used as an additional parameter. Based on techniques of Awerbuch et al. [1],
Azar and Regev [2] recently obtained an algorithm with an approximation
ratio of O(cpiy, - n'/emin), for any 2 < cpin < logn. They note that the n in
the bound can be replaced by an upper bound d on the longest path in an
optimal solution, however, without giving any better bound on d other than
the trivial n. Bajeva and Srinivasan [3] again use the d = O(A%a2log’n)
bound by Kleinberg and Rubinfeld [8] and they present an algorithm with an
approximation ratio of O(d"/(emn=1)) for any cu, > 2. The latter result gives
a better bound for large cy;,. For example, for ¢y, = Q(logd) it implies an
O(1)-approximation algorithm. We improve the bound of Azar and Regev by
presenting an algorithm with an approximation ratio of O(cyiy - (F¥/¢min — 1))
for all integral ¢y, > 1 (which is O(log F') if cpin > log F).

The UFP has also been considered in the online setting where the requests
arrive one by one and decisions have to be made without any knowledge about
the future requests. For ¢, = Q(logn), Awerbuch, Azar and Plotkin [1] de-
scribe an optimal online algorithm with a competitive ratio of ©(logn). Azar
and Regev [2] present a randomized algorithm with a competitive ratio of
O(Cmin + (nY/émin — 1)) for any cpi, > 2, and they show that no deterministic
online algorithm can achieve a better competitive ratio than this. This online
lower bound is of the same nature as the m!'/>=¢ offline lower bound by Gu-
ruswami et al. [6] that was explained earlier. It is still possible to get better
bounds for many networks if other parameters are used. We present a deter-
ministic online algorithm with a competitive ratio of O(cpi, - (F/(emin=1) — 1))
for all ¢, > 2 and show that any deterministic online algorithm has a com-
petitive ratio of Q(cpiy, - (FY/(emn=1) —1)). Using randomization, it is possible
to get an O(cpi, - (FY/°min — 1)) competitive ratio. We also show that if it is
allowed to cancel previously established paths, then there is a deterministic
online algorithm with a competitive ratio of O(cy, - (FY/¢min — 1)), for all
Cmin => 1. This demonstrates that the ability to cancel paths is an important
and powerful feature. It has not been investigated prior to our work.

Our key technique to obtain most of our results is a technique to shorten
flow paths, captured in the Shortening Lemma, which may be of independent
interest. It allows to transform any feasible solution of a multicommodity
flow problem into a solution in which the maximal path length is only O(F)
and the edge capacities are overloaded by only a very small constant factor.
This generalizes a well-known result about short flow solutions for uniform
multicommodity flow problems (there is a commodity with demand one for

every pair of nodes) by Leighton and Rao [13, Theorem 18] to a result about
short flow solutions for arbitrary multicommodity flow problems, and also
substantially improves and generalizes the above mentioned bound O(log® n)
of Kleinberg and Rubinfeld for bounded degree expanders [8, Theorem 6].

There have been several new results since the first publication of this work.
Chekuri and Khanna [?] improved the analysis of the old greedy algorithm for
the edge disjoint paths problem. They observed that in terms of the number of
vertices, the best lower bound is Q(n'/?=¢) while the best upper bound is O(n)
only. They proved that the greedy algorithm gives an O(nQ/ 3)-approximation
in undirected graphs and O(n?®)-approximation in directed graphs; on the
other hand, there are directed and undirected instances in which the approxi-
mation ratio of the greedy algorithm is (n?*?). They showed that the bounds
apply also for the unit-capacity UFP. Based on their work, Kolman [?] proved
the same bounds for the general UFP with arbitrary demands and capacities.
Hajiaghayi and Leighton [?] improved the upper bound on the approximation
ratio of the greedy algorithm on directed graphs to O(n**) and Varadarajan
and Venkataraman further to O((nlogn)??), almost matching the Q(n%?)
lower bound for the greedy.

The concept of the flow number was subsequently used by Chakrabarti et
al. [4] to design other, LP-based approximation algorithms for the UFP. In
contrast to our work, to measure the performance of an algorithm on a net-
work G, they use the flow number of the underlying graph G, denoted by Fyg,
(i.e., F depends only on the structure of the underlying graph, not on the
edge capacities). They present an O(Fg logn) approximation for the UFP un-
der the no-bottleneck assumption, an O(Fg) = O(F) approximation for the
unit-capacity UFP, an O((Fglogn)Y/¢min) approximation for the UFP with
small demands and an O(Fé/ “min) approximation for the unit-capacity UFP
with small demands. All algorithms are based on randomized rounding of a
fractional flow along short paths. In general, the two parameters F' and Fg
are incomparable. There are networks with F' > Fs but also networks with
I < Fg. Thus, for some instances of the UFP, the results of Chakrabarti et
al. are an improvement, but they are not an improvement for all.

1.1 Organization of the paper

We start in Section 2 with defining the key new parameter flow number and
we compare it with the expansion of a network. In Section 3, the Shortening
lemma is given. Section 4 deals with offline algorithms for the UFP, and in
Section 5 we present online algorithms for the UFP. The paper ends with a
conclusion and open problems.

2 A New Network Measure

Many of the previous techniques have problems proving strong upper bounds
on approximation or competitive ratios of algorithms due to the use of inap-
propriate parameters. As can be seen from the lower bound of Guruswami et
al. [6], if m is the only parameter used, an upper bound of O(y/m) is essen-
tially the best possible. Much better ratios can be shown if the expansion or
the routing number [14] of a network are used. These measures give very good
bounds for low-degree networks with uniform edge capacities, but are usually
very poor when applied to networks of high degree or highly nonuniform edge
capacities. For instance, when applying the previously known general bounds
to the hypercube on n nodes, then the best approximation ratio is O(log2 n).
However, it is possible to reduce it to O(logn). For the purpose of getting
more precise bounds for the approximation and competitive ratios of algo-
rithms (that allow, for example, the O(logn) bound for the hypercube) we
introduce a new network measure, the flow number F. Apart from allowing
more precise results, the flow number has the advantage that, in contrast to
the expansion or the routing number, it can be computed exactly in polyno-
mial time. After defining the flow number, we will compare it in this section
with the expansion « of a network and show that F' = O(A a~'logn).

Once the flow number is defined it is easy to prove the Shortening Lemma
which in turn makes it possible to significantly improve the previous upper
bounds on the approximation and competitive ratio for the UFP. To give an
example of its usefulness, for networks with flow number ©(logn) like the
hypercube, butterfly or expanders, when all capacities are equal to loglogn,
the previous best bound on the competitive ratio was O(loglogn - n'/1oslen)
whereas we achieve a bound of O(loglogn) only.

2.1 Basic notation

A network is a graph G = (V, E) with a function ¢ : £ — IR, denoting the
capacities of the edges. By ¢pin = mingcp c(e) we denote the minimum edge
capacity of G. Unless explicitly mentioned, we will assume that G is undirected.
(However, all of our results hold up to constant factors also for directed graphs
satisfying 3, wyep c(v,w) = O(X (ywer c(w,v)) for every v € V, but for
the purpose of presentation we restrict ourselves to undirected graphs.) If we
simply talk about a graph (and not about a network), we assume that all edges
have capacity one. The number of nodes in G will always be denoted by n and
the number of edges by m. For any node v, let c(v) = Y._;, w}ep c(e) denote
the capacity of v. Given any set of nodes U, let ¢(U) = X,y ¢(v), and given
any set of edges H, let ¢(H) = Y .cyc(e). Given a network G = (V, E), we

call ¢(V') the capacity of G.

For any set of nodes U, let U =V \ U denote its complement, let |U| denote
its size, and let (U,U) denote the set of all edges connecting U and U. The
edge expansion of a network G (or simply expansion) is defined as

o = min —C(U’ 0)
oV min{|U|, |U]}

In a concurrent multicommodity flow problem there are k commodities, each
with a pair of terminal nodes (s;,t;) and demand d;. We say that the node
s; is the source and the node t; is the destination; the commodity originates
in s; and terminates in t;. A feasible solution is a set of flow paths for the
commodities that obey the capacity constraints but need not meet the spec-
ified demands. The flow value of a feasible solution is the maximum value f
such that at least f - d; units of commodity ¢ are simultaneously routed for
each 7. The max-flow for a multicommodity flow problem is defined as the
maximum flow value over all feasible solutions. In contrast to the UFP prob-
lem, the commodity ¢ between s; and ¢; is allowed to be sent along multiple
paths. For a path p in a solution, the flow size of the path is the number of
units routed along it. We will need two special classes of multicommodity flow
problems in the paper. A balanced multicommodity flow problem (BMFP) is a
multicommodity flow problem such that for every node v € V', the sum of the
demands of the commodities originating in v is equal to ¢(v) and the sum of
the demands of the commodities terminating in v is also equal to ¢(v). In a
product multicommodity flow problem (PMFP) [13], a nonnegative weight 7 (u)
is associated with each node v € V. There is a commodity for every ordered
pair of nodes and the demand for the pair (u,v) is equal to m(u) - w(v).

2.2 The flow number

In research about network communication properties, permutation routing
has often been used as a benchmark for comparing different networks. This
reflects the idea that permutation routing represents the communication be-
havior of an ideal parallel program: the communication is evenly balanced
among the processors. Both the expansion and the routing number [14] are
able to describe quite accurately the ability of a network to route arbitrary
permutations. However, to achieve an even balance of the communication is
only desirable in homogeneous network systems (e.g., parallel computers) but
may not be desirable in heterogeneous networks. Therefore, we suggest another
benchmark, which is a generalization of the routing number.

Suppose we have a network G = (V| E) with arbitrary non-negative edge

capacities. Given a concurrent multicommodity flow problem with feasible
solution S, let the dilation D(S) of S be defined as the length of the longest
flow path in S and the congestion C(S) of S be defined as the inverse of its
flow value (i.e., the congestion says how many times the edge capacities would
have to be increased in order to satisfy the demands of all commodities when
using the same set of paths). Let Iy be the PMFP in which 7(v) = ¢(v)/4/c(V)
for every node v, that is, each ordered pair of nodes (v, w) has a commodity
of demand ¢(v) - ¢(w)/e(V). The flow number F'(G) of a network G is defined
as the minimum over all feasible solutions S of Iy of max{C(S), D(S)}. In
the case that there is no risk of confusion, we will simply write F' instead of
F(G). Note that the flow number of a network is invariant to scaling of the
capacities.

The smaller the flow number, the better are the communication properties of
the network. For example, F'(line) = ©(n), F'(mesh) = O(y/n), F(hypercube) =
©(logn) and F(expander) = O(logn). (This can be derived from results of
Leighton [12] and Scheideler [14].) The following result shows that I’ can be
computed exactly in polynomial time. This seems not to be possible for the
routing number or the expansion.

Claim 1 There is an algorithm that computes the exact value of the flow
number for every network in polynomial time.

Proof. Consider any network G = (V, E) with capacities given by c. Let
V ={v,...,v,} and F be its flow number. The following strategy will serve
as a basic building block for our algorithm.

For any L € IN, let G;, = (V', E’) denote a directed leveled graph of depth
L. Each level has n nodes, and the node set in level i € {0,..., L} is given
by Vi = {vi1,...,vin}. The set E’ consists of all directed edges (v;,v;s)
with j = i+ 1 and either &k = ¢ or {vg, v} € E. For any k and ¢ with
{vg, v} € E let Eyp = {(vig,viy10) © @ € {0,...,L —1}}. Consider now the
multicommodity flow problem for G, in which for each pair of nodes (v, vp ¢)
there is a commodity of demand c¢(vg)-c(ve)/c(V). Let S be any solution to this
problem. § is called feasible if for every Ej , the sum of all the flows traversing
the edges in Ej, is at most c¢({vg, vs}). If we allow fractional flows, then it is
possible to compute via linear programming a solution & in polynomial time
that minimizes I}, = max{C(S), L}, where C(S) is the congestion of S.

Having such an algorithm for Gz, it is easy to see that F' = miny F}. Since
the function ¢ : {1,...,n} — IRy with g(z) = F, is first nonincreasing and
then nondecreasing, simple binary search can be applied to find F. O

The following claim shows that the flow number does not only characterize
the ability of a network to handle balanced product multicommodity flows but

also to handle any balanced multicommodity flow.

Claim 2 For any network G with flow number F and any instance I of the
BMFP for G, there is a feasible solution for I with congestion and dilation at
most 2F.

Proof. The proof uses a strategy similar to the technique of Leighton and
Rao [13] for transforming a permutation into an instance of the uniform multi-
commodity flow problem. The idea is to decompose [into two multicommodity
flow problems: for every commodity ¢ with source s; and destination t;, the
first problem I; has commodities i, from s; to u for all w € V' with demands
d;, = d; - c(u)/c(V), and the second problem I has commodities i/, from u to
t; for all u € V with demands d;; = d;-c(u)/c(V). For every commodity ¢ from
the original problem, the total demand of corresponding commodities in [; is
d; and is d; in I as well. Moreover, for every node u € V, the amount of the
commodity ¢, terminating in u in I; is equal to the amount of the commodity
1 originating in u in Is.

Both of the flow problems I; and I, are PMFPs with 7(v) = c¢(v)/q/c(V)
for every node v, because for any pair v,w € V, the total demand of the
commodities with source v and destination w in I; is equal to

Thus, according to the definition of the low number, both [; and I, have a
feasible solution with congestion and dilation at most F'. Hence, the original
problem [has a feasible solution with congestion and dilation at most 2F,
which proves the claim. O

2.8 Flow number vs. expansion

Next we compare the flow number with the expansion. Consider a PMFP
with weights 7(u) for all nodes u, and let p denote the number of nodes with
nonzero weight. Without loss of generality, we assume that p = >,y m(u)

(otherwise scale m appropriately). The min-cut of a PMFP is defined as

= minM where = m(u
S - UCcv 7T(U)7T(U) ’ h (U) Z () .

Leighton and Rao [13, Theorem 18] proved the following theorem about the
relationship between the min-cut, max-flow, and the length of the flow paths
for a PMFP:

Theorem 3 (Leighton, Rao, 1999) Given any PMFP for which the min-
cut has size S, there is a flow of size f = Q(S/logp) for which every flow path
has a length of at most

n-S ue%?ff»o m(u)

-0 (max{% c(V)/p} 1ogp> where 4= c(u)

The following definition will turn out to be useful. The weighted expansion of
a network G is defined as

£ = min AU, U)
~ UV min{c(U),c(U)}

Without loss of generality we consider only networks with a minimum edge
capacity of ¢,,;, = 1. Using Theorem 3, we prove the following result.

Theorem 4 For any network G with expansion « it holds for its flow number
F that

F=Qa™") and F=0(A -a'logn)

where A = max,ey c(v). Furthermore, there are families of networks that
match the upper and lower bounds.

Proof. We start with the following lemma:

Lemma 5 For any network G with weighted expansion 3 and flow number F
it holds that

F=Q" and F=0(3"logn)
Proof. First we prove that I > 37! Let f be the max-flow of the problem

Iy used for the definition of F'. Then it holds that for any set U,

c(U,U)

= 2oy =)

10

where 7(U) - 7(U) = ¢(U) -
c(U) > ¢(V)/2, then ¢(U) - ¢

(_(7)/c(V). We distinguish between two cases. If
U)/e(V) > ¢(U)/2. Thus,

If ¢(U) > ¢(V)/2, then ¢(U) - ¢(U)/c(V) > ¢(U)/2 and therefore

Hence, in both cases,

9 c(U,0) _
— min{c(U),c(U)}

and therefore f < 2- 3 or 2/f > 37! Using the fact that F > 1/f it follows
that F' = Q(571).

Next we show that F' = O(3 !logn). Consider the PMFP I, and let S be the
min-cut for it. Recall the notation used in Theorem 3. We require there that

P = Yuey m(u). In our case, > ,cp m(u) = Y ,ev c(u)/y/e(V) = /e(V), but

since F' is invariant to scaling we can scale the capacities so that y/c(V) =n
without changing F'. Using the definitions of the minimum cut-ratio and the
weighted edge expansion it holds that

-) > min 0,U) _—— =f3
vev m(U) - w(U) vev e(U) - e(U)/e(V) — vV min{c(U), ¢(U)}
because c¢(U) - ¢(U)/c(V) < min{c(U), ¢(U)}. Furthermore, we have that for
any u € V, 4 = c(u)/m(u) = W and ¢(V)/p = m Thus, ac-
cording to Theorem 3, there is a solution to the PMFP [, such that L =
O((1/c(V)logn)/(nS)) = O((logn)/S) = O(B *logn) and f = Q(S/logn) =
Q(B/logn), which implies the desired F' = O(3 'logn). O

Next we prove a lemma that together with the previous lemma implies that
F=Q(a™!) and F = O(Aa"'logn). Recall that we assume ¢y, = 1.

Lemma 6 For any network G with expansion o and weighted expansion (3 it

holds that o=t = Q(B71) and ™' = O(AB™Y).

Proof. Since for any set of nodes U C V, |U| < ¢(U) < A|U|, the lemma
directly follows from the definitions of @ and . O

11

It remains to show that the upper and lower bound for F' are in general best
possible.

Lemma 7 For any o, 1/n < o < 1/logn, there exists a constant degree
graph G with n vertices, expansion ©(a) and flow number O(a™t).

Proof. We distinguish between two cases. First, 1/n'/? < o < 1/logn. In
this case, consider a d-dimensional Butterfly on n’ nodes for some n’ specified
later. We note that d = ©(logn’). It is known that this graph has an expansion
of ©(1/d) and a flow number of ©(d) (e.g., [14]). The expansion is O(1/d) due
to the fact that its two (d — 1)-dimensional sub-butterflies have d-29! vertices
each but only 2¢ edges leaving them. If we replace now every edge by a path of
length ¢, then the number of nodes of the new graph G increases ton = £ -n’
and the expansion decreases to & = ©(1/(d-/)). Furthermore, the flow number
increases to O(d -). Hence, for any desired o, 1/n'/? < a < 1/logn, the
graph G with an expansion « can be obtained by setting £ = |~/ logn] and
n' = n/l in the construction above.

Second, 1/n < a < 1/n'/2. In this case, consider the grid network with [a™!]
nodes in one dimension and n/[a~!| nodes in the other dimension. It is easy

to check that this graph has an expansion of ©(«) and a flow number of
O(a™h). O

Lemma 8 For any logn/n'=¢ < a < 1 where € is an arbitrary positive con-
stant, and any A > 0, there exists a constant degree network G with n vertices,
ezpansion O(a) and flow number F = O(Aa'logn).

Proof. We start with showing this for & = 1. Let G’ be a constant degree
expander, that is, the expansion of G’ is constant. Construct out of G’ a graph
G in which each edge in G’ is replaced by a path of length 3. Each middle edge
of a path is assigned a capacity of 1, and the border edges have a capacity
of A. Had all edges been of capacity A, the flow number would have been
©(logn). However, since the middle edges have capacity 1, the flow number
increases to O(Alogn) = ©(Aa'logn). This result can now be generalized
to other values of a by using the same construction as for the butterfly in the
proof of Lemma 7. O

Combining the lemmas yields Theorem 4. O

Previous best results about the approximability of the UFP gave upper bounds
of O(A%- a~tlogn) [11], and it seems difficult to improve them when using
the expansion as a parameter. If an approximation or competitive ratio of
O(F) can be proved (and we will indeed prove it), Theorem 4 implies much
better results, in particular for networks with /' = ©(a™!). Many of the stan-

12

dard networks (e.g., meshes, butterfly, De Bruijn) actually have this property.
Hence, the flow number F' seems to be more suitable parameter for the UFP
than the expansion.

3 Flow Shortening

The main contribution of this section is the following lemma, which proves that
for every multicommodity flow solution there is an almost optimal solution
consisting of short paths only. Moreover, this short solution can be efficiently
computed using linear programming. For the rest of the paper, we will use the
Shortening lemma with € = 1. Most of our upper bounds rely heavily on it.

Lemma 9 (Shortening Lemma) Suppose we are given a network with flow
number F'. Then, for any € € (0,1] and any feasible solution S to an instance
of the concurrent multicommodity flow problem with a flow value of f, there
exists a feasible solution with flow value f/(1+ €) that uses paths of length at
most 2+ F(1+1/€). Moreover, the flow through any edge e not used by S is at
most € - c(e)/(1+¢).

Proof. Let O denote the set of paths in the solution § with flow value f and
let O’ C O consist of all paths from O that are longer than L, for L = 2- F'/e.
We are going to shorten the paths in O’ at the cost of slightly decreasing the
satisfied demand of each commodity.

For a path p € O’ between s, and t,, let a,1 = sp, ap2, - - -, ap 1, denote its first
L nodes and b,1,---,by, 1,0y = tp its last L nodes and let f, be the size
of the flow along p. Then the set U = Uycor Uiz {ap,i, bpi, fo} is (a subset of)
an instance of the BMFP. By Claim 2, there exists a feasible solution P to U
with flow value at least 1/(2F") consisting of paths of length at most 2F. We
are going to combine the initial and final parts of the long paths in O with
these “shortcuts” in P to obtain the desired short solution.

First, decrease the flows along all paths p € O by a factor of 1/(1+ ¢€) so that
we have room to accommodate new, short paths for the paths in O’. These
short paths are constructed in the following way:

For every path p € O, we replace p by L flow systems S, ;, i =1,---, L. Each
flow system S, ; consists of two parts:

(1) the flow paths between a,; and b,; in P corresponding to the request
{api, by, fp} from U, now with a flow of f,/(L(1+ €)), and

(2) f,/(L(14¢)) units of flow between a,; and a,; along p, and f,/(L(1+¢€))
units of flow between b,; and b, , along p.

13

For each 7, the length of each path in the subsystem S, ; is at most L+2-F', and
fp/(L(1+ €)) units of flow are shipped along each path system S, ;. Summed
over all i« = 1...L, we have f,/(1 + €) units of flow between s, = a,; and
t, = b, 1, which is as high as the original flow through p reduced by 1/(1 +¢).
Hence, we can replace p by the systems S, ; without changing the amount of
flow from s, to t,.

Now, it holds for every edge e that the flow traversing e due to the paths in
O is at most c(e)/(1 + €), and due to the shortcuts in P is at most

Iy 2F e-cle)
2 Ii+o STt 99~ T3¢

pEP: e€p

since

> Qf—;gc(e).

pEP: e€p

Thus, the flows in O and P sum up to at most c¢(e) for an edge e. Therefore,
the modification yields a feasible solution satisfying the desired properties. O

4 Offline Algorithms for the UFP

The UFP seems to be much easier with the no-bottleneck assumption. There-
fore, we will assume for most of this section that the no-bottleneck assumption
is fulfilled (i.e., ¢min > dmar; remember also the assumption d; € [0,1]), and
only in the last subsection we will deal with the UFP without this assumption.
We start with an elementary bounded greedy algorithm (elementary BGA)
with an approximation ratio of O(F') and show that for directed networks
this is essentially the best possible (if nothing is known about ¢y, apart from
Cmin > 1). Then we present a weighted BGA with an approximation ratio of
O(Cain(FYmin — 1)), which is O(log F') if cpin > log F. Finally, we present a
simple greedy algorithm for the UFP without the no-bottleneck assumption
with an approximation ratio of O(y/m).

For a request r let d(r) denote the demand of r and for a flow path p let d(p)
denote the demand of the request associated with p and f, be the flow value
of p. Note that d(p) might be different from f, if p belongs to a fractional
multicommodity flow solution.

14

4.1 The elementary BGA

Consider the following elementary bounded greedy algorithm (or in short, el-
ementary BGA) [7]: Let L be a suitably chosen parameter. Given a request,
reject it if there is no feasible flow path of length at most L between its ter-
minal nodes. Otherwise accept it and select any such path for it.

Theorem 10 For any network G with flow number F', the approximation
ratio of the elementary BGA with parameter L = 4 - F', when run on requests
ordered according to their demands starting with the largest, is at most O(F).

Proof. Let B denote the set of paths for the requests accepted by the BGA
and O be the set of paths in the optimal (integral) solution of the UFP. By
the Shortening Lemma it is possible to modify the optimal solution O into a
(fractional) solution O’ of the same flow value consisting of paths of length at
most 4F only, at the cost of overloading the capacity of edges by a factor of
two.

For a set of paths @ let ||Q|| = X cq fp, Where f, is the flow value of p.
Furthermore, for any e € E and p € O let D(e,p) = ||{q¢ : ¢q € B, e €
q, d(q) > d(p) }|| and let D(e) denote the total capacity of edge e used by
paths in B. A path ¢ € B is a witness for a path p € O if d(q) > d(p) and ¢
and p intersect in at least one edge e such that D(e,p) + d(p) > c(e). A key
element in our proof will be the following fact.

Fact 11 FEvery path p € O’ associated with a request that was not accepted by
the BGA must have a witness in B.

The fact holds, since otherwise the BGA would have been able to accept the
request. Now, let O; C O’ consist of all the paths corresponding to requests
accepted by the BGA and let Oy = O'\ Oy. Clearly, ||O,|| < ||B||. Let E' C E
denote the set of all edges on which some path from O, has a witness in B. By
Fact 11 each p € Oy must have a witness in B. Since the total demand of the
paths in O, traversing an edge exceeds the capacity of that edge by a factor
of at most two, we have ||Os|| < 23 .cp c(e). For every path p € O, that has
a witness ¢ € B at edge e it must hold by definition that D(e, p) +d(p) > c(e)
and further D(e,p) > d(q) > d(p). Hence, 2D(e,p) > c(e) and therefore
D(e) > D(e,p) > c(e)/2. Thus, ||Os|| < 43 e D(e) < 16F - ||B||, because
all paths in B are of length at most 4F. Thus, altogether ||O|| < (16F+1)||B]|,
which proves the theorem. O

We note that if it is guaranteed that all requests have demands at most 1/2
or all requests have demands at least 1/2; than the algorithm works even
without the reordering (which is vital for Fact 11 to hold). This will be used

15

for constructions of the online algorithms.

4.2 A general lower bound for directed networks

Next we show that for directed graphs, the approximation ratio obtained by
the elementary BGA is essentially the best possible. The proof is by reduction
from the NP-hard problem 2DIRPATH: Given a directed graph H and four
distinct vertices si1,1t1, So,t9, are there two edge-disjoint directed paths, one
from s; to t; and the other from s9 to ¢57

Before we state and prove the result, we first have to adapt the definition of
the flow number to directed graphs. For a node u let ¢y, (u) denote the sum
of capacities of outgoing edges and c¢;,(u) the sum of capacities of incoming
edges. The instance Iy of the concurrent multicommodity flow we consider in
the definition of the flow number has for each oriented pair of nodes (v, w)
a single commodity with demand cyu:(v) - ¢in(w)/c(V'). The flow number of
the directed network is the minimum over all feasible solutions S of I of

max{C(S), D(S)}.

Theorem 12 For any € > 0, it is NP-hard to approrimate the UFP on di-

rected graphs with n vertices and flow number F = n", 0 < v < 1/2, within
Fl=e,

Proof. Basically, the proof is by reduction from the NP-hard problem 2DIRPATH,
using the ideas of a construction by Guruswami et al. [6]. Consider any fixed

€ > 0. Let k denote the number of vertices in a given directed graph H for
which the 2DIRPATH problem is to be decided. Furthermore, let G be any con-
stant degree directed graph with n = k'/27¢ vertices with in-degree(v) =out-
degree(v) for every vertex v and flow number F' = n” (such a graph certainly
exists). We construct out of G and copies of H a directed graph G’ with ©(n)
vertices and flow number F’ = ©(n?) in the following way.

Let M be an [x [-mesh with [= F''~=¢ in which all horizontal edges are oriented
to the right and all vertical edges are oriented downwards. Now, replace every
internal node v in M by a copy of H in such a way that the left incoming edge
to v is connected to sy, the right outgoing edge to 1, and the upper incoming
edge to sy, the lower outgoing edge to ty. This results in a directed graph M’
on F17¢. F17¢. k = F? nodes. Let ai,...,a; denote the first {/2 nodes on
the highest row of M’ and by, ..., b;» denote the last [/2 nodes on the lowest
row of M'. In order to obtain the graph G’, we connect G to M’ via /2 edges
leading to aj, ..., a2 and [/2 edges leaving by, . . ., by/2. The endpoints of these
edges in G are chosen in the following way (Figure 1).

Let T be any spanning tree in G. Start at some node v in T" and follow the

16

edges of T in an Euler tour. For every i € {1,...,1} let S; denote the set of
vertices visited between (i — 1)F' 4 1 and ¢ - F' steps of the Euler tour. Since
every node is visited at most twice in an Euler tour, a node can appear in at
most two different sets S;. For every i € {1,...,1/2}, connect the first node
of set S; to node a; and the first node of set Sj/21; to node b;. This results in
a directed graph G’ with the following property.

Lemma 13 The graph G’ has ©(n) nodes and a flow number F' with F' =
Q(F'™) and F' = O(F'").

Proof. Since the diameter of M’ is at least F''=¢, the flow number of G’ is
Q(F'7). It remains to prove the upper bound. Consider the instance I of the
BMFP on G’'. To show which paths to use for routing of the commodities, we
distinguish between three types of commodities:

(1) commodities (u,v) with u,v € G,
(2) commodities (u,v) with u,v € M,
(3) commodities (u,v) with u € G and v € M’ or with u € M’ and v € G.

Commodities of type 1 can be easily connected via paths of congestion and
dilation at most F, since G itself has a flow number F'.

Paths of commodities of type 2 will consist of several parts. First, we connect
all of them to the nodes by, ..., b/, in such a way that the congestion of these
parts in M’ is O(F'*¢) and for each i € {1,2,---,1/2}, the total demand
of paths ending in b; is O(F'*€). Similarly for the last part of the paths:
for each node in M’, a path is chosen from one of the nodes ay,---,q; in
such a way that the congestion of these parts in M’ is O(F'*¢) and for each
i €{1,2,---,1/2}, the total demand of paths starting in a; is O(F1*). We still
have to describe the intermediate part. The point is that after extending every
initial part from a; to the corresponding node in GG and from there evenly to
the nodes in 5;, and similarly extending backwards each last part from b; to
the corresponding node in G' and from there evenly to the nodes in S;, we are
left with an almost balanced instance of the multicommodity flow problem:
if we consider the matching pairs of the initial and final parts as separate
commodities with their demand equalling the demand of the matching parts,
then demand originating and terminating in any vertex of G is at most O(F*).
Thus, by a directed version of Claim 2, it is possible to route the intermediate
parts with congestion and dilation O(F!*¢).

The commodities of type 3 can be dealt with in an analogous way. Putting
everything together, we have a way of routing the instance Iy with congestion
and dilation O(F'*¢), which completes the proof. O

Since ©(n) = poly(k), the size of G’ is polynomial in the size of the graph

17

H. Consider the following instance of the UFP: let s1,..., ;2 be the first /2

nodes of the leftmost column of M’ and t;,...,t;» be the first [/2 nodes of

the lowest row of M’. The set of pairs to connect via a path of capacity 1 is

given by {(s;,t;) : 1 < i < [/2}. Since connecting more than two of these

pairs would mean to solve the 2DIRPATH problem (cf. [6]), it is NP-hard to

distinguish whether there are [/2 = F17¢/2 disjoint paths or just a single one.
O

1/2 edges

i

S30IN0S
=
-

| nodes

i}

1/2 edges

Fig. 1. The construction of the graph G’.

4.8 The weighted BGA

In order to get below the lower bound above for specific instances of the
problem (e.g., for high capacity networks), additional parameters apart from
F are needed. Recall the definition of the minimum capacity, ¢y, = min, c(e).
Since we deal with the no-bottleneck assumption, we have cy;, > 1. We will
assume in this subsection that c,;, is an integral value. Like other variants of
the BGA, also the weighted BGA will process the requests one after the other
without any later rearrangements. For an edge e and a request r let D(e,r)
denote the load of e after processing all requests before r. Furthermore, let
fo(x) = FI#1/<€) for any edge e. The weight of an edge e before processing
request r is defined as w(e,r) = f.(D(e,r)), and the weight of a path p for a
request r is defined as w(p,r) = X ., w(e, 7). Now we are ready to describe the
weighted BGA, which is related to the AAP algorithm by Awerbuch, Azar and
Plotkin [1] but uses a simpler cost function that allows it to be implemented
in a much more efficient way.

Suppose we have a network G with minimum capacity ¢y, and flow number
F. The weighted BGA works as follows: Let L and W be suitably chosen
parameters. Given a request, reject it if there is no flow path p available for
it of length at most L and weight at most . Otherwise, accept it and select
any such path for it.

18

The following theorem shows that the weighted BGA improves exponentially
with an increasing cp,;,,. When reading the theorem, note that for the special
case of cpin > log F it holds cpi, - (FYmin — 1) = O(log F'). We believe that
a similar result can also be shown when using the Shortening Lemma in the
analysis of Azar and Regev [2].

Theorem 14 For any network G with minimum capacity cpin and flow num-
ber F, the approximation ratio of the weighted BGA with parameters L = 4-F
and W =5 F, when run on requests in non-increasing order of demands, is

O(Cmin . (Fl/cmin — 1))

Proof. Let B denote the set of paths for the requests accepted by the weighted
BGA and O be the set of paths in the optimal (integral) solution to the
UFP. By the Shortening Lemma it is possible to modify the solution O into
a (fractional) solution O of the same flow value consisting of paths of length
at most 4F" edges only, at the cost of overloading the capacity of edges by a
factor of at most 2. Let O] C O’ consist of all flow paths whose requests were
rejected by the weighted BGA.

We will need a few more definitions. Let the normalized weight of an edge e
before processing a request r be defined as w(e,r) = d(r) - w(e,r) and the
normalized weight of a path p as w(p,r) = X.cp,w(e, 7). For an edge e let
r{,..., 7 be all the requests that were accepted by the weighted BGA and
routed through e in this order, and let D(e) denote the final load of e, that is,
D(e) = Sk, d(r¢). If there is no danger of confusion we will omit the upper
index e. Recall the definition of D(e,r) at the beginning of this subsection.

Consider now any flow path p € O] and let r be the request associated with
it. Then either (a) one of the edges along p, say e, has the property that
D(e,r)4d(r) > c(e), or (b) w(p,r) > W. This has the following consequences.

(a) Recall that d(r") € [0,1] for every request 7’. Thus, it must hold at the
end that D(e) > c(e) — 1. Let the requests contributing to D(e) before r
was processed be denoted by ry,...,r,. We distinguish between two cases.
If d(r) < 1/2, then D(e,r) > c¢(e) — 1/2 and the sum of the normalized
weights at e after all requests have been processed is at least

k k i—1 c(e)—2
S a(e.r) =Y d(r) - . (z d<rj>) N A
j=1

i=1 i=1 i=0
(using the fact that f. (Zg‘-’;ll d(rj)) = Fe©=D/c©)) This is at least

F—-1

c(e)—1 (o)
Filele) —)
2 BV 1)

N | —

19

If 1/2 < d(r) <1, then only D(e,r) > ¢(e) — 1. However, it is not difficult
to check that for every i € {1,...,¢c(e) — 1} there must be a request r;,
j€{l,...,k}, such that i — 1 < D(e,r;) <, and for request r, c(e) — 1 <
D(e,r) < c(e). Since d(r;) > 1/2 for every j (recall that the weighted BGA
is run on requests sorted in non-increasing order of their demands), the sum
of the normalized weights of e after all requests have been processed is again
at least

k c(e)—
Zu‘;emz Z
i=0

=1

F—1

Fz/c(e _)
2(FU/e — 1)

l\')lH

In both cases, we will use this to assign to p a relative normalized weight of

1 F—-1
2c(e) 2(F1/ee) —1) -

This is at least
F—-1
4cmin(F1/Cmin —-1)

since for all e, c(e) > cmin and therefore c(e)- (FY/°€) —1) < cpyy- (FY/omin —1).
This follows from the fact that the derivation of the function f(z) = x -
(FY* —1)is f'(z) = (1 = In F/2) FY/* — 1 and that f/(z) < 0 for all z > 0.
This is because for x < In F', f'(x) < 0 is obviously true and for z > In F,

Fl/x — 6lnF/I — EiZO (hlf;/:v)z and 171r}F/x _ Ezzo(lﬂF/m)l and therefore
Fie < m In the following, let y(x) = x - (FY/* —1).

(b) Suppose that p = (e1,. .., ¢). Since w(p,r) > W, it holds that 3}_, f..(D(e;,7)) >
W. Analogously to the case (a), for every edge e;, the sum of the normalized
weights of the edge e; after all requests have been processed is at least

Y]Fj/C(ei) o F(D(eiﬂ/c(ei) -1 . fei(D(ei)) —1
Z o Flele) — 1 Flfele) —1

Similar to (a) we assign to p a relative normalized weight (now we sum over
all the edges ¢;):

1 F(D(e) — 1
ze:p 2c(e;) 2 (FVele) — 1) 7

which is again at least (by the definition of w(p))

w(p) —1 S W —1L - F
4-y(cmin) — 4 ¥(Cmin) — 4 Y(Couin) '

Recalling where the relative normalized weight of a path comes from (roughly,
it is a lower bound on the sum, over all edges e on p, of the sum of the

20

normalized weights on the edge e over all requests accepted on e, multiplied
by 5=) it follows for every path p € O] that

F—1 1 Fe

< Zm;w(eurf)

4- P)/(Cmin> €Ep
Hence, we get

4. 7 cmm F—-1
HO,H_ pr pr
peol F peo/ 4 : V(Cmm)
ke

4 7 cmm S f,- ZQC(e)Ew(e,rf)

pe0] eep

4 Cmm e — e
e D D R e

eclk pEO/ eEp 26(6)

4 7 cmm
ZZ

ecF i=1

. 4- V(Cmin> -
= Fo1 B

where w(B) = Y ,cpw(p,7p) and 7, is the request that was accepted and
routed along p by the weighted BGA. From

=2 _dp)-w(p,rp) <> d(p)- W =W-[|B|| = 5F - ||B]]

peB peB

it follows that ||O}|| < O(vy(¢min) - ||B|])- Since ||O'— Of|| < ||B]], also ||O']| <
O(y(¢min)||B||), which concludes the proof. O

4.4 The UFP without the no-bottleneck assumption

In contrast to the previous subsections here we allow c,,;, < 1, that is, demands
may be larger than the minimal edge capacity.

Consider the following careful BGA: Order the requests according to their
demands starting with the largest. Accept a request r if there exists a feasible
path p for it such that after routing r the total flow on at most /m edges of
p is larger than half of their capacity. We say that the request r uses these
edges in their upper half. Let By denote the solution we get. Let By denote the
solution consisting of only the largest request connected by any path. As our
solution we take the maximal of these two, that is B = max (B, Bs).

21

Theorem 15 The solution of the careful BGA is a (6y/m+1)-approzimation.

Proof. Let O denote the optimal unsplittable flow and @' C O its subset
consisting of requests rejected by both runs of the careful BGA algorithm,
that is of requests neither in By nor in B,. Obviously ||O — O'|| < 2 - ||B]].
Consider a path p € O'. There are two possible reasons why the request r
corresponding to p was not routed along p by the careful BGA: either p was
infeasible, which means the existence of an edge e € p where r did not fit in,
or there are (at least) \/m edges ey, -, e s on p that would be used by in
their upper half, that is for each e; the sum of d(p) and the flow on e; in the
moment of deciding about p was larger than half of their capacity c(e;)/2.

Let us think about the first rejection reason. Since the requests were processed
according to their demands, the flow on e in the moment of rejecting p was
more than c(e)/2. Consider the paths from B; participating on this flow that
use the edge e in the upper half. Again, due to processing the requests accord-
ing to their demands, the sum of flow values of these paths is at least c(e)/4
(if d(p) < c(e)/4, then there is less than c(e)/4 capacity available in e and
therefore the sum of flow values of paths that use e in the upper half is at
least c(e)/4; if d(p) > c(e)/4, then the smallest request routed though e uses
e in the upper half, and due to the ordering of the requests, its demand is at
least d(p) > c(e)/4). Each of these paths ¢ is called a type I witness of p and
its weight for p is defined as d(q)-d(p)/c(e). Note that the total weight of each
path ¢ € B; as a type I witness for paths in O’ is at most d(q) - /m (q serves
as a type I witness only on edges that are used by it in the upper half and
the number of these is upper bounded by y/m), and, on the other hand, each
path p € O’ rejected for the first reason has witnesses in B; with total weight
at least d(p)/4. Thus, the total demand of paths rejected for the first reason
is at most 4v/m||B]|.

If the path p € O’ was rejected for the second reason then either (a) there are
more than /m/2 edges on p such that d(p) > c(e)/2 for each of them, or (b)
there are \/m/2 edges each with a flow at least d(p). In the former case, the
total number of paths in the optimal solution that use more than a half of
capacity of more than /m/2 edges is less than 2/m and their total demand is
at most 2,/m||Bs||. In the latter case, the paths on the \/m/2 edges are called
type II witnesses and the weight of ¢ which meets on e; with p is defined as
d(q)-d(p)/c(e;). The weight of each path g € By as a type Il witness is at most
d(q) - m (q can serve as a type II witness on each edge e € ¢, and the length
of ¢ is upper bounded by the number of edges m) and, on the other hand,
the total weight of type II witnesses for each path in O rejected for the ‘2b’
reason is at least d(p) - v/m/2. Therefore, by double counting, total demand
of paths rejected for the 2b’ reason is at most 2y/m||B;||. O

22

Note that the flow number is useless without the no-bottleneck assumption.
For example, think about an expander network G1(V, E;) on n nodes with all
edge capacities equal to 1 — ¢, for some € > 0, and about a mesh Go(V, E) on
n nodes with all edge capacities equal to one. The flow number of a network
G(V, Ey U Ey) is O(logn) but if all requests have demands larger than 1 — e,
they can only make use of the mesh subnetwork with flow number ©(y/n).
Thus, the flow number does not help to get better algorithms in this setting.

5 Online algorithms for the UFP

So far we only presented offline algorithms. Since in real systems requests usu-
ally arrive in a continuous fashion, it is important to find also efficient online
algorithms. Throughout the section we will assume that the no-bottleneck
assumption is true, i.e. ¢y, > 1.

Our aim will be to ensure that at the end of any input sequence of requests,
the total demand of the connected paths is close to the best possible total
demand. That is, we search for algorithms with a competitive ratio that is
as small as possible. As a reminder, the competitive ratio of a deterministic
online algorithm is defined as

OPT (o)
c=sup ——

o ON(O') ’

where the supremum is taken over all possible sequences of requests o, ON (o)
is the profit of the online algorithm on o, and OPT(0) is the profit of an
optimal offline algorithm. In our case, the profit is the sum of all satisfied
demands. Similarly, the competitive ratio of a randomized online algorithm is
defined as

OPT (o)

c = sup

o E[ON(o)] "
5.1 Online algorithms that do not cancel paths

If iy is an integral capacity of at least 2, then we can use the weighted BGA
presented in Section 4.3 to obtain the following result.

Theorem 16 For any network G with capacity cnin > 2 and flow number
F, the competitive ratio of the weighted BGA with parameters L = 4 - F and
W =5-F and cost function f.(z) = FITV/(O)=D s O(cpy, - (FY(emin=b) — 1)),

23

Proof. The proof works in the same way as the proof of Theorem 14. The
difference is that here the requests are not processed according to their de-
mands, which results in a weaker bound (i.e., the power 1/(¢pin — 1) in the
on-line case versus 1/cy, in the off-line case). O

The next theorem shows that this upper bound is the best possible by provid-
ing a matching lower bound. The proof follows the arguments given by Azar
and Regev [2] in their Q(cpi, - n'/emin)) lower bound. However, since the proof
does not appear in the published version of their paper, we provide for the
sake of completeness a full description of its improved version here. The trick
to improve their lower bound to the lower bound below is to offer an additional
request of demand e at the beginning, where € > 0 is sufficiently small. This
reduces the usable capacity for the following requests from ¢y, to cpin — 1.

Theorem 17 For all F' and all integral 2 < cpin < log F there is a network G
of minimum edge capacity cmin and flow number O(F') such that the competitive
ratio of any deterministic online algorithm on G is Q(cyy, - FY/(@min=1),

Proof. We will restrict ourselves to considering a linear array with edge
capacities ¢y, consisting of n 4+ 1 nodes numbered from 0 to n. Obviously, in
this case F' = ©(n). The general case can simply be obtained by attaching a
linear array of F' nodes and edge capacities ¢y, to a network with flow number
F' and minimal edge capacity cpin. Let & = cpin — 1. For simplicity we also
assume that n = r* for some integer 7.

For any deterministic online algorithm we are going to describe an input se-
quence on which the given algorithm is Q((k + 1) - n'/¥) times worse than the
optimal one. For any algorithm, the first request in the sequence will always
be a request between 0 and n with a small demand € > 0. Any algorithm with
a bounded competitive ratio has to accept it. The rest of the sequence will be
described with a help of a complete r-ary tree T of height k: the root is at level
0 and the leaves are at level k. Given any drawing of the tree in the plane, we
number the nodes in each level from left to right with integers starting from
0. Now we associate each node of T" with a segment of our line graph. A node
j in level 4, 0 < i < k, corresponds to the interval between nodes j - r*~% and
(+1)-7%7%. Note that for any non-leaf node of T its children’s’ segments are
disjoint (up to the border nodes) parts of its own segment.

The rest of the input sequence (till now we have just the first request) is
constructed as follows. All further request will be of demand one. We traverse
the tree in a depth first search manner, starting from the root. In each node
u we present to the algorithm a sequence of identical requests between end-
nodes of the interval corresponding to w until either i) the algorithm accepts
one, or ii) we have already presented k + 1 such requests in this node. In the
former case we keep traversing the tree in the DFS order, in the later case

24

we skip all nodes in the subtree of v and then continue in the DFS traversal
of the tree. Note that if we happen to arrive to a leaf of the tree during the
DEFS traversal, the algorithm cannot accept any of the requests presented here
since there are already k other accepted requests overlapping with the leaf’s
corresponding interval plus the € request.

Let 7" C T be a tree consisting of all nodes of T really visited by our traversal
of the tree. The profit of the algorithm is equal to the number of inner nodes
of T" plus €. On the other hand, a better solution is to accept the k41 requests
for each leaf of T". Since the number of the leaves of 7" is r — 1 times larger
than the number of the inner nodes (can be proved by induction) the lower
bound follows.

O

The performance guarantee of the weighted BGA in the online setting (Theo-
rem 16) is asymptotically weaker than its performance guarantee in the off-line
setting (Theorem 14). However, there are still ways to get better algorithms
even in the online setting:

(1) To use randomized algorithms. Both the elementary BGA and weighted
BGA can be easily modified into algorithms with the same performance
guarantee as their off-line counterparts. This is considered in Theorems 18
and 19.

(2) To allow the on-line algorithm to cancel previously established paths.
Subsection 5.2 deals with this setting.

For ¢y = 1, the randomized elementary BGA works as follows, using the
same trick as Azar and Regev [2]: With probability 1/2 either consider only
requests of demand less than 1/2 or consider only requests of demand at least
1/2. Use the elementary BGA with parameter L = 4F to decide whether to
accept or reject requests in the chosen group.

Theorem 18 The randomized elementary BGA has a competitive ratio of
O(F).

Proof. Let O be the set of paths accepted by the optimal solution. Fur-
thermore, let O be the set of paths with demands less than 1/2 and O” be
the set of paths with demands at least 1/2. The result easily follows from
the remark after Theorem 10. With probability 1/2 the algorithm considers
only those requests (either smaller or larger than 1/2) that compose most of
the optimal profit and on this subsequence the performance is guaranteed by
Theorem 10. O

25

The same separation trick also works when applied to the weighted BGA.

Theorem 19 The randomized weighted BGA has a competitive ratio of O(cmin:
(Fl/enin — 1)) .

5.2 Online algorithms that cancel paths

In this section we will present online algorithms that are allowed to cancel
paths. However, any request whose path has been canceled is not allowed to
be reestablished later. Hence, the online algorithms we will consider are still
very restricted: the requests arrive one after the other, and for each of them
the algorithm has to decide before knowing the next requests in the input
sequence whether to accept it or not. If the request is accepted, a flow path
has to be provided for it that, in addition to the already established paths,
does not exceed the capacity of any edge. To achieve this, the algorithm is
allowed to cancel previously connected requests but cannot reconnect them
later.

Consider the following online algorithm, called rude BGA with parameter L:
Given a request of demand d, check whether there is a flow path of value d
and length at most L available for it after canceling previously established
paths of total flow value at most d/2. If so, establish the new request along
any of these paths and cancel the corresponding old requests (if necessary).
Otherwise, reject the request.

We call paths that get canceled due to a request r victims of r. The rude BGA
has the following performance.

Theorem 20 The rude BGA with parameter 4F has a competitive ratio of
O(F).

Proof. Let B be the paths used at the end by the rude BGA and O be the
paths used by an optimal offline strategy. For any path p let f, be its flow
value and d(p) be the demand of the request associated with it. For any set of
paths @Q let ||Q[| = X,cq fp- Let B’ be the set of all flow paths ever selected
by the rude BGA, even if they were canceled later on.

Lemma 21
1B <2-|B]|.

Proof. Our strategy for proving the lemma will be to distribute the flow
values of the paths in B in a suitable way among the paths in B’. Suppose
that in a first step every path p € B moves f, units of its flow to each of its
victims ¢. This is possible, since the flow value of p exceeds the flow values of

26

its victims by a factor of at least 2. Next, each victim ¢ that got a value of f,
moves a value of f, to each of its victims ¢'. This is continued until all paths
in B’ have received a flow value. Since the rude BGA ensures that the sum of
the flow values of the victims of a path p is at most d(p)/2, it is easy to see
that the values of the paths in B are distributed by the above process among
the paths in B’ so that every path ¢ € B’ has a value of at least d(q)/2. Thus,
B[<2- Bl O

For an edge e € E let D(e) denote the sum of flow values of the paths in
B’ passing through edge e. A set of flow paths {qi,...,qx} C B’ is a set of
witnesses for a flow path p € O if };d(¢;) > d(p)/2 and for every i, ¢; and
p share at least one edge. As in the previous proofs the goal is to show that
the requests rejected by the rude BGA but accepted by OPT have enough
witnesses in B’ without using each path in B’ too often as a witness.

According to Lemma 9 we can assume that all paths in O have a length of at
most 4 - F' and for every edge e the sum of the demands of paths in O crossing
e is at most 2c(e). Let O be the set of all paths in O that do not correspond
to requests accepted by B'. Since ||O\ O’|| < ||B'|| it remains to bound ||O'].

First note that each p € O’ must have a set of witnesses in B’ since otherwise
the rude BGA would have been able to accept the corresponding request. Let
E' C E denote the set of all edges e on which some path from O’ has a
witness in B' and for which D(e) > ¢(e)/2. Let O” C O’ be the set of paths
that contain at least one edge from E’. Then

JO"[| < > 2¢(e) <4 D(e) <16-F-||B],

e€cE’ e€cE’

because all paths in B’ are of length at most 4 - F'.

For each of the remaining paths p € O"\ O” it holds that there must be a set
of edges F, with d(p) < 23 .cg, D(e) and d(p) > c(e) — D(e) for all e € E,
since otherwise the rude BGA would have been able to accept the request
corresponding to p. Let E” = U,conor E, be the set of all of these edges.
Since for every p € O’ \ 0" we have D(e) < c(e)/2 for all e € E,, it holds that
d(p) > c(e)/2 for all of these edges. Thus,

oN= Y f= Y L)

pe@\O" pe@\O" d(p)
f; f;
< Z d(p)~22D(e):22D(e) Z d(p)
peO\O" p ecE, eeR" peO\O": e€E, p

27

<4)" D(e) > iggz D(e) <32-F-||B] .

eeE// peo/\O//: EGEp C(e) eeE‘//
Therefore, ||O'|| <48 - F - ||B||, which completes the proof. O

Next we show that for the case that c.;, is known and cy;, > 1, a better
competitive ratio can be achieved when using the following weighted rude
BGA: Let L and W be suitably chosen parameters. Given a request r, accept
it there is a flow path for r of length at most L and weight at most W, with a
possible cancellation of old paths with total weight at most W/2. Otherwise,
reject it.

Theorem 22 For any network G with cnyw > 1 and flow number F, the
competitive ratio of the weighted rude BGA with parameters L = 4 - F' and
W =5-F is O(cupin - (FYmin —1)).

Proof. The proof is basically a combination of the proofs of Theorem 14
and Theorem 20: First, it is shown that the weighted rude BGA ensures that
w(B') < 2w(B). Then B’ (or actually the highest total demand each edge ever
reaches during the algorithm; all other requests can be neglected) is compared
with O and it is shown that ||O'|| < w ~w(B).

Given a flow path p associated with a request r that was accepted by the
optimal algorithm but not by the weighted rude BGA, cases (a.1) and (b)
from the proof of Theorem 14 go through as before. The only problematic
case is (a.2), i.e. 1/2 < d(r) < 1, namely the situation when the minimum
weight of paths that have to be canceled in order to be able to route the
request r along the path p, exceeds half of the weight of p while the weight of
p is still at most W. Recall that the weight of a path ¢ is w(q) = X.c, w(e).
Let v(e) denote the total weight of the paths passing through an edge e € p
that would have had to be canceled in order to accept r along p. Since r was
rejected, it must hold that w(p) < 23, v(e). Hence, there must exist an
e € p with v(e) > w(e)/2. Let @ be the set of paths corresponding to v(e).
Since d(r) < 1, all paths ¢ € @ must have a normalized weight of at least
d(q) - f(c(e) — 1). Hence, all paths ¢ € @ together must have a normalized
weight of at least v(e) - f(c(e) — 1) > (w(e)/2) - f(e(e) = 1) > f(e(e) —1)/4
(recall that w(e) > 1/2). This allows to show in a similar way to (a).2 that
the total normalized weight of all paths in e is at least ﬁ Thus, the
analysis goes through as before. O

28

6 Open Problems

In this paper we have made a significant advance in proving better bounds on
the approximation ratio and the competitive ratio of algorithms for the UFP.
However, many problems remain open. For instance, are there lower bounds
on the approximation ratio for undirected graphs that are close to those for
directed graphs? Is the Shortening Lemma essentially best possible in a sense
that any rearrangement to short paths does cause a decrease in the flow value?
Can constant factor approximation schemes also be found for ¢, = o(log F)?
Also, although the presented algorithms substantially improve the previous
upper bounds, they still do not make use of the fact that all the paths in
the optimal solution for the UFP have to be unsplittable. In fact, they only
compare the offline or online solution with an optimal fractional solution (and
the fractional solution may be significantly larger - by a /m factor on the
brick wall). Can the unsplittability be exploited in the analysis to obtain
better bounds?

References

[1] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive on-line
routing. In Proceedings of the 34th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 32—40, 1993.

[2] Y. Azar and O. Regev. Strongly polynomial algorithms for the unsplittable
flow problem. In Proceedings of the S8th Conference on Integer Programming
and Combinatorial Optimization (IPCO), 2001.

[3] A. Baveja and A. Srinivasan. Approximation algorithms for disjoint paths
and related routing and packing problems. MOR: Mathematics of Operations
Research, 25, 2000.

[4] A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar. Approximation
algorithms for the unsplittable flow problem. In Proceedings of the 5th
International Workshop on Approximation Algorithms for Combinatorial

Optimization (APPROX), 2002.

[5] Y. Dinitz, N. Garg, and M. Goemans. On the single source unsplittable flow
problem. In Proceedings of the 39th Annual Symposium on Foundations of
Computer Science, pages 290-299, 1998.

[6] V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yannakakis.
Near-optimal hardness results and approximation algorithms for edge-disjoint
paths and related problems. In Proceedings of the 31st ACM Symposium on
Theory of Computing (STOC), pages 19-28, 1999.

29

[7] J. Kleinberg. Approzimation Algorithms for Disjoint Paths Problems.
PhD thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 1996.

[8] J. Kleinberg and R. Rubinfeld. Short paths in expander graphs. In Proceedings
of the 37th Annual Symposium on Foundations of Computer Science, pages
86-95, 1996.

9] S. G. Kolliopoulos and C. Stein. Improved approximation algorithms for
unsplittable flow problems. In Proceedings of the 38th Annual Symposium on
Foundations of Computer Science, pages 426-435, 1997.

[10] S. G. Kolliopoulos and C. Stein. Approximating disjoint-path problems using
greedy algorithms and packing integer programs. In Proceedings of the 6th
Integer Programming and Combinatorial Optimization Conference (IPCO),
volume 1412 of Lecture Notes in Computer Science, pages 153-162, 1998.

[11] P. Kolman and C. Scheideler. Simple, routing-based on-line algorithms for
maximum disjoint paths problem. In Proceedings of the 13th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA), pages 3847,
2001.

[12] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays
- Trees - Hypercubes. Morgan Kaufmann, San Mateo, 1992.

[13] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their
use in designing approximation algorithms. Journal of the ACM, 46(6):787-832,
Nov. 1999.

[14] C. Scheideler. Universal Routing Strategies for Interconnection Networks.
Lecture Notes in Computer Science 1390, Springer Verlag, 1998.

[15] A. Srinivasan. Improved approximations for edge-disjoint paths, unsplittable
flow, and related routing problems. In 38th Annual Symposium on Foundations
of Computer Science, pages 416-425, 20-22 Oct. 1997.

30

