
Compact, Adaptive Placement Schemes for
Non-Uniform Capacities

André Brinkmann∗

Heinz Nixdorf Institute and
Dept. of Electrical Engineering

University of Paderborn
33102 Paderborn, Germany

brinkman@hni.upb.de

Kay Salzwedel †

Heinz Nixdorf Institute and
Dept. of Mathematics and

Computer Science
University of Paderborn

33102 Paderborn, Germany

kay@hni.upb.de

Christian Scheideler‡
Dept. of Computer Science
Johns Hopkins University
3400 N. Charles Street

Baltimore, MD 21218, USA

scheideler@cs.jhu.edu

ABSTRACT
In this paper we study the problem of designing compact, adaptive
strategies for the distribution of objects among a heterogeneous set
of servers. Ideally, such a strategy should allow the computation
of the position of an object with a low time and space complexity,
and it should be able to adapt with a near-minimum amount of re-
placements of objects to changes in the capabilities of the servers so
that objects are always distributed among the servers according to
their capabilities. Previous techniques are able to handle these re-
quirements only in part. For example, standard hashing techniques
can be used to achieve a non-uniform distribution of objects among
a set of servers and the time and space efficient computation of
the position of the objects, but they usually do not adapt well to a
change in the capabilities. We present two strategies based on hash-
ing that achieve all of the goals above. Furthermore, we give a list
of applications for these strategies demonstrating that they can be
used efficiently for distributed data management, web caches, and
adaptive random graphs, which may be of interest for peer-to-peer
networks.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—distributed databases; E.2 [Data Storage Representations]:
Hash-table representations; F.2.2 [Analysis of Algorithms and Prob-
lem Complexity]: Nonnumerical Algorithms—Routing and lay-

∗Supported in part by the DFG-Sonderforschungsbereich 376
“Massive Parallelität: Algorithmen, Entwurfsmethoden, Anwen-
dungen”.
†Partially supported by the Future and Emerging Technologies
programme of the EU under contract number IST-1999-14186
(ALCOM-FT).
‡Part of the work was done being a member of the Heinz Nix-
dorf Institute at the Paderborn University, supported by the DFG-
Sonderforschungsbereich 376 “Massive Parallelität: Algorithmen,
Entwurfsmethoden, Anwendungen”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’02, August 10-13, 2002, Winnipeg, Manitoba, Canada.
Copyright 2002 ACM 1-58113-529-7/02/0008 ...$5.00.

out; H.2.7 [Database Management]: Database Administration—
data dictionary/directory

General Terms
Algorithms, Theory

Keywords
adaptive hashing, non-uniform disks, balls into bins, RAID, dis-
tributed data storage, web caching, random graphs

1. INTRODUCTION
In this paper we study the problem of designing compact, adap-

tive placement schemes for servers with non-uniform capacities. In
particular, we are interested in schemes that allow to achieve the
following goals:

1. Faithful distribution, i.e. distributing a set of objects among
a set of servers in such a way that the fraction of objects
stored at a server is equal (or at least close) to its share of the
total capacity of the system.

2. Efficient localization, i.e. computing the position of an ob-
ject with a low time and space complexity.

3. Fast adaptation, i.e. adapting to changing capacities with a
near-minimal movement of objects.

Especially the space complexity is an important aspect, since
if enough space were available to store a lookup table for all ob-
jects, the tasks above could be solved in a trivial way. A placement
scheme with a low space complexity is called compact.

A standard approach for achieving the first two items has been
to use random hash functions. However, the problem with using
hash functions is that they are usually not adaptive. Consider, for
example, the hash function h(x) = ((a ·x+ b) mod p) mod n that
can be used to distribute a set of objects among n servers. If a new
server is added, we are left with two choices: either replacing n by
n + 1 (which would require virtually all objects to be replaced) or
adding additional rules to h(x) to force a certain set of objects to be
replaced to the new server (which, in the long run, would destroy
the compactness of the hashing scheme).

Compact, adaptive placement schemes have many applications.
Consider, for example, a storage system that consists of a large col-
lection of disks. Over the time, new disks may be added and old
disks may be taken out or fail. To ensure that a storage system

can be used at maximum performance, it would be desirable to dis-
tribute the data among the available disks according to their capa-
bilities. As the disks in the system or its configuration change, one
has to redistribute data in an efficient way. Techniques currently
used in practice such as the various RAID levels cannot solve this
problem efficiently. For example, virtually all data has to be re-
placed to fully integrate a new disk into an existing RAID array.
The RAID levels also do not allow to support non-uniform disks.
Even though there are some efforts under way to expand the RAID
levels to handle non-uniform disks efficiently [16, 4, 3], a general
solution has yet to be found. In addition to (re-)distributing data
among disks according to their capabilities, it is also important to
be able to determine the disk storing a particular data item in a fast
and compact way to ensure that a high load of data requests can be
handled with a reasonable amount of resources.

The problem of distributing blocks among a set of disks is closely
related to the application of web caching, i.e. evenly distributing a
number of copies of an original object among a set of web caches
(see e.g. [13]). Web caching introduces a new level of complex-
ity for the placement algorithm, because in the distributed Internet
environment the client may not know all participating web caches.
One additional task of the algorithm in web caching is to minimize
the number of copies of an object that are required to guarantee
w.h.p. that if the client has a sufficiently consistent view of the web
caches, at least one copy of an object can be found by the client.

Another important application of adaptive placement schemes is
the problem of distributing tasks among processors of a distributed
system. Adaptivity is important here, since it may not be pre-
dictable how long a task has to be executed and how long and to
which extent a processor may be available. Hence, in order to ex-
ploit the full strength of a distributed system, it may be necessary
to redistribute tasks among the processors. Since tasks may need to
exchange information, it is also important that the current position
of a task can be computed in a fast and compact way.

A forth important area in which adaptive placement schemes
may be a valuable tool is the adaptation of random graphs to changes
in the number of nodes, edges, or node degrees. Many results are
already known about how to construct static, random graphs, but
it has not been investigated so far how to efficiently adapt, for ex-
ample, random regular graphs to changes so that they stay random.
Algorithms that solve this problem may be of particular interest for
peer-to-peer networks, because random graphs have many desir-
able properties such as a low diameter and high expansion.

We will give more applications in Section 4, but first we specify
our model and give an overview of previous results and our new
results.

1.1 The Model
We adopt and extend the standard balls into bins model in which

each server is represented by a bin and each object (representing,
e.g., a data block or task) is represented by a ball. Let {1, . . . , N}
be the set of all possible bins and {1, . . . , M} be the set of all pos-
sible balls that can be in the system at any time. Suppose that the
current number of balls in the system is m ≤ M and that the cur-
rent number of bins in the system is n ≤ N . We will often assume
for simplicity that the balls and bins are numbered in a consecutive
way starting with 1 (but any numbering that gives unique numbers
to each ball and bin would work for our strategies). Let the cur-
rent capacity of bin i be given by a parameter di and the current
capacity distribution of the system be defined as (d1, . . . , dn). The
capacity di of a bin i can be arbitrarily defined, e.g. as its storage
capacity, its bandwidth, its computational power, or a mixture of
theses parameters. In the remainder of the paper we will use rela-

tive values for the di’s, i.e. di ∈ [0, 1] for each i and
∑

i di = 1.
This can be achieved by simply dividing the original capacity of a
bin by the capacity of the system. Our goal is to achieve that every
bin i with capacity di obtains di · m of the balls.

The system may now change in a way that the number of avail-
able balls, the number of available bins, or the capacities of the
bins change. In this case a placement scheme is needed that fulfills
several criteria:

• Faithfulness: A scheme is called faithful if the expected
number of balls it places at bin i is between �(1 − ε)di · m�
and �(1 + ε)di · m� for all i, where ε > 0 can be made
arbitrarily small.

• Time Efficiency: A scheme is called time-efficient if it al-
lows a fast computation of the position of a ball.

• Compactness: We call a scheme compact if the amount of
information the scheme requires to compute the position of
a ball is small (in particular, it should only depend on N and
m in a logarithmic way).

• Adaptivity: We call a faithful scheme adaptive if in the case
that there is any change in the number of balls, bins, or the
capacities of the system, it allows to redistribute balls to get
back to a faithful distribution. To measure the adaptivity of
a placement scheme, we use competitive analysis. For any
sequence of operations σ that represent changes in the sys-
tem, we intend to compare the number of (re-)placements of
balls performed by the given scheme with the number of (re-
)placements of balls performed by an optimal strategy that
ensures that, after every operation, the distribution of balls
among the bins is perfectly faithful (i.e. bin i has exactly
dim balls, up to ±1). A placement strategy will be called c-
competitive if for any sequence of changes σ, it requires the
(re-)placement of (an expected number of) at most c times
the number of balls an optimal adaptive and perfectly faith-
ful strategy would need.

To clarify the last definition, notice that when the capacity distri-
bution in the system changes from (d1, ..., dn) to (d′

1, ..., d
′
n), an

optimal, perfectly faithful strategy would need∑
i:di>d′

i

(di − d′
i) · m

replacements of objects. Thus, if for example the capacity distri-
bution changes from (1/2, 1/2, 0) to (0, 1/2, 1/2) (bin 1 leaves
and bin 3 enters the system), ideally only a fraction of 1/2 of the
objects would have to be moved. We will see in the following sec-
tions that the constant ε that describes the faithfulness of our al-
gorithms influences the time efficiency and the compactness of our
algorithms, but has only a very minor influence on the number of
replacements of balls if it is small. Therefore, we will compare the
number of replacements of our algorithms with the ideal bound on
the replacements of an optimal algorithm above.

1.2 Previous results
Compact, adaptive placement strategies are relatively new. So

far, only good strategies are known for uniform capacities, that
is, all available bins have the same capacity. In our model, this
is represented by di = 1/n for all available bins. In this case,
it only remains to cope with situations in which new bins enter
or old bins leave the system. Karger et al. [6] present an adap-
tive hashing strategy that is faithful and 2-competitive (resp. 1-
competitive if new bins can be renamed to take over the role of

departing bins, but this would destroy several properties shown in
[6], since it would not be oblivious any more). In addition, the com-
putation of the position of a ball takes only an expected number of
O(1) steps. However, their data structures need at least n log2 n
bits to ensure that with high probability the distribution of the balls
does not deviate by more than a constant factor from the desired
distribution. Furthermore, extending this strategy in a straight-
forward way to achieve a faithful distribution also for the hetero-
geneous case may require a tremendous increase in the space com-
plexity (see Section 2.1). Brinkmann et al. [2] presented an alterna-
tive, 2-competitive placement strategy for uniform demands. Their
scheme requires O(n log n) bits and O(log n) steps to evaluate the
position of a ball. Furthermore, it keeps the deviation from the de-
sired number of balls in a bin extremely small with high probabil-
ity: if the number of balls fulfills m ≥ n ln n, then the maximum
number of balls per bin is bounded by m/n + O(

√
m ln n/n),

w.h.p. (The scheme in [6] only achieves O(m/n) with high prob-
ability if O(n log2 n) bits are used, even if m 	 n.) Also the
scheme by Brinkmann et al. does not seem to be extendable in a
straight-forward way to non-uniform capacities (see [2] for some
attempts). Another adaptive placement strategy was proposed by
Sanders [11]. He considers the case that bins fail and suggests to
use a set of forwarding hash functions h1, h2, . . ., where at the time
hi is set up, only bins that are intact at that time are included in its
range. From his description it seems that this strategy can cope rea-
sonably well with failed disks, but it runs into problems when the
number of disks grows.

1.3 New results
To the best of our knowledge, all three strategies above do not

seem to be extendable to non-uniform demands without either a
significant increase in memory, losing the faithfulness condition,
and/or a bad adaptivity (for further explanations, see Section 2.1).
Instead, we found two new strategies, called SHARE and SIEVE,
that are compact, faithful for arbitrary non-uniform capacity distri-
butions, and (2+ ε)-competitive for arbitrary changes from one ca-
pacity distribution to another, where ε > 0 can be made arbitrarily
small. We also demonstrate that these strategies have many inter-
esting applications in distributed data management, web caching,
and adaptive random graphs (which may be of interest for peer-
to-peer networks) by proving additional properties of SHARE and
SIEVE important for these areas.

1.4 Tools
For many of our results we will need the following so-called

Chernoff-Hoeffding bounds [5].

LEMMA 1.1 (CHERNOFF-HOEFFDING). Consider any set of
n independent random variables X1, . . . , Xn that take values in
the range [0, k]. Let X =

∑n
i=1 Xi and μ = E[X]. Then it holds

for all δ ≥ 0 that

Pr[X ≥ (1 + δ)μ] ≤ e−min[δ2, δ]·μ/(3k)

and for all 0 ≤ δ ≤ 1 that

Pr[X ≤ (1 − δ)μ] ≤ e−δ2·μ/(2k) .

1.5 Overview of the paper
In the next two sections we will present and analyze our new

strategies SHARE and SIEVE. Afterwards, we give some applica-
tions including distributed data servers, web-caching, and the gen-
eration of adaptive random graphs. The paper is finished by a con-
clusion.

2. THE SHARE STRATEGY
The SHARE strategy works in two phases. The first phase han-

dles the heterogeneous capacities of the bins by using a data struc-
ture (containing intervals of appropriate length for each bin) that al-
lows to reduce the non-uniform placement problem to the uniform
placement problem. Given a ball b, the result of this phase is a set S
of bins that are equally likely to contain b. In the second phase we
can then use a strategy for uniform capacities to determine the bin
in S that stores b. Hence, the SHARE strategy requires as a sub-
routine an adaptive hashing strategy for uniform capacities. (We
say that a system has uniform capacities if for all available bins i,
di = 1/n.) In the uniform case, capacities can only change when
new bins enter the system or old bins leave the system. Several
strategies as noted in the previous results section have already been
presented that are competitive for the uniform case. We will give as
an example a strategy that was presented by Karger et al. [6], since
it will be the most useful for our goals.

2.1 The NEAREST NEIGHBOR strategy
We start with a strategy, called here NEAREST NEIGHBOR,

that solves the problem of redistributing balls under uniform ca-
pacities. It works as follows:

Suppose that we have a random function fB and a set of in-
dependent, random functions g1, . . . , gk, where k may depend on
n. The function fB : {1, . . . , M} → [0, 1) maps the balls uni-
formly at random to real numbers in the interval [0, 1) and each
function gi : {1, . . . , N} → [0, 1) maps the bins uniformly at
random to real numbers in the interval [0, 1). Ball i is assigned
to the bin closest to it with regard to this mapping when view-
ing [0, 1) as a ring, i.e. it is assigned to the bin b that minimizes
minj min[|fB(i) − gj(b)|, 1 − |fB(i) − gj(b)|].

From the proofs in [6] it follows that this strategy is faithful and
2-competitive (in the expected sense, if renaming of bins is not
allowed) and that it can be implemented in a way that the location
of a ball can be determined in expected constant time. It requires
k to be Ω(log N) to ensure that for any n ≤ N it is very unlikely
to have a more than constant factor deviation from the expected
number of balls in a bin. This results in a space consumption of
around O(n log N) words (assuming that one word can hold log n
bits and not including the hash functions).

One might think that this strategy can be easily extended to cover
the heterogeneous case by allowing bins with more capacity to
have more random points in [0, 1). However, this would require
Ω(min[cmax/cmin, m]) points to be faithful, where cmax is the
maximum capacity and cmin is the minimum capacity of a bin.
Thus, in the worst case the number of points could be as much as
Θ(m), violating severely our conditions on the space complexity.
On the other hand, restricting the total number of points to some-
thing strictly below m cannot guarantee faithfulness under any ca-
pacity distribution (just consider two bins with capacities c/m and
(m − c)/m for some constant c > 1).

The other two strategies mentioned in the previous results have
the same problems.

2.2 The non-uniform algorithm
Now we are ready to describe the SHARE strategy. As men-

tioned above, SHARE needs an adaptive strategy for uniform ca-
pacities. For convenience, we will use the NEAREST NEIGHBOR
strategy, which will be called by the command NEAREST(b,S). In
this call, b is the number of a ball and S represents the set of bins
to which NEAREST NEIGHBOR is applied. The return value of
the function is the number of the bin storing b. SHARE is based on
two hash functions (in addition to the hash functions that are used

by NEAREST NEIGHBOR): a hash function h : {1, . . . , M} →
[0, 1) that maps the balls uniformly at random to real numbers in
the interval [0, 1), and a hash function g : {1, . . . , N} → [0, 1)
that maps starting points of intervals for the bins uniformly at ran-
dom to real numbers in [0, 1]. In addition, two fixed parameters
s ≥ 1 and 1/N ≤ δ < 1 are used. s is the stretch factor needed to
ensure high probability and δ is used to simplify the analysis. We
will specify their values later. SHARE works in the following way:

Suppose that the capacities for the n given bins are represented
by (d1, . . . , dn) ∈ [0, 1)n. To make sure that bins will not have
a too high capacity (which would complicate some of our proofs),
we use the following strategy: For every bin i with di ≥ δ, we
introduce �di/δ� virtual bins i′ with di′ = δ and, if necessary, one
additional bin taking the rest so that their total capacity is equal to
di. Every other bin is left as it is and regarded as a single virtual
bin. It is easy to see that this transformation creates n′ ≤ n + 1/δ
virtual bins with a capacity of at most δ each. Now, every virtual
bin i is given an interval Ii of length s · di, for some fixed stretch
factor s, that reaches from g(i) to (g(i)+s·di) mod 1, where [0, 1)
is viewed as a ring. We will assume that δ ≤ 1/s to prevent an
interval being wrapped around [0, 1) for several times. This keeps
the description and analysis of SHARE simple.

For every x ∈ [0, 1) let Cx = {i : x ∈ Ii} and cx = |Cx|,
which is called the contention at point x. Since the total number of
endpoints of all intervals Ii is at most 2n′ ≤ 2(n+1/δ), [0, 1) has
to be cut into at most 2(n + 1/δ) frames Fj ⊆ [0, 1) so that for
each frame Fj , Cx is the same for each x ∈ Fj . This is important
to ensure that the data structures for SHARE have a low space com-
plexity. The computation of the position of a ball b is now simply
done by calling NEAREST(b,Ch(b)).

Algorithm SHARE(b):
Input: number b of a ball and a data structure

containing all intervals Ii

Output: bin number that stores b

Phase 1: query data structure for point h(b)
to derive the interval set Ch(b)

Phase 2: binb = NEAREST(b, Ch(b))
return binb

Figure 1: The SHARE algorithm.

For this strategy to work correctly, we require that every point
x ∈ [0, 1) is covered by at least one interval Ii w.h.p. The next
lemma clarifies for which s this is the case.

LEMMA 2.1. A stretch factor s = � · ln N with � ≥ 3 is suf-
ficient to ensure for every n ≤ N that w.h.p. cx > 0 for every
x ∈ [0, 1) and therefore every ball can be placed.

PROOF. For every s and i and every point x ∈ [0, 1) it holds
that Pr[x ∈ Ii] = s · di. Hence, E[cx] =

∑
i s · di = s. Since the

probabilities for the Ii are independent, we can use the Chernoff
bounds with s = � · lnN to show that the probability of a point x
having a contention of cx = 0 is

Pr[cx = 0] = Pr[x = (1 − 1) · E[cx]] ≤ e−s/2 =
1

N�/2
.

Having at most 4N frames (recall that we require δ ≥ 1/N) and
therefore at most 4N points to consider, the probability that there
is at least one frame with a contention of 0 is at most 4

N�/2−1 .

Next we state a lemma about the time and space complexity of
SHARE. We assume that a word can hold log(max[N, M]) bits.

We exclude considering the time and space complexity of the hash
functions. Here, simply any efficient hash function out of the vast
pool of known hash functions may be chosen.

THEOREM 2.2. Suppose that the number of hash functions used
in NEAREST NEIGHBOR is k. Then SHARE can be implemented
so that the position of a ball can be determined in expected time
O(1) using a space of O(s · k · (n + 1/δ)) words (without consid-
ering the hash functions).

PROOF. The proof for the time complexity uses a trick given in
[6]. The idea is to divide [0, 1) into segments of size min[1/n, δ]
and to keep a separate search structure for each segment. In this
case, the time to locate a ball is equal to the time to compute its
segment (which is O(1)) plus the time for finding its right frame F
(which would give us Ch(b)) within the segment and the time for
executing UNIFORM(b,Ch(b)). Since the total number of frames
is at most n + 1/δ, the expected number of frames overlapping
with a segment is constant. Since the expected time for the call of
NEAREST(b,Ch(b)) is also a constant, the total time to locate a ball
is a constant.

Concerning the space requirement: As mentioned in the proof of
the previous lemma, E[cx] = s for every x ∈ [0, 1). Hence, for
every beginning or endpoint x of an interval Ii, the expected num-
ber of other intervals crossing x is at most s. Considering the fact
that no interval starts or leaves within a frame but only at its bor-
ders, this implies that the expected number of intervals in a frame
F is at most s + 1. Since there are at most 2(n + 1/δ) different
frames, the expected amount of words necessary for storing the set
of intervals belonging to the frames is O(s(n + 1/δ)). Further-
more, O(n + 1/δ) words are necessary to store a data structure
for the max[n, 1/δ] segments. Finally, NEAREST NEIGHBOR
needs for each frame Fj with �j intervals O(�j · k) words. Since
E[�j] ≤ s + 1, the total amount of space needed by SHARE is
O(s · k · (n + 1/δ)) words.

Next we show that SHARE is faithful. For simplicity, we will
treat the virtual bins as the real bins, i.e. n′ = n. Let the share at
position x be defined as sx = 1/cx. sx has the following property:

LEMMA 2.3. For any 0 < ε < 1 it holds: If s ≥ (6 ln N)/σ2

with σ = ε/(1 + ε), then w.h.p. sx ∈ [(1− ε)/s, (1 + ε)/s] for all
x ∈ [0, 1). Furthermore, for any x ∈ Ii, E[sx] ≤ (1 + ε)/s.

PROOF. We know from Lemma 2.1 that E[cx] = s for all x.
Furthermore, the Chernoff bounds imply that for any 0 < ε < 1,

Pr[cx ≤ (1 − ε) · s] ≤ e−ε2·s/2

and

Pr[cx ≥ (1 + ε) · s] ≤ e−ε2·s/3 .

Using σ = ε/(1 + ε), it follows that

Pr[sx ≥ (1 + ε)/s] = Pr[1/cx ≥ 1/((1 − σ)s)]

= Pr[cx ≤ (1 − σ)s] ≤ e−σ2·s/2

and

Pr[sx ≤ (1 − ε)/s] ≤ Pr[1/cx ≤ (1 + ε)/((1 + 2ε)s)]

= Pr[1/cx ≤ 1/((1 + σ)s)]

= Pr[cx ≥ (1 + σ)s] ≤ e−σ2·s/3 .

Hence, if s ≥ (6 ln N)/σ2, then sx ∈ [(1 − ε)/s, (1 + ε)/s] with
probability at least 1 − 2/N2. Since we have at most 4N frames,
this is true for all x with probability at least 1 − 8/N .

Next we compute E[sx] for s ≥ (2 ln N)/σ2 if x ∈ Ii for some
i, i.e. cx ≥ 1. It holds that

E[sx] =
∞∑

c=1

1

c
· Pr[sx = 1/c]

≤ 1 · Pr[sx ≥ (1 + ε)/s] +
1 + ε

s
· 1

≤ 1

N
+

1 + ε

s
≤ 1 + ε′

s

for some constant ε′ very close to ε.

Let the share of bin i be defined as

Si =

∫ g(i)+s·di

x=g(i)

sx dx .

Si has the following property:

LEMMA 2.4. For any 0 < ε < 1 it holds: If s ≥ (6 ln N)/σ2

with σ = ε/(1+ ε), then Si ∈ [(1− ε)di, (1+ ε)di] for all i w.h.p.

PROOF. Setting s = (6 ln N)/σ2 with σ = ε/(1+ε), it follows
from Lemma 2.3 that with probability at least 1 − 8/N ,

Si =

∫ g(i)+s·di

x=g(i)

sx dx ≤
∫ s·di

x=0

1 + ε

s
dx

= (1 + ε)di .

On the other hand, with probability at least 1 − 8/N ,

Si =

∫ g(i)+s·di

x=g(i)

sx dx ≥
∫ s·di

x=0

1 − ε

s
dx

= (1 − ε)di .

for all i.

This allows us to prove the following theorem.

THEOREM 2.5. If s = Ω(ln N), then SHARE is faithful.

PROOF. Recall that NEAREST NEIGHBOR is faithful if each
bin has k = Ω(ln N) points, i.e. given n′ bins and m′ balls, the
expected number of balls in bin i is within (1± ε′)di ·m′, where ε′

can be brought arbitrarily close to 0. Now, let the random variable
Bx denote the number of balls b with h(b) = x (or more precisely,
with h(b) ∈ [x, x + dx] for dx → 0). Recall the definition of
sx above and let Bi

x denote the number of balls in Bx that are
assigned to bin i. Furthermore, let the random variable Li denote
the load, i.e. the total number of balls, placed in i. It holds that
Li =

∫ s·di

x=0
Bi

g(i)+x. Since NEAREST NEIGHBOR is faithful, it
holds for all x ∈ Ii that

E[Bi
x] ≤

∑
b,c≥1

(1 + ε′)b/c · Pr[Bx = b] · Pr[sx = 1/c]

= (1 + ε′) · E[Bx] · E[sx]

≤ (1 + ε′)(m · dx) · (1 + ε)/s ,

where ε and ε′ can be made arbitrarily small. The fact that E[sx] ≤
(1 + ε)/s follows from Lemma 2.3. Hence,

E[Li] =

∫ s·di

x=0

E[Bi
g(i)+x] ≤

∫ s·di

x=0

(1 + ε′′)m/s dx

= (1 + ε′′)m · di ,

where ε′′ > 0 can be made arbitrarily small. In the same way it can
be shown that E[Li] ≥ (1 − ε′′)mdi, where ε′′ > 0 can be made
arbitrarily small.

To complete the description of SHARE, we specify how SHARE
adapts to a changing system. Suppose that there is a change in
the capacities of the system from d = (d1, . . . , dn) to d′ =
(d′

1, . . . , d′
n). (We note that this also includes that a new bin en-

ters the system, since this can simply be modelled by including it
already in d with value 0.) In this case, SHARE performs a so-
called lazy update strategy:

Let 0 < λ < 1 be some fixed constant. λ specifies the laziness
of SHARE. SHARE only changes the capacity for bin i from di

to d′
i if d′

i ≥ (1 + λ)di or d′
i ≤ (1 − λ)di. This will cause the

total capacities of the system to deviate from 1, but it will always
be within 1 ± λ and therefore will not endanger the results shown
above as long as λ is sufficiently small. (That is, SHARE is still
faithful with respect to the true capacity distribution.)

If the capacities of bins change, then balls will be moved in such
a way that afterwards the call of UNIFORM(b,Ch(b)) results again
in the correct position of the ball. There are various ways of solv-
ing this algorithmically, but we will only focus here on how many
replacements of balls this would need, i.e. the competitive ratio of
SHARE.

THEOREM 2.6. If s = Ω(ln N), then SHARE has a competitive
ratio of at most 2 + ε for any ε > 0.

PROOF. Since SHARE is based on random hashing, it is easy to
see that changes in the number of balls do not require SHARE to
replace balls in order to remain faithful. Hence, we only have to
consider changes in the capacities of the bins.

Suppose that we are given two capacity distributions, d and d′,
where d is the actual distribution used by the bins (that may not be
identical with the distribution demanded by the system, since a lazy
update rule is used) and d′ is the new capacity distribution. Let α
be chosen such that

∑
i di = 1 + α. We know that α ∈ [−λ, λ].

Furthermore, we know that in this case with s = Ω(ln N), E[cx] ∈
[(1−ε)(1+α)s, (1+ε)(1+α)s] for some ε > 0 that can be made
arbitrarily small. Thus, it holds for the expected share of bin i that
E[Si] ∈ [(1 − ε)(1 + α)di, (1 + ε)(1 + α)di].

Consider now some fixed bin i. If d′
i is within (1±λ)di, then di

does not change. Thus, the number of replacements caused by bin
i is 0. Otherwise, d′

i = (1 + β)di for some β outside of [−λ, λ].
In this case, di will be set to d′

i. If d′
i > di, this causes in the worst

case the replacement of an expected number of at most

(1 + λ)((1 + ε)d′
im − (1 − ε)dim)

= (1 + λ)(d′
i − di + ε(d′

i + di))m

≤ (1 + λ)(βdi + ε(2 + β)di)m

≤ (1 + γ)βdim = (1 + γ)m · |d′
i − di|

balls for any γ > 0 if λ > 0 and 0 < ε < λ · γ/2 are sufficiently
small. This holds, because α ≤ λ and β ≥ λ. If d′

i < di, then
we also get a bound of (1 + γ)m · |d′i − di| by just exchanging the
positions of di and d′

i in the calculation above.
Hence, altogether SHARE only requires the replacement of at

most (1 + γ)
∑

i |d′
i − di|m balls when changing from capacity

distribution d to d′. Since the minimum amount of movements
required for a perfectly faithful placement scheme is

∑
i: di>d′

i

(di − d′
i)m =

1

2

∑
i

|d′
i − di|m

the theorem follows.

To summarize the properties of SHARE: It is faithful, time- and
space-efficient and (2 + ε)-competitive for any ε > 0. Its draw-
backs are that the number of balls in a bin is not highly concen-
trated around the capacity (unless s is very large) and that its space

complexity depends on N and not just on n. The next, more com-
plicated scheme will remove these drawbacks.

3. THE SIEVE STRATEGY
Next we describe an alternative adaptive hashing strategy that

does not have the drawbacks of the previous strategy and that does
not rely on an extra placement strategy for uniform capacities.

Our strategy requires hash functions that assign to each ball a
real number chosen independently and uniformly at random out of
the range [0, 1). Suppose that initially the number of bins is equal
to n. Let n′ = 2�log n�+1. We cut [0, 1) into n′ ranges of size
1/n′ and we demand that every range is used by at most one bin.
If range I has been assigned to bin i, then i is allowed to select
any interval in I that starts at the lower end of I . The intervals
will be used in a way (described in more detail below) that any
ball mapped to a point in that interval will be assigned to the bin
owning it. We say that a range is completely occupied by a bin if its
interval covers the whole range. A bin can own several ranges, but
it is only allowed to own at most one range that is not completely
occupied by it. Furthermore, we demand from every bin i that the
total amount of the [0, 1) interval covered by its intervals is equal
to di/2 (it will actually slightly deviate from that, but for now we
assume it is di/2). This ensures the following property.

LEMMA 3.1. For any capacity distribution it is possible to as-
sign ranges to the bins in a one-to-one fashion so that each bin can
select intervals in [0, 1) of total size equal to di/2.

PROOF. Since every bin is allowed to have only one partly oc-
cupied range, at most n of the n′ ranges will be partly occupied.
The remaining ≥ n ranges cover a range of at least 1/2, which is
sufficient to accommodate all ranges that are completely occupied
by the bins.

So suppose we have an assignment of bins to intervals in their
ranges such that the lemma is fulfilled. Then we propose the strat-
egy described in Figure 2 to distribute the balls among the bins
(the fall-back bin will be specified later). It is based on L random
hash functions h1, . . . , hL : {1, . . . , M} → [0, 1), where initially
L = log n′ + f . The parameter f will be specified later. Figure 2
implies the following result:

Algorithm SIEVE(b):
Input: number b of a ball
Output: bin number that stores b

for i = 1 to L do
set x = hi(b)
if x is in some interval of bin s then return s

return number of fall-back bin

Figure 2: The SIEVE algorithm.

THEOREM 3.2. SIEVE can be implemented so that the position
of a ball can be determined in expected time O(1) using a space of
O(n) words (without considering the hash functions).

PROOF. Since the bins occupy exactly half of the interval [0, 1),
the probability that a ball succeeds to be placed in a round is 1/2.
Hence, the expected computation time of a ball position is O(1).

The space requirement is O(n) words, since information about
the occupancy of O(n) ranges has to be stored.

Let a ball that has not been assigned to a bin in the for-loop of
the algorithm above be called a failed ball. Obviously, the expected
fraction of balls that fail is equal to 1/2L. Thus, the expected share
of the balls any bin i (apart from the fall-back bin) will get is equal
to di(1−1/2L). However, we want to ensure that every bin gets an
expected share of di. To ensure this, we first specify how to select
the fall-back bin.

Initially, the bin with the largest share is the fall-back bin. If it
happens at some time step that the share of the largest bin exceeds
the share of the fall-back bin by a factor of 2, then the role is passed
on to that bin.

Next we ensure that every bin i gets an expected share of di. Let
every non-fall-back bin choose an adjusted share of d′i = di/(1 −
1/2L), and the fall-back-bin chooses an adjusted share of d′i =
(di − 1/2L)/(1 − 1/2L). First of all, the adjusted shares still
represent a valid share distribution, because

∑
d′

i =
1 − di

1 − 1/2L
+

di − 1/2L

1 − 1/2L
= 1 .

When using these adjusted shares for the selection of the intervals,
now every non-fall-back bin i gets a true share of (di/(1−1/2L)) ·
(1 − 1/2L) = di and the fall-back bin gets a true share of ((di −
1/2L)/(1−1/2L)) ·(1−1/2L)+1/2L = di. Hence, the adjusted
shares will ensure that the expected share of every bin is precisely
equal to its capacity. Thus, we arrive at the following conclusion.

THEOREM 3.3. SIEVE is perfectly faithful.

In addition, a high concentration around the expected value can
be shown.

THEOREM 3.4. For every bin i, let the random variable Li de-
note the number of balls placed in i. It holds for every ε > 0:

Pr[Li ≥ (1 + ε)dim] ≤ e−min[ε2,ε]dim/3

and

Pr[Li ≤ (1 − ε)dim] ≤ e−ε2dim/2 .

The theorem follows directly from the Chernoff bounds and our
assumption that all balls choose their values in [0, 1) independently
at random. Thus, Li = dim + O(

√
dim log n) w.h.p., which is a

much better concentration around the expected value for Li then
achievable by SHARE with a reasonable amount of resources (see
Lemma 2.4).

In order to show that SIEVE also has a very good adaptivity, we
have to consider the following cases:

1. the capacities change
2. the number n′ of ranges has to increase to accommodate new

bins
3. the role of the fall-back bin has to change
4. the number L of levels has to increase to ensure that 1/2L is

below the share of the fall-back bin

As for the SHARE strategy, changes in the number of balls do not
require SIEVE to replace balls in order to remain faithful, since
SHARE is based on random hashing.

We begin with considering the situation that the capacities of the
system change from P = (p1, p2, . . .) to Q = (q1, q2, . . .). Then
we use the following strategy: every bin i with qi < pi reduces its
intervals in a way that afterwards it again partly occupies at most
one range, and then every bin i with qi > pi extends its share so
that it also partly occupies afterwards at most one range.

It is easy to check that there will always be ranges available for
those bins that increase their share so that every range is used by at
most one bin. It remains to bound the expected fraction of the balls
that have to be replaced.

LEMMA 3.5. For any change from one capacity distribution to
another that does not involve the change of the fall-back bin, the
replacement strategy has a competitive ratio of 2.

PROOF. In the following, let p′
i (resp. q′i) denote the adjusted

share of bin i for P (resp. Q). For any i with qi < pi, the fraction
of [0, 1) taken away from bin i is equal to (q′i−p′

i)/2. Furthermore,
for any i with qi > pi, the fraction of [0, 1) added to bin i is equal
to (p′

i−q′i)/2. Hence, the expected fraction of balls participating in
the first placement round of SIEVE that are affected by the change
in the distribution of shares is equal to ||P ′ − Q′||/2, where

||P ′ − Q′|| =
n∑

i=1

|p′
i − q′i| .

For the remaining balls that previously participated in the second
round, the fraction affected by this is also equal to ||P ′ − Q′||/2,
and so on.

Now, for any r ∈ {1, . . . , L} let Xr denote the fraction of balls
previously participating in round r and Yr denote the fraction of
these balls still participating in round r that have to be replaced.
(We can exclude the failed balls, since any of these that still fail will
be stored in the same fall-back bin.) In this case, Y =

∑L
r=1 Yr

represents the total fraction of balls that need a replacement. Since
for a given Xr , EXr [Yr] ≤ 1

2
||P ′ − Q′||Xr , we obtain for any

given X1, . . . , XL that

EX1,...,Xr [Y] =
L∑

r=1

EX1,...,Xr [Yr] ≤ 1
2
||P ′ − Q′||

L∑
r=1

Xr .

We know that in each round the expected fraction of participating
balls that is not placed is 1/2. Hence, E[Xr] = 1/2r−1 for all r
and therefore

E[Y] ≤ 1
2
||P ′ − Q′||

L∑
r=1

1

2r−1

=

(
1 − 1

2L

)
||P ′ − Q′||

=

(
1 − 1

2L

) ||P − Q||
1 − 1/2L

= ||P − Q|| .

Since a perfectly faithful placement scheme would have to move
at least a fraction of ||P − Q || / 2 of the balls, this proves the
lemma.

Next we consider the situation that the number n′ of ranges has
to increase. This happens if a new bin is introduced which requires
n′ = 2�log n�+1 to grow. In this case, we simply subdivide each
old range into two new ranges. Since afterwards the property is
still kept that every bin partly occupies at most one range, nothing
has to be replaced.

Consider now the situation that the role of the fall-back bin has
to change. Recall that this happens if the bin with the maximum
share has at least twice the share of the fall-back bin. Let s1 be the
old and s2 be the new fall-back bin. Suppose that the number of
bins in the system is n. Then s2 has a share of at least 1/n. At the
time when s1 was selected, the share of s1 was at least as large as
the share of s2. Hence, the total amount of changes in the shares

of s1 and s2 since then must have been at least 1/(2n). Changing
from s1 to s2 involves the movement of an expected fraction of∣∣∣∣d1 − 1/2L

1 − 1/2L
− d1

1 − 1/2L

∣∣∣∣ +

∣∣∣∣ d2

1 − 1/2L
− d1 − 1/2L

1 − 1/2L

∣∣∣∣
of the balls, which is at most 3

2L−1
. If the f in the formula L =

log n′ + f is sufficiently large, then 3
2L−1

 1
2n

, and therefore the
amount of work for the replacement can be “hidden” in the replace-
ments necessary to react to changes in the capacity distribution of
the system.

Next consider the situation that the number of levels L has to
grow. Once in a while this is necessary, since for the case that
many new bins are introduced the fall-back bin may not be able or
willing to store a fraction of 1/2L of the blocks. We ensure that
this will never happen with the following strategy:

Whenever the share of the fall-back bin is less than 1/2L−t for
some integer t, we increase the number of levels from L to L + 1.

This strategy will cause balls to be replaced. We will show, how-
ever, that also here the fraction of balls that have to be replaced can
be “hidden” in the amount of balls that had to be replaced due to
changes in the distribution requirement.

Let sj be the fall-back bin that required an increase from L − 1
to L (resp. the initial fall-back bin if no such bin exists), and let
sk be the current fall-back bin that requires now an increase from
L to L + 1. Then we know that the size of s must have been at
least 1/2L−(t+1) when it became a fall-back bin. Suppose that sk

took over the role of a fall-back bin from sj . Then its share must
have been twice as large then the share of sj . Since its share was at
most the share of sj when sj got the role as fall-back bin, the total
amount of changes in the shares of sj and sk since then must have
been at least 1/2L−t. This can also shown to be true for a longer
history of fall-back bins from sj to sk. Changing from L to L + 1
involves the movement of an expected fraction of at most⎛

⎝∑
i�=k

∣∣∣∣ di

1 − 1/2L
− di

1 − 1/2L+1

∣∣∣∣
⎞
⎠

+

∣∣∣∣dk − 1/2L

1 − 1/2L
− dk − 1/2L+1

1 − 1/2L+1

∣∣∣∣
of the balls, which is at most 2

2L−3
. If t and f ≥ t are sufficiently

large, then 2
2L−3

 1/2L−t , and therefore also here the amount
of work for the replacement can be “hidden” in the replacements
necessary to accommodate changes in the distribution of shares.

Hence, we arrive at the following result.

THEOREM 3.6. SIEVE is (2+ ε)-competitive, where ε > 0 can
be made arbitrarily small.

Finally, we note that the SIEVE strategy can easily be executed
in a distributed way: If every bin always knows the complete ca-
pacity distribution, then in the case of a change in the capacities,
every bin can compute locally in a way consistent with the other
bins, how the assignment of intervals to the ranges changes. Every
bin can then check for itself whether there is a ball stored in it that
has to be replaced and, if necessary, sends this ball to the correct
bin. Similar strategies can be used for the other scenarios in which
balls have to be replaced. Of course, this strategy does not only
work for SIEVE but also for SHARE.

4. APPLICATIONS
In this section we list possible applications of our adaptive hash-

ing schemes.

4.1 Distributed data servers
Consider the situation that we have a distributed data server or a

storage area network. Such a system may have a large collection
of disks, and it is quite likely that disks break down, are added,
or have to be replaced. Previous data management strategies such
as RAID have severe problems with these changes. In addition
to being able to faithfully distribute data blocks among disks and
achieving a high adaptivity, a dynamic placement scheme should
also be able to ensure that requests to the data blocks have the same
distribution as the data blocks themselves. Since both SHARE and
SIEVE are based on random hash functions, it is easy to check that
both the SHARE and the SIEVE strategy fulfill this property. In
particular, the following theorem can be shown.

THEOREM 4.1. In SHARE the probability of a data request to
be sent to disk i can be brought arbitrarily close to its capacity di,
and SIEVE even ensures that the probability of a data request to be
sent to disk i is equal to its capacity di.

PROOF. Consider any set R of requests to data blocks. For every
data block b, let its weight wb be the number of requests in R for b,
and let its relative weight be vb = wb/|R|.

First, we consider SHARE. Recall the notation in Theorem 2.5.
Let Bx be redefined as the total relative weight of the balls b with
h(b) = x and let Bi

x be redefined as the total relative weight of the
balls in Bx that are assigned to bin i. Since

E[Bx] =
∑

blocks b

vb Pr[b ∈ [x, x + dx]]

=
∑

blocks b

vb · dx = dx

it follows that E[Li] is within (1 ± ε′′)di, as desired.
For SIEVE, we simply have to use the fact that every ball has a

probability of exactly di to be placed at bin i to conclude that the
load at bin i, Li, fulfills

E[Li] =
∑

blocks b

vb Pr[b placed in i]

=
∑

blocks b

vb · di = di .

4.2 Web caching
A web cache – also called proxy server – is a network entity that

satisfies HTTP requests on the behalf of a web server. In order to
realize this, the web cache has its own disk storage and keeps in
this storage copies of recently requested objects. Web caches are
enjoying wide-scale deployment in the Internet for several reasons.
First, a web cache can substantially reduce the response time for a
client request, particularly if the bottleneck bandwidth between the
client and the original server is much less than the bottleneck band-
width between the client and the cache. Second, web caches can
substantially reduce web traffic in the Internet. Already in 1998,
over 75 percent of Internet traffic was web traffic, so a significant
reduction in web traffic can translate to a significant improvement
in Internet performance.

Multiple web caches, located at different places in the Internet,
can cooperate to improve overall performance. An example of a
cooperative caching system is the NLANR caching system, which
consists of a number of backbone caches in the United States, and
the Akamai caching system, which provides caching services for
companies all over the world.

Clients can use a hash function to discover which cache stores
an object. Consider now what happens when the set of active
caching machines changes, or when each client is aware of a dif-
ferent set of caches. (Such situations are very plausible on the In-
ternet.) In this case the clients may have an inconsistent view of
the caches. Thus, we need a data placement scheme that is able
to support inconsistent views. A view V is a demand distribution
(v1, . . . , vn) that may deviate from the current capacity distribu-
tion D = (d1, . . . , dn). The consistency of a view V is given by

γV =

n∑
i=1

min[vi, di] .

Obviously, γV ∈ [0, 1] and the closer γV is to 1, the closer V is to
D. To ensure that the consistency of a view is in close correlation
with the probability of computing the correct bin for a ball, we need
one more definition.

A placement scheme is called oblivious if no matter how a sys-
tem evolved to reach a capacity distribution D, the distribution of
balls among the bins will be the same. In a non-oblivious scheme,
it may happen that a client cannot determine the correct position
of any of the balls although its view matches the current demand
distribution. Hence, it is important to use oblivious placement
schemes to ensure this does not happen. SHARE is oblivious,
whereas SIEVE is not. Hence, we will only consider the SHARE
strategy. The following result that generalizes a result by Karger et
al. [6] from uniform to non-uniform demand distributions.

THEOREM 4.2. Suppose we use SHARE. For any constant 0 <
γ < 1, s = Θ(log N) and δ = Θ(1/ log2 N) can be chosen so
that for any view V with consistency at least γ it holds: If every
data element has Θ(γ−1 log N) copies, then w.h.p. at least one
location of a copy is the same for both V and the current demand
distribution D.

PROOF. We prove the theorem in two steps. First, we consider
some fixed copy b′ of a ball b and show that the probability that
the bin in which b′ is stored is not the same for V and D is some
constant smaller than 1. Then, we show that the probabilities of
different copies of b to run into such a situation are nearly indepen-
dent, so that the probability that for all copies b′ the location of b′ is
not the same for V and D is polynomially small. This would result
in the theorem.

So consider now a fixed copy b′ of a ball b and let x = h(b′). Let
Cx be the set of bins with intervals containing x w.r.t. D and C′

x

be the set of bins with intervals containing x w.r.t. V . Furthermore,
let Ox = Cx∩C′

x. For every constant ε > 0 we can choose an s =
Θ(log N) so that |Cx| and |C′

x| are within (1±ε)s w.h.p. and |Ox|
is within (1 ± ε)γs w.h.p. To simplify the following calculations,
we will assume that |Cx| = |C′

x| = s and |Ox| = γs.
Clearly, the probability that the location of b′ is the same for

D and V is equal to the probability that b′ is placed in a bin in
Ox when using NEAREST NEIGHBOR on the bin set Cx ∪ C′

x.
Hence,

Pr[bin of b′ the same for D and V]

=
|Ox|

|Cx ∪ C′
x| ≥

γs

2s
=

γ

2
.

Thus, the probability that the bin of b′ is not the same for D and V
is at most 1 − γ/2.

Now we want to determine the probability that all of the copies
b′1, . . . , b

′
k of a ball b have bins that are not the same for D and V .

Here, we face the problem that there are dependencies among these
probabilities: If it is known that some copy b′i is not in the same bin

for D and V and for some other copy b′j , h(b′j) and h(b′i) are so
close that they may have the same set of bins (which may happen
for |h(b′j) − h(b′i)| ≤ δs), then b′j may also not be in the same bin
for D and V . Thus, we would not get an extra probability for b′j .
Nevertheless, the following lemma can be shown. In this lemma,
Ai denotes the event that b′i is not in the same bin for D and V .

LEMMA 4.3. If δ ≤ γ/(4k · s), then it holds for every i ∈
{1, . . . , k − 1}:

Pr[Ai+1 | A1 ∧ . . . ∧ Ai] ≤ 1 − γ/2 + i · 2δs .

PROOF. Let xi = h(b′i) for all i ∈ {1, . . . , k}. Furthermore, let
Ri be the event that xi is within a radius of δs of some xj , j < i.
Then it holds that

Pr[Ai+1 | A1 ∧ . . . ∧ Ai]

= Pr[Ri+1] · Pr[Ai+1 | Ri+1 ∧ A1 ∧ . . . ∧ Ai]

+ Pr[R̄i+1] · Pr[Ai+1 | R̄i+1 ∧ A1 ∧ . . . ∧ Ai]

≤ Pr[Ri+1] + Pr[Ai+1 | R̄i+1 ∧ A1 ∧ . . . ∧ Ai] .

Obviously, Pr[Ri+1] ≤ i · 2δs. Hence, it remains to show that
Pr[Ai+1 | R̄i+1∧A1∧ . . .∧Ai] ≤ 1−γ/2 (up to some negligible
ε terms that we do not consider). Since |Cx| = |C′

x| = s for all
x ∈ [0, 1) (up to negligible ε terms) and none of the x outside of
the δs radius of the xj with j ≤ i can have an interval in Cx that
also contains such a point xj , the probability for Ai+1 to be true at
any of these points x is independent of the A1, . . . , Ai. Hence,

Pr[Ai+1 | R̄i+1 ∧ A1 ∧ . . . ∧ Ai] ≤ 1 − γ/2 ,

which completes the proof.

From Lemma 4.3 it follows with δ ≤ γ/(8k · s) that

Pr[A1 ∧ . . . ∧ Ak] ≤ (1 − γ/4)k ≤ e−γk/4 .

Thus, choosing k = Θ(γ−1 log N), the probability that no copy of
ball b is in the same bin for D and V can be made polynomially
small, which completes the proof.

4.3 Adaptive random graphs
The problem of generating random graphs has a long history.

Three closely related models of random graphs stand out: G(n, M),
G(n, p), and G(n, d). In each case the probability space consists of
graphs on a fixed set of n distinguishable nodes. Let N =

(
n
2

)
. For

0 ≤ M ≤ N , the space G(n, M) consists of all
(

N
M

)
subgraphs of

Kn with M edges. We turn G(n, M) into a probability space by
taking its elements to be equiprobable. To get a random element of
this space, we simply have to pick a random subset of size M out
of the set of all possible edges, which is easy to achieve when hav-
ing access to a sequence of O(log 2N) = O(n2) perfectly random
bits.

The space G(n, p) is defined for 0 ≤ p ≤ 1. To get a ran-
dom element of this space, we select the edges independently with
probability p (i.e. every one of the N edges has a probability of p
of being included in the random graph).

G(n, d) represents the class of all d-regular graphs of size n (i.e.
every node has a degree of d). Also here, its elements are assumed
to be equiprobable. While a number of algorithms have been pro-
posed that generate d-regular graphs uniformly at random, only few
of them are of practical significance [12]. Bollobás’ algorithm [1]
takes an expected time of the order of dn·e(d2−1)/4 and hence is not
practical. In [8] a polynomial time algorithm of the order O(nd3) is
given. However, it is prohibitively difficult to implement, and only

applies to d = O(n1/3). Simpler algorithms have been proposed
in [7, 14]. However, the graphs there have not been proven to be
generated uniformly at random. Recently, Steger and Wormald [12]
presented an algorithm that is both easy to implement as well as fast
in practice, with an expected runtime of O(nd2). They prove that
the algorithm generates d-regular graphs approximately uniformly,
in the sense that all d-regular graphs on n nodes have in the limit
the same probability to be selected as n → ∞.

All graph constructions mentioned above work when the number
of nodes n and the other parameters are fixed. But what can be done
if the number of nodes or some other parameter changes?

For the class G(n, p), a random graph G can easily be adapted
to changes in n so that it remains random: if a node is removed,
simply delete all edges incident to it, and if a node is added, simply
choose each one of the new edges independently with probability
p. Also a change of p can be handled well with a minimum amount
of change: if each edge is given a random number in [0, 1], then all
those edges are active whose number is at most the actual p.

Also for the class G(n, M) there is an easy solution. Assign to
each edge a random number in [0, 1], and choose the M edges with
the largest numbers. It is not difficult to check that for any change
in n and M such a rule would keep the graph a random member of
G(n, M). Furthermore, the expected number of changes necessary
to keep this property is minimal.

Finally, we consider the class G(n, d). Let us generalize this
to the class G(n, D), where D is a vector of degrees di (i.e. di

represents the degree of node i). For both G(n, d) and G(n, D)
it is not known how to efficiently adapt graphs to a changing n,
d, or D so that they remain a random member of that class. For
this, a perfectly faithful strategy (in a deterministic sense and not
just in expectation) would be needed, which is neither the case for
SHARE nor for SIEVE. However, SIEVE is very close to being
perfectly faithful, and therefore we demonstrate how to use SIEVE
to maintain random graphs that are close to the class G(n, D). For
simplicity, we assume that all degrees in D are even and that every
di is at most half of the total degree. This guarantees that the class
G(n, D) is never empty.

Again, every node represents a bin in SIEVE. For every node i,
we choose di/2 edges with one endpoint in i and the other endpoint
determined by SIEVE. This guarantees that the expected number
of edges incident to node i is di and that the deviation from this
is ±O(

√
di log n + log n) w.h.p. for all i. Furthermore, it is easy

to see that SIEVE is 2 + ε-competitive for any change in n and D
compared to the expected number of changes necessary to ensure
that the graph is a random member of G(n, D).

Thus, we arrive at the following theorem.

THEOREM 4.4. SIEVE allows to adapt random graphs in a 2+
ε-competitive way so that they remain graphs close to random mem-
bers of G(n, D).

It is known that random graphs have many nice properties such
as a close to optimal diameter and expansion. Hence, they are
useful for many network applications such as routing, distributed
sorting, and load balancing. Adaptive random graphs may be of
particular interest for peer-to-peer networks. Peer-to-peer (or P2P)
networks are overlay-networks which connect their nodes via some
existing network and work together to provide distributed services
such as search, content integration and administration. Two main
properties characterize such a network. There is no central node
that handles the communication between peers like in a client-server
model. Instead, queries fan out over the network, and results are
collected and propagated back to the originating node. Further-
more, the topology of the P2P is constantly changing, since nodes

may join and leave the network at any time. Popular examples
of P2P protocols are Freenet, Gnutella, Limewire, Bearshare, and
Kazaa. P2P protocols presented in the computer science literature
include Chord [13], Past [10], Tapestry [15], and a protocol by Pan-
durangan et al. [9].

In a peer-to-peer network established over the Internet, peers
may have large differences in computational power, the bandwidth
of their connection to the Internet, or the storage capacity they are
willing or able to contribute to the network. Hence, in order to fully
exploit the performance of a peer-to-peer network, it is important to
take these properties into consideration for the construction of the
network and the distribution of the data among the peers. Thus, it
should not only be possible to distribute data in a non-uniform way
(as done in Sections 2 and 3) but also to construct peer-to-peer net-
works of non-uniform degree for connecting the users. In addition,
many popular peer-to-peer solutions such as Freenet and Gnutella
use broadcasting to search for contents. For a fast feedback of such
an operation it is important to ensure that the number of queries that
reach and are sent out by a node is proportional to the bandwidth
of its connection to the Internet and that this is realized so that the
diameter of the peer-to-peer network is as low as possible. Here,
algorithms for the generation and adaptation of random graphs in
the class G(n, D) appear to be a valuable tool to solve these tasks
in an efficient way. We demonstrated above that this is in principle
possible, but it is certainly only a first step in this direction.

5. CONCLUSIONS
In this paper we presented two compact, adaptive placement sche-

mes for non-uniform capacities. Several open problems remain,
since these schemes are not optimal. For example, is it possible to
construct a compact scheme that is (almost) perfectly faithful and
(close to) 1-competitive and that requires an amount of space that
only depends on the current number of bins n (and maybe the cur-
rent number of balls in a logarithmic way)? SHARE also depends
on N , and SIEVE depends on the maximum number of bins that
have been in the system so far. Also, both are not 1-competitive but
only 2 + ε-competitive for any ε > 0.

Another question that might be worth to investigate is how to
further reduce the deviation of the number of balls in a bin from
its expected value beyond what SIEVE can achieve. This could be
interesting for the maintenance of random graphs that are (much
closer to) random members of G(n, D).

6. ACKNOWLEDGEMENTS
We would like to thank Friedhelm Meyer auf der Heide for many

stimulating discussions and the anonymous referees for many valu-
able comments.

7. REFERENCES
[1] B. Bollobas. A probabilistic proof of an asymptotic formula

for the number of labelled regular graphs. European Journal
of Combinatorics, 1:311–316, 1980.

[2] A. Brinkmann, K. Salzwedel, and C. Scheideler. Efficient,
distributed data placement strategies for storage area
networks. In Proc. of the 12th ACM Symposium on Parallel
Algorithms and Architectures (SPAA’00), pages 119–128,
2000.

[3] T. Cortes and J. Labarta. A case for heterogenenous disk
arrays. In Proc. of the IEEE International Conference on
Cluster Computing (Cluster’2000), pages 319–325, 2000.

[4] T. Cortes and J. Labarta. Extending heterogeneity to RAID
level 5. In USENIX 2001, Boston, June 2001.

[5] W. Hoeffding. Probability inequalities for sums of bounded
random variables. American Statistical Association Journal,
58:13–30, 1963.

[6] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
World Wide Web. In Proc. of the 29th ACM Symposium on
Theory of Computing, pages 654–663, 1997.

[7] V. Lakamraju, I. Koren, and C. Krishna. Synthesis of
interconnection networks: A novel approach. In Proc. of the
20th International Conference on Dependable Systems and
Networks, pages 56–64, 2000.

[8] B. McKay and N. Wormald. Uniform generation of random
regular graphs of moderate degree. Journal of Algorithms,
11(1):52–67, 1990.

[9] G. Pandurangan, P. Raghavan, and E. Upfal. Building
low-diameter P2P networks. In Proc. of the 42nd IEEE
Symposium on Foundations of Computer Science, pages
492–499, 2001.

[10] A. I. T. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer
storage utility. In Symposium on Operating Systems
Principles, pages 188–201, 2001.

[11] P. Sanders. Reconciling simplicity and realism in parallel
disk models. In Proc. of the 12th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 67–76. SIAM,
Philadelphia, PA, 2001.

[12] A. Steger and N. Wormald. Generating random regular
graphs quickly. Combinatorics, Probability and Computing,
8:377–396, 1999.

[13] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In Proc. of the ACM
SIGCOMM 2001, pages 149–160, Aug. 2001.

[14] G. Tinhofer. Generating graphs uniformly at random.
Computing Supplement, 7:235–255, 1990.

[15] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An
infrastructure for faul-tolerant wide-area location and
routing. Technical Report UCB/CSD-01-1141, Computer
Science Division, University of California at Berkeley,
Berkeley, California 94720, April 2001.

[16] R. Zimmermann and S. Ghandeharizadeh. HERA:
Heterogeneous extension of RAID. In Proc. of the
International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA 2000),
2000.

