Compact, Adaptive Placement Schemes for Non-Uniform Capacities

André Brinkmann†
Heinz Nixdorf Institute and
Dept. of Electrical Engineering
University of Paderborn
33102 Paderborn, Germany
brinkman@hni.upb.de

Kay Salzwedel†
Heinz Nixdorf Institute and
Dept. of Mathematics and
Computer Science
University of Paderborn
33102 Paderborn, Germany
kay@hni.upb.de

Christian Scheideler‡
Dept. of Computer Science
Johns Hopkins University
3400 N. Charles Street
Baltimore, MD 21218, USA
scheideler@cs.jhu.edu

1. INTRODUCTION

In this paper we study the problem of designing compact, adaptive placement schemes for servers with non-uniform capacities. In particular, we are interested in schemes that allow to achieve the following goals:

1. Faithful distribution, i.e. distributing a set of objects among a set of servers in such a way that the fraction of objects stored at a server is equal (or at least close) to its share of the total capacity of the system.

2. Efficient localization, i.e. computing the position of an object with a low time and space complexity.

3. Fast adaptation, i.e. adapting to changing capacities with a near-minimal movement of objects.

Especially the space complexity is an important aspect, since if enough space were available to store a lookup table for all objects, the tasks above could be solved in a trivial way. A placement scheme with a low space complexity is called compact.

A standard approach for achieving the first two items has been to use random hash functions. However, the problem with using hash functions is that they are usually not adaptive. Consider, for example, the hash function \(h(x) = ((a \cdot x + b) \mod p) \mod n \) that can be used to distribute a set of objects among \(n \) servers. If a new server is added, we are left with two choices: either replacing \(n \) by \(n + 1 \) (which would require virtually all objects to be replaced) or adding additional rules to \(h(x) \) to force a certain set of objects to be replaced to the new server (which, in the long run, would destroy the compactness of the hashing scheme).

Compact, adaptive placement schemes have many applications. Consider, for example, a storage system that consists of a large collection of disks. Over the time, new disks may be added and old disks may be taken out or fail. To ensure that a storage system
can be used at maximum performance, it would be desirable to distribute the data among the available disks according to their capabilities. As the disks in the system or its configuration change, one has to redistribute data in an efficient way. Techniques currently used in practice such as the various RAID levels cannot solve this problem efficiently. For example, virtually all data has to be replaced to fully integrate a new disk into an existing RAID array. The RAID levels also do not allow to support non-uniform disks. Even though there are some efforts under way to expand the RAID levels to handle non-uniform disks efficiently [16, 4, 3], a general solution has yet to be found. In addition to (re-)distributing data among disks according to their capabilities, it is also important to be able to determine the disk storing a particular data item in a fast and compact way to ensure that a high load of data requests can be handled with a reasonable amount of resources.

The problem of distributing blocks among a set of disks is closely related to the application of web caching, i.e. evenly distributing a number of copies of an original object among a set of web caches (see e.g. [13]). Web caching introduces a new level of complexity for the placement algorithm, because in the distributed Internet environment the client may not know all participating web caches. One additional task of the algorithm in web caching is to minimize the number of copies of an object that are required to guarantee w.h.p. that if the client has a sufficiently consistent view of the web caches, at least one copy of an object can be found by the client.

Another important application of adaptive placement schemes is the problem of distributing tasks among processors of a distributed system. Adaptivity is important here, since it may not be predictable how long a task has to be executed and how long and to which extent a processor may be available. Hence, in order to exploit the full strength of a distributed system, it may be necessary to redistribute tasks among the processors. Since tasks may need to exchange information, it is also important that the current position of a task can be computed in a fast and compact way.

A forth important area in which adaptive placement schemes may be a valuable tool is the adaptation of random graphs to changes in the number of nodes, edges, or node degrees. Many results are already known about how to construct static, random graphs, but it has not been investigated so far how to efficiently adapt, for example, random regular graphs to changes so that they stay random.

Algorithms that solve this problem may be of particular interest for peer-to-peer networks, because random graphs have many desirable properties such as a low diameter and high expansion.

We will give more applications in Section 4, but first we specify our model and give an overview of previous results and our new results.

1.1 The Model

We adopt and extend the standard balls into bins model in which each server is represented by a bin and each object (representing, e.g., a data block or task) is represented by a ball. Let \{1, \ldots, N\} be the set of all possible bins and \{1, \ldots, M\} be the set of all possible balls that can be in the system at any time. Suppose that the current number of balls in the system is \(m \leq M\) and that the current number of bins in the system is \(n \leq N\). We will often assume for simplicity that the balls and bins are numbered in a consecutive way starting with 1 (but any numbering that gives unique numbers to each ball and bin would work for our strategies). Let the current capacity distribution of the system be defined as \((d_1, \ldots, d_n)\). The capacity \(d_i\) of a bin \(i\) can be arbitrarily defined, e.g. as its storage capacity, its bandwidth, its computational power, or a mixture of these parameters. In the remainder of the paper we will use relative values for the \(d_i\)’s, i.e. \(d_i \in [0, 1]\) for each \(i\) and \(\sum d_i = 1\).

This can be achieved by simply dividing the original capacity of a bin by the capacity of the system. Our goal is to achieve that every bin \(i\) with capacity \(d_i\) obtains \(d_i \cdot m\) of the balls.

The system may now change in a way that the number of available bins, or the capacities of the bins change. In this case a placement scheme is needed that fulfills several criteria:

- **Faithfulness:** A scheme is called faithful if the expected number of balls it places at bin \(i\) is between \([1-\epsilon]d_i \cdot m\) and \([1+\epsilon]d_i \cdot m\) for all \(i\), where \(\epsilon > 0\) can be made arbitrarily small.

- **Time Efficiency:** A scheme is called time-efficient if it allows a fast computation of the position of a ball.

- **Compactness:** We call a scheme compact if the amount of information the scheme requires to compute the position of a ball is small (in particular, it should only depend on \(N\) and \(m\) in a logarithmic way).

- **Adaptivity:** We call a faithful scheme adaptive if in the case that there is any change in the number of balls, bins, or the capacities of the system, it allows to redistribute balls to get back to a faithful distribution. To measure the adaptivity of a placement scheme, we use competitive analysis. For any sequence of operations \(\sigma\) that represent changes in the system, we intend to compare the number of (re-)placements of balls performed by the given scheme with the number of (re-)placements of balls performed by an optimal strategy that ensures that, after every operation, the distribution of balls among the bins is perfectly faithful (i.e. bin \(i\) has exactly \(d_i m\) balls, up to \(\pm 1\)). A placement strategy will be called \(c\)-competitive if for any sequence of changes \(\sigma\), it requires the (re-)placement of (an expected number of) at most \(c\) times the number of balls an optimal adaptive and perfectly faithful strategy would need.

To clarify the last definition, notice that when the capacity distribution in the system changes from \((d_1, \ldots, d_n)\) to \((d'_1, \ldots, d'_n)\), an optimal, perfectly faithful strategy would need

\[
\sum_{i: d_i > d'_i} (d_i - d'_i) \cdot m
\]

replacements of objects. Thus, if for example the capacity distribution changes from \((1/2, 1/2, 0)\) to \((0, 1/2, 1/2)\) (bin 1 leaves and bin 3 enters the system), ideally only a fraction of \(1/2\) of the objects would have to be moved. We will see in the following sections that the constant \(c\) that describes the faithfulness of our algorithms influences the time efficiency and the compactness of our algorithms, but has only a very minor influence on the number of replacements of balls if it is small. Therefore, we will compare the number of replacements of our algorithms with the ideal bound on the replacements of an optimal algorithm above.

1.2 Previous results

Compact, adaptive placement strategies are relatively new. So far, only good strategies are known for uniform capacities, that is, all available bins have the same capacity. In our model, this is represented by \(d_i = 1/n\) for all available bins. In this case, it only remains to cope with situations in which new bins enter or old bins leave the system. Karger et al. [6] present an adaptive hashing strategy that is faithful and \(2\)-competitive (resp. \(1\)-competitive if new bins can be renamed to take over the role of
The number of balls per bin is bounded by \(n \log^2 n \) bits to ensure that with high probability the distribution of the balls does not deviate by more than a constant factor from the desired distribution. Furthermore, extending this strategy in a straightforward way to achieve a faithful distribution also for the heterogeneous case may require a tremendous increase in the space complexity (see Section 2.1). Brinkmann et al. [2] presented an alternative, 2-competitive placement strategy for uniform demands. Their scheme requires \(O(n \log n) \) bits and \(O(\log n) \) steps to evaluate the position of a ball. Furthermore, it keeps the deviation from the desired number of balls in a bin extremely small with high probability \(\Pr \) w.h.p. (The scheme in [6] only achieves \(O(n \log^2 n) \) bits are used, even if \(m \gg n \).) Also the scheme by Brinkmann et al. does not seem to be extendable in a straightforward way to non-uniform capacities (see [2] for some attempts). Another adaptive placement strategy was proposed by Sanders [11]. He considers the case that bins fail and suggests to use a set of forwarding hash functions \(h_1, h_2, \ldots \), where at the time \(h_1 \) is set up, only bins that are intact at that time are included in its range. From his description it seems that this strategy can cope reasonably well with failed disks, but it runs into problems when the number of disks grows.

1.3 New results

To the best of our knowledge, all three strategies above do not seem to be extendable to non-uniform demands without either a significant increase in memory, losing the faithfulness condition, and/or a bad adaptivity (for further explanations, see Section 2.1). Instead, we found two new strategies, called SHARE and SIEVE, that are compact, faithful for arbitrary non-uniform capacity distributions, and \((2+\epsilon)\)-competitive for arbitrary changes from one capacity distribution to another, where \(\epsilon > 0 \) can be made arbitrarily small. We also demonstrate that these strategies have many interesting applications in distributed data management, web caching, and adaptive random graphs (which may be of interest for peer-to-peer networks) by proving additional properties of SHARE and SIEVE important for these areas.

1.4 Tools

For many of our results we will need the following so-called Chernoff-Hoeffding bounds [5].

LEMMA 1.1 (CHERNOFF-HOEFFDING). Consider any set of \(n \) independent random variables \(X_1, \ldots, X_n \) that take values in the range \([0, k]\). Let \(X = \sum_{i=1}^n X_i \) and \(\mu = E[X] \). Then it holds for all \(\delta \geq 0 \) that

\[
\Pr[X \geq (1 + \delta)\mu] \leq e^{-\min[\delta^2, \delta] \mu / (3k)}
\]

and for all \(0 \leq \delta \leq 1 \) that

\[
\Pr[X \leq (1 - \delta)\mu] \leq e^{-\delta^2 \mu / (2k)}.
\]

1.5 Overview of the paper

In the next two sections we will present and analyze our new strategies SHARE and SIEVE. Afterwards, we give some applications including distributed data servers, web-caching, and the generation of adaptive random graphs. The paper is finished by a conclusion.

2. THE SHARE STRATEGY

The SHARE strategy works in two phases. The first phase handles the heterogeneous capacities of the bins by using a data structure (containing intervals of appropriate length for each bin) that allows to reduce the non-uniform placement problem to the uniform placement problem. Given a ball \(b \), the result of this phase is a set \(S \) of bins that are equally likely to contain \(b \). In the second phase we can then use a strategy for uniform capacities to determine the bin in \(S \) that stores \(b \). Hence, the SHARE strategy requires as a subroutine an adaptive hashing strategy for uniform capacities. (We say that a system has *uniform capacities* if for all available bins \(i \), \(d_i = 1/n \).) In the uniform case, capacities can only change when new bins enter the system or old bins leave the system. Several strategies as noted in the previous results section have already been presented that are competitive for the uniform case. We will give as an example a strategy that was presented by Karger et al. [6], since it will be the most useful for our goals.

2.1 The NEAREST NEIGHBOR strategy

We start with a strategy, called here NEAREST NEIGHBOR, that solves the problem of redistributing balls under uniform capacities. It works as follows:

Suppose that we have a random function \(f_B \) and a set of independent, random functions \(g_1, \ldots, g_k \), where \(k \) may depend on \(n \). The function \(f_B : \{1, \ldots, M\} \rightarrow \{0, 1\} \) maps the balls uniformly at random to real numbers in the interval \([0, 1]\) and each function \(g_i : \{1, \ldots, N\} \rightarrow \{0, 1\} \) maps the bins uniformly at random to real numbers in the interval \([0, 1]\). Ball \(i \) is assigned to the bin closest to it with regard to this mapping when viewing \([0, 1]\) as a ring, i.e. it is assigned to the bin \(b \) that minimizes \(|f_B(i) - g_i(b)| \).

From the proofs in [6] it follows that this strategy is faithful and \(2 \)-competitive (in the expected sense, if renaming of bins is not allowed) and that it can be implemented in a way that the location of a ball can be determined in expected constant time. It requires \(k \) to be \(\Omega(\log N) \) to ensure that for any \(n \leq N \) it is very unlikely to have a more than constant factor deviation from the expected number of balls in a bin. This results in a space consumption of around \(O(n \log N) \) words (assuming that one word can hold \(\log n \) bits and not including the hash functions).

One might think that this strategy can be easily extended to cover the heterogeneous case by allowing bins with more capacity to have more random points in \([0, 1]\). However, this would require \(\Omega(\min[c_{max} / c_{min}, m]) \) points to be faithful, where \(c_{max} \) is the maximum capacity and \(c_{min} \) is the minimum capacity of a bin. Thus, in the worst case the number of points could be as much as \(\Theta(m) \), violating severely our conditions on the space complexity. On the other hand, restricting the total number of points to something strictly below \(m \) cannot guarantee faithfulness under any capacity distribution (just consider two bins with capacities \(c/m \) and \((m-c)/m \) for some constant \(c > 1 \)).

The other two strategies mentioned in the previous results have the same problems.

2.2 The non-uniform algorithm

Now we are ready to describe the SHARE strategy. As mentioned above, SHARE needs an adaptive strategy for uniform capacities. For convenience, we will use the NEAREST NEIGHBOR strategy, which will be called by the command \(\text{NEAREST}(b, S) \). In this call, \(b \) is the number of a ball and \(S \) represents the set of bins to which NEAREST NEIGHBOR is applied. The return value of the function is the number of the bin storing \(b \). SHARE is based on two hash functions (in addition to the hash functions that are used
by NEAREST NEIGHBOR): a hash function \(h : \{1, \ldots, M\} \rightarrow [0, 1] \) that maps the balls uniformly at random to real numbers in the interval [0, 1), and a hash function \(g : \{1, \ldots, N\} \rightarrow [0, 1) \) that maps starting points of intervals for the bins uniformly at random to real numbers in [0, 1]. In addition, two fixed parameters \(s \geq 1 \) and \(1/N \leq \delta < 1 \) are used. \(s \) is the stretch factor needed to ensure high probability and \(\delta \) is used to simplify the analysis. We will specify their values later. SHARE works in the following way:

Suppose that the capacities for the \(n \) given bins are represented by \((d_1, \ldots, d_n) \in [0, 1]^n \). To make sure that bins will not have a too high capacity (which would complicate some of our proofs), we use the following strategy: For every bin \(i \) with \(d_i \geq \delta \), we introduce \([d_i/\delta] \) virtual bins \(i' \) with \(d_{i'} = \delta \) and, if necessary, one additional bin taking the rest so that their total capacity is equal to \(d_i \). Every other bin \(i \) is left as it is and regarded as a single virtual bin. It is easy to see that this transformation creates \(n' \leq n + 1/\delta \) virtual bins with a capacity of at most \(\delta \) each. Now, every virtual bin \(i \) is given an interval \(I_i \) of length \(s \cdot d_i \), for some fixed stretch factor \(s \), that reaches from \(g(i) \) to \((g(i) + s \cdot d_i) \mod 1 \), where \([0, 1)\) is viewed as a ring. We will assume that \(\delta \leq 1/s \) to prevent an interval being wrapped around \([0, 1)\) for several times. This keeps the description and analysis of SHARE simple.

For every \(x \in [0, 1) \) let \(C_x = \{ i : x \in I_i \} \) and \(c_x = |C_x| \), which is called the containment at point \(x \). Since the total number of endpoints of all intervals \(I_i \) is at most \(2n \leq 2(n + 1/\delta) \), \([0, 1)\) has to be cut into at most \(2(n + 1/\delta) \) frames \(F_j \subseteq [0, 1) \) so that for each frame \(F_j \), \(C_x \) is the same for each \(x \in F_j \). This is important to ensure that the data structures for SHARE have a low space complexity. The computation of the position of a ball \(b \) is now simply done by calling \(\text{NEAREST}(b, C_{h(b)}) \).

![Figure 1: The SHARE algorithm.](image)

Algorithm SHARE(b):

Input: number \(b \) of a ball and a data structure containing all intervals \(I_i \)

Output: bin number that stores \(b \)

Phase 1: query data structure for point \(h(b) \) to derive the interval set \(C_{h(b)} \)

Phase 2: \(\text{bins}_{b} = \text{NEAREST}(b, C_{h(b)}) \)

Return: \(\text{bins}_{b} \)

Concerning the space requirement: As mentioned in the proof of the previous lemma, \(E[c_x] = s \) for every \(x \in [0, 1) \). Hence, for every beginning or endpoint \(x \) of an interval \(I_j \), the expected number of other intervals crossing \(x \) is at most \(s \). Considering the fact that no interval starts or leaves within a frame but only at its borders, this implies that the expected number of intervals in a frame \(F \) is at most \(s + 1 \). Since there are at most \(2(n + 1/\delta) \) different frames, the expected amount of words necessary for storing the set of intervals belonging to the frames is \(O(s(n + 1/\delta)) \). Furthermore, \(O(n + 1/\delta) \) words are necessary to store a data structure for the \(\max[n, 1/\delta] \) segments. Finally, NEAREST NEIGHBOR needs for each frame \(F_j \) with \(\ell_j \) intervals \(O(\ell_j \cdot k) \) words. Since \(E[\ell_j] \leq s + 1 \), the total amount of space needed by SHARE is \(O(s \cdot k \cdot (n + 1/\delta)) \) words.

Next we show that SHARE is faithful. For simplicity, we will treat the virtual bins as the real bins, i.e. \(n' = n \). Let the share at position \(x \) be defined as \(s_x = 1/c_x \). \(s_x \) has the following property:

Lemma 2.3. For any \(0 < \epsilon < 1 \) it holds: If \(s \geq (6 \ln N)/\sigma^2 \) with \(\sigma = \epsilon/(1 + \epsilon) \), then \(w.h.p. \ s_x \leq (1 + \epsilon)/s \) for all \(x \in [0, 1) \). Furthermore, for any \(x \in I_j \), \(E[s_x] \leq (1 + \epsilon)/s \).

Proof. We know from Lemma 2.1 that \(E[c_x] = s \) for all \(x \). Furthermore, the Chernoff bounds imply that for any \(0 < \epsilon < 1 \),

\[
\Pr[c_x \leq (1 - \epsilon) \cdot s] \leq e^{-\epsilon^2 s/2}
\]

and

\[
\Pr[c_x \geq (1 + \epsilon) \cdot s] \leq e^{-\epsilon^2 s/3}.
\]

Using \(\sigma = \epsilon/(1 + \epsilon) \), it follows that

\[
\Pr[s_x \geq (1 + \epsilon)/s] = \Pr[1/c_x \geq 1/(1 - \sigma) s] = \Pr[c_x \leq (1 - \sigma) s] \leq e^{-\epsilon^2 s/2}
\]

and

\[
\Pr[s_x \leq (1 - \epsilon)/s] \leq \Pr[1/c_x \leq (1 + \epsilon)/(1 + 2\epsilon) s] = \Pr[1/c_x \leq 1/(1 + \sigma) s] = \Pr[c_x \geq (1 + \sigma) s] \leq e^{-\epsilon^2 s/3}.
\]

Hence, if \(s \geq (6 \ln N)/\sigma^2 \), then \(s_x \leq (1 + \epsilon)/s \) with probability at least \(1 - 2/N^2 \). Since we have at most \(4N \) frames, this is true for all \(x \) with probability at least \(1 - 8/N \).
Next we compute $E[s_x]$ for $s \geq (2 \ln N)/\sigma^2$ if $x \in I_i$ for some i, i.e. $c_x \geq 1$. It holds that
\[
E[s_x] = \sum_{c=1}^{\infty} \frac{1}{c} \cdot \Pr[s_x = 1/c] \\
\leq 1 \cdot \Pr[s_x \geq (1 + \epsilon)/s] + \frac{1 + \epsilon}{s} \cdot 1 \\
\leq \frac{1}{N} + \frac{1 + \epsilon}{s} \leq \frac{1 + \epsilon'}{s}
\]
for some constant ϵ' very close to ϵ.

Let the share of bin i be defined as
\[
S_i = \int_{x=g(i)}^{g(i)+s-d_i} s_x \, dx .
\]
S_i has the following property:

LEMMA 2.4. For any $0 < \epsilon < 1$ it holds: If $s \geq (6 \ln N)/\sigma^2$ with $\sigma = \epsilon/(1 + \epsilon)$, then $S_i \in [(1 - \epsilon)d_i, (1 + \epsilon)d_i]$ for all i w.h.p.

PROOF. Setting $s = (6 \ln N)/\sigma^2$ with $\sigma = \epsilon/(1 + \epsilon)$, it follows from Lemma 2.3 that with probability at least $1 - 8/N$,
\[
S_i = \int_{x=g(i)}^{g(i)+s-d_i} s_x \, dx \leq \int_{x=0}^{s-d_i} \frac{1 + \epsilon}{s} \, dx \\
= (1 + \epsilon)d_i .
\]

On the other hand, with probability at least $1 - 8/N$,
\[
S_i = \int_{x=g(i)}^{g(i)+s-d_i} s_x \, dx \geq \int_{x=0}^{s-d_i} \frac{1 - \epsilon}{s} \, dx \\
= (1 - \epsilon)d_i .
\]
for all i.

This allows us to prove the following theorem.

THEOREM 2.5. If $s = \Omega(\ln N)$, then SHARE is faithful.

PROOF. Recall that NEAREST NEIGHBOR is faithful if each bin has $k = \Omega(\ln N)$ points, i.e. given n^2 bins and m' balls, the expected number of balls in bin i is within $(1 \pm \epsilon)d_i \cdot m'$, where ϵ' can be brought arbitrarily close to 0. Now, let the random variable B_x denote the number of balls in bin $i = b(x) = x$, more precisely, with $h(b) \in [x, x + dx]$ for $dx \to 0$. Recall the definition of s_x above and let B'_x denote the number of balls in B_x that are assigned to bin i. Furthermore, let the random variable L_i denote the load, i.e. the total number of balls, placed in i. It holds that
\[
L_i = \int_{x=0}^{s-d_i} B'_x \, dx .
\]
Since NEAREST NEIGHBOR is faithful, it holds for all $x \in I_i$ that
\[
E[B'_x] \leq \sum_{b \geq 1} (1 + \epsilon)b \cdot \Pr[B_x = b] \cdot \Pr[s_x = 1/c] \\
= (1 + \epsilon') \cdot E[B_x] \cdot E[s_x] \\
\leq (1 + \epsilon')(m \cdot dx) \cdot (1 + \epsilon)/s ,
\]
where ϵ and ϵ' can be made arbitrarily small. The fact that $E[s_x] \leq (1 + \epsilon)/s$ follows from Lemma 2.3. Hence,
\[
E[L_i] = \int_{x=0}^{s-d_i} E[B'_x] \, dx \leq \int_{x=0}^{s-d_i} (1 + \epsilon')m/s \, dx \\
= (1 + \epsilon')m \cdot d_i,
\]
where $\epsilon'' > 0$ can be made arbitrarily small. In the same way it can be shown that $E[L_i] \geq (1 - \epsilon'')md_i$, where $\epsilon'' > 0$ can be made arbitrarily small.

To complete the description of SHARE, we specify how SHARE adapts to a changing system. Suppose that there is a change in the capacities of the system from $d = (d_1, \ldots, d_n)$ to $d' = (d'_1, \ldots, d'_n)$. (We note that this also includes that a new bin enters the system, since this can simply be modelled by including it already in d with value 0.) In this case, SHARE performs a so-called lazy update strategy:

Let $0 < \lambda < 1$ be some fixed constant. λ specifies the laziness of SHARE. SHARE only changes the capacity for bin i from d_i to d'_i if $d'_i > (1 + \lambda)d_i$ or $d'_i \leq (1 - \lambda)d_i$. This will cause the total capacities of the system to deviate from 1, but it will always be within $1 \pm \lambda$ and therefore will not endanger the results shown above as long as λ is sufficiently small. (That is, SHARE is still faithful with respect to the true capacity distribution.)

If the capacities of bins change, then balls will be moved in such a way that afterwards the call of UNIFORM($b, C_h(b)$) results again in the correct position of the ball. There are various ways of solving this algorithmically, but we will only focus here on how many replacements of balls this would need, i.e. the competitive ratio of

THEOREM 2.6. If $s = \Omega(\ln N)$, then SHARE has a competitive ratio of at most $2 + \epsilon$ for any $\epsilon > 0$.

PROOF. Since SHARE is based on random hashing, it is easy to see that changes in the number of balls do not require SHARE to replace balls in order to remain faithful. Hence, we only have to consider changes in the capacities of the bins.

Suppose that we are given two capacity distributions, d and d', where d is the actual distribution used by the bins (that may not be identical with the distribution demanded by the system, since a lazy update rule is used) and d' is the new capacity distribution. Let α be chosen such that $\sum_i d_i = 1 + \alpha$. We know that $\alpha \in [-\lambda, \lambda]$. Furthermore, we know that in this case with $s = \Omega(\ln N)$, $E[s_c] \in [(1 - \epsilon)(1 + \alpha)s, (1 + \epsilon)(1 + \alpha)s]$ for some $\epsilon > 0$ that can be made arbitrarily small. Thus, it holds for the expected share of bin i that
\[
E[S_i] \in [(1 - \epsilon)(1 + \alpha)d_i, (1 + \epsilon)(1 + \alpha)d_i].
\]
Consider now some fixed bin i. If d'_i is within $(1 \pm \lambda)d_i$, then d_i does not change. Thus, the number of replacements caused by bin i is 0. Otherwise, $d'_i = (1 + \beta)d_i$ for some β outside of $[-\lambda, \lambda]$.

In this case, d_i will be set to d'_i. If $d'_i > d_i$, this causes in the worst case the replacement of an expected number of at most
\[
(1 + \lambda)((1 + \epsilon)d'_i m - (1 - \epsilon)d_i m) \\
= (1 + \lambda)(d'_i m - d_i m + \epsilon(d'_i m - d_i m)) \\
\leq (1 + \lambda)(\beta d_i m + (2 + \beta\lambda)d_i m) \\
\leq (1 + \lambda)(\beta d_i m = (1 + \lambda)m \cdot |d'_i - d_i|)
\]
balls for any $\gamma > 0$ if $\lambda > 0$ and $0 < \epsilon < \lambda < \gamma/2$ are sufficiently small. This holds, because $\alpha \leq \lambda$ and $\beta \geq \lambda$. If $d'_i < d_i$, then we also get a bound of $(1 + \gamma)m \cdot |d'_i - d_i|$ by just exchanging the positions of d_i and d'_i in the calculation above.

Hence, altogether SHARE only requires the replacement of at most $(1 + \gamma)\sum |d'_i - d_i| m$ balls when changing from capacity distribution d to d'. Since the minimum amount of movements required for a perfectly faithful placement scheme is
\[
\sum_{i: d_i > d'_i} (d_i - d'_i) m = \frac{1}{2} \sum_{i: d_i > d'_i} |d'_i - d_i| m
\]
the theorem follows.

To summarize the properties of SHARE: It is faithful, time- and space-efficient and $(2 + \epsilon)$-competitive for any $\epsilon > 0$. Its drawbacks are that the number of balls in a bin is not highly concentrated around the capacity (unless s is very large) and that its space
complexity depends on \(N \) and not just on \(n \). The next, more complicated scheme will remove these drawbacks.

3. THE SIEVE STRATEGY

Next we describe an alternative adaptive hashing strategy that does not have the drawbacks of the previous strategy and that does not rely on an extra placement strategy for uniform capacities.

Our strategy requires hash functions that assign to each ball a real number chosen independently and uniformly at random out of the range \([0, 1]\). Suppose that initially the number of bins is equal to \(n \). Let \(n' = 2^{\lceil \log n \rceil + 1} \). We cut \([0, 1]\) into \(n' \) ranges of size \(1/n' \) and we demand that every range is used by at most one bin. If range \(I \) has been assigned to bin \(i \), then \(i \) is allowed to select any interval in \(I \) that starts at the lower end of \(I \). The intervals will be used in a way (described in more detail below) that any ball mapped to a point in that interval will be assigned to the bin owning it. We say that a range is completely occupied by a bin if its interval covers the whole range. A bin can own several ranges, but it is only allowed to own at most one range that is not completely occupied by it. Furthermore, we demand from every bin \(i \) that the total amount of the \([0, 1]\) interval covered by its intervals is equal to \(d_i/2 \) (it will actually slightly deviate from that, but for now we assume it is \(d_i/2 \)). This ensures the following property.

Lemma 3.1. For any capacity distribution it is possible to assign ranges to the bins in a one-to-one fashion so that each bin can select intervals in \([0, 1]\) of total size equal to \(d_i/2 \).

Proof. Since every bin is allowed to have only one partly occupied range, at most \(n \) of the \(n' \) ranges will be partly occupied. The remaining \(\geq n \) ranges cover a range of at least \(1/2 \), which is sufficient to accommodate all ranges that are completely occupied by the bins.

So suppose we have an assignment of bins to intervals in their ranges such that the lemma is fulfilled. Then we propose the strategy described in Figure 2 to distribute the balls among the bins (the fall-back bin will be specified later). It is based on \(L \) random hash functions \(h_1, \ldots, h_L : \{1, \ldots, M\} \rightarrow [0, 1) \), where initially \(L = \log n' + f \). The parameter \(f \) will be specified later. Figure 2 implies the following result:

Algorithm SIEVE(b):

Input: number \(b \) of a ball

Output: bin number that stores \(b \)

for \(i = 1 \) to \(L \)
set \(x = h_i(b) \)
if \(x \) is in some interval of bin \(s \) then return \(s \)
return number of fall-back bin

Figure 2: The SIEVE algorithm.

Theorem 3.2. SIEVE can be implemented so that the position of a ball can be determined in expected time \(O(1) \) using a space of \(O(n) \) words (without considering the hash functions).

Proof. Since the bins occupy exactly half of the interval \([0, 1]\), the probability that a ball succeeds to be placed in a round is \(1/2 \). Hence, the expected computation time of a ball position is \(O(1) \).

The space requirement is \(O(n) \) words, since information about the occupancy of \(O(n) \) ranges has to be stored.

Let a ball that has not been assigned to a bin in the for-loop of the algorithm above be called a failed ball. Obviously, the expected fraction of balls that fail is equal to \(1/2^L \). Thus, the expected share of the balls any bin \(i \) (apart from the fall-back bin) will get is equal to \(d_i/(1 - 1/2^L) \). However, we want to ensure that every bin gets an expected share of \(d_i \). To ensure this, we first specify how to select the fall-back bin.

Initially, the bin with the largest share is the fall-back bin. If it happens at some time step that the share of the largest bin exceeds the share of the fall-back bin by a factor of \(2 \), then the role is passed on to that bin.

Next we ensure that every bin \(i \) gets an expected share of \(d_i \). Let every non-fall-back bin choose an adjusted share of \(d'_i = d_i/(1 - 1/2^L) \), and the fall-back bin chooses an adjusted share of \(d'_i = (d_i - 1/2^L)/(1 - 1/2^L) \). First of all, the adjusted shares still represent a valid share distribution, because

\[
\sum d'_i = \frac{1 - d_i}{1 - 1/2^L} + \frac{d_i - 1/2^L}{1 - 1/2^L} = 1.
\]

When using these adjusted shares for the selection of the intervals, now every non-fall-back bin \(i \) gets a true share of \((d_i/(1 - 1/2^L))/((d_i - 1/2^L)/(1 - 1/2^L)) \). Hence, the adjusted shares will ensure that the expected share of every bin is precisely equal to its capacity. Thus, we arrive at the following conclusion.

Theorem 3.3. SIEVE is perfectly faithful.

In addition, a high concentration around the expected value can be shown.

Theorem 3.4. For every bin \(i \), let the random variable \(L_i \) denote the number of balls placed in \(i \). It holds for every \(\epsilon > 0 \):

\[
\Pr[L_i \geq (1 + \epsilon)d_im] \leq e^{-\min\{\epsilon^2, \epsilon\}d_im/3}
\]

and

\[
\Pr[L_i \leq (1 - \epsilon)d_im] \leq e^{-\epsilon^2d_im/2}.
\]

The theorem follows directly from the Chernoff bounds and our assumption that all balls choose their values in \([0, 1)\) independently at random. Thus, \(L_i = d_i m + O(\sqrt{d_i m \log n}) \) w.h.p., which is a much better concentration around the expected value for \(L_i \) than achievable by SHARE with a reasonable amount of resources (see Lemma 2.4).

In order to show that SIEVE also has a very good adaptivity, we have to consider the following cases:

1. the capacities change
2. the number \(n' \) of ranges has to increase to accommodate new bins
3. the role of the fall-back bin has to change
4. the number \(L \) of levels has to increase to ensure that \(1/2^L \) is below the share of the fall-back bin

As for the SHARE strategy, changes in the number of balls do not require SIEVE to replace balls in order to remain faithful, since SHARE is based on random hashing.

We begin with considering the situation that the capacities of the system change from \(P = (p_1, p_2, \ldots) \) to \(Q = (q_1, q_2, \ldots) \). Then we use the following strategy: every bin \(i \) with \(q_i < p_i \) reduces its intervals in a way that afterwards it again partly occupies at most one range, and then every bin \(i \) with \(q_i > p_i \) extends its share so that it also partly occupies afterwards at most one range.
It is easy to check that there will always be ranges available for
those bins that increase their share so that every range is used by at
most one bin. It remains to bound the expected fraction of the balls
that have to be replaced.

Lemma 3.5. For any change from one capacity distribution to
another that does not involve the change of the fall-back bin, the
replacement strategy has a competitive ratio of 2.

Proof. In the following, let \(p'_i \) (resp. \(q'_i \)) denote the adjusted
share of bin \(i \) for \(P \) (resp. \(Q \)). For any \(i \) with \(q_i < p_i \), the fraction of
of \([0, 1]\) taken away from bin \(i \) is equal to \((q'_i - p'_i)/2\). Furthermore,
for any \(i \) with \(q_i > p_i \), the fraction of \([0, 1]\) added to bin \(i \) is equal to \((p'_i - q'_i)/2\). Hence, the expected fraction of balls participating in
the first placement round of SIEVE that are affected by the change
in the distribution of shares is equal to \(||P' - Q'||/2 \), where
\[
||P' - Q'|| = \sum_{i=1}^{n} |p'_i - q'_i| .
\]

For the remaining balls that previously participated in the second
round, the fraction affected by this is also equal to \(||P' - Q'||/2 \), and so on.

Now, for any \(r \in \{1, \ldots, L\} \) let \(X_r \) denote the fraction of balls
previously participating in round \(r \) and \(Y_r \) denote the fraction of
these balls still participating in round \(r \) that have to be replaced.
(We can exclude the failed balls, since any of these that still fail will
be stored in the same fall-back bin.) In this case, \(Y = \sum_{r=1}^{L} Y_r \)
represents the total fraction of balls that need a replacement. Since
for a given \(X_r \), \(E[X_r, |Y_r|] \leq \frac{1}{2}||P' - Q'|| X_r \), we obtain for any
given \(X_1, \ldots, X_L \) that
\[
E[X_1, \ldots, X_L, |Y|] = \sum_{r=1}^{L} E[X_1, \ldots, X_r, |Y_r|] \leq \frac{1}{2}||P' - Q'|| \sum_{r=1}^{L} X_r .
\]

We know that in each round the expected fraction of participating
balls that is not placed is 1/2. Hence, \(E[X_r] = 1/2^{r-1} \) for all \(r \)
and therefore
\[
E[|Y|] \leq \frac{1}{2}||P' - Q'|| \sum_{r=1}^{L} \frac{1}{2^{r-1}} = \frac{1}{2} \left(1 - \frac{1}{2^L} \right) ||P' - Q'|| = \frac{1}{2} \left(1 - \frac{1}{2^L} \right) ||P - Q|| .
\]

Since a perfectly faithful placement scheme would have to move
at least a fraction of \(||P - Q||/2 \) of the balls, this proves the
lemma. \(\square \)

Next we consider the situation that the number \(n' \) of ranges has
to increase. This happens if a new bin is introduced which requires \(n' = 2^{|\log n' + 1}| \) to grow. In this case, we simply subdivide each
old range into two new ranges. Since afterwards the property is
still kept that every bin partly occupies at most one range, nothing
has to be replaced.

Consider now the situation that the role of the fall-back bin has
to change. Recall that this happens if the bin with the maximum
share has at least twice the share of the fall-back bin. Let \(s_1 \) be the
old and \(s_2 \) be the new fall-back bin. Suppose that the number of
bins in the system is \(n \). Then \(s_2 \) has a share of at least \(1/n \). At the
time when \(s_1 \) was selected, the share of \(s_1 \) was at least as large as
the share of \(s_2 \). Hence, the total amount of changes in the shares
of \(s_1 \) and \(s_2 \) since then must have been at least \(1/(2n) \). Changing
from \(s_1 \) to \(s_2 \) involves the movement of an expected fraction of
\[
| \frac{d_1 - 1/2L}{1 - 1/2^L} - \frac{d_1}{1 - 1/2^L} | + | \frac{d_2 - 1/2L}{1 - 1/2^L} - \frac{d_1 - 1/2L}{1 - 1/2^L} |
\]
of the balls, which is at most \(2^{2L} \). If the \(f \) in the formula \(L =
\log n' + f \) is sufficiently large, then \(\frac{3}{2^L} < \frac{1}{2^L} \), and therefore the
amount of work for the replacement can be “hidden” in the replace-
ments necessary to react to changes in the capacity distribution
of the system.

Next consider the situation that the number of levels \(L \) has to grow.
Once in a while this is necessary, since for the case that many new
bins are introduced the fall-back bin may not be able or willing to
store a fraction of \(1/2^L \) of the blocks. We ensure that this will never happen with the following strategy:

Whenever the share of the fall-back bin is less than \(1/2^{L-t} \) for
some integer \(t \), we increase the number of levels from \(L \) to \(L + 1 \).

This strategy will cause balls to be replaced. We will show, how-
ever, that also here the fraction of balls that have to be replaced
can be “hidden” in the amount of balls that had to be replaced due to
changes in the distribution requirement.

Let \(s_j \) be the fall-back bin that required an increase from \(L - 1 \)
to \(L \) (resp. the initial fall-back bin if no such bin exists), and let
\(s_k \) be the current fall-back bin that requires now an increase from
\(L \) to \(L + 1 \). Then we know that the size of \(s \) must have been at least \(1/2^{L-t} \) when it became a fall-back bin. Suppose that \(s_k \)
took over the role of a fall-back bin from \(s_j \). Then its share must
have been twice as large then the share of \(s_j \). Since its share was at
most the share of \(s_j \) when \(s_j \) got the role as fall-back bin, the total
amount of changes in the shares of \(s_j \) and \(s_k \) since then must have
been at least \(1/2^{L-t} \). This can also shown to be true for a longer
history of fall-back bins from \(s_j \) to \(s_k \). Changing from \(L \) to \(L + 1 \)
involves the movement of an expected fraction of at most
\[
\left(\sum_{i \neq k} \left| \frac{d_i}{1 - 1/2^L} - \frac{d_i}{1 - 1/2^{L+1}} \right| + \left| \frac{d_k - 1/2^{L-t}}{1 - 1/2^L} - \frac{d_k - 1/2^{L+1}}{1 - 1/2^{L+1}} \right| \right)
\]
of the balls, which is at most \(2^{2L-t} \). If \(f \) and \(t \) are sufficiently
large, then \(\frac{2^{L-t}}{2^L} \ll \frac{1}{2^{L-t}} \), and therefore also the amount
of work for the replacement can be “hidden” in the replacements
necessary to accommodate changes in the distribution of shares.

Hence, we arrive at the following result.

Theorem 3.6. SIEVE is \((2 + \epsilon)\)-competitive, where \(\epsilon > 0 \)
can be made arbitrarily small.

Finally, we note that the SIEVE strategy can easily be executed
in a distributed way: If every bin always knows the complete ca-
capacity distribution, then in the case of a change in the capacities,
every bin can compute locally in a way consistent with the other
bins, how the assignment of intervals to the ranges changes. Every
bin can then check for itself whether there is a ball stored in it that
has to be replaced and, if necessary, sends this ball to the correct
bin. Similar strategies can be used for the other scenarios in which
balls have to be replaced. Of course, this strategy does not only
work for SIEVE but also for SHARE.

4. APPLICATIONS

In this section we list possible applications of our adaptive hashing
schemes.
4.1 Distributed data servers

Consider the situation that we have a distributed data server or a storage area network. Such a system may have a large collection of disks, and it is quite likely that disks break down, are added, or have to be replaced. Previous data management strategies such as RAID have severe problems with these changes. In addition to being able to faithfully distribute data blocks among disks and achieving a high adaptivity, a dynamic placement scheme should also be able to ensure that requests to the data blocks have the same distribution as the data blocks themselves. Since both SHARE and SIEVE are based on random hash functions, it is easy to check that both the SHARE and the SIEVE strategy fulfill this property. In particular, the following theorem can be shown.

Theorem 4.1. In SHARE the probability of a data request to be sent to disk \(i \) can be brought arbitrarily close to its capacity \(d_i \), and SIEVE even ensures that the probability of a data request to be sent to disk \(i \) is equal to its capacity \(d_i \).

Proof. Consider any set \(R \) of requests to data blocks. For every data block \(b \), let its weight \(v_b \) be the number of requests in \(R \) for \(b \), and let its relative weight be \(v_b = v_b / |R| \).

First, we consider SHARE. Recall the notation in Theorem 2.5. Let \(B_b \) be redefined as the total relative weight of the balls with \(b(b) = x \) and let \(B_{b}^x \) be redefined as the total relative weight of the balls in \(B_x \) that are assigned to bin \(x \). Since

\[
E[B_b] = \sum_{\text{blocks } b} v_b \Pr[b \in [x, x + dx]] = \sum_{\text{blocks } b} v_b \cdot dx = dx
\]

it follows that \(E[L_i] \) is within \((1 + \epsilon)\gamma d_i\), as desired.

For SIEVE, we simply have to use the fact that every ball has a probability of exactly \(v_b \) to be placed at bin \(i \) to conclude that the load at bin \(i \), \(L_i \), fulfills

\[
E[L_i] = \sum_{\text{blocks } b} v_b \Pr[b \text{ placed in } i] = \sum_{\text{blocks } b} v_b \cdot d_i = d_i .
\]

\(\square \)

4.2 Web caching

A web cache – also called proxy server – is a network entity that satisfies HTTP requests on behalf of a web server. In order to realize this, the web cache has its own disk storage and keeps in this storage copies of recently requested objects. Web caches are enjoying wide-scale deployment in the Internet for several reasons. First, a web cache can substantially reduce the response time for a client request, particularly if the bottleneck bandwidth between the client and the original server is much less than the bottleneck bandwidth between the client and the cache. Second, web caches can substantially reduce web traffic in the Internet. Already in 1998, over 75 percent of Internet traffic was web traffic, so a significant reduction in web traffic can translate to a significant improvement in Internet performance.

Multiple web caches, located at different places in the Internet, can cooperate to improve overall performance. An example of a cooperative caching system is the NLANR caching system, which consists of a number of backbone caches in the United States, and the Akamai caching system, which provides caching services for companies all over the world.

Clients can use a hash function to discover which cache stores an object. Consider now what happens when the set of active caching machines changes, or when each client is aware of a different set of caches. (Such situations are very plausible on the Internet.) In this case the clients may have an inconsistent view of the caches. Thus, we need a data placement scheme that is able to support inconsistent views. A view \(V \) is a demand distribution \((v_1, \ldots, v_n)\) that may deviate from the current capacity distribution \(D = (d_1, \ldots, d_n) \). The consistency of a view \(V \) is given by

\[
\gamma_V = \sum_{i=1}^{n} \min[v_i, d_i].
\]

Obviously, \(\gamma_V \in [0, 1] \) and the closer \(\gamma_V \) is to 1, the closer \(V \) is to \(D \). To ensure that the consistency of a view is in close correlation with the probability of computing the correct bin for a ball, we need one more definition.

A placement scheme is called oblivious if no matter how a system evolved to reach a capacity distribution \(D \), the distribution of balls among the bins will be the same. In a non-oblivious scheme, it may happen that a client cannot determine the correct position of any of the balls although its view matches the current demand distribution. Hence, it is important to use oblivious placement schemes to ensure this does not happen. SHARE is oblivious, whereas SIEVE is not. Hence, we will only consider the SHARE strategy. The following result that generalizes a result by Karger et al. [6] from uniform to non-uniform demand distributions.

Theorem 4.2. Suppose we use SHARE. For any constant \(0 < \gamma < 1 \), \(\epsilon = \Theta(\log N) \) and \(\delta = \Theta(1/\log^2 N) \) can be chosen so that for any view \(V \) with consistency at least \(\gamma \) it holds: If every data element has \(\Theta(\gamma^{-1} \log N) \) copies, then w.h.p. at least one location of a copy is the same for both \(V \) and the current demand distribution \(D \).

Proof. We prove the theorem in two steps. First, we consider some fixed copy \(b' \) of a ball \(b \) and show that the probability that the bin in which \(b' \) is stored is not the same for \(V \) and \(D \) is some constant smaller than 1. Then, we show that the probabilities of different copies of \(b \) to run into such a situation are nearly independent, so that the probability that for all copies \(b' \) the location of \(b' \) is not the same for \(V \) and \(D \) is polynomially small. This would result in the theorem.

So consider now a fixed copy \(b' \) of a ball \(b \) and let \(x = h(b') \). Let \(C_s \) be the set of bins with intervals containing \(x \) w.r.t. \(D \) and \(C'_{s'} \) be the set of bins with intervals containing \(x \) w.r.t. \(V \). Furthermore, let \(O_s = C_s \cap C'_{s'} \). For every constant \(\epsilon > 0 \) we can choose an \(s = \Theta(\log N) \) so that \(|C_s| \) and \(|C'_{s'}| \) are within \((1 \pm \epsilon)s\) w.h.p. and \(|O_s| \) is within \((1 \pm \epsilon)s\) w.h.p. To simplify the following calculations, we will assume that \(|C_s| = |C'_{s'}| = s \) and \(|O_s| = \gamma s \).

Clearly, the probability that the location of \(b' \) is the same for \(D \) and \(V \) is equal to the probability that \(b' \) is placed in a bin in \(O_s \) when using NEAREST NEIGHBOR on the bin set \(C_s \cup C'_{s'} \). Hence,

\[
Pr[\text{bin of } b' \text{ the same for } D \text{ and } V] = \frac{|O_s|}{|C_s \cup C'_{s'}|} \geq \frac{\gamma s}{2s} = \frac{\gamma}{2}.
\]

Thus, the probability that the bin of \(b' \) is not the same for \(D \) and \(V \) is at most \(1 - \gamma/2 \).

Now we want to determine the probability that all of the copies \(b_{1}', \ldots, b_{n}' \) of a ball \(b \) have bins that are not the same for \(D \) and \(V \). Here, we face the problem that there are dependencies among these probabilities: If it is known that some copy \(b_{i}' \) is not in the same bin
for D and V and for some other copy b'_i, $h(b'_i)$ and $h(b'_i)$ are so close that they may have the same set of bins (which may happen for $|h(b'_i) - h(b'_i)| \leq 2\delta n$, then b'_i may also not be in the same bin for D and V. Thus, we would not get an extra probability for b'_i. Nevertheless, the following lemma can be shown. In this lemma, A_i denotes the event that b'_i is not in the same bin for D and V.

Lemma 4.3. If $\delta \leq \gamma/(4k \cdot s)$, then it holds for every $i \in \{1, \ldots, k-1\}$:

$$\Pr[A_{i+1} \mid A_1 \land \ldots \land A_i] \leq 1 - \gamma/2 + i \cdot 2\delta s.$$

Proof. Let $x_i = h(b'_i)$ for all $i \in \{1, \ldots, k\}$. Furthermore, let R_i be the event that x_i is within a radius of δs of some x_j, $j < i$. Then it holds that

$$\Pr[A_{i+1} \mid A_1 \land \ldots \land A_i] = \Pr[R_{i+1}] \cdot \Pr[A_{i+1} \mid R_{i+1} \land A_1 \land \ldots \land A_i]
+ \Pr[R_{i+1}] \cdot \Pr[A_{i+1} \mid R_{i+1} \land A_1 \land \ldots \land A_i] \leq \Pr[R_{i+1}] + \Pr[A_{i+1} \mid R_{i+1} \land A_1 \land \ldots \land A_i].$$

Obviously, $\Pr[R_{i+1}] \leq i \cdot 2\delta s$. Hence, it remains to show that

$$\Pr[A_{i+1} \mid R_{i+1} \land A_1 \land \ldots \land A_i] \leq 1 - \gamma/2 \cdot (up to some negligible \epsilon terms that we do not consider). Since $|C_x| = |C'_x| = s$ for all $x \in [0, 1]$ (up to negligible ϵ terms) and none of the x outside of the δs radius of the x_j with $j \leq i$ can have an interval in C_x, that also contains such a point x_j, the probability for A_{i+1} to be true at any of these points x is independent of the A_1, \ldots, A_i. Hence,

$$\Pr[A_{i+1} \mid R_{i+1} \land A_1 \land \ldots \land A_i] \leq 1 - \gamma/2,$$

which completes the proof. \hfill \square

From Lemma 4.3 it follows with $\delta \leq \gamma/(8k \cdot s)$ that

$$\Pr[A_1 \land \ldots \land A_k] \leq (1 - \gamma/4)^k \leq e^{-\gamma k/4}.$$

Thus, choosing $k = \Theta((\gamma^{-1} \log N))$, the probability that no copy of ball b is in the same bin for D and V can be made polynomially small, which completes the proof.

4.3 Adaptive random graphs

The problem of generating random graphs has a long history. Three closely related models of random graphs stand out: $G(n, M)$, $G(n, p)$, and $G(n, d)$. In each case the probability space consists of graphs on a fixed set of n distinguishable nodes. Let $N = \binom{n}{2}$. For $0 \leq M \leq N$, the space $G(n, M)$ consists of all $\binom{N}{M}$ subgraphs of K_n with M edges. We turn $G(n, M)$ into a probability space by taking its elements to be equiprobable. To get a random element of this space, we simply have to pick a random subset of size M out of the set of all possible edges, which is easy to achieve when having access to a sequence of $O(\log^2 N) = O(n^2)$ perfectly random bits.

The space $G(n, p)$ is defined for $0 \leq p \leq 1$. To get a random element of this space, we select the edges independently with probability p (i.e. every one of the N edges has a probability of p of being included in the random graph).

$G(n, d)$ represents the class of all d-regular graphs of size n (i.e. every node has a degree of d). Also here, its elements are assumed to be equiprobable. While a number of algorithms have been proposed that generate d-regular graphs uniformly at random, only few of them are of practical significance [12]. Bollobás’ algorithm [1] takes an expected time of the order of $dn e^{(d^2-1)/4}$ and hence is not practical. In [8] a polynomial time algorithm of the order $O(nd^3)$ is given. However, it is prohibitively difficult to implement, and only applies to $d = O(n^1/3)$. Simpler algorithms have been proposed in [7, 14]. However, the graphs there have not been proven to be generated uniformly at random. Recently, Steger and Wormald [12] presented an algorithm that is both easy to implement as well as fast in practice, with an expected runtime of $O(n d^3)$. They prove that the algorithm generates d-regular graphs approximately uniformly, in the sense that all d-regular graphs on n nodes have in the limit the same probability to be selected as $n \to \infty$.

All graph constructions mentioned above work when the number of nodes n and the other parameters are fixed. But what can be done if the number of nodes or some other parameter changes?

For the class $G(n, p)$, a random graph G can easily be adapted to changes in n so that it remains random: if a node is removed, simply delete all edges incident to it, and if a node is added, simply choose one of the new edges independently with probability p. Also a change of p can be handled well with a minimum amount of change: if each edge is given a random number in $[0, 1]$, then all those edges are active whose number is at most the actual p.

For the class $G(n, M)$ there is an easy solution. Assign to each edge a random number in $[0, 1]$, and choose the M edges with the largest numbers. It is not difficult to check that for any change in n and M such a rule would keep the graph a random member of $G(n, M)$. Furthermore, the expected number of changes necessary to keep this property is minimal.

Finally, we consider the class $G(n, d)$. Let us generalize this to the class $G(n, D)$, where D is a vector of degrees d_i (i.e. d_i represents the degree of node i). For both $G(n, d)$ and $G(n, D)$ it is not known how to efficiently adapt graphs to a changing n, d, or D so that they remain a random member of that class. For this, a perfectly faithful strategy (in a deterministic sense and not just in expectation) would be needed, which is neither the case for SHARE nor for SIEVE. However, SIEVE is very close to being perfectly faithful, and therefore we demonstrate how to use SIEVE to maintain random graphs that are close to the class $G(n, D)$. For simplicity, we assume that all degrees in D are even and that every d_i is at most half of the total degree. This guarantees that the class $G(n, D)$ is never empty.

Again, every node represents a bin in SIEVE. For every node i, we choose $d_i/2$ edges with one endpoint in i and the other endpoint determined by SIEVE. This guarantees that the expected number of edges incident to node i is d_i, and that the deviation from this is $\pm O(d_i \cdot \log n + \log n)$ w.h.p. for all i. Furthermore, it is easy to see that SIEVE is $2 + \epsilon$-competitive for any change in n and D compared to the expected number of changes necessary to ensure that the graph is a random member of $G(n, D)$.

Thus, we arrive at the following theorem.

Theorem 4.4. SIEVE allows to adapt random graphs in a $2 + \epsilon$-competitive way so that they remain graphs close to random members of $G(n, D)$.

It is known that random graphs have many nice properties such as a close to optimal diameter and expansion. Hence, they are useful for many network applications such as routing, distributed sorting, and load balancing. Adaptive random graphs may be of particular interest for peer-to-peer networks. Peer-to-peer (or P2P) networks are overlay-networks which connect their nodes via some existing network and work together to provide distributed services such as search, content integration and administration. Two main properties characterize such a network. There is no central node that handles the communication between peers like in a client-server model. Instead, queries fan out over the network, and results are collected and propagated back to the originating node. Furthermore, the topology of the P2P is constantly changing, since nodes
may join and leave the network at any time. Popular examples of P2P protocols are Freenet, Gnutella, Limeewire, Bearshare, and Kazaa. P2P protocols presented in the computer science literature include Chord [13], Past [10], Tapestry [15], and a protocol by Pandurangan et al. [9].

In a peer-to-peer network established over the Internet, peers may have large differences in computational power, the bandwidth of their connection to the Internet, or the storage capacity they are willing or able to contribute to the network. Hence, in order to fully exploit the performance of a peer-to-peer network, it is important to take these properties into consideration for the construction of the network and the distribution of the data among the peers. Thus, it should not only be possible to distribute data in a non-uniform way (as done in Sections 2 and 3) but also to construct peer-to-peer networks of non-uniform degree for connecting the users. In addition, many popular peer-to-peer solutions such as Freenet and Gnutella use broadcasting to search for contents. For a fast feedback of such an operation it is important to ensure that the number of queries that reach and are sent out by a node is proportional to the bandwidth of its connection to the Internet and that this is realized so that the diameter of the peer-to-peer network is as low as possible. Here, algorithms for the generation and adaptation of random graphs in the class \(G(n, D) \) appear to be a valuable tool to solve these tasks in an efficient way. We demonstrated above that this is in principle possible, but it is certainly only a first step in this direction.

5. CONCLUSIONS

In this paper we presented two compact, adaptive placement schemes for non-uniform capacities. Several open problems remain, since these schemes are not optimal. For example, is it possible to construct a compact scheme that is (almost) perfectly faithful and (close to) 1-competitive and that requires an amount of space that only depends on the current number of bins \(n \) (and maybe the current number of balls in a logarithmic way)? SHARE also depends on \(N \), and SIEVE depends on the maximum number of bins that have been in the system so far. Also, both are not 1-competitive but only \(2 + \epsilon \)-competitive for any \(\epsilon > 0 \).

Another question that might be worth to investigate is how to further reduce the deviation of the number of balls in a bin from its expected value beyond what SIEVE can achieve. This could be interesting for the maintenance of random graphs that are (much closer to) random members of \(G(n, D) \).

6. ACKNOWLEDGEMENTS

We would like to thank Friedhelm Meyer auf der Heide for many stimulating discussions and the anonymous referees for many valuable comments.

7. REFERENCES