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ABSTRACT
In this paper we consider the k edge-disjoint paths problem
(k-EDP), a generalization of the well-known edge-disjoint
paths problem. Given a graph G = (V, E) and a set of
terminal pairs (or requests) T , the problem is to find a max-
imum subset of the pairs in T for which it is possible to
select paths such that each pair is connected by k edge-
disjoint paths and the paths for different pairs are mutually
disjoint. To the best of our knowledge, no nontrivial result
is known for this problem for k > 1. To measure the perfor-
mance of our algorithms we will use the recently introduced
flow number F of a graph. This parameter is known to ful-
fill F = O(Δα−1 log n), where Δ is the maximum degree
and α is the edge expansion of G. We show that a sim-
ple, greedy online algorithm achieves a competitive ratio of
O(k3 · F ), which naturally extends the best known bound
of O(F ) for k = 1 to higher k. To achieve this competitive
ratio, we introduce a new method of converting a system of
k disjoint paths into a system of k length-bounded disjoint
paths. We also show that any deterministic online algorithm
has a competitive ratio of Ω(k · F ).

In addition, we study the k disjoint flows problem (k-
DFP), which is a generalization of the well-known unsplit-
table flow problem (UFP). The k-DFP is similar to the k-
EDP with the difference that we now consider a graph with
edge capacities and the requests can have arbitrary demands
di. The aim is to find a subset of requests of maximum to-
tal demand for which it is possible to select flow paths such
that all the capacity constraints are maintained and each
selected request with demand di is connected by k disjoint
paths, each of flow value di/k.

The k-EDP and k-DFP problems have important appli-
cations in fault-tolerant (virtual) circuit switching, which
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plays a key role in optical networks.
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1. INTRODUCTION
This paper was motivated by a talk given by Rakesh Sinha

from Ciena Inc. at the DIMACS Workshop on Resource
Management and Scheduling in Next Generation Networks,
March 26-27, 2001. The speaker pointed out in his talk that
standard problems such as the edge-disjoint paths problem
and the unsplittable flow problem are insufficient for practi-
cal purposes: they do not allow a rapid adaptation to edge
faults or heavy load conditions. Instead of having just one
path for each request, it would be much more desirable to
determine a collection of alternative independent paths for
each accepted request that can flexibly be used to ensure
rapid adaptability. The paths, however, should be chosen
so that not too much bandwidth is wasted under normal
conditions. Keeping this in mind, we introduce two new
(to the best of our knowledge) optimization problems: the
k edge-disjoint paths problem (k-EDP) and the k disjoint
flows problem (k-DFP).

In the k-EDP we are given an undirected graph G =
(V, E) and a set of terminal pairs (or requests) T . The prob-
lem is to find a maximum subset of the pairs in T such that
each chosen pair can be connected by k disjoint paths and,
moreover, the paths for different pairs are mutually disjoint.

Similarly, in the k-DFP we are given an undirected net-
work G = (V, E) with edge capacities and a set of terminal
pairs T with demands di, 1 ≤ i ≤ |T |. The problem is to
find a subset of the pairs of maximum total demand such
that each chosen pair can be connected by k disjoint paths,



each path is carrying di/k units of flow and no capacity
constraint is violated.

In order to demonstrate that the k-DFP can be used to
achieve fault tolerance together with a high utilization of the
network resources and also a rapid adaptability, consider a
network G in which new edge faults may occur continuously
but the total number of faulty edges at the same time is at
most f . In this case, given a request with demand d, the
strategy is to reserve k + f disjoint flow paths for it, for
some k ≥ 1, with total demand (1 + f/k)d. As long as at
most f edge faults appear at the same time, it will still be
possible to ship a demand of d along the remaining paths.
Furthermore, under fault-free conditions, only a fraction f/k
of the reserved bandwidth is wasted, which can be made
sufficiently small by setting k sufficiently large (which will,
of course, be limited by the properties of the network).

1.1 Previous results
Since we are not aware of previous results for the k-EDP

and the k-DFP for k > 1, we will just survey results for
the heavily studied case of k = 1, that is, the edge-disjoint
paths problem (EDP) and the more general unsplittable flow
problem (UFP).

Several results are known about the approximation ratio
and competitive ratio achievable for the UFP under the as-
sumption that the maximum demand of a commodity, dmax,
does not exceed the minimum edge capacity, cmin, called
here the no-bottleneck assumption [1, 12, 4, 7, 10, 13, 14]. If
only the number of edges, m, is known, Baveja and Srini-
vasan [4] present a polynomial time algorithm with approxi-
mation ratio O(

√
m). On the lower bound side, it was shown

by Guruswami et al. [10] that on directed networks the UFP

is NP-hard to approximate within a factor of m1/2−ε for any
ε > 0. The best result for the EDP and the UFP known
so far was given by Kolman and Scheideler [14]. Using a
new parameter called the flow number F of a network, they
show that a simple online algorithm has a competitive ratio
of O(F ) and prove that F = O(Δα−1 log n), where for the
EDP Δ is the maximal degree of the network, α is the edge
expansion, and n is the number of nodes. For the UFP,
Δ has to be defined as the maximal node capacity of the
network for the bound above to hold, where the capacity of
a node is defined as the sum of the capacities of its edges.
Combining the approach of Kolman and Scheideler [14] with
the AAP algorithm [1], Chakrabarti et al. [7] recently proved
an approximation ratio of O(Δ2α−1 log2 n) for the more gen-
eral UFP with profits where Δ is just the maximal degree
of the network.

We also consider two related problems, the integral split-
table flow problem (ISF) [10] and the k-splittable flow prob-
lem (k-SFP). In both cases, the input and the objective (i.e.,
to maximize the sum of accepted demands) are the same as
in the UFP. The difference is that in the ISF all demands are
integral and a flow satisfying a demand can be split into sev-
eral paths, each carrying an integral amount of flow. In the
k-SFP1 a demand may be split into up to k flow paths (of
not necessarily integral values). Under the no-bottleneck as-
sumption Guruswami et al. [10] give an O(

√
mdmax log2 m)

approximation for the ISF. Recent results of Kolman and
Scheideler [14] allow to achieve an O(F ) randomized com-
petitive ratio and an O(F ) deterministic approximation ra-

1The k-splittable flow problem was recently independently
introduced by Baier et al. [3].

tio for both of these problems on uniform capacity networks.
Although the ISF and the k-SFP on one side and the k-DFP
on the other seem very similar at first glance, there is a se-
rious difference between the two. Whereas the ISF and the
k-SFP are relaxations of the UFP (they allow the use of
more than one path for a single request and the paths are
not required to be disjoint), the k-DFP is actually a more
complex version of the UFP since it requires several disjoint
paths for a single request.

1.2 New results
The main results or this paper are

• a deterministic online algorithm for the k-EDP with
competitive ratio O(k3F ),

• a deterministic offline algorithm for the k-DFP on
unit-capacity networks with an approximation ratio of
O(k3F log(kF )),

• a lower bound Ω(k · F ) for the competitive ratio of
any deterministic online algorithm for the k-EDP (and
thus, obviously, for the k-DFP).

Thus, for constant k, we have matching upper and lower
bounds for the k-EDP.

Furthermore, we demonstrate that the disjointness con-
dition of the k paths for every single request seems to be
the crucial condition that makes the problems above harder
than other problems such as the integral splittable flow prob-
lem [10] or the k-splittable flow problem.

Using known techniques, we also show how the online al-
gorithm for the k-EDP can be transformed into an offline
algorithm with approximation ratio O(k3F ) for the k-EDP
with profits, and we describe how the offline algorithm for
the k-DFP can be converted into a randomized online algo-
rithm for the k-DFP with an expected competitive ratio of
O(k3F log(kF )).

Our algorithms for the k-EDP and k-DFP are based on a
simple concept, which is a natural extension of the bounded
greedy algorithm (BGA) that has already been studied in
several papers [12, 13, 14]: for every request for which there
are still k disjoint flow paths of total length at most L avail-
able without violating the capacity constraints, select any
such system of k paths for it. The core of the paper is in the
analysis of this simple algorithm. The problem is to show
that this strategy works even if the optimal offline algorithm
connects many requests via k disjoint paths of total length
more than L. In order to solve this problem we use a new
technique, based on Menger’s theorem and the Lovász Local
Lemma, that converts large systems of k disjoint paths into
small systems of k disjoint paths. Previously, shortening
strategies were only known for k = 1 [13, 14].

1.3 Basic notation and techniques
Many of the previous techniques for the EDP and related

problems do not allow us to prove strong upper bounds on
approximation or competitive ratios due to the use of inap-
propriate parameters. If m is the only parameter used, an
upper bound of O(

√
m) is essentially the best possible for

the case of directed networks [10]. Much better ratios can
be shown if the expansion or the routing number [16] of a
network are used. These measures give very good bounds
for low-degree networks with uniform edge capacities, but



are usually very poor when applied to networks of high de-
gree or highly nonuniform degree or edge capacities. To get
more precise bounds for the approximation and competitive
ratios of algorithms, Kolman and Scheideler [14] introduced
a new network measure, the flow number F . Not only does
the flow number lead to more precise results, it also has the
major advantage that, in contrast to the expansion or the
routing number, it can be computed exactly in polynomial
time. Hence we will use the flow number in this paper as
well.

Before we can introduce the flow number, we need some
notation. In a concurrent multicommodity flow problem
there are k commodities, each with two terminal nodes si

and ti and a demand di. A feasible solution is a set of flow
paths for the commodities that obey capacity constraints
but need not meet the specified demands. An important
difference between this problem and the unsplittable flow
problem is that the commodity between si and ti can be
routed along multiple paths. The (relative) flow value of a
feasible solution is the maximum f such that at least f · di

units of commodity i are simultaneously routed for each i.
The max-flow for a concurrent multicommodity flow prob-
lem is defined as the maximum flow value over all feasible
solutions. For a path p in a solution, the flow value of p is the
amount of flow routed along it. A special class of concurrent
multicommodity flow problems is the product multicommod-
ity flow problem (PMFP). In a PMFP, a nonnegative weight
π(u) is associated with each node u ∈ V . There is a com-
modity for every pair of nodes and the demand for the pair
(u, v) is equal to π(u) · π(v).

Suppose we have a network G = (V, E) with arbitrary
non-negative edge capacities. For every node v, let the ca-
pacity of v be defined as c(v) =

∑
w:{v,w}∈E c(v, w) and the

capacity of G be defined as Γ =
∑

v c(v). Given a concurrent
multicommodity flow problem with feasible solution S , let
the dilation D(S) of S be defined as the length of the longest
flow path in S and the congestion C(S) of S be defined as
the inverse of its flow value (i.e., the congestion tells us how
many times the edge capacities would have to be increased
in order to fully satisfy all the original demands, along the
paths of S). Let I0 be the PMFP in which π(v) = c(v)/

√
Γ

for every node v, that is, each pair of nodes (v, w) has a
commodity with demand c(v) · c(w)/Γ. The flow number
F (G) of a network G is the minimum of max{C(S),D(S)}
over all feasible solutions S of I0. When there is no risk
of confusion, we will simply write F instead of F (G). Note
that the flow number of a network is invariant to scaling of
capacities.

The smaller the flow number, the better are the commu-
nication properties of the network. For example, F (line) =
Θ(n), F (mesh) = Θ(

√
n), F (hypercube) = Θ(log n), F (but-

terfly) = Θ(log n), and, F (expander) = Θ(log n). In the
analysis of the presented algorithms, a useful tool will be
the Shortening lemma [14].

Lemma 1.1 (Shortening Lemma). For any network
with flow number F it holds: for any ε ∈ (0, 1] and any
feasible solution S to an instance of the concurrent multi-
commodity flow problem with a flow value of f , there exists
a feasible solution with flow value f/(1 + ε) that uses paths
of length at most 2 ·F (1 + 1/ε). Moreover, the flow through
any edge e not used by S is at most ε · c(e)/(1 + ε).

Another useful class of concurrent multicommodity flow

problems is the balanced multicommodity flow problem (or
short BMFP). A BMFP is a multicommodity flow problem
in which the sum of the demands of the commodities orig-
inating and the commodities terminating in a node v is at
most c(v) for every v ∈ V . We will make use of the following
property of the problem [14]:

Lemma 1.2. For any network G with flow number F and
any instance I of a BMFP for G, there is a feasible solution
for I with congestion and dilation at most 2F .

Apart from the flow number we will also need Cher-
noff bounds [11], the (symmetric form of the) Lovász Local
Lemma [9] and Menger’s theorem [6, p. 75].

Lemma 1.3 (Chernoff Bound). Consider any set of
n independent binary random variables X1, . . . , Xn. Let
X =

∑n
i=1 Xi and μ be chosen so that μ ≥ E[X]. Then

it holds for all δ ≥ 0 that

Pr[X ≥ (1 + δ)μ] ≤ e−min[δ2, δ]·μ/3 .

Lemma 1.4 (Lovász Local Lemma). Let A1, . . . , An

be “bad” events in an arbitrary probability space. Suppose
that each event is mutually independent of all other events
but at most b, and that Pr[Ai] ≤ p for all i. If ep(b + 1) ≤ 1
then, with probability greater than 0, no bad event occurs.

Lemma 1.5 (Menger’s theorem). Let s and t be dis-
tinct vertices of G. Then the minimal number of edges sep-
arating s from t is equal to the maximal number of edge-
disjoint s-t paths.

1.4 Organization of the paper
In Section 2 we present our upper and lower bounds for

the k-EDP and some related problems, and in Section 3 we
present our upper bounds for the k-DFP. The paper ends
with a conclusion and open problems.

2. ALGORITHMS FOR THE K-EDP
Consider the following extension of the bounded greedy

algorithm: Let L be a suitably chosen parameter. Given
a request, if it is possible to find k edge-disjoint paths,
p1, p2, . . . pk between the terminal nodes of the request that
are mutually disjoint with the previously selected paths and
that fulfill

∑k
i=1 |pi| ≤ L, where |p| is the length (i.e., the

number of edges) of a path p, then accept the request and
select any such collection of paths for it. Otherwise, reject
the request. Let us call this algorithm k-BGA.

Note that the problem of finding k edge-disjoint paths
p1, p2, . . . pk of total length at most L can be reduced to
the classical min-cost (integral) flow problem, which can be
solved by standard methods in polynomial time [8, Chapter
4]. It is worth mentioning that if there were a bound of
L/k on the length of every path, the problem would not be
tractable any more (cf. [5]).

2.1 The upper bound

Theorem 2.1. Given a network G of flow number F , the
competitive ratio of the k-BGA with parameter L = 20k3F
is O(k3F ).



Proof. In the following, we call the k edge-disjoint paths
that were selected for a request a k-system. A k-system is
small if it has at most L edges.

Let B be the solution obtained by the k-BGA and O be
the optimal solution. For notational simplicity we allow a
certain ambiguity. Sometimes B and O refer to the subsets
of T of the satisfied requests, and sometimes to the actual
k-systems that realize the satisfied requests. We say that a
k-system q ∈ B is a witness for a k-system p if p and q share
an edge. Obviously, a request with a small k-system in the
optimal solution that was rejected by the k-BGA must have
a witness in B.

Let O′ ⊆ O denote the set of all k-systems in O that
are larger than L and that correspond to requests not ac-
cepted by the k-BGA and that do not have a witness in
B. Then each k-system in O − O′ either has a witness or
was accepted by the k-BGA. Since the k-systems in O−O′

are edge-disjoint, each request accepted by the k-BGA can
be a witness to at most L requests in O − O′. Hence,
|O − O′| ≤ (1 + L)|B|.

It remains to prove an upper bound on |O′|. To achieve
this, we transform the k-systems in O′ into a set P of pos-
sibly overlapping but small k-systems. Since these small
k-systems would have been candidates for the k-BGA but
were not picked, each of them has at least one witness in B.
Then we show that the small k-systems in P do not overlap
much and thus many k-systems from B are needed in order
to provide a witness for every k-system in P .

Note that the set O′ of k-systems can be viewed as a feasi-
ble solution of relative flow value 1 to the set of requests O′

of the concurrent multicommodity flow problem where each
request has demand k. The Shortening lemma with param-
eter ε = 1/(2k) immediately implies the following fact.

Fact 2.2. The k-systems in O′ can be transformed into
a set R of flow systems transporting the same amount of
flow such that every flow path has a length of at most 5k ·
F . Furthermore, the congestion at every edge used by a k-
system in O′ is at most 1 + 1/(2k), and the congestion at
every other edge is at most 1/(2k).

This does not immediately provide us with short k-
systems for the requests in O′. However, it is possible to
extract short k-systems out of the flow system R.

Lemma 2.3. For every request in O′, a set of small k-
systems can be extracted out of its flow system in R with a
total flow value of at least 1/4.

Proof. Let (si, ti) be a fixed request from O′ and let Ei

be the set of all edges that are traversed by the flow system
for (si, ti) in R. Consider any set of k−1 edges in Ei. Since
the edge congestion caused by R is at most 1 + 1/(2k), the
total amount of flow in the flow system for (si, ti) in R that
traverses the k − 1 edges is at most (k − 1)(1 + 1/(2k)) ≤
k − 1/2. Thus, the minimal si − ti-cut in the graph (V, Ei)
consists of at least k edges. Hence, Menger’s theorem [6]
implies that there are k edge-disjoint paths between si and
ti in Ei. We take any such k paths and denote them as the
k-system σ1. We associate a weight (i.e., total flow) of k · ε1
with σ1, where ε1 is the minimum flow from si to ti through
an edge in Ei belonging to the k-system σ1.

Assume now that we have already found � k-systems
σ1, σ2, . . . , σ� for some � ≥ 1. If

∑�
j=1 k · εj ≥ 1

2
we stop

the process of defining σj . Otherwise, the minimal si − ti-
cut in (V, Ei) must still be at least k, because the total flow
along any k−1 edges in Ei is still less than the total remain-
ing flow from si to ti. Thus, we can apply Menger’s theorem
again. This allows us to find another k-system σ�+1 between
si and ti and in the same way as above we associate with it
a weight ε�+1. Let �̂ be the number of k-systems at the end
of the process.

So far there is no guarantee that any of the k-systems
defined above will be small, neither that they will transport
enough flow between the terminal pair si and ti. However,
after a simple procedure they will satisfy our needs.

According to Fact 2.2, all flow paths in R have a length
of at most 5kF . Hence, the total amount of edge capacity
consumed by a flow system in R representing a request in
O′ is at most 5k2F . If there were k-systems in σ1, · · · , σ�̂

of total weight at least 1/4 that use more than 20k3F edges
each, then they would not fit into the available edge capacity,
because 20k3F · 1/(4k) = 5k2F . Thus, there exists a subset
of the k-systems σ1, · · · , σ�̂ with total weight at least 1/4
such that each of them is small, that is, each of them uses
at most 20k3F edges.

Let Si denote the set of small k-systems for request (si, ti)
given by Lemma 2.3, and let S be the set of all Si. A random
experiment will finally help us to bound |O′| in terms of
|B|. Independently for each (si, ti) ∈ O′, choose exactly
one of its k-systems in S , where a k-system σj is picked
with a probability proportional to its flow value. After the
selection, each of the chosen k-systems is used to carry k
units of flow, one unit along each of its paths. Let P denote
the chosen k-systems with the k units of flow.

Since each k-system in P is small, it must have been a
candidate for the k-BGA. But it was rejected by the k-BGA
and hence it must have a witness in B. By the definition of
O′ this witnessing must be at an edge that is not used by
any k-system in O′. Hence, only edges outside of the edges
used by O′ can be potential witness edges. From Fact 2.2
we know that each of these edges can have a congestion of
at most 1/(2k). Hence, after selecting a k-system for each
request at random and shipping a demand of 1 along each of
its paths, the expected congestion at every potential witness
edge is at most 2. Thus, in expectation, every k-system from
B can serve as a witness to at most 2 · L k-systems from P .
We conclude that there exists a random choice for which
the k-systems from B serve as witnesses to at most 2 ·L · |B|
k-systems from P (cf. [13]). Since |P| = |O′|, the proof is
completed.

The above upper bound on the competitive ratio for the k-
BGA with parameter L = 20k3F is the best possible, since
a k-system of size Θ(k3F ) may prevent Θ(k3F ) other k-
systems from being selected. An open question is whether
it is possible to achieve a better competitive ratio with a
stronger restriction on the size of the k-systems that are
used by the k-BGA.

2.2 General online lower bound
Next we show there is a lower bound that holds for the

competitive ratio of any deterministic online algorithm for
the k-EDP problem which is not far away from the perfor-
mance of the k-BGA.

Theorem 2.4. For any n, k, and F ≥ logk n with n ≥
k2 ·F there is a graph G of size Θ(n) with maximum degree



O(k) and flow number Θ(F ) such that the competitive ratio
of any deterministic online algorithm on G is Ω(k · F ).

Proof. A basic building block of our construction is the
following simple graph. Let Dk (diamond) denote the graph
consisting of two bipartite graphs K1,k and Kk,1 glued nat-
urally together at the larger sides. The two k-degree nodes
in Dk are its endpoints. Let C (chaplet) denote the graph
consisting of F diamond graphs attached one to the other
at the endpoints, like in an open chaplet.

The core of the graph G consists of m = n/(k · F ) ≥ k
disjoint copies of the chaplet graph C attached to the inputs
of a k-ary multibutterfly (Figure 1). In addition, a node s
is connected to the first k chaplet graphs and a node t is
connected to the first k output nodes of the multibutterfly.
Let si,j denote the first endpoint of a diamond j in a chaplet
i, and let ti,j(= si,j+1) denote the other endpoint. We will
use the fact that a k-ary multibutterfly with n′ inputs and
outputs (which is a network of degree O(k)) can route any r-
relation from the inputs to the outputs with edge congestion
and dilation at most O(max[r/k, logk n′]) [16].

....

......

..

multi−
butterfly

. . . . . .

s t

k k

log
k
nF

k

inputs outputs

Figure 1: The graph for the lower bound.

First, we show that our graph G has a flow number of
Θ(F ). Since the diameter of G is Ω(F ) it is sufficient to
prove that a PMFP with π(u) = c(u)/Γ for the given graph
can be solved with congestion and dilation O(F ). Con-
sider each node v of degree δv to consist of δv copies of
nodes and let V ′ be the set of all of these copies. Then the
PMFP reduces to the problem of sending a packet of size
1/N for any pair of nodes in V ′, where N = |V ′|. Such a
routing problem can be split into N permutations σi with
σi(v) = (v + i) mod N for all i ∈ {0, . . . , N −1} and v ∈ V ′.
Each such permutation represents a routing problem ρ in
the original network where each node is the starting point
and endpoint of a number of packets that is equal to its
degree. We want to bound the congestion and dilation for
routing such a problem.

In order to route ρ, we first move all packets to the inputs
of the k-ary multibutterfly in such a way that every input
node of the multibutterfly will have O(kF ) packets. This
can clearly be done with edge congestion O(F ) and dilation
O(F ). Next, we use the multibutterfly to send the packets to
the rows of their destinations. Since every input has O(k ·F )
packets, this can also be done with congestion and dilation
O(F ). Finally, all packets are sent to their correct destina-
tions. This also causes a congestion and dilation of at most
O(F ). Hence, routing ρ only requires a total congestion and
dilation of O(F ).

Combining the fact that all packets are of size 1/N with

the fact that we have N permutations σi, it follows that the
congestion and dilation of routing the PMFP in the given
graph is O(F ). Hence, its flow number is Θ(F ).

Now consider the following two sequences of requests:

(1) (s, t), and

(2) (s, t), (s1,1, t1,1), (s1,2, t1,2), . . . , (s1,F , t1,F ), (s2,1, t2,1),
. . . , (sk,F , tk,F )

Obviously, every deterministic online algorithm has to ac-
cept (s, t) to ensure a finite competitive ratio for the se-
quence (1). However, in this case none of the other requests
in (2) can be satisfied. But the optimal solution for (2) is
to reject (s, t) and to accept all other requests. Hence, the
competitive ratio is Ω(k · F ).

2.3 Managing requests with profits
In the k edge-disjoint paths with profits problem (k-EDPP)

we are given an undirected graph G = (V, E) and a set of
requests T . Each request ri = (si, ti) has a positive profit
b(ri). The problem is to find a subset S of the pairs in T
of maximum profit for which it is possible to select disjoint
paths such that each pair is connected by k disjoint paths.

It turns out that a simple offline variant of the k-BGA
gives the same approximation ratio for the k-EDPP as we
have for the k-EDP. The algorithm involves sorting the re-
quests in decreasing order of their profits and running the
k-BGA on this sorted sequence. We call this algorithm the
sorted k-BGA.

Theorem 2.5. Given a network G of flow number F , the
approximation ratio of the sorted k-BGA with parameter
L = 20k3F is O(k3F ) for the k-EDPP.

Proof. The proof is almost identical to the proof of The-
orem 2.1. The only additional observation is that, since the
sorted k-BGA proceeds through the requests from the most
profitable, every small k-system in O−O′ and in the modi-
fied set P has a witness in B with larger or equal profit.

2.4 The multi-EDP
Another variant of the k-EDP our techniques can be ap-

plied to is the multiple edge-disjoint paths problem (multi-
EDP) which is defined as follows: given a graph G and a
set of terminal pairs with integral demands di, 1 ≤ di ≤ Δ,
find a maximum subset of the pairs for which it is possible
to select disjoint paths so that every selected pair i has di

disjoint paths. Let dmax denote the maximal demand over
all requests.

A variant of the k-BGA, the multi-BGA, can be used here
as well: Given a request with demand di, reject it if it is not
possible to find di edge-disjoint paths between the terminal
pairs of total length at most 20did

2
maxF . Otherwise, select

any such di paths for it.

Theorem 2.6. Given a network G of flow number F , the
competitive ratio of the multi-BGA is O(d3

maxF ).

Proof. The proof goes along the same lines as the proof
of Theorem 2.1: first, the Shortening lemma with parameter
ε = 1/(2dmax) is applied and, afterwards, the extraction
procedure is used. The difference is that now we extract
only di-systems for a request with demand di, not dmax-
systems.



3. ALGORITHMS FOR THE K-DFP
Throughout this section we will assume that the maximal

demand is at most k times larger than the minimal edge
capacity, which is analogous to assumptions made in almost
all papers about the UFP. We call this the weak bottleneck
assumption. Moreover, we assume that all edge capacities
are the same. Since F is invariant to scaling, we simply set
all edge capacities to one. The minimal demand of a request
will be denoted by dmin. We first show how to solve the
offline k-DFP, and then mention how to extend this solution
to the online case.

To solve the offline k-DFP, we first sort the requests in
decreasing order of their demands. On this sorted sequence
of requests we use an algorithm that is very similar to the
k-BGA: Let L be a suitably chosen parameter. Given a
request with a demand of d, accept it if it is possible to find
k edge-disjoint paths p1, p2, . . . pk of flow value d/k between
the terminal nodes of the request that fit into the network
without violating the capacity constraints and whose total
length

∑k
i=1 |pi| is at most L. Otherwise, reject it. This

extension of the k-BGA will be called k-flow BGA.
The next theorem demonstrates that the performance of

the k-flow BGA for the k-DFP is comparable to the perfor-
mance of the k-BGA for the k-EDP. It is slightly worse due
to a technical reason: it is much harder to use our technique
for extracting short k-systems for the k-DFP than for the
k-EDP.

Theorem 3.1. Given a unit-capacity network G with
flow number F , the approximation ratio of the k-flow
BGA for the k-DFP with parameter L = O(k3F log(kF )),
when run on requests sorted in non-increasing order, is
O(k3F log(kF )).

Proof. As usual, let B denote the set of k-systems for
the requests accepted by the BGA and O be the set of k-
systems in the optimal solution. Each k-system consists of k
disjoint flow paths which we also call streams. For notational
simplicity we will sometimes think about B and O also as a
set of streams (instead of k-systems).

For each stream q ∈ B or q ∈ O, let f(q) denote the flow
along that stream. If q belongs to the request (si, ti) with
demand di, then f(q) = di/k. For a set Q of streams let
||Q|| =

∑
q∈Q f(q). Also, for an edge e ∈ E and a stream

q, let F (e, q) denote the sum of flow values of all streams in
B passing through e whose flow is at least as large as the
flow of q, i.e., F (e, q) = ||{p | p ∈ B, e ∈ p, f(p) ≥ f(q)}||.
A stream p ∈ B is a witness for a stream q if f(p) ≥ f(q)
and p and q intersect in an edge e with F (e, q) + f(q) > 1.
For each edge e let W(e,B) denote the set of streams in B
that serve as witnesses on e. Similarly, for each edge e let
V(e,Q) denote the set of streams in Q that have witnesses
on e. We also say that a k-system has a witness on an edge
e if any of its k streams has a witness on e. We start with a
simple observation.

Claim 3.2. For any stream q and edge e, if q has a wit-
ness on e then ‖W(e,B)‖ ≥ 1/2.

Proof. Let p be a witness of q on e. Assume, by contra-
diction, that F (e, q) < 1/2. It easily follows that f(p) < 1/2.
Since f(q) ≤ f(p) and F (e, q) + f(q) > 1 by the definition
of a witness, we have a contradiction.

Let O′ ⊂ O be the set of k-systems that are larger than L
and that correspond to requests not accepted by the k-flow
BGA and that do not have a witness in B. The next two
bounds on ||O \ O′|| and ||O′|| complete the proof.

Lemma 3.3. ||O \ O′|| ≤ (1 + 2L) · ||B||.
Proof. We partition O \ O′ into two sets. Let O1 ⊆

O\O′ consist of all the k-systems corresponding to requests
accepted by the BGA and let O2 = (O\O′)\O1. Obviously,
||O1|| ≤ ||B||. Note that each k-system in O2 must have a
witness in B. Let E′ ⊆ E denote the set of all edges on
which some k-system from O2 has a witness. We then have

‖O2‖ ≤
∑
e∈E′

k‖V(e,O2)‖ ≤
∑
e∈E′

k ≤
∑
e∈E′

k · 2‖W(e,B)‖

For the first inequality note that a k-system of demand di

in O2 may only have a witness at a single edge, and this
edge can only be traversed by a flow of di/k belonging to
that k-system. The second inequality holds due to the unit
capacities and the last one follows from Claim 3.2.

Since all k-systems in B are of length at most L, we have∑
e∈E′

‖W(e,B)‖ ≤
∑

streams p∈B
|p| · f(p)

≤
∑

k−systems s∈B
L · d(s)/k ≤ L · ‖B‖/k .

This completes the proof of Lemma 3.3.

In the next lemma we bound ‖O′‖ by first transforming
the large k-systems in O′ into a set S of small k-systems and
then bounding ‖S‖ in terms of ‖B‖.

Lemma 3.4. ‖O′‖ = O(L · ‖B‖).
Proof. In order to prove the lemma, we will transform

the k-systems in O′ into a set of k-systems S in which each
k-system has a length at most L and therefore must have
a witness in B. To achieve this, we perform a sequence of
transformations:

1. First, we scale the demands and edge capacities so
that each edge in G has a capacity of C = 
3k/dmin�
and all requests have demands that are integral mul-
tiples of k. More precisely, the demand of each re-
quest of original demand d is set to d′ = k · 
C · d/k�.
Since d′/C ∈ [d, (1 + 1/3)d], this slightly increases
the demands and therefore also the flows along the
streams so that the total flow along an edge is now at
most (1 +1/3)C. Note that slightly increasing the de-
mands only increases ‖O′‖ and therefore only makes
the bound on the relationship between ‖O′‖ and ‖B‖
more pessimistic.

2. Next, we replace each request (si, ti) in O′ by d′
i/k

elementary requests of demand k each, shipped along
the same k-system as for (si, ti). For every k-system
of such a request, we only keep the first 8c · kF and
the last 8c · kF nodes along each of its k streams, for
some c = O(log(kF )). The resulting set of (possibly
disconnected) streams of a k-system will be called a
k-core. As shown in Claim 3.5, we can distribute the
elementary requests into C/c sets S1, . . . , SC/c so that
the congestion caused by the k-cores within each set is
at most 2c at each edge.



3. Afterwards, we consider each Si separately. We will
reconnect disconnected streams in each k-core in Si

with flow systems derived from the flow number. The
reconnected k-cores will not yet consists of k disjoint
streams. We will show in Claim 3.6 how to extract
k-systems of length at most L from each reconnected
k-core.

4. Once we have found the short k-systems, we will be
able to compare ‖O′‖ with ‖B‖ with the help of wit-
nesses.

Next we present two vital claims. The proof of the first claim
requires the use of the Lovász Local Lemma, and the proof
of the second claim is similar to the proof of Theorem 2.1.

Claim 3.5. The elementary requests can be distributed
into C/c sets S1, . . . , SC/c for some c = O(log(kF )) so that
for each set Si the edge congestion caused by its k-cores is
at most 2c.

Proof. We first prove the claim for c = O(log(kCF ))
and afterwards demonstrate how to get to c = O(log(kF )).

Consider the random experiment of assigning to each el-
ementary request a number i ∈ {1, . . . , C/c} uniformly and
independently at random, and let Si be the set of all requests
that choose number i. For every edge e let the random vari-
able Xe,i denote the number of streams assigned to Si that
traverse e. Since the maximal edge congestion is at most
4C/3, we have E[Xe,i] ≤ 4c/3 for every edge e. Every edge
e can be used by at most one stream of any k-core. Hence,
a k-core can contribute a value of at most 1 to Xe,i and the
contributions of different k-cores are independent. We can
use the Chernoff bound to derive

Pr[Xe,i ≥ (1 + 1/3) · 4c/3] ≤ e−(1/3)2 ·(4c/3)/3 = e−4c/34
.

For every edge e and every i ∈ {1, . . . , C/c} let Ae,i be
the event that Xe,i > 2c. Since (4/3)2 ≤ 2, the above
probability estimate bounds the probability that the event
Av,i appears. Our aim is to show, with the help of the
LLL, that it is possible in the random experiment to assign
numbers to the requests so that none of these events appears,
which would yield our claim. To apply the LLL we have to
bound the dependencies among the events Ae,i.

Each edge e can be used by at most 2C k-cores and
these are the only k-cores that affect the values Xe,i, i ∈
{1, . . . , C/c}. Realizing that each of the k-cores contains at
most 2k(8c ·kF ) edges and that the k-cores choose their sets
Si independently at random, we conclude that the event Ae,i

depends on at most 32ck2CF other events Af,j .
To be able to use the LLL, we now olny have to choose

the value c so that

e · e−4c/34
(32ck2CF + 1) ≤ 1 .

This can certainly be achieved by setting c = Θ(ln(kCF ))
large enough.

The above procedure is sufficient if C = (kF )O(1). If

C = (kF )Ω(1) a more involved technique will be used. The
k-cores will be distributed into the sets Si not in a sin-
gle step but in a sequence of refinements (a similar ap-
proach was used, e.g., by Leighton et al. [15] and Schei-
deler [16]). In the first refinement, our aim is to show that
for c1 = O(ln3 C) the k-cores can be distributed into the
sets S1, . . . , SC/c1 so that the edge congestion in each Si is at

most (1+O(1/ ln C))4c1/3. For this we use the same random
experiment as for c above. It follows that E[Xe,i] = 4c1/3
and that

Pr[Xe,i ≥ (1 + 1/ 3
√

c1) · 4c1/3] ≤ e−(1/ 3√c1)2·(4c1/3)/3

= e−4 3√c1/9 .

Hence, to be able to use the LLL, we have to choose the
value c1 so that

e · e−4 3√c1/9(32c1k
2CF + 1) ≤ 1 .

This can certainly be achieved by setting c1 = Θ(ln3 C) large
enough, which completes the first refinement step.

In the second refinement step, each Si is refined sepa-
rately. Consider some fixed Si. Our aim is to show that
for c2 = O(ln3 c1) the k-cores in Si can be distributed into
the sets Si,1, . . . , Si,c1/c2 so that the edge congestion in each
Si,j is at most (1 + 1/ 3

√
c2)(1 + 1/ 3

√
c1)4c2/3. The proof for

this follows exactly the same lines as for c1. Thus, overall
C/c2 sets Si,j are produced in the second step, with the
corresponding congestion bound.

In general, in the (� + 1)st refinement step, each set S
established in refinement � is refined separately, using c�+1 =
O(ln3 c�), until c�+1 = O(ln(kF )) for the first time. Note

that in this case, c� = ω(ln(kF )) and c� = (kF )O(1). At this
point we use the method presented at the beginning of the
proof for the parameter c to obtain C/c′ sets S1, . . . , SC/c′
for some c′ = O(ln(kF )) with a congestion of at most(

�∏
j=1

(1 + 1/ 3
√

cj)

)
· (4/3)2 · c′

where l is the total number of refinement steps. Using the
facts that 1 + x ≤ ex for all x ≥ 0 and that ex ≤ 1 + 2x for
all 0 ≤ x ≤ 1/2, it holds for the product that

�∏
j=1

(1 + 1/ 3
√

cj) ≤ e
∑�

j=0 1/ 3√cj ≤ eε ≤ 1 + 2ε

for a constant 0 < ε ≤ 1/2 that can be made arbitrarily
small by making sure that c� is above a certain constant
value depending on ε. Hence, it is possible to select the
values c1, . . . , c�, c

′ so that the congestion in each Si at the
end is at most 2c′.

Claim 3.6. For every set Si, every elementary request in
Si can be given k-systems of total flow value at least 1/4 such
that each of them consists of at most L edges. Furthermore,
the congestion of every edge used by an original k-system in
Si is at most 2c + 1/(2k), and the congestion of every other
edge is at most 1/(2k).

Proof. For an elementary request r let pr
1, . . . , p

r
�r

be all
the disconnected streams in its k-core, 1 ≤ �r ≤ k. Let the
first 8c · kF nodes in pr

i be denoted by ar
i,1, . . . , a

r
i,8c·kF and

the last8c · kF nodes in pr
i be denoted by br

i,1, . . . , b
r
i,8c·kF .

Consider the set of pairs

L =
⋃

r∈S1

�r⋃
i=1

8c·kF⋃
j=1

{(ar
i,j , b

r
i,j)} .

Due to the congestion bound in Claim 3.5, a node v of degree
δ can be a starting point or endpoint of at most 2cδ pairs in
L. From Lemma 1.2 we know that for any network G with



flow number F and any instance I of the BMFP on G there
is a feasible solution for I with congestion and dilation at
most 2F . Hence, it is possible to connect all of the pairs in
L by flow systems of length at most 2F and flow value f(pr

i )
so that the edge congestion is at most 2c · 2F . Let the flow
system between ar

i,j and br
i,j be denoted by fr

i,j . For each
elementary request r = (s, t) and each 1 ≤ i ≤ �r and each
1 ≤ j ≤ 8c · kF , we define a flow system gr

i,j : first, it moves
from s to ar

i,j along pr
i , then from ar

i,j to br
i,j along fr

i,j , and
finally from br

i,j to t along pr
i , and we assign to it a flow value

of f(pr
i )/(8c · kF ). This ensures that a total flow of f(pr

i )
is still being shipped for each pr

i . Furthermore, this allows
us to reduce the flow along fr

i,j by a factor of 1/(8c · kF ).
Hence, the edge congestion caused by the fr

i,j for all r, i, j
reduces to at most 4c ·F/(8c · kF ) = 1/(2k). Therefore, the
additional congestion at any edge is at most 1/(2k), which
proves the congestion bounds in the claim.

Now consider any given elementary request r = (s, t). For
any set of k−1 edges, the congestion caused by the flow sys-
tems for r is at most (k−1)(1+1/(2k)) ≤ k−1/2. Hence, ac-
cording to Menger’s theorem there are k edge-disjoint flows
in the system from s to t. Continuing with the same argu-
ments as in Theorem 2.1, we obtain a set of k-systems for r
with as properties stated in the claim.

Now that we have short k-systems for every elementary
request, we combine them back into the original requests.
For a request with demand d this results in a set of k-systems
of size at most L each and total flow value at least d/(4k).
Let the set of all these k-systems for all requests be denoted
by S . Since every k-system has a size at most L, it could
have been a candidate for the BGA. Thus, each of these k-
systems must have a witness. Crucially, every edge that has
witnesses for these k-systems must be an edge that is not
used by any of the original k-systems in O′. (This follows
directly from the definition of O′.) According to the proof
of Claim 3.6, the amount of flow from S traversing any of
these edges is at most 1/(2k). Let E′ be the set of all witness
edges.

For each request we now choose independently at random
one of its k-systems, with probability proportional to the
flow values of the k-systems. This will result in a set of k-
systems P in which each request has exactly one k-system
and in which the expected amount of flow traversing any
edge in E′ is at most 1/(2k). Next, we assign the original
demand of the request to each of these k-systems. This
causes the expected amount of flow that traverses any edge
in E′ to increase from at most 1/(2k) to at most 4k·1/(2k) =
2.

We are now ready to bound ‖P‖ in terms of ‖B‖. For
every k-system h ∈ S , let the indicator variable Xh take the
value 1 if and only if h is chosen to be in P . We shall look
upon ‖P‖ as a random variable (though it always has the
same value) and bound its value by bounding its expected
value E[‖P‖]. In the following we assume that f(h) is the
flow along a stream of the k-system h and d(h) is the demand
of the request corresponding to h. Also, recall that the total
flow value of k-systems in S belonging to a request with

demand d is at least d/(4k).

E[‖P‖] ≤ E

[∑
e∈E′

k · ‖V(e,P)‖
]

≤
∑
e∈E′

k · E
[ ∑

p∈S: e∈p

Xp · d(p)

k

]

≤
∑
e∈E′

k ·
∑

p∈S: e∈p

k · f(p)

d(p)/(4k)
· d(p)

k

≤
∑
e∈E′

k · 4k
∑

p∈S: e∈p

f(p)

≤
∑
e∈E′

4k2 · 1

2k
≤
∑
e∈E′

2k

≤ 4k
∑
e∈E′

‖W(e,B)‖ ≤ . . . ≤ 4L · ‖B‖

where the last calculations are done in the same way as in
the proof of Lemma 3.3.

Combining the two lemmas proves the theorem.

We note that if the minimum demand of a request,
dmin, fulfills dmin ≥ k/ log(kF ), then one would not need
Claim 3.5. In particular, if dmin were known in advance,
then the k-flow BGA could choose L = O(k3F/(dmin/k)) to
achieve an approximation ratio of O(k3F/(dmin/k)). This
would allow a smooth transition from the bounds for the
k-EDP (where dmin = k) to the k-DFP.

3.1 Online algorithms for the k-DFP
In this section we present a randomized online algorithm

for the k-DFP. This algorithm, which we shall call the ran-
domized k-flow BGA, is an extension of the k-flow BGA
algorithm for the offline k-DFP. The technique we present
for making offline algorithms online has been used before [2,
14].

Consider, first, the set O of k-systems for requests ac-
cepted by the optimal algorithm. Let O1 ⊆ O consist of
k-systems each with demand at least k/2, and let O2 =
O \ O1. Exactly one of the following events is true: (1)
||O1|| ≥ 1/2 · ||O|| or (2) ||O2|| > 1/2 · ||O||.

The randomized k-flow BGA begins by guessing which of
the two events above will happen. If it guesses the former, it
ignores all requests with demand less than k/2 and runs the
regular k-flow BGA on the rest of the requests. If it guesses
the latter, it ignores all requests with demand at least k/2
and runs the k-flow BGA on the rest.

Theorem 3.7. Given a unit-capacity network G with
flow number F , the expected competitive ratio of the random-
ized k-flow BGA for the online k-DFP is O(k3F log(kF ))
when run with parameter L = O(k3F log(kF )).

Proof. The proof runs along exactly the same lines as
the proof for Theorem 3.1, but we have to prove Lemma 3.2
for the changed situation. Note that the original proof for
Lemma 3.2 relies on the fact that requests are sorted in a
non-decreasing order before being considered. That need
not be true here. Let B denote, as usual, the k-systems for
requests accepted by the randomized k-flow BGA.

Consider the case when the algorithm guesses that ||O1|| ≥
1/2 · ||O||. We claim that for any stream q ∈ O1 and edge e,



if q has a witness on e then ‖W(e,B)‖ ≥ 1/2. Let q be wit-
nessed by p, a stream in B. Now, since the algorithm only
considers requests with demand at least k/2, f(p) ≥ 1/2.
The claim follows since ‖W(e,B)‖ ≥ f(p). Following the
rest of the proof for Theorem 3.1, substituting O1 for O,
shows that in this case the randomized k-flow BGA will
have a competitive ratio of O(k3F log(kF )).

Now consider the case when the algorithm guesses ||O2|| ≥
1/2·||O||. We claim that even in this case for any stream q ∈
O2 and edge e, if q has a witness on e then ‖W(e,B)‖ ≥ 1/2.
From the definition of witnessing, we have F (e, q)+f(q) > 1.
Next, from the definition of O2, f(q) < 1/2. The claim
follows as ‖W(e,B)‖ ≥ F (e, q). As in the previous case, the
rest of the proof for Theorem 3.1 applies here too; substitute
O2 for O.

The competitive ratio in both cases is O(k3F log(kF )).
Note that the algorithm may guess incorrectly which event
shall be true. But that just reduces the expected competi-
tive ratio by a factor of 2.

3.2 Comparison with other flow problems
In this section we demonstrate that the k-DFP may be

harder to approximate than other related flow problems be-
cause of the requirement that the k paths for every request
must be disjoint.

The k-splittable flow problem and the integral splittable
flow problem have been defined in the introduction. As al-
ready mentioned there, previous proof techniques [14] im-
ply the following result under the no-bottleneck assumption
(i.e., the maximal demand is at most equal to the minimal
edge capacity).

Theorem 3.8. For a uniform-capacity network G with
flow number F , the approximation ratio of the 1-BGA with
parameter L = 4F for the k-SFP and for the ISF, when run
on requests ordered according to their demands starting from
the largest, is O(F ).

Proof. The crucial point is that in the analysis of
the BGA algorithm for the UFP problem in the previous
work [14] the solution of the BGA is compared with an op-
timal solution of a relaxed problem, namely the fractional
maximum multicommodity flow problem, and this problem
is also a relaxation for both the ISF and the k-SFP. It fol-
lows that the approximation guarantee O(F ) of the BGA
proved for the UFP problem holds for the k-SFP and the
ISF problems as well.

Using the standard techniques mentioned earlier, the algo-
rithm can be converted into a randomized online algorithm
with the same expected competitive ratio. If there is a guar-
antee that the ratio between the maximal and the minimal
demand is at most 2 (or some other constant) or that the
maximal demand is at most 1/2 (or some other constant
smaller than 1, the edge capacity), the online algorithm can
be made even deterministic with the same competitive ratio
(cf. [13]). Taking into account the online lower bound of
Theorem 2.4, this indicates that the k-SFP and the ISF are
indeed simpler problems than the k-DFP.

The techniques of the current paper imply results for the
ISF even when the no-bottleneck assumption does not hold
and only the weak bottleneck assumption is guaranteed (i.e.,
the maximal demand is at most k times larger than the min-
imal edge capacity). In this case we use a variant of the

k-flow BGA, vary-BGA, that looks for di disjoint paths of
total length O(did

2
maxF log(kF )) for a request with demand

di. A consequence of the Theorem 3.1 is the following corol-
lary:

Corollary 3.9. Given a uniform-capacity network G
with flow number F , the approximation ratio of the vary-
BGA for the ISF under the weak bottleneck assumption,
when run on requests ordered according to their demands
starting from the largest, is O(d3

maxF log(kF )).

In this case the algorithm can also be converted into a
randomized online algorithm.

4. CONCLUSIONS
In this paper we presented upper and lower bounds for

the k-EDP and the k-DFP and related problems. Many
problems remain open. For example, what is the best com-
petitive ratio a deterministic algorithm can achieve for the
k-EDP? We suspect that it is O(k · F ), but it seems very
hard to prove. Concerning the k-DFP, is it possible to sim-
plify the proof and improve the upper bound? We suspect
that it should be possible to prove an O(k ·F ) upper bound
as well. Even an improvement of the O(k3F log(kF )) bound
k-DFP to O(k3F ) would be interesting.

A bunch of other problems arises for networks with
nonuniform edge capacities: the k-flow BGA algorithm can
be used on them as well but is it possible to prove the same
performance bounds?
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