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Abstract. In this paper we will present various models and techniques
for communication in dynamic networks. Dynamic networks are networks
of dynamically changing bandwidth or topology. Situations in which dy-
namic networks occur are, for example: faulty networks (links go up and
down), the Internet (the bandwidth of connections may vary), and wire-
less networks (mobile units move around). We investigate the problem
of how to ensure connectivity, how to route, and how to perform ad-
mission control in these networks. Some of these problems have already
been partly solved, but many problems are still wide open. The aim of
this paper is to give an overview of recent results in this area, to identify
some of the most interesting open problems and to suggest models and
techniques that allow us to study them.

1 Introduction

In this paper we present various models and techniques for communication in
dynamic networks. Generally speaking, dynamic networks are networks of dy-
namically changing network characteristics such as bandwidth or topology. There
are many scenarios in which dynamic networks occur. For example, a fixed inter-
connection network might experience (adversarial or random) faults, or we may
have a wireless network formed by users that move around. Also, the Internet
can be seen as a dynamic network, since some virtual connections or commu-
nication links might experience large differences in their availability over time,
offering a low bandwidth at one time and a high bandwidth at another time.
In the future, dynamic networks will play an increasingly important role,
since the development and deployment of powerful and flexible communication
systems that are accessible by large parts of the population is seen as a key
component for the transition to an information society. While this has been
dominated in the past 10 years by the establishment of wired connections to
the Internet, this is now shifting more and more to wireless connections, since
wireless connections offer much higher mobility and flexibility. Many companies
and universities have already deployed wireless access points that allow em-
ployees and/or students to access their local area network or the Internet via



mobile devices such as laptops and palmtops. So far, wireless communication
has mostly been restricted to small areas, mostly because currently used strate-
gies have big problems with establishing and maintaining routes in large-scale,
mobile networks. In fact, the development of protocols for communication in mo-
bile, wireless networks that are provably efficient and robust even under severe
circumstances (for example, quickly moving devices) is still in its infancy.

There are several reasons why only a few theoretical results are known for dy-
namic networks so far. First of all, it is quite challenging to analyze the behavior
of communication strategies in dynamic networks. Furthermore, it is quite diffi-
cult to formulate models for dynamic networks that are on the one hand abstract
enough to allow a mathematical analysis and on the other hand close enough to
reality so that they are of practical value. In this paper, we will present some of
the models that have recently been used and also suggest some new models to
stimulate fundamental research in this field. We will also describe some impor-
tant, recent results in the area of dynamic networks. The results demonstrate
that despite the (seemingly) enormous mathematical challenges, one can prove
very strong results about communication in dynamic networks even in fairly
general models.

Before we state any models and techniques, we first introduce some basic
notation and describe the basic framework underlying all of these models. After-
wards, we will describe various models and approaches for faulty networks, the
Internet, wireless networks, and adversarial networks. We will not try to give an
exhaustive overview of results in each of these areas, since this would certainly
require to write a whole book. Instead, we will rather concentrate on some, to
our mind important results in these fields.

1.1 The basic model

In this paper we will only consider communication networks whose topology can
be modelled as a directed graph G = (V, E) with a set of nodes V representing
the processing units or routers and a set of edges E C V x V representing the
communication links. In some of our models we may assume that each edge
e € FE has a cost associated with it, which will usually represent its capacity
(i.e. the number of packets it can forward in a step). By default, the capacity of
an edge is equal to 1.

In a static network the communication links (and their cost values) do not
change, i.e. the topology can be described by a fixed directed graph. In this paper
we will concentrate on dynamic networks, i.e. networks in which the connections
(or their properties) between the processing units are continuously changing.

In practice, network communication is performed in many different layers:

— physical layer: defines the physical transport of data from one node to the
other

— link layer: defines the mechanism by which data is transmitted from one
node to another

— network layer: defines functions for route selection and congestion control



— transport layer: defines functions for the end-to-end transport of data

If a shared medium is used such as in wireless communication, the link layer
is also called medium access control (MAC) layer. We will concentrate on the
upper three layers. Issues of particular importance will be connectivity, routing,
and admission control. By “routing” we understand the process of moving in-
formation across a network from a source to a destination. Routing involves two
basic activities:

— the determination of routing paths, and
— the transport of information groups (typically called packets) along the paths.

The first item is called path (or route) selection, and the second item is usu-
ally called switching (or scheduling). (Depending on the research community
or research field, both path selection algorithms and switching algorithms have
sometimes been called routing algorithms. We want to avoid these ambiguities
here.) Different switching models have been defined in the past such as (virtual)
circuit, wormhole, or packet switching. Here, we will only concentrate on packet
switching. In packet switching models it is usually assumed that all packets are
atomic (i.e. unsplittable) objects of uniform size. Time proceeds in synchronous
time steps. In each time step, each link of capacity ¢ can forward up to ¢ packets.
If too many packets contend to use the same link at the same time, then the
switching algorithm has to decide which of them to prefer. Once a packet reaches
its destination it is discarded.

We will concentrate on routing protocols in which the nodes locally decide
which packets to move forward in each step, i.e., a decision only depends on
the routing information carried by the packets and on the local history of the
execution. These algorithms are called local control or online algorithms.

In several of the examples below we will study the performance of online
routing protocols under an adversarial injection model. For static networks, the
following model has widely been used, which is an extension by Andrews et al.
[4] of a model introduced by Borodin et al. [12]:

Suppose that we have an adversary that is allowed to demand network band-
width up to a prescribed injection rate A < 1. For any w € IN, an adversary is
called (w, A)-bounded if for all edges e and all time intervals I of length w, it
injects no more than A - w packets during I that contain edge e in their routing
path. A protocol is called stable for a given injection rate A and network G if
for any (w, A)-bounded adversary the number of packets stored in injection or
edge buffers in G does not grow unboundedly with time. Moreover, a protocol
is called universally stable if it is stable for any A < 1 and any network G.

2 Communication in Faulty Networks

We start with the problem of efficient communication in faulty networks. Differ-
ent fault models have been studied in the literature: faults may be permanent
or temporary, nodes and/or edges may break down, and faults may happen at



random or may be caused by an adversary or attacker. In the following, the
former faults are called random faults, and the latter faults are called worst-case
faults

Central questions in the area of faulty networks are:

— How frequently does a faulty network have to be repaired so that (either
with high probability of with certainty) the size of its largest connected
component is always a constant fraction of the original size?

— Or better, how frequently does a faulty network have to be repaired so that
(either with high probability of with certainty) its largest connected compo-
nent still offers a connectivity and throughput that is similar to the original
network?

— How can an uninterrupted service be offered in faulty networks?

— Are there online routing algorithms that achieve a throughput in faulty net-
works that is close to a best possible throughput?

These questions will be addressed in the following subsections. We will show
that for several of these questions, partial answers have already been obtained.
Moreover, we will point out what parts of the questions are still wide open.

2.1 Large connected components in faulty networks

Suppose that the information is distributed among the nodes of a network in such
a way that as long as at least a constant fraction of the nodes stays connected,
agreement can be achieved resp. no information is lost. (This can, for example,
easily be reached with the help of the information dispersal approach by Rabin
[37].) Then we only have to start repairing the network once the largest connected
component in it is below a certain constant fraction. The question is, how long
do we have to wait for that? In order to address this question, we start with
considering random faults and afterwards consider worst-case faults.

Given a graph G and a probability value of p, let G be the random graph
obtained from G by keeping each edge of G independently at random with prob-
ability p (i.e. p is the survival probability). Given a graph G, let v(G) € [0, 1] be
the fraction of nodes of G contained in a largest connected component.

Let G = {G,, | n € IN} be any family of graphs with parameter n. Let p* be
the critical probability for the existence of a linear-size connected component in
G, i.e. for every constant € > 0:

1. for every p > (1 + €)p* there exists a constant ¢ > 0 with

lim Prly(GP) > =1

n—o0

2. for all constants ¢ > 0 and for all p < (1 — €)p*:

lim Pr[y(GP) > ¢ =0

n—o0



Of course, it is not obvious whether critical probabilities exist. However, the
results by Erdés and Rényi [15] and its subsequent improvements (e.g. [11, 34])
imply that for the complete graph on n nodes, p* = 1/(n — 1), and that for a
random graph with d - n/2 edges, p* = 1/d. For the 2-dimensional n x n-mesh,
Kesten showed that p* = 1/2 [28]. Ajtai, Koml6s and Szemerédi proved that
for the hypercube of dimension n, p* = 1/n [3]. For the n-dimensional butterfly
network, Karlin, Nelson and Tamaki showed that 0.337 < p* < 0.436 [27].

If we define the robustness of a graph of average degree d as r = p* - d, then
it certainly holds: the smaller 7, the more robust is the graph (and therefore the
longer repairs on it can be postponed.) Using the results for p* above, we obtain
for the

— complete graph: r =1

— n-dimensional hypercube: r = 1

— 2-dimensional mesh: r = 2

— n-dimensional butterfly: r > 1.348
random graph with d-n/2 edges: r =1

So the best graph of regular structure that is the easiest to build is the hypercube.
An interesting open question is whether there is also a constant degree graph of
regular structure with » = 1 (or at least an r that is arbitrarily close to 1).

Also worst-case fault models have been investigated. Leighton and Maggs
showed that there is a so-called indirect constant-degree network connecting
n inputs with n outputs via logn levels of n nodes each, which they named
multibutterfly, that has the following property: no matter how an adversary
chooses f nodes to fail, there will be a connected component left in it with at
least n — O(f) inputs and at least n — O(f) outputs [31]. (In fact, one can even
still route packets between the inputs and outputs in this component in almost
the same amount of time steps as in the ideal case.) Later, Upfal showed that
there is also a direct constant-degree network on n nodes, a so-called expander,
that fulfills: no matter how an adversary chooses f nodes to fail, there will be a
connected component left in it with at least n—O(f) nodes [40]. Both results are
optimal up to constants. However, it is not known what the best constants are
that can be reached, and whether similar results can also be reached by networks
of regular structure (i.e. that are easy to build). For some classes of graphs such as
the class of complete graphs, the exact constant is easy to determine: a complete
graph fulfills that no matter how an adversary chooses f nodes to fail, there will
be a connected component left with n — f nodes.

2.2 Simulation of fault-free networks by faulty networks

Next we look at the problem that we do not only demand that the remaining
component is large, but that it can still be used for efficient communication (such
as in the case of the multibutterfly above).

Consider the situation that there can be up to f worst-case node faults in the
system at any time. One way to check whether the largest remaining component



still allows efficient communication is to check whether it is possible to embed
into the largest connected component of a faulty network a fault-free network of
the same size and kind. An embedding of a graph G into a graph H maps the
nodes of G to non-faulty nodes of H and the edges of G to non-faulty paths in
H. An embedding is called static if the mapping of the nodes and edges is fixed.
Both static and dynamic embeddings have been used. A good embedding is one
with minimum load, congestion, and dilation, where the load of an embedding
is the maximum number of nodes of G that are mapped to any single node of
H, the congestion of an embedding is the maximum number of paths that pass
through any edge e of H, and the dilation of an embedding is the length of the
longest path. The load, congestion, and dilation of the embedding determine the
time required to emulate each step of G on H. In fact, Leighton, Maggs, and
Rao have shown [32] that if there is an embedding of G into H with load ¢,
congestion ¢, and dilation d, then H can emulate any communication step (and
also computation step) on G with slowdown O(¢ + ¢ + d).

When demanding a constant slowdown, only a few results are known so far. In
the case of worst-case faults, it was shown by Leighton, Maggs and Sitaraman
(using of dynamic embedding strategies) that an n-input butterfly with n!'~¢
worst-case faults (for any constant €) can still emulate a fault-free butterfly of
the same size with only constant slowdown [33]. Furthermore, Cole, Maggs and
Sitaraman showed that an n x n mesh can sustain up to n!~¢ worst-case faults
and still emulate a fault-free mesh of the same size with (amortized) constant
slowdown [14]. It seems that the n-node hypercube can even achieve a constant
slowdown for n'!~¢ worst-case faults, but so far only partial answers have been
obtained [33].

Also random faults have been studied. For example, Hastad, Leighton and
Newman [24] showed that if each edge of the hypercube fails independently with
any constant probability p < 1, then the functioning parts of the hypercube
can be reconfigured to simulate the original hypercube with constant slowdown.
Combining this with what we know from Section 2.1, the hypercube seems to
be an extremely good candidate for a fault-tolerant network.

For a list of further references concerning embeddings of fault-free into faulty
networks see the paper by Leighton, Maggs and Sitaraman [33].

The embedding results immediately imply that there are values f so that
as long as there are at most f faults at any time, then for certain networks its
largest component will basically have the same communication properties as the
original network at any time. The problem is, how to exploit this knowledge for
routing in networks of dynamically changing faults, since it may not be known
where future faults occur, especially if they are under the control of an adversary.
An interesting approach might be to combine the results mentioned here with
the models and approaches in Section 2.4.



2.3 Fault-tolerant path selection in networks

Next we consider the problem of adapting paths selected for data streams (such
as multimedia streams) to faults in networks. We first start with suitable models
for online path selection in fault-free networks.

In the edge-disjoint paths (EDP) problem we are given an undirected graph
G = (V,E) and a set T of pairs of nodes (s;,%;) (also called requests), and the
problem is to find a subset T’ C T of maximum size so that each request in T”
has an edge-disjoint path.

A generalization of the EDP is the unsplittable flow problem (UFP): each
edge e € E is given a capacity of ¢, and each request (s;,t;) has a demand of d;.
The task is to choose a subset 7' C T such that each request (s;,¢;) in T' can
send d; flow along a single path, all capacity constraints are kept, and the sum
of the demands of the requests in 7" is maximized. (More general variants of the
UFP also assign a profit to each request and consider the problem of maximizing
the sum of the profits of the accepted requests.)

The EDP and UFP are classical optimization problems in the routing area,
and there is a substantial body of literature on these two problems (see, for
example, [6,29,10,30]). The EDP and UFP are useful models to study, for ex-
ample, the performance of admission control algorithms for multimedia streams
in fault-free networks. However, the EDP and the UFP are only of limited use
for practical purposes, since they do not allow a rapid adaptation to edge faults
or heavy load conditions. In fact, if an edge fault occurs, then the requests using
that edge may have to be cancelled, since only a single flow path was taken for
each request and alternative paths might not be available at the time of the edge
fault. A straightforward solution to this problem would be to reserve multiple
paths for each accepted request that can flexibly be used to ensure rapid adapt-
ability. However, the paths should be chosen so that not too much bandwidth is
wasted under normal conditions. Motivated by these thoughts, we suggest the
following two optimization problems: the k edge-disjoint paths problem, and the
k-splittable flow problem.

In the k edge-disjoint paths problem (k-EDP), we are given an undirected
graph G = (V, E) and a set of terminal pairs (or requests) 7', and the problem
is to find a subset 7' C T of maximum size so that each pair in 7" is connected
by k disjoint paths and also all paths selected for 7" are disjoint.

In the k-splittable flow problem (k-SFP), we are given an undirected network
G = (V,E) with edge capacities and a set T of terminal pairs (s;,t;) with
demands d;. The problem is to find a subset 77 C T of maximum size so that
each pair (s;,t;) € T" is connected by k disjoint paths of flow value d;/k and the
paths selected for T” satisfy the capacity constraints.

It is not difficult to imagine how the k-SFP can be used to achieve fault
tolerance while not wasting too much bandwidth: suppose it is ensured that in
the given network G there will be no more than f edge faults at any time. Given
a request with demand d, we try to reserve k + f disjoint flow paths for it,
k > 1, with a flow value of d/k for each path (i.e. we raise the total demand for
the k-SFP from d to d - (k + f)/k). Then it obviously holds that as long as at



most f edges break down, it will always be possible to ship a demand of d along
the remaining paths. Furthermore, under fault-free conditions, only a fraction of
((d/k)(k + f) — d)/d = f]k of the reserved bandwidth is wasted, which can be
made sufficiently small by setting & sufficiently large (which may, of course, be
limited by the network resources).

Another way of achieving fault tolerance is to select for each accepted request
of demand d a path of flow value d and a collection of disjoint, alternative paths
of flow value d that are allowed to share their bandwidth with alternative paths
of other requests. This allows a better utilization of the links than the two models
above but is harder to administer. (If more than one edge is allowed to brake
down, arbitrary overlaps of alternative paths can lead to the disconnection of a
request.) Models that allow bandwidth sharing were considered in [17].

One can study the problems above under two different scenarios: all requests
are given in advance, or requests arrive one after the other. In the latter case it
is usually assumed that the algorithm must make a decision before seeing future
requests. An algorithm is called c-competitive if it can accept at least a fraction
of 1/¢ of the maximum number of acceptable requests.

Recently, we were able to show that there are online algorithms for the k-
EDP that are O(k*- A-a !logn) competitive, where A is the maximum degree,
a is the edge expansion, and n is the number of nodes of the given network [9].
To the best of our knowledge, this is the first non-trivial result for the k-EDP.
Nothing non-trivial is known for the k-SFP so far.

So many interesting questions in this field are still wide open.

2.4 Routing in faulty networks

There is a large body of literature about routing around faults in specific net-
works (such as butterflies [13] and multibutterflies [31]. However, not many uni-
versally applicable approaches are known for routing packets around faults in
general networks. We will look at two general approaches that are able to han-
dle certain kinds of faults in arbitrary networks.

The information dispersal approach. Suppose that each edge will be faulty
in a time step with probability p, and that this cannot be detected by the system.
If p is sufficiently small (we will specify later what this means), then one approach
that can be used so that with high probability no message gets lost is to use
information dispersal [37]: Suppose that each message consists of k packets. Then
it can be encoded in k + f packets so that as long as at least k of the k& + f
packets reach their destination, the original message can be recovered.

Suppose further that we have the following adversarial injection model: an
adversary controls the injection of messages into the network, but guarantees
that for each injected message a path can be selected for each of its k + f packets
so that for every time interval I of size at least w and every edge e, less than
w paths are chosen for messages injected in I that contain e. In this case, we
fulfill the conditions of the adversarial injection model introduced in Section 1.1.



It is known that if the paths are revealed to the system, then simple switching
disciplines such as longest-in-system or furthest-to-go will ensure that all packets
will reach their destination in a finite amount of time steps [4]. This result,
however, only holds for fault-free networks. Since we allow edges to be faulty in
a time step with probability p, some of the packets may get lost. Suppose now
that the longest path taken by a packet has a length of L. Then the probability
that any particular packet will get lost is at most 1 — (1 — p)” < L - p. Hence,
if k, f = O(logn) and p < - for a sufficiently large constant c, it can easily
be shown via Chernoff bounds that with high probability at least k of the k + f
packets of a message will reach their destination. In general, p must be in the
order of O(1/L) so that this property can be guaranteed for a constant amount of
communication overhead (i.e. f/k = O(1)). If edge faults can be detected, then
we can allow much higher failure rates, as demonstrated in the next subsection.

Routing via balancing. For the case that edge faults are detectable, another
general approach for routing in faulty networks is to use load balancing. We
assume that now simply packets are injected. As above, the injections are con-
trolled by an adversary. Almost all of the papers using that model assume that
the adversary reveals the paths to the online algorithm. In this case, the only
problem that is left is to decide which packet to prefer if several packets con-
tent to use the same link at the same time step. Recently, also the case was
studied that the adversary does not reveal the paths to the algorithm [2,18,7],
i.e. the protocol has to determine the paths itself. If edge faults are not known
in advance, then this is the only reasonable model.

In the case of edge faults, Aiello et al. [2] suggested the following modification
in the definition of the adversary. For any edge e and any time interval I, let
U, be the amount of time steps e is working in I, and let i, ; be the number
of packets injected by an adversary during I that contain e in their path. An
adversary is called a (w, €)-adversary if for every edge e and every time interval
I of size at least w, ue,r — ie,r > [€- w].

Aiello et al. [2] showed that the following protocol called BAsIC will remain
stable under this model even if the adversary does not reveal the paths. The
protocol maintains several buffers in each node v. For each edge e = (v,u) € E
adjacent to v and for every destination d € V, the protocol maintains a buffer
for packets bound for d. Thus, there is a buffer of packets for each triple (v, u, d),
which is called @y, u,q- Denote the set of packets in Q.4 at time ¢ by Q% , ;
and the size of the set Q! , ; as ¢}, 4 Each ¢}, , is always assumed to be 0
(as packets that arrive at their destination are immediately removed). Initially,
all ¢!, 4 are also assumed to be 0. The following protocol is performed by each
node v at each time step ¢ (it is assumed here that edge faults are detectable):

1. For each working e = (v,u) € E, let d € V be chosen such that ¢, , ;—q%, , 4
is maximal over all d € V' (break ties arbitrarily). If quyu’d — qfw’d > 0 then
send one packet over the edge e from @y, t0 Qu,v,d-

2. Accept all packets injected by the adversary to the node v.

3. Remove any packets that arrive at their destination.



4. For every d, distribute the packets with destination d among the buffers
Qyv,u,a as evenly as possible.

This protocol has the following performance.

Theorem 1 ([2]). For any (w, €)-adversary with € > 0, the number of packets
stored at any given time in any of the buffers of BASIC is at most O(m>/?n*/?w/€'),
where € = min[e, 1/w].

The model in [2] appears to be too restrictive, since for every interval I of
size at least w, an edge e has to be up more times in [ than the number of
packets with path through e injected in I, which can certainly be relaxed. A
more general model that avoids the use of intervals is the following;:

Suppose that the adversary just has to guarantee that for every injected
packet there is a schedule for delivering it over non-faulty edges to its destination.
A schedule S = ((eo, to), (e1,t1), ..., (ee, t¢)) consists of a sequence of movements
by which the injected packet P can be sent from its source node to its destination
node. For this the adversary must ensure that

P is injected at the starting point of e; at time step to (this is represented

by the imaginary injection edge eg),

— the edges eq,...,e; form a connected path, with the endpoint of e; being
the destination of P,

— the time steps have the ordering tg < t; < ... < t¢, and

— edge e; is active at time ¢; for all 1 < i < /.

Another necessary requirement is that two schedules are not allowed to intersect,
that is, they are not allowed to have a pair (e, t) in common. This ensures that
a schedule represents a valid routing strategy for a packet.

Note that this model allows (w, 0)-adversaries. Hence, the result by Aiello et
al. does not hold any longer in this model.

In order to measure the performance of protocols in this model, we need some
parameters. A schedule S = ((eo, to), (€1,t1), -, (es, t7)) is called active at time
t for every t with to <t < t;. Let A be the maximum number of schedules that
are allowed to be active at any time step.

For the special case that all packets must have the same destination, Awer-
buch et al. [7] proposed the following algorithm.

Suppose that every node has a single buffer. For any node v and any time
step ¢ let h,; denote the amount of packets in node v at the beginning of time
step ¢. For the destination d, we set hy = —T for some parameter 1" determined
later. Initially, all buffers are empty. In each step ¢, each node v performs the
following so-called T -balancing protocol:

1. For every edge e = (v, w), check whether hy s —hy+ > T'. If so, send a packet
from v to w (otherwise do nothing).

2. Receive incoming packets and newly injected packets, and absorb those that
reached the destination.



Let A be the maximum degree of a node and n be the number of nodes in
the system. Then the following result can be shown.

Theorem 2 ([7]). For any A,A € IN and any T > 2(A — 1), the T-balancing
protocol ensures that there are at most max[A, A+ T —1]- (";1) + A packets in
the system at any time. Furthermore, the mazimum number of packets in a node
at any time is at most max[A, A+ T — 1](n — 2) + A.

It is still an interesting open question whether a similar result can also be
shown for multiple destinations.

3 Communication in the Internet

Routing algorithms for the internet must fulfill several properties:

— Optimality: Optimality refers to the ability of the routing algorithm to select
the “best” route. The best route depends on the metrics and metric weights
used to make the calculation. For example, one routing algorithm might use
the number of hops and the delay, but might weigh delay more heavily in
the calculation. Naturally, routing protocols must strictly define their metric
calculation procedure.

— Simplicity and low overhead: The routing algorithm must offer its function-
ality efficiently, with a minimum of software and utilization overhead. Effi-
ciency is particularly important when the software implementing the routing
algorithm must run on a computer with limited resources.

— Robustness and stability: The routing algorithm should perform correctly in
the face of unusual or unforeseen circumstances such as hardware failures,
high load conditions, and incorrect implementations. Because routers are
located at network junction points, they can cause considerable problems
when they fail to be robust.

— Flexibility and rapid convergence: Routing algorithms should quickly and
accurately adapt to a variety of network circumstances. This is important,
since algorithms that converge too slowly can cause routing loops or network
outages.

Internet routing protocols can be separated into two different classes: link state
algorithms and distance vector algorithms. Link state algorithms (also known
as shortest path first algorithms) flood routing information to all nodes in the
network. However, each router sends only that portion of the routing table that
describes the state of its own links. The most prominent link state algorithm used
in the Internet is OSPF (Open Shortest Path First). Distance vector algorithms
(also known as Bellman-Ford algorithms) call for each router to send all or
some portion of its routing table, but only to its neighbors. The most prominent
distance vector algorithm is RIP (Routing Information Protocol). In essence, link
state algorithms send small updates everywhere, while distance vector algorithms
send larger updates only to neighboring routers.



Because they converge more quickly, link state algorithms are somewhat less
prone to routing loops than distance vector algorithms. On the other hand, link
state algorithms require more CPU power and memory than distance vector al-
gorithms. Link state algorithms can therefore be more expensive to implement
and support. Despite their differences, both algorithm types perform in an ac-
ceptable way in most circumstances (otherwise, they would not have been chosen
for use in the Internet!).

As already indicated above, both link state algorithms and distance vector
algorithms use routing tables. Routing tables contain information about the
status of links that is used by the switching software to select the best route.
But what kind of information should they contain? How do routing algorithms
determine that one route is preferable to others?

Routing algorithms for the Internet have used many different metrics to de-
termine the best route. Sophisticated routing algorithms can base route selection
on multiple metrics, combining them in a single (hybrid) metric. All of the fol-
lowing metrics have been used: path length, reliability, delay, bandwidth, load,
and communication cost. The path length is the most common routing metric.
The easiest way to define the path length is simply by the number of routers
and switches a packet has to pass. However, some routing protocols also allow
to assign an arbitrary cost to each network link (which can be any one of the
above parameters, such as delay, available bandwidth, or the price of using a
link). In this case, the path length is the sum of the costs associated with each
link traversed.

It is not difficult to prove that in the ideal situation (all information is up-to-
date), both RIP and OSPF will select the path of smallest available cost, i.e. for
each individual request an optimal path will be chosen. However, minimizing
individual costs does not imply minimizing the global cost.

In order to study the global impact of cost functions, Andrews et al. [5]
recently considered the following model.

Again, we assume that we have an adversary that chooses the injection time,
source, destination, and route for each packet. A sequence of injections is called
(w, A)-admissible for a window size w and injection rate A < 1 if in any time
interval I of size at least w the total number of packets injected into the network
whose paths pass through any link e is at most |I]-A. In this case, the correspond-
ing paths are also called (w, \)-admissible. We say that a set of packet paths is
weakly (w, \)-admissible if we can partition time into windows of length w such
that for each window in the partition and each link e, the number of paths that
pass through e and correspond to packets injected during the window is at most
wA.

Suppose now that the adversary does not reveal the paths to the system,
but that instead always a best possible route is selected according to some cost
function. Is it then possible to ensure that if the injected packets have paths that
are (w, A)-admissible, then the selection process ensures that the selected paths
are (W, A)-admissible, possibly for a different window size W and a different
A<1?



Based on the e-approximation algorithm by Garg and Kénemann [19] for
concurrent multicommodity flow problems, which in turn builds upon the work of
Plotkin, Shmoys, and Tardos [36], Andrews et al. [5] use the following algorithm:

Suppose that control information is communicated instantly. Whenever a
source node chooses a route for a packet, this information is immediately trans-
mitted to all the links on the route. Whenever the congestion on a link changes,
this fact is instantaneously transmitted to all the source nodes. (Andrews et al.
also show how to relax these assumptions, but for simplicity we will stick to
them here.)

Every injected packet is routed along the path whose total congestion is the
smallest under the current congestion function ¢(-), i.e. we route along shortest
paths with respect to ¢(-). Initially, the congestion along every link is set to §
where ¢ is defined in (2). Each time a route is selected for an injected packet, the
congestion c(e) of every link e along the chosen route is updated to ¢(e)(1+ p/w)
where 1 is defined in (1). We reset the congestion of every link to its initial value
of § at the beginning of each phase. A phase terminates in ¢ windows of w steps,
where ¢ is an integer defined in (3).

The values of u, 6 and ¢ are defined as follows. Let m be the number of links
in the network. For any R € (r,1) of our choice, let

p=1- (%)/ )

6:<1—>\u>1/”‘ @)

m
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Al mé
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Andrews et al. prove the following theorem.

Theorem 3 ([5]). For all packets injected during one phase, at most twA of
their routes chosen by the above procedure go through the same link for some
A < 1. In other words, these routes are weakly (tw, A)-admissible.

Furthermore, they show the following lemma that implies that the selected
paths are not only weakly (tw,A)-admissible, but also (w’, A')-admissible for
some w' > w and X' € [4,1).

Lemma 1 ([5]). If a set of paths is weakly (w,\)-admissible then it is also
(w', X')-admissible for some w' > w and X' € [\, 1).

Hence, using a universally stable switching protocol on top of their route
selection scheme (such as longest-in-system or furthest-to-go [4]) would result in
a routing protocol that is universally stable.

As we saw, the protocol by Andrews et al. [5] allows to admit all packets
if, as a precondition, all of them are admissible. However, in the Internet one
may have the situation that much more packets are injected than are admissible.



Hence, an interesting question is what to do if not all packets are admissible,
and therefore some packets may have to be dropped. In this case, one would
like to drop the packets in a way so as to optimize a certain cost function. The
simplest cost function would certainly be to maximize the number of admissible
packets. Here, the following strategy would work (if the A, below is known in
advance): If one would use the same scheme as above and then would assign to
each packet P a survival probability that is equal to the minimum min[1, twA/A,]
over all edges e along its path (where ). is the number of paths crossing e in
the phase in which P is injected), then the result should be that each surviving
packet is admissible with high probability and the number of surviving packets is
close to the maximum number of packets any scheme could deliver. The question,
however, is whether a knowledge of A, is necessary for reaching this goal. Certain
results seem to indicate that this is the case [6]. Other cost functions could be
to maximize the profit when selecting the admissible packets. Certainly, more
work has to be done to come up with a protocol that would potentially be able
to extend (or replace) existing strategies in the Internet.

4 Communication in Wireless Networks

Communication in wireless networks is currently a rapidly evolving, highly active
research field, though dominated by experimental studies. A particularly hot field
has been in recent years mobile ad-hoc networks, which are wireless networks
that do not rely on any fixed infrastructure. Applications of ad hoc networks
have mostly been limited to the military communication environment. However,
recently also the commercial sector is increasingly interested in this technology.
Evidence of this is the establishment of a MANET working group in the Internet
Engineering Task Force (IETF). Central questions in the area of wireless ad hoc
networks are:

— How to ensure connectivity?
— How to select and maintain routes between the mobile units?
— How to send packets along the selected routes?

The first project in which a collection of computers formed a wireless network
was the ALOHA project, which was conducted around 1970 at the University
of Hawaii. In this project all communication was performed via a single master.
Hence, it was not necessary to search for suitable routes but only to know the
addresses of the computers in the network. Of course, in order to ensure that the
network is connected, all computers had to be within the range of the master. If a
larger distance has to be bridged with a limited transmission range, then several
intermediate transmissions (often called hops) are necessary to send a packet
from a source to a destination. In this case, finding a suitable route becomes a
serious problem. One of the first that suggested strategies that solve the route
selection problem in this case were Gitman et al. [20].

Today, route selection protocols for wireless networks are usually divided
into proactive and reactive protocols. In a proactive protocol every node tries to



keep routing information for all nodes in the network up to date. This is usually
achieved by updating the information automatically in regular time intervals. If
a message has to be sent to a certain destination, then the stored information
allows to immediately determine a suitable route to the destination (if such
a route exists). The latency for the transmission of a message can therefore
be kept small. The disadvantage of this method is that the maintenance of
the routing information requires a lot of extra communication and that space
even has to be allocated for those nodes that are rarely used as a destination.
All traditional link-state and distance-vector routing protocols are proactive.
Examples of proactive protocols that have been suggested for wireless networks
are OLSR, DSDV, and WRP.

Also reactive protocols store routing information. However, this information
is only updated when needed. This has the effect that parts of the information
may be outdated. Thus, it might happen that in order to send a message to a
destination, first a suitable route has to found in the network. This may cause
a high latency for the transmission of the message. However, the advantage of
this route-on-demand strategy is that it usually causes a much lower communi-
cation overhead compared to proactive protocols, which allows to use reactive
protocols in much larger wireless networks. Examples of reactive protocols are
DSR, AODV, and TORA.

Also algorithms are known that are a combination of both concepts. The
usual approach is to keep the routing information for a certain area around a
node up to date and to collect information about distant nodes only in the case
that a message has to be sent there. Examples are ZRP and LANMAR.

Detailed descriptions of many of the protocols mentioned above can be found
at

http://www.ietf.org/html.charters/manet-charter.html.

All of the protocols above have only been studied via simulations or experi-
ments. Theoretical work in the area of wireless networks has mostly concentrated
on the packet radio network (PRN) model. In this model, a wireless network is
usually seen as an undirected graph G = (V, E), where two nodes i and j are
connected if and only if 7 is within the transmission radius of j and vice versa.
One time step is defined as the time it takes to transmit a packet from one node
to another. Since it is usually assumed that all nodes can only transmit at one
frequency, a transmission conflict occurs at node 7 if two of its neighboring nodes
transmit a packet at the same time. Communication problems have been studied
by many authors for both the case that a conflict can be detected and the case
that it cannot be detected.

The advantage of the PRN model is that it is reasonably simple to allow the-
oretical investigations. However, its drawback is that interference problems are
modelled in a highly simplified way. More realistic wireless network models have
been considered, for example, in [1,21,22,39]. Another drawback of the PRN
model is that in its original form it only allows to study wireless communication
with a fixed transmission range. Both in cellular and ad-hoc wireless networks,



being able to use a variable transmission power has a noticeable advantage over
a fixed transmission power. This has been demonstrated experimentally both
for cellular networks [25] and ad-hoc networks [35]. One primary motivation for
using a variable transmission power is that energy is a scarce resource in mobile
units, and therefore the possibility of being able to adjust the signal strength
to the given situation can significantly help to save energy. Another important
aspect is that contention among the mobile units can be significantly reduced.
Furthermore, it allows the units to have more time to adjust to a changing
constellation and therefore to have a much smoother transition from one inter-
connection scenario to another.

In order to model wireless networks of units with variable transmission power,
one can use a complete graph with a cost function ¢ : V x V' — IR} that
determines the signal strength (resp. energy consumption) necessary to send
a packet from one node to another. Changing the distance between these two
nodes or moving an obstacle between these will then change the cost function
accordingly. Furthermore, in order to model interference more accurately, one
can use a parameter a > 1 with the property that if a node v transmits a
message with signal strength s, then all nodes requiring a signal strength of at
most a-s to receive a message from v are blocked. Such a model has, for example,
been used in [1].

4.1 Connectivity

Allowing a variable transmission power in the wireless model above adds much
more flexibility but also creates new problems. For example, the connectivity
problem is trivial in the fixed transmission power case (nodes either can or can-
not reach each other), whereas it is highly non-trivial to select the right trans-
mission power to ensure connectivity for the case of variable transmission powers
(unless the nodes always communicate with maximum power, which would be
too wasteful).

Recently, an elegant, rigorous approach was found to solve this problem under

certain circumstances. Consider some fixed dimension D and some norm |- | on
IR Consider a set of points V = {v1,...,0p} in IRP and let G = (V, E) be an
undirected graph connecting these points. For every path p = (vi,, vy, ..., 0;,)

in G we define its stretch factor as

-1
2jm1 |Vi; = Vi |

|Ui1 - Uiz|

flp) =

G is called an f-spanner for V if every pair s,t € V has a path in G of stretch
factor at most f. Yao [41] and subsequent papers (e.g., [38,16]) showed that
spanners for a given set of points V' can be obtained by a generalization of
prozimity graphs [26]: partition IRP into a collection C of k € IN convex cones
Co,...,Cr_1. Then, from every point p € V and every j € {1,...,k}, draw
directed edges to the closest point of V' lying in the translated cone p + Cj.
The resulting graph is called a partitioned neighborhood graph (PNG). For the



special case that all cones have an angular diameter of at most @, the graph is
also called a ©-graph [38].

Suppose that | - | represents the Euclidean distance. In this case, Ruppert
and Seidel [38] showed that if every C' € C has an angular diameter of at most
O < /3, then the resulting PNG is an f-spanner with

B 1
f= 1—2sin(O/2) -
This implies that in the 2-dimensional case 7 cones suffice for the PNG to be a
7.57-spanner. Combining the bound for f above with a result by Hardin, Sloane
and Smith [23], one can also show that in the 3-dimensional case 20 cones suffice
for the PNG to be an 88.1-spanner. Further improvements, partly using different
norms and so-called weak spanner properties, can be found in [16].

Note that a spanner is always strongly connected. Hence, we can always
ensure connectivity among nodes with variable transmission ranges by simply
choosing the transmission range in a way so that it can transmit messages to all
nearest neighbors in all cones (if possible), where the cones are selected so that
the resulting PNG is guaranteed to be a spanner. This approach even works if
there is a limit on the maximum possible transmission range, unless that limit
does not suffice to achieve connectivity by any means.

A limitation of the PNG approach seems to be that it does not seem to work
well for higher dimensions (too many cones are needed) and that it may only
work in (certain) metric spaces. Furthermore, there are problems realizing the
PNG approach in practice, since it might be necessary to use devices such as
GPS in order to know the location of a node and therefore being able to decide in
which cone it is. It is an interesting open problem whether there are alternative
approaches. For example, in situations in which units randomly move around, it
might suffice just to connect to some constant number of nearest neighbors to
ensure connectivity with high probability.

4.2 Path updates in wireless networks

Suppose that we want to use a proactive scheme for refreshing paths between
different nodes in a wireless network. The usual approach is that for every pair
of nodes its route is updated in regular time intervals. But how large should
these intervals be? And is it really necessary to have a route for every pair of
nodes to ensure a good connectivity?

In order to address these questions, suppose we keep information in a redun-
dant form in the network so that as long as a constant fraction of the nodes is
connected, no information is lost. Then we are in the situation already studied
in Section 2.1.

So a reasonable strategy could be that we simply embed a graph G that is
as robust as possible in the wireless network H. Communication would only be
performed along the paths simulating edges in G. In this case, H is connected if
and only if G is still connected with regard to those edges that still have working



paths in H. Each time a node walks away from its position, a certain number of
paths in H representing edges in G may get disconnected. If this exceeds some
threshold (for example, a constant fraction of the nodes in G, and therefore a
constant fraction of the nodes in H, is not connected any more), then one has
to refresh the embedding.

If movements of nodes happen at random and we had the situation that each
node is only crossed by one path representing an edge in G, then we would be
back to the model in Section 2.1. So the question is, how to transfer the results
obtained there to wireless networks if this is not the case? In particular, how
should the paths be selected in the wireless network so that one can prove lower
bounds on the time intervals needed for refreshing routes in order to ensure
connectivity of a constant fraction of the nodes (with high probability)?

4.3 Routing in wireless networks

There are two important issues when routing packets in wireless networks: the
energy necessary to perform the routing should be kept as low as possible while
keeping the throughput as high as possible (i.e. allowing many packets to reach
their destination).

The issue of achieving a high throughput has already been addressed in [21,
22]. However, to the best of our knowledge, no results are known so far about
achieving a high throughput with a minimum amount of energy. Consider, for
example, the following model.

Recall the adversarial routing model considered for faulty networks in Sec-
tion 2.4: suppose that the adversary has to guarantee that for every injected
packet there is a schedule (i.e. a sequence of hops over the time) for delivering
it to its destination. Would it then be possible to design an online routing pro-
tocol that can achieve (nearly) the same amount of deliveries with an energy
consumption that is close to the optimum? Concerning the optimum, two alter-
natives would be interesting: we want the total amount of consumed energy to
be as low as possible, or we want the maximum amount of energy spent in a
node to be as low as possible.

5 Communication in Adversarial Networks

All previous scenarios have in common that we have dynamic networks with
specific characteristics. In this section, we choose a high-level approach that is
not tied to any particular application. Suppose that we have a dynamic network
that can form any directed network at any point of time, and the way it changes
is under adversarial control. In order to ensure a high throughput efficiency such
kind of dynamic networks, several challenging tasks have to be solved:

— Routing: What is the next edge to be traversed by a packet?
— Switching: What is the next packet to be transmitted on an edge?
In particular, which destination should be preferred?



— Admission control: What is the packet to be dropped?

This seems to be impossible to decide without knowing the future, especially
if both the topology and the packet injections are under adversarial control:
choosing the wrong edge may lead a packet further away from its destination,
and preferring packets with a destination that will be isolated in the future or
dropping the wrong packets in case of overfull buffers may tremendously decrease
the number of successfully delivered packets. However, we will show that the
seemingly impossible task is possible, and this not only for unicasting but even
for multicasting.

First, we specify our model. Each edge can transport one packet and can be
used independently from the other edges. Each node may have a certain number
of buffers to store different types of packets (for example, packets with different
destinations). To ensure that our model is realistic, we assume that the size of
every buffer (i.e. the number of packets it can hold) is finite. Furthermore, each
node can only have a finite number of incoming and outgoing edges at a time.
As a parameter for the former case we will use the maximum buffer height H,
and as a parameter for the latter case we will use the mazimum in/out degree
A,

The adversary does not only control the topology of the network but also the
injection of packets. We distinguish between two adversarial injection models:
one for unicast injections and one for multicast injections.

The adversarial unicast model. Each unicast packet has a fixed destination,
determined at the time of its injection. The adversary can inject an arbitrary
number of packets and can activate an arbitrary number of edges in each time
step as long as the number of incoming or outgoing edges at a node does not
exceed A. In this case, only some of the injected packets may be able to reach
their destination, even when using a best possible strategy. For each of the
successful packets a schedule of the form S = ((eg, o), (e1,t1),--., (€g,te)) can
be specified. Of course, schedules are not allowed to intersect. When speaking
about schedules in the following, we always mean a delivery strategy chosen by
a best possible routing algorithm.

The adversarial multicast model. In the multicast model, a packet is allowed
to have several destinations. In order to allow a higher efficiency than simply
sending out one packet for each destination, we adopt the standard multicast
model, which assumes that a multicast packet only takes one time step to cross
an edge and that a multicast packet can split itself while in transit. Requiring an
efficient use of this property make the multicasting problem considerably harder
than the unicast problem. Especially when using dynamic networks, it seems to
be formidable problem to decide when and where to split a packet.

As in the unicast model, the adversary is basically allowed to inject an un-
limited number of multicast packets. However, only some of these packets may
be able to reach their destinations, even when using a best possible strategy.



For each multicast packet P that can reach k of its destinations, a schedule can
be identified. Any such schedule can be reduced to a directed tree with k& leaves
representing the destinations. Hence, we can view all schedules to be of the form
S = ((eo,t0), (€1, 1), - .., (€e, t¢)), where

— P is injected at the endpoint of eg at time step to,

— the edges ej,...,e; form an directed tree with the source as the root and
the k destinations as leaves,

for every directed path ((e;,,t),---, (€i,ti,)), the time steps have the or-
dering ti, <tliy-..<ty, and

— edge e; is active at time ¢; for all 1 < i < /.

As in the unicast model, the schedules must fulfill the property that they do not
overlap.

Analytical approach. Each time a multicast (or unicast) packet reaches one
of its destinations, we count it as one delivery. The number of deliveries that is
achieved by an algorithm is called its throughput. Since the adversary is allowed
to inject an unbounded number of packets, we will allow routing algorithms to
drop packets so that a high throughput can be achieved with a buffer size that
is as small as possible.

In order to compare the performance of a best possible strategy with our on-
line strategies, one can use competitive analysis. Given any sequence of edge
activations and packet injections o, let OPTpg(o) be the maximum possible
throughput (i.e. the maximum number of deliveries) when using a buffer size of
B, and let Ap/(o) be the throughput achieved by some given online algorithm
A with buffer size B'. “Maximum possible” means here maximum possible given
the same type of resources as used by the online algorithm. Otherwise, we would
not have a fair comparison. The only difference between the resources of the
online algorithm and a best possible algorithm we allow is the buffer size. (How-
ever, we place no restrictions on how the packets are selected and moved by an
optimal strategy.) We call A (¢, s)-competitive if for all o and all B,

AS.B(U) Z C- OPTB(O') -Tr

for some value r > 0 that is independent of OPTg(s). Note that ¢ € [0,1].
Usually, the competitive ratio is defined so that ¢ > 1. However, in our case we
choose the inverse definition, since it is more intuitive: ¢ represents the fraction
of the optimal throughput that can be achieved by A.

Using these models, we recently proposed different variants of the T-balancing
algorithm presented in Section 2.4 for unicasting and multicasting [8]. In the uni-
cast situation, we assume that every node has a buffer for every destination. Let
quyd denote the size of the buffer for destination d in node v at step . In every
time step t the unicast T-balancing algorithm performs the following operations
in every node v:



1. For every working edge e = (v, w), determine the destination d with maxi-
mum ¢, ; —¢t, ; and check whether ¢, ; — ¢!, ; > T If so, send a packet with
destination d from v to w (otherwise do nothing).

2. Receive incoming packets and absorb all packets that reached the destina-
tion.

3. Receive all newly injected packets. If a packet cannot be stored in a node
because its height is already H, then delete the new packet.

A weighted form of the protocol can also be formulated for multicasting. We
obtained the following main results [8]:

— Unicasting: For every T > B + 2(A — 1), the unicast variant of the T-
balancing algorithm is (1 —¢,1+ (1+ (T'+ A)/B)L/¢)-competitive, where L
is the average path length used by successful packets in an optimal solution.
The result is sharp up to a constant factor in the space overhead.

— Multicasting: For every T > B + D(3A — 1), the multicast variant of the
T-balancing algorithm is (1 —€,1+ (14 (T + DA)/B)D - L/e)-competitive,
where L is defined as above and D is the maximum number of destinations
a packet can have.

Many open questions remain. Although the space overhead is already reason-
ably low (essentially, O(L/e) for unicasting), the question is whether it can still
be reduced. For example, could knowledge about the location of a destination or
structural properties of the network (for instance, it has to form a planar graph)
help to get better bounds? Or are there approaches completely different from
the balancing approach used above that can achieve a lower space overhead? In
the worst case, the multicasting result stated above may need an exponentially
large number of buffers per node, since for every possible set of destinations a
buffer has to be reserved in each node. Can this be reduced to a polynomial
number without restricting a best possible strategy? We suppose that this is not
possible in general. But under certain circumstances (such as certain restrictions
on the network topology and the movement of packets), this should be possible.

6 Conclusion

We presented existing and suggested new models and techniques for the study of
dynamic networks. Although in some of the areas covered in this paper already
a significant progress has been made, many problems are still wide open, and a
long way still has to be gone to ensure that the methods developed for dynamic
networks are not only (close to) optimal in theory but also work well in practice.
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