
SIMLAB - A Simulation Environment for Storage Area Networks �

Petra Berenbrink
University of Warwick

Department of Computer Science
Coventry,CV4 7AL, UK
pebe@dcs.warwick.ac.uk

André Brinkmann
Paderborn University

Department of Electrical Engineering
33102 Paderborn, Germany

brinkman@hni.upb.de

Christian Scheideler
The Johns Hopkins University

Department of Computer Science
Baltimore, MD 21218-2682, USA

scheideler@cs.jhu.edu

Abstract

In this paper, we present a simulation environment for
storage area networks called SIMLAB. SIMLAB is a part
of the PRESTO project, which is a joint project of the Elec-
trical Engineering Department and the Computer Science
Department of the Paderborn University. The aim of the
PRESTO project is to construct a scalable and resource-
efficient storage network that can support the real-time de-
livery of data. SIMLAB has been implemented to aid the de-
velopment and verification of distributed algorithms for this
storage network. However, it has been designed in such a
way that it can also be used for the simulation of many other
types of networking problems. SIMLAB is based on C++
and common libraries and input/output formats, which en-
sures that SIMLAB can be used on many different platforms.
We therefore expect SIMLAB to be useful also for other peo-
ple working on similar problems.

1 Introduction

In the last couple of years, a dramatic increase in the need
of storing huge amounts of data can be observed. The intro-
duction of enterprise resource planning, on-line transaction
processing, e-business, data warehousing, and especially
the increasingly media-rich content found in intranets and
the Internet are heavily contributing to the data load. This

�The research has been done while the authors stayed at the Pader-
born University and was supported by the DFG-Sonderforschungsbereich
376, Project C5. The first author is supported by the EPSRC Re-
search Grant GR/M96940 and by the ESPRIT Projects RAND-APX and
ALCOM-FT.

is overwhelming traditional storage architectures. A com-
mon approach to handle this huge amount of data is to com-
bine storage devices into a dedicated network, called stor-
age area network (SAN), that is connected to several LANs
and/or servers. Major requirements for storage networks are
scalability, reliability, availability and serviceability.

In the PRESTO (Paderborn real-time storage network)
project, a joint project of the Electrical Engineering and
Computer Science Department of the Paderborn University,
we focus on the development of such a storage network.
Our storage network is intended to be based on a dedicated
network formed by a single type of hardware component,
called active router. In contrast to standard switching ele-
ments in SANs active routers incorporate a microprocessor
core, which enables an active behavior and the transfer of
functionality from the server to the network. Our active
routers can be connected to several LANs and/or servers
(see Fig. 1.a). An example of such an architecture is given
in Fig. 2. From the view of the outside world, our storage
network behaves like a single and very large disk by simply
providing a huge virtual data space (see Fig. 1.b).

In order to ensure a high scalability and availability of
our concept, we have to identify efficient strategies for the
data management, the communication between the active
routers, and for the scheduling of requests. Of course, all
the strategies have to be completely distributed, resource-
efficient, and self-reconfigurable. Many of our algorithms
have been analyzed theoretically in simplified and clean
models. The aim of our simulation tool SIMLAB is to fill the
gap between our theoretical models and the “real world”,
i. e. to study the behavior of the developed algorithms in
practice. SIMLAB has been implemented to aid the de-
velopment and verification of distributed algorithms for the

giant
a single,

harddisk

LANLANLANLAN

(a) Logical View

PRESTO data server

virtual data space

requests to data blocks

distributed file system

(b) Interface

Figure 1. Concept of a virtual parallel disk.

PRESTO storage network and to aid the decision which of
the algorithms are best suitable and most efficient in order
to be realized in the scope of the PRESTO Project.

SIMLAB works as follows. It requires an ASCII file as
input that contains the configuration parameters, and pro-
duces an ASCII file as output which stores the simulation
results. At the beginning of the simulation, the user can
setup an arbitrary network architecture with nodes repre-
senting our active routers. As a next step, the set of routers
can be specified that have external connections or connec-
tions to storage devices. For example, the user can have
pre-defined networks like the butterfly network with ex-
ternal connections/ disk connections only at nodes of the
highest/lowest level (see Figure 2), or he may choose a net-
work with external connections/ disk connections on every
node. Furthermore, the user can specify the type of stored
data (films, ...), together with several probability distribu-
tions specifying the request behavior of the SAN users. If
the physical layout and the data profile is fixed, the user

can select between different communication and scheduling
strategies. SIMLAB allows to evaluate many different pa-
rameters, e. g. waiting time distributions and network/disk
utilization. Furthermore, SIMLAB provides scripts and pro-
grams that allow the users to efficiently set up a configu-
ration file, and to efficiently evaluate the simulation results
that are output by SIMLAB. This includes, for instance, a
graphical user interface in order to specify network archi-
tectures.

SIMLAB is a sequentially implemented simulation tool
and is based on a library of objects that are implemented
as classes in C++. It has been written in a way that it en-
sures a fast incorporation of new algorithms and hardware
models. Since the interfaces of SIMLAB are simple ASCII
files, our simulator is not limited to any specific computing
environment. In its current form, the class library of SIM-
LAB contains precise models for hard disks, routing nodes,
and network interfaces. Each of the models can be adjusted
to adapt to new hardware or software constraints. Thus, in
addition to using it for the simulation of storage area net-
works, it is possible to use SIMLAB also for the simulation
of standard networks and/or parallel computers. However,
in this paper we will restrict ourselves to presenting only
those parts of SIMLAB that are necessary for the simula-
tion of algorithms for SANs that are based on a network of
active routers.

AR ARAR AR

AR

AR

AR

AR

AR

AR

AR

AR

LAN LANLAN LAN

Controller

SCSI

Controller

SCSI

Controller

SCSI

Controller

SCSI

Figure 2. A parallel storage network (“AR”
means “active router”).

2 Functionality of the SimLab Environment

The SIMLAB environment is based on the assumption
that the SAN consists solely of active routers. The SAN has

to be able to organize itself in such a way that it is able to
fulfill the requests in an efficient and reliable way, no matter
what topology the active routers form, or where the external
connections/ disk connections are. To achieve this goal, we
divided the functionality of the routers into five main units
(see Figure 3): the disk unit (short “D”), the user unit (short
“U”), the scheduling unit (short “S”), the routing unit (short
“R”), and the topology unit (short “T”). Figure 3 shows the
logical structure of the functional units and the relationships
between them.

: communication links

: interfaces

disks

user

internal

internalinternal

internal

R

U

D

T

S

Figure 3. Logical structure of an active router
node.

The functional units have the following tasks.

� The user unit manages the communication between
the outside world (users or servers) and our system.
It receives data requests and sends the requested data
back to the users. Within the simulation environment,
the user unit can also generate data requests by itself.

� The disk unit is responsible for managing the storage
devices attached to the router. It forwards data requests
to the storage devices and receives the requested data
from the disks. Furthermore, it is responsible for the
local data placement, i.e. it determines the mapping of
the virtual data blocks to the local disks. Within the
simulation environment, the disk unit also simulates
the behavior of the connected storage devices.

� The scheduling unit determines when the data has to
be read from which storage device. Furthermore, it is
responsible for the global data management, i.e. the
distribution of the virtual data blocks among the disks
in the system.

� The topology unit determines the paths packets have
to take in order to get from some source router to some
destination router.

� Finally, the routing unit handles the communica-
tion between neighbored routers. It determines which
packets to prefer if several contend to use the same link
at the same time.

In the case of the PRESTO project, these functional units
can be used in the following way to process requests (see
Figure 3,5). Upon arrival of a new request at the user unit,
the user unit forwards the request to the scheduling unit
of the same active router. The scheduling unit determines
the devices storing the requested data block and the routers
connected to these devices. For each of these routers, the
scheduling unit generates a request packet and forwards it
to the routing unit on its router. With the help of the topol-
ogy units, these packets will be sent along a sequence of
routing units until they reach their destinations. Upon ar-
rival at its destination router, a request packet is forwarded
to the disk unit of that router. The disk unit submits a re-
quest to the corresponding storage device (or devices) and
receives the requested data. This data is sent back to the
origin of its request. From there it is forwarded to the user
unit that sends it to the user that issued the request.

3 Implementation

SIMLAB has been implemented in C++. It uses vari-
ous data structures and graph libraries [15, 11], and differ-
ent libraries for distributed computation and communica-
tion (MPI, PVM)[14, 13].

3.1 The class concept

The class hierarchy is based on a parent class for nodes
called SimNode. This class provides the basic data struc-
tures to build up a parallel interconnection network. This
includes input and output queues for packets and other data
structures for the information exchange with adjacent nodes
like their addresses and the port number of the adjacent link.
Furthermore the SimNode class offers a number of useful
mechanisms for the simulation itself, like random number
generators and functions for the synchronization of the net-
work.

SimNode

Router Scheduler
User

Enduser

Packet

Disk

TopologyHarddisk

Derivation

Aggregation

Utilization

Figure 4. SimLab objects and their relation-
ships.

Derived from this parent class, the disk, router, sched-
uler, and user class represent the main functional units of
an active router node. The class corresponding to the topol-
ogy unit has an exceptional position in our simulation envi-
ronment. If it would have been derived from the SimNode
class, every router object in the network needed its own
topology object. Since the topology object requires a large
amount of memory, this would lead to an enormous waste of
storage capacity, especially for large networks. Hence, we
implemented only one global instance of the topology class
which can be used by every instance of the router class. At
the beginning of the simulation, the global topology class
determines a system of paths. During the simulation, every
router can access the topology class in order to request valid
paths.

The communication between the disk, router, scheduler,
and user unit takes place via data and control packets, de-
rived from the packet class. We do not make any difference
between the inter- and intra-node communication of active
routers. Therefore, it is possible to relax the model of the
active router node and to model the scheduler or disk con-
troller as, e.g. a workstation or PC. To enable the simulation
environment to work without an external request generator
we added objects that create data requests to the user unit.
The object representing the disk unit has been designed as a
general purpose local memory management unit. In order to
consider the characteristics of hard disks in our simulations,
we added objects to the disk unit that simulate the behavior
of hard disks. The routing object is designed in a way that
the routing rules and hardware characteristics can be ex-
changed easily. Also the topology and scheduling objects
allow for implementing a large variety of different strate-
gies. Since the topology and the scheduling units perform
only internal processes, no additional objects representing
hardware characteristics have to be added to them.

(a) User Request

(b) Disk Response

Figure 5. Packet data flow.

Technically, a typical packet flow for a storage area net-
work is processed as follows (see Figure 5). The user poses

a request to the respective scheduler. This user request in-
cludes a pointer to/or place for a data block, the user ad-
dress, and the virtual address of the data block. The sched-
uler processes the request and inserts the user packet into a
scheduler packet, which is moved to the router module. In
order to enable the active routers to pass the packet to the
destination address, they ask the topology unit for valid out-
put ports. At the destination, the router packet is unwrapped
and given to the scheduler. The scheduler recognizes the
user packet and passes it to the disk controller, where it is
unwrapped again. The remaining user packet is filled with
the data information and sent back to the requesting user.
Other possible situations are that the scheduler requests in-
formation about the link load of a router or the queue length
of a disk. For this purposes, additional classes are derived
from the parent packet class.

3.2 SimLab interfaces

As already mentioned, SIMLAB is embedded into a tool
chain, which enables the user to specify network topologies,
to set up simulation parameters, and to evaluate the simula-
tion results (see Fig. 6).

Config Simulation Post Processing
MatLab

HTML
Latex

GUI

configuration fil
es

scripting

Sim_Out

Figure 6. Simulation flow.

SIMLAB can run on every PC/workstation which in-
cludes a C/C++ compiler and the Leda library. Access to
the simulation parameters is given through different config-
uration files. Each of the objects of the files can be con-
figured in different ways. To have an easy entry into the
simulation environment, we offer access to the SIMLAB-
parameters via a graphical user interface (GUI). E.g., it is
possible to specify the desired network infrastructure with
the help of a graph editor and to translate its output into a
valid net-list format. Furthermore it is possible to set up
the parameters of the node objects via a Java script. This
script enables the user to easily manipulate the parameters
of the environment, to start the simulation, and to evalu-
ate the simulation results. For users that would like to use
all capabilities of the simulation environment, we suggest a
script-based access to SIMLAB. A demo version of SIM-
LAB and the configuration tools can be accessed and exe-
cuted via the Internet. This version is limited to the simula-
tion of small networks for a limited amount of time.

SIMLAB produces two kinds of textual output. We im-
plemented a trace mode for single step evaluation. At each
time step, every active router writes its internal statistics,
like queue lengths and packet transmissions, into an output
file. This enables the algorithm designer to prove the correct
implementation of his algorithm and to gain further insights
into his algorithm. The output files can be linked with a
visualization tool, which documents the packet flow in the
network. Of course, this mode results in a huge memory
consumption, which limits this approach to small networks
or/and a small number of simulation steps. Therefore, we
developed a second mode where each object keeps statistics
about its most important parameters like maximum or av-
erage utilization together with the corresponding standard
deviations. The respective output files can be connect with
AWK-scripts in order to extract a subset of the generated
data. The AWK-scripts offer interfaces to Matlab and Latex
for the graphical and/or tabular representation of the simu-
lation results.

4 Algorithms

In this section we describe the algorithms we have im-
plemented in the SIMLAB environment for the scheduler
unit, disk unit, topology unit, routing unit, and the user unit.
Note that these algorithms can be regarded as exemplary
implementations. The simulation environment can easily
be extended by other strategies. Furthermore, note that the
user can choose any one algorithm from each unit in order
to make a simulation. Hence, the algorithms can be mixed
arbitrarily. The selections can be done, for instance, via the
WWW user interface mentioned in Section 3.

4.1 Disk unit

The implementation of the disk unit is divided into two
sections: a model of the disk controller and a model of the
disks themselves (see Figure 7). This ensures that arbitrary
local load balancing strategies like the RAID strategies can
be mixed with different kinds of disk models. We assume
that the disks are connected to the controller via a SCSI bus.
Our bus model only simulates the bandwidth limitations of
the SCSI bus. The protocol itself is not incorporated.

The disk controller receives three different kinds of re-
quests from the corresponding scheduler: queue length re-
quests, delete requests, and data requests. The requests are
buffered in an input queue and processed in FIFO order. The
queue length request returns the actual input buffer length of
the disk controller. The delete request can be used to erase
formerly given orders from the disk controller. These kinds
of requests can be used to implement global load balanc-
ing strategies to distribute requests evenly among the disks.

check
subject

delete
request

new
request

FWF
LRU
....

Cache

Block in Cache?

yes

(Scan, Fifo, ...)

Update Cache

no

Disk

Simulate Disk

FWF
LRU
....

Cache

Block in Cache?

yes

(Scan, Fifo, ...)

Update Cache

no

Disk

Simulate Disk

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

Distribute
Requests among
disks

check
bandwidth

Administration

request
queue-length

Disk- Controller

input queue output queue

Figure 7. Implementation of the disk-
controller.

They can be immediately processed by the controller and
do not require any disk access.

Data requests to a disk controller require a distribution
strategy among the connected disks. In the case of the stan-
dard strategy, every data block is stored only on one disk
and every request is submitted directly to this disk. Further-
more, we have implemented different RAID strategies like
RAID 0 (Striping), RAID 1 (Mirroring) and RAID 5 (Strip-
ing with Parity). The parity block in RAID 5 can be used
for an additional level of load balancing [9, 6]. In this case,
only � of ��� disks are required to process a block request.
The remaining disk can be used for another request. In this
case it is important to notice that the use of the parity block
requires extra work to rebuild the data block, which has to
be done in the disk controller itself or can be transferred to
the requesting server.

The disks: In order to simulate disk behavior we distin-
guish between seek time (the time which is used in order
to find the requested block on the disk) and read time (the
time used to read the data from the disk) [18]. To calculate
the seek time, we use a linear model which depends on the
actual position of the disk head and the time the head re-
quires for a full-stroke. To determine the order in which a
disk fulfills its requests we have implemented the FIFO and
the SCAN strategy. Additionally, we provide a model of a
RAM disk which is able to process any request in a single
time step. This can be especially useful to compare different
higher level strategies without the influence of the real hard-
ware limitations. Furthermore, we have implemented sev-
eral standard caching strategies, such as FWF (flush when
full) and LRU (last recently used).

4.2 User unit

The user unit does not only serve as an interface (to the
users), it additionally simulates the behavior of SAN users.
We assume a fixed number of users in every user unit that
request the data following a fixed rate, i.e. the request injec-
tion rate is fixed and does not vary over the time. In order
to determine the requested data items (e. g. the film that
is chosen by the user) we use binomial distribution, zipf
distribution, or the normal distribution. Due to this distri-
bution, the user chooses a file and accesses sequentially the
data blocks stored in the file, starting from the first block,
or from a randomly chosen block of the file. The file length
can be fixed in advance or also be randomly chosen. This
approach is able to cover different possible scenarios. For
example, to study tele-teaching applications, we can chose
a request distribution where every user accesses the same
block from the same file at a very similar time-step. In or-
der to study Video-on-Demand servers, we assume a zipf
distribution with randomly chosen access points in the files.
This ensures that a constant number of users in the system
can be simulated without overestimating the influence of the
caching strategy.

4.3 Scheduling unit

As mentioned earlier, this unit is responsible for the
placement of the data and for the scheduling of the requests.
We assume that the virtual data space consists of data blocks
of uniform size.

Data placement. We realized, for instance, the � of ���-
strategy where every data block is divided into � sub-blocks.
The ���th sub-block stores the parity function of the first �
sub-blocks. Each of the ��� sub-blocks is then allocated to
a different node in the storage network. Note that for � � �
the strategy simply stores every data block as a whole on
two disks. Furthermore, note that it is sufficient for a user
to get arbitrary � out of the � � � sub-blocks. In the case
that the parity block is sent to the user it is easy to construct
the contents of the missing sub-block.

Obviously, the strategy with � � � is superior if the vir-
tual data blocks are relatively small (see Figure 8). In such
a case it will not be profitable to divide a block because this
will result in long seek times at the disks. With increas-
ing block size, the better load balancing capabilities of the
strategies with a greater number of sub-blocks outperform
the disadvantage of the smaller sub-block size. The storage
overhead caused by the � of � � �-strategy is ��������.

In order to distribute the virtual data space among the
disks of the system we developed a special, randomized
hash function [10]. The virtual data space can be far greater
than the capacity of the system. However, only the used

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���������
���������
���������

���������
���������
���������

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������

A
ve

ra
ge

 L
at

en
cy

Block size in KByte

2-of-3
3-of-4
4-of-5

1-of-2

Figure 8. Relationship between block size,
data placement, and latency.

data blocks will actually be assigned to physical blocks on
the disks. The developed hash function is very flexible and
allows to add and to remove some disks with a minimum
number of virtual blocks that have to be replaced.

Scheduling. We have implemented several strategies
which are motivated by so-called balls-into-bins games (see
[5], [17], [8]). These strategies are able to exploit the re-
dundancy generated by our placement strategies.

� Simple minimum game: The requests are fulfilled
from the � of the least loaded � � � disks storing the
requested data. The scheduler sends a load request to
each of the ��� disks holding a copy of the requested
virtual data block. Each disk receiving such a load re-
quest answers with its request queue length (the num-
ber of jobs which already wait at the disk in order to
be fulfilled). In turn, the scheduler sends data requests
to the � disks with the minimum queue length. These
data requests will be fulfilled by the disks.

� Minimum game with pre-placement [1]. If the request
queue of a disk is empty and the active router con-
trolling this disk receives a load request, then it does
not respond with the queue length, but instead immedi-
ately asks the disk to provide the requested data block
and sends the data back to the user. If the the request
queue of a disk is not empty, the disk responds with the
request queue length, as in the case of the simple min-
imum game. In the case that � � disks respond with di-
rectly sending the requested data, the scheduler sends
data requests to the � � �� disks with minimum queue
length.

This strategy has the advantage that disks are not idle
even though there is a data request which can be ful-

filled by it. A disadvantage is that some requests may
be processed by more disks than necessary to recon-
struct the requested data block.

� The next strategy is similar to the minimum game, but
in addition to the request queue length, the scheduler
takes the link congestion of the interconnection net-
work into account. More precisely, for each involved
disk the scheduler computes a function depending on
the maximum link congestion (number of packets that
have to be routed over a link) of the links on the path
to the disk and the request queue length of the disk.
Then the request is fulfilled from the � disks having
the minimum function value.

4.4 Routing unit

We have implemented four different packet switching
schemes.

� FIFO (first-in-first-out). The routers forward the pack-
ets in the order of their arrivals.

� LIS (longest-in-system). The routers always forward
the packet with the earliest generation time.

� Growing rank protocol (see [16]). In this case every
packet is marked with a rank depending on its genera-
tion time. The routers always forward the packet with
the smallest rank. Furthermore, every time a packet
traverses a link, its rank will be increased.

� ELIS (enforced longest in system, see [19]). This strat-
egy is a restricted variant of the LIS strategy. The
strategy uses control packets in order to enforce that
the generation times of the packets which are routed
across any link are increasing with time.

Figure 9 shows a sample output of simulations with dif-
ferent switching strategies for a butterfly network of dimen-
sion 4 and different injection rates. It can be seen that the
ELIS strategy is inferior to the other two strategies in terms
of average latency in this kind of network topology. This
is due to the fact that ELIS requires some control packets,
which decrease the total amount of available bandwidth for
the data packets.

4.5 Topology unit

The task of the topology unit is to initialize the server
and to determine path systems which distribute the routing
packets as evenly as possible over the links of the whole
network. Our topology unit is able to generate many stan-
dard networks like mesh networks, butterflies, hypercubes,
and DeBrujin networks. But it also offers an interface to
build own networks or random networks. Furthermore, the

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

2

4

6

8

10

12

A
ve

ra
ge

 L
at

en
cy

Injection Rate (ms/Injection)

FIFO
LIS
ELIS

Figure 9. Relationship between switching
scheme and average latency in a butterfly net-
work of dimension 4.

user can distribute external user interfaces and storage de-
vices arbitrarily over the active routers of the networks. For
example, in the case of the two dimensional mesh one can
chose between (1) every router of the mesh is connected
to an external interface and a disk interface, (2) only the
routers of the first row are connected to an external inter-
face, and only the routers of the column are connected to
disk interfaces.

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

140

number of nodes

m
ax

im
um

 c
on

ge
st

io
n

standard
GK integral
GK fractional
DPS integral
DPS fractional

Figure 10. Max. congestion of router links.

We have implemented several algorithms to determine
path systems. Some of them can only be used for fixed net-
works, like the simple X-Y path system that can only be
used for meshes. For the case of arbitrary networks we have
implemented three general strategies. In addition to a stan-
dard shortest path algorithm, we implemented the algorithm
by Garg and Könemann ([12]). This algorithm offers an in-
teresting new approach in order to find good approximate

solutions to multi-commodity flow problems solely through
an iterative use of shortest path calculations. The basic ap-
proach of our DPS algorithm [7] is based on approximation
algorithms for the multi-commodity flow problem [3, 4] and
on a routing algorithm presented in [2]. The algorithm finds
paths for each source/destination pair so that the capacity
constraints on the links in the network are kept and, there-
fore, requests and data streams do not overload the network.
It is based on a simple load balancing approach, called dif-
fusion. Figure 10 shows the influence of the path selection
strategy onto the congestion of the router links for DeBruijn
networks of different degree.

5 Conclusions

In this paper we presented the sequential version of the
simulation environment SIMLAB for storage area networks.
SIMLAB has been developed to aid the development and
verification of distributed algorithms for storage area net-
works and is based on the assumption, that the SAN consists
of active routers. Due to the programmability of these ac-
tive router nodes, the designer of storage area networks has
the possibility to transfer functionality from the connected
servers into the SAN.

In addition to the sequential version of SIMLAB we have
implemented a first distributed version which is based on
PVM. Besides the possible speed-up one major advantage
is the much larger amount of available memory. This en-
ables the algorithm designer to instantiate an instance of the
topology unit in every active router and to study dynamic
properties of the used path selection algorithms (i.e., their
behavior when the network topology changes).

Acknowledgments

We thank Ralf Hunstock for helpful and stimulating dis-
cussions. Also, we would like to thank the members of
the software project PGMUDAS which has been held at
the Paderborn University during the years 1999/2000. The
members of that group implemented the simulation envi-
ronment SIMLAB for our PRESTO server and performed
the simulations.

References

[1] M. Adler, P. Berenbrink, and K. Schröder. Analyzing an
infinite parallel job allocation process. In Proc. European
Symp. on Algorithms (ESA’98), pages 417–428, 1998.

[2] W. Aiello, E. Kushilevitz, R. Ostrovsky, and A. Rosén.
Adaptiv packet routing for bursty adversarial traffic. In Pro-
ceedings of the 30th Annual ACM Symposium on Theory of
Computing, pages 359–368, 1998.

[3] B. Awerbuch and F. Leighton. A simple local-control ap-
proximation algorithm for multicommodity flow. In Proc.
of the 34th Annual Symposium on Foundations of Computer
Science, pages 459–468, 1993.

[4] B. Awerbuch and F. Leighton. Improved approximation
algorithms for the multi-commodity flow problem and lo-
cal competitive routing in dynamic networks. In Proc. of
the 26th Annual ACM Symposium on Theory of Computing,
pages 487–496, 1994.

[5] Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balanced allo-
cation. In Proceedings of the 26th Symposium on Theory of
Computing (Stoc), pages 593–602, 1994.

[6] P. Berenbrink, A. Brinkmann, and C. Scheideler. Design of
the PRESTO multimedia data storage network. In Proceed-
ings of the Workshop on Communication and Data Manage-
ment in Large Networks (INFORMATIK 99), Oct. 1999.

[7] P. Berenbrink, A. Brinkmann, and C. Scheideler. Distributed
path selection for storage networks. In Proceedings of the
2000 International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’2000),
Las Vegas, USA, June 2000.

[8] P. Berenbrink, F. Meyer auf der Heide, and K. Schröder. Al-
locating weighted jobs in parallel. In Journal of Theory of
Computing Systems, 32:281–300, 1998.

[9] Y. Birk. Random RAIDs with selective exploitation for high
performance video servers. In Proceedings NOSSDAV ’97,
May 1997.

[10] A. Brinkmann, K. Salzwedel, and C. Scheideler. Efficient,
distributed data placement for storage area networks. In
Proceedings of the 12th ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA’2000), 2000.

[11] P. Davids. Atlas - analysis tool for local area network simu-
lation version 5. Technical report, Lehrstuhl für Informatik
IV, RWTH Aachen, 1993.

[12] N. Garg and J. Knemann. Faster and simpler algorithms
for multicommodity flow and other fractional packing prob-
lems. In Proceedings of the 39th Annual Symposium on
Foundations of Computer Science (FOCS ’98), Nov. 1998.

[13] A. Geist. Pvm 3 user’s guide and reference manual. Techni-
cal report, Oak Ridge Laboratory, 1994.

[14] W. Gropp, E. Lusk, and A. Skjellum. MPI, Portable Parallel
Programming with the Message-Passing Interface. The MIT
Press, 1994.

[15] K. Mehlhorn and S. Näher. LEDA, A Platform for Combi-
natorial and Geometric Computing. Cambridge University
Press, 1999.

[16] F. Meyer auf der Heide and B. Vöcking. A packet rout-
ing protocol for arbitrary networks. In Proceedings of the
12th Symposium on Theoretical Aspects of Computer Sci-
ence, pages 291–302, 1995.

[17] M. Mitzenmacher. Density dependent jump markov pro-
cesses and applications to load balancing. In Proceedings
of the 37th Symposium on Foundations of Computer Science
(FOCS’96), pages 213–222, 1996.

[18] C. Ruemmler and J. Wilkes. An introduction to disk drive
modeling. Computer, 27(3):17–28, Mar. 1994.

[19] C. Scheideler and B. Vöcking. From static to dynamic rout-
ing: Efficient transformations of store-and-forward proto-
cols. In Proceedings of the 31st Symposium on Theory of
Computing (STOC), pages 215–224, 1999.

