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Abstract

In this paper we study the classical problem of finding disjoint paths in graphs. This
problem has been studied by a number of authors both for specific graphs and general
classes of graphs. Whereas for specific graphs many (almost) matching upper and lower
bounds are known for the competitiveness of on-line algorithms, not much is known about
how well on-line algorithms can perform in the general setting. The best results obtained
so far use the expansion of a network. We use a different parameter called routing number
that, as we will show, allows more precise results than the expansion. It enables us to
prove tight upper and lower bounds for a class of simple deterministic on-line algorithms,
called bounded greedy algorithms. Interestingly, our upper bound on the competitive ratio
is even better than the best approximation ratio known for off-line algorithms before our
paper. Furthermore, we introduce a refined variant of the routing number and show that
this variant allows to construct on-line algorithms with a competitive ratio that can be
significantly below the best possible upper bound for deterministic on-line algorithms if
only the routing number or expansion of a network is known. We also show that our on-line
algorithms can be transformed into efficient algorithms for the related unsplittable flow
problem.
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1 Introduction

The disjoint paths problem (here called DPP) is defined as follows. Given an undirected graph G =
(V,E) and a set T of k pairs of nodes (s;,t;), 1 < i < k, decide whether there exist k edge disjoint
paths Py, .-+, P such that the path P; connects s; and ¢;. It was shown by Karp [18] that this is an
N P—complete problem. The optimization variant of this problem is called the maximum disjoint paths
problem (MDPP), which is simply to find the maximum subset of T' for which there exist edge-disjoint
paths. Several approximation algorithms have been proposed for it. A short summary is given in
Section 1.1.

A generalization of the MDPP is the unsplittable flow problem (UFP) [19]: each edge e € E is given
a capacity of ¢, and each request (s;,t;) has a demand of d;. The task is to choose a subset 7" C T
such that each request (s;,%;) in 7" can send d; flow along a single path, all capacity constraints are
kept, and the sum of the demands of the requests in 7" is maximized. (More general forms of the UFP
also assign a profit to each request, and the aim is to maximize the sum of the profits of the requests
in 7" [2].) In the unit-capacity UFP, ce = 1 for all edges e.

We will mainly concentrate on how to solve the maximum disjoint paths problem in an on-line
setting, that is, the requests arrive one after another, and for each of them the algorithm has to decide
before knowing the next requests in the input sequence whether to accept it or not. If the request is
accepted, a path has to be provided for it that is disjoint to all the paths established previously. This
on-line variant of the MDPP is also called call admission and routing problem [10, 28]. Our aim is to
find algorithms for this problem with a small competitive ratio. The competitive ratio of a deterministic

on-line algorithm is defined as
OPT (o)
¢ =8up ———
o ON(0) °
where the suprenum is taken over all possible sequences o of requests, ON (o) is the number of requests
accepted by the on-line algorithm, and OPT (o) is the number of requests accepted by an optimal
off-line algorithm [10]. In the case of a randomized on-line algorithm, ON (o) is a random variable. We
therefore define the competitive ratio of a randomized algorithm as
OPT (o)
C=8Sup ———— .
2" E[ON (0)]
For the rest of the paper we will only compare the performance of our on-line algorithms against
oblivious adversaries. Such an adversary does not see the decisions of the algorithm and therefore
cannot take them into account for selecting the requests [35, 10]. We note, however, that our upper
and lower bounds in Section 2 also hold for adaptive adversaries.

1.1 Previous work

Due to the NP-hardness of the MDPP, a lot of attention has been given to the search for good approx-
imation algorithms for the MDPP problem. However, the problem seems to be hard to approximate.
In the off-line setting, the best algoritm for general graphs has approximation ratio O(y/m) [19]. For
directed graphs there is almost a matching lower bound [17]. On the other hand, when more graph
parameters than just the number of nodes, n, and the number of edges, m, are used to measure the
performance of an algorithm, it is possible to get better results for many classes of graphs. The best
published result of this type we are aware of is an O(A%a~2log3 n) approximation algorithm by Srini-
vasan [36], where A denotes the maximal degree in the graph and « the edge expansion of the graph (we
stress that o may be a function of n, e.g. ©(log™! n) for n-node butterfly graphs). The result is based



on multicommodity flow algorithms, which is one of the most common approaches for the MDPP and
related problems [32, 26, 27, 20, 37]. The other frequently used approach is based on random walks,
which was useful especially for expander graphs [31, 11, 12, 14, 13]. Other important results for specific
graphs are polylogarithmic and later O(1) approximations for mesh-like graphs [5, 1, 21, 22, 19]. There
are also a few results that relate the quality of the approximation ratio to the average path length dg
in the optimal solution. Srinivasan [36] and later Kolliopoulos and Stein [23] by a different method
gave dg-approximation algorithms.

The O(y/m) approximation for the MDPP applies also to the UFP ([8, 6], cf. [19]). For a special
case of the uniform-capacity UFP (that is, all edges have the same capacity), Baveja and Srinivasan [8]
describe an algorithm with approximation ratio O(A%a~2log? n).

In the on-line setting, the trivial deterministic lower bound of ©2(n) for the line shows that in general
there is no hope for on-line deterministic algorithms with reasonable competitive ratio. Bartal, Fiat
and Leonardi [7] prove this effort to be in vain even for randomized algorithms by giving an Q(n¢)
lower bound for randomized on-line algorithms on general networks, where € = %(1 —log,3). As a
consequence of these large lower bounds, research has mainly focused on specific topologies. On-line
algorithms with an at most polylogarithmic competitive ratio have been found for the line network
[15, 16, 4], trees [3, 4, 5], meshes [21], and certain classes of planar graphs [5]. All these algorithms are
randomized. The reason for this is that the lower bounds for deterministic algorithms for many of these
topologies are much higher. As we already mentioned above, for the line network there is a trivial lower
bound of Q(n) (e.g. [2]), which can be easily generalized to 2(d) for any diameter d tree. Awerbuch
et al. [5] mention a deterministic Q(y/n) lower bound for the \/n x y/n mesh by Blum, Fiat, Karloff
and Rabani. Kleinberg [19] provides an alternative proof. The known deterministic on-line algorithms
for the MDPP with at most polylogarithmic competitive ratios are for the hex [5], for graphs with
strong expansion properties [20] and for hypercubic networks [24]. Combination of the techniques of
Kleinberg and Rubinfeld [20] and the results of Leighton and Rao [26] (see Lemma 1.2 of this paper)
yields a competitive ratio of O(A a~'logn) for general graphs for the special case that the sequence of
requests forms a complete permutation on V. For arbitrary sequences, the bound on the competitive
ratio increases to O(A%a~?log?n) (the increase is caused due to the use of random walk techniques).

Most of the afore-mentioned randomized algorithms suffer from the drawback that only the expected
competitive ratio is good. It may happen that they compute a very poor solution with high proba-
bility. Leonardi, Marchetti-Spaccamela, Presciutti and Rosén [29] consider this problem and propose
alternative randomized algorithms for trees and meshes with almost optimal competitive ratios that
achieve a good solution with high probability.

The problem appears to be much easier when requests allocate only a small fraction of link capac-
ities. If each request requires at most a fraction of O(1/logn) of the link capacities, then there is an
O(log n)—competitive algorithm for general topologies by Awerbuch, Azar and Plotkin [2]. They also
give a matching lower bound for this setting.

1.2 Terminology

Before we present our results, we introduce some notation. The congestion C' of a path collection is
defined as the maximum number of paths that share an edge, and the dilation D of a path collection
is defined as the length of its longest path (measured in the number of edges).

Let S, denote the set of all permutations from {1,...,n} to {1,...,n}. Consider an arbitrary
graph G on n nodes. For any permutation m € S,, and any D that is at least the diameter of G, let
C(G, D, ) be the minimum possible congestion required to route packets in G according to 7 using



paths of length at most D. Then the D-bounded routing number R(G, D) of G is defined as
R(G,D) = max max{C(G,D,r),D} .

Furthermore, the (unbounded) routing number R(G) of G is defined as R(G) = minp R(G, D). The
notion of a routing number has been used before (see, for instance, [33]) and is usually defined via
the minimum number of steps, rather than the minimum possible congestion and dilation, to route a
permutation in G. However, since the original definition deviates only by a constant factor from the
definition of a routing number above [25], we used the same name. In the case that there is no risk of
confusion, we will simply write R instead of R(G) or R(G, D).

Obviously, the following lemma holds.

Lemma 1.1 For any graph with D-bounded routing number R, there is a path collection for any
permutation routing problem with congestion at most R and dilation at most D.

Next we list the routing number and edge expansion of important classes of networks (we assume
that the number of nodes is n).

network routing number | expansion
line ©(n) ©(1/n)
n' x n'-mesh O(y/n) O(1/y/n)
butterfly ©(logn) ©(1/logn)
hypercube ©(logn) O(1)
expander ©(logn) O(1)

The bounds imply that there should be a close relationship between the routing number and the
expansion. In fact, Leighton and Rao [26] proved the following lemma.

Lemma 1.2 For any graph with expansion o, mazimal degree A and routing number R it holds that

Oa )< R<O(Aa llogn).
The next two lemmata show that for constant-degree networks this result is best possible.

Lemma 1.3 For any «, 1/n < a < 1/logn, there exists a constant-degree graph G of size n with
ezpansion O(a) and routing number O (a1).

Proof. We distinguish between two cases. First, 1/n'/? < a < 1/logn. In this case, consider a
d-dimensional butterfly on n’ nodes for some n’ specified later. We note that d = ©(logn'). From the
table above it follows that this graph has an expansion of ©(1/d) and a flow number of O(d). If we
replace now every edge by a path of length Z, then the number of nodes of the new graph G increases to
n = £-n' and the expansion decreases to « = O(1/(d - £)). Furthermore, the routing number increases
to ©(d - £). Hence, for any desired o, 1/n'/? < o < 1/logn, the graph G with an expansion « can be
obtained by setting £ = |a!/logn] and n’ = n/¢ in the construction above.

Second, 1/n < a < 1/n!/2. In this case, consider the mesh network with |a '] nodes in one
dimension and n/|a~!'| nodes in the other dimension. It is easy to check that this graph has an
expansion of ©(a) and a routing number of ©(a1). a
Lemma 1.4 For any 1 < a = Q(logn/n'~¢), where € is an arbitrary positive constant, and any A > 0,
there exists a constant-degree graph G of size n with expansion ©(a) and routing number ©(Aa ! logn).



Proof. The lemma can be shown by using the same construction as for the butterfly in the proof of
Lemma 1.3, but instead of a butterfly we use an expander. O

As implied by the table above, many standard networks have a routing number of ©(a~™!). This
will be important below to argue that the routing number usually provides better bounds than the
expansion. Now we are ready to state our new results.

1.3 New Results

In this paper, we present a class of simple deterministic algorithms, called bounded greedy algorithms,
that achieves for any graph G of maximum degree A and routing number R a competitive ratio of
O(A-R). Using Lemma 1.2, this implies a competitive ratio of O(A%-a~!logn), which is substantially
better than the best approximation ratio of O(A? - a 2 log®n) for off-line algorithms that was known
before our paper and the competitive ratio of O (a2 log? n) that can be derived from the results of
Kleinberg and Rubinfeld [20] (cf. Section 1.1). Since in general the best possible competitive ratio that
can be obtained for a deterministic on-line algorithm when applied to a graph with routing number
R (resp. expansion a and n nodes) is Q(R) (resp. Q(a !logn)), and several standard graphs fulfill
that R = ©(a~!), our O(A - R) bound together with the results in Section 1.2 imply that the routing
number is more useful for bounding the competitive ratio than the expansion. Another advantage of
the routing number is that, in contrast to the expansion, it is quite easy to construct a constant factor
approximation algorithm for the routing number of a graph (see, e.g., [33]).

Furthermore, we present a randomized on-line algorithm that, for any graph G with maximum
degree A and D-bounded routing number R, achieves a competitive ratio of O(A - /D - R) with high
probability. Since D can be much smaller than R, this allows to achieve a competitive ratio that
can be significantly below the best competitive ratio one can hope to achieve for deterministic on-line
algorithms if only R (or «) is known. If we allow an edge to be used by up to two paths, we show
that a competitive ratio of O(VA - D - R) can even be achieved by a deterministic on-line algorithm.
We also provide a lower bound of Q(v/R + D) on the competitive ratio that holds for all deterministic
on-line algorithms.

Consequences of our results are off-line and on-line approximation algorithms for the unit-capacity
UFP with same or similar approximation ratios as their counterparts for the MDPP.

2 The Bounded Greedy Algorithm

The bounded greedy algorithm (BGA) works as follows [19]. Let L be a suitably chosen parameter.
Given a request, reject it if there is no free path of length at most L between its terminal nodes.
Otherwise accept it and select any such path for it. First we prove two general lower bounds for the
competitive ratio, and afterwards we provide a matching upper bound on the competitive ratio of the
bounded greedy algorithm.

Theorem 2.1 For any R and n for which there is a graph G of size n and routing number R there is
a graph G' of size ©(n) and routing number ©(R) such that the competitive ratio of any deterministic
on-line algorithm on G' is at least R.

Proof. To obtain the graph G’, attach a line of R edges to any one node of the graph G. Let
Vg, V1, -+ ,vR denote the nodes on the line. Consider the following two sequences of requests. The
first sequence just consists of (vg,vr), and the second consists of (vg,vg) followed by (v;,v;11) for
all i € {0,...,R — 1}. To have a bounded competitive ratio for the first sequence, any deterministic



algorithm must accept (vg,vg). Hence, for the second sequence, a deterministic algorithm can only
accept (vg,vR), whereas an optimal algorithm can accept R requests. O

For the expansion, the following lower bound can be shown.

Theorem 2.2 For every 1 < a ! <n/logn there is a constant degree graph of size n with expansion
O(a) such that the competitive ratio of any deterministic on-line algorithm on G’ is Q(a~'logn).

Proof. According to [33] it holds that for every 1 < a ! < n/logn there is a constant degree graph
of size n that has an expansion of @ and a diameter of (a~'logn). Let G be any such graph. Replace
every edge in G by a path of length 3. Obviously, the resulting graph G’ still has an expansion of ©(«)
and a diameter of Q(a~!logn). Take now any two nodes v and w that are a distance of Q(a~'logn)
apart. Since the on-line algorithm is deterministic, it will choose some fixed path of length Q(a ! logn)
to connect these two nodes. Hence, the sequence consisting of (v, w) plus all pairs of nodes that are in
the middle of the path pieces of length 3 (formerly representing edges in G) along the path from v to
w will result in a competitive ratio of Q(a ! logn). O

Next we prove an upper bound for the bounded greedy algorithm.

Theorem 2.3 Given a network G of mazimum degree A and routing number R, the competitive ratio
of the BGA with parameter L =2 - R on G is at most (A +4) - R+ 1= O(A%a logn).

Proof. Let B denote the set of paths for the requests accepted by the BGA and O be the set of paths
in the optimal solution.

If O only consists of paths of length at most L, then the competitive ratio of the BGA is clearly at
most L+ 1: if a request corresponding to a path p € O is rejected by the BGA, then p must intersect in
an edge with some other path accepted by the BGA. On the other hand, since the paths in the optimal
solution are edge-disjoint, each request accepted and routed by the BGA can cause the rejection of
at most L requests that appear in the optimal solution, namely of those that intersect with its route.
Hence, in this case, |O] < (L +1) - |B|.

However, there is no such guarantee that the optimal solution consists of short paths only (i.e. of
paths of length at most L). There can be many long paths that do not intersect with any path that is
used by the BGA. We need to bound the number of these. Fortunately, it is possible to transform an
optimal solution that contains long paths into an ‘illegal’ solution consisting of short paths only that
‘do not intersect too much’ with the paths accepted by the BGA.

We say that a path ¢ € B is a witness for a path p if ¢ and p share an edge in G. Obviously, a
request that is routed in the optimal solution on a short path and is rejected by the BGA must have
a witness in B. Let O’ C O denote the set of paths that are longer than 2 - R and that correspond to
requests not accepted by the BGA and that do not have a witness in B. Since all other paths in O
either have a witness or are accepted by the BGA, we know from above that |O — O'| < (1+ L) - |B|.
To be able to bound the size of the set O, we will transform O’ into a set S of short paths that have
the same pairs of endpoints as the paths in @’ and, moreover, do not intersect too much with the paths
of the BGA. To be more specific, we will ensure that (a) each path in O has a path in S of length at
most L connecting the same vertices, and (b) each path in S has a witness in B but all the paths in B
altogether are witnesses to at most (A + 1) - R - |B| paths in §. This will complete the proof.

It remains to describe the transformation of @’ into S. For a path p € O between s and t let
ap,1 = S,ap2, -, ap g denote its first R nodes and b, 1, --,b, r—1,bp r = t its last R nodes. Let L be
defined as the (multi-)set U,cor UZ {(ap;bpi)}. Since the paths in O are edge-disjoint, each node
of the graph G appears in at most A pairs in £. Viewing the pairs as edges in G, Vizing’s theorem



br-1br

—— long path p

--- shortcut [

Figure 1: A shortcut [ for a long path p € O’

[9, p. 153] implies that the pairs can be colored with A + 1 colors so that no two adjacent pairs have
the same color. Combining pairs of two color classes gives a graph that only consists of cycles and
paths. Hence, directing the pairs in a suitable way, a combination of two color classes can be seen
as a partial permutation routing problem. Thus, altogether the pairs can be split into [%] < %
(partial) permutation routing problems. It follows from Lemma 1.1 that there exists a set of paths
connecting the pairs in £ with congestion at most % - R and dilation at most R. Let P be such a set
of paths. For [ € P connecting nodes a,; and b,; of a long path p € @', let p; denote the path going
first from a,; to a,; along the path p, then from a,; to b,; along [, and finally from b, ; to b, r along
p again (Figure 1).

The length of p; is at most 2 - R. Therefore, [ will be called a shortcut for the path p (recall that
p was longer than 2 - R). The aim is now to choose a subset P’ C P such that each path in O has a
shortcut in P’ and the paths in B are witnesses to at most (A + 2) - R - |B| paths in P’.

Let us perform a random experiment: independently for each long path p € @', choose exactly one
of its R shortcuts uniformly at random. Let P’ be the set of the chosen shortcuts. For a fixed shortcut
[ € P, the probability that [ is the chosen one, i.e. [ € P’ is 1/R. Let

X ={(l,q) |l €P, q€B, qis a witness for [} .

Since every path in P’ must have a witness in B, |P/| < |X| for any P’. For every [ € P, let
vy =|{q | g € B, ¢ is a witness for [}| and for every ¢ € B, let w, = |{l | [l € P, ¢ is a witness for [}|.
Furthermore, for every [ € P, let the binary random variable X; be one if and only if [ is chosen to be
in P'. Since wy < 2R - (242 - R), we obtain

1 1
eP qEB

E[[X]]<E

> o X

leP

It follows that there exists a set P’ with | X| < (A +2) - R-|B|. Since |O’| = |P'| and |P'| < | X|, this
implies that also |O'| < (A+2)-R-|B|. Recalling that |0 —O'| < (1+2R)-|B|, the proof is completed.
O

It is worth noting that for the analysis of the BGA we do not need the conflicts between the paths
in the transformed optimal and the greedy solution to be distributed evenly in the network. The
important thing is the total number of the conflicts.



2.1 Decreasing the maximum path length

Is it possible to decrease the value of the parameter L in the BGA in order to obtain the same or even
better bounds on the competitive ratio? For the case that we work with D-bounded routing numbers
instead of simply routing numbers, the following theorem holds.

Theorem 2.4 Given a network G of mazimum degree A and D-bounded routing number R, the com-
petitive ratio of the BGA with parameter L =2 - D on G is at most (A +4)- R+ 1.

Proof. The construction is exactly the same as in the proof of Theorem 2.3. Paths longer than 2- D in
the optimal solution are suitably transformed into shorter ones and then it is shown that, on average,
each path in the greedy solution intersects with at most (A +4)- R of the transformed paths, and each
transformed path has a witness in B. O

The main contribution of the above theorem is that it makes the BGA algorithm more efficient: it
is computationally easier to search for paths of length at most 2 - D than of length 2 - R.

Since graphs can be easily constructed where the competitive ratio of BGA(2 - D) is substantially
better than that of BGA(2- R), the question is whether the upper bound given in Theorem 2.4 is tight,
or whether a BGA with parameter L = o(R) can achieve a better competitive ratio than O(R). We
will show in the next theorem that there are certain limits to this, even when using the BGA in an
off-line setting.

Theorem 2.5 For any network G of size N with D-bounded routing number R where O(log N) <
D < O(R), there is a network G' of size O(N) with O(D)-bounded routing number O(R) so that the
competitive ratio of the BGA with parameter L, where ©(D) < L < ©(R), is Q(R/L + L).

Proof. To obtain the network G’, we attach to a node of G a special network T' with ©(R) nodes and
a diameter of ©(D). Before we define this network for all R and D, we start with the situation that
R =0(n) and D = 2logn.

The network T will be a graph consisting of the complete binary tree with n leaves that are
connected via additional edges in such a way that they form a linear array. Obviously, no matter how
the tree leaves are attached to the binary array, T' has a diameter of 2logn and a ©(logn)-bounded
routing number of O(n).

Consider now a BGA with parameter L/2, where L = ¢ -logn for some ¢ > 2 (w.l.o.g. we will
assume that £ is a power of two). We connect the leaves of T' with the linear array in the following
way':

Consider the linear array to be laid out as shown in Figure 2, with 2L nodes per ‘column’ and
n/(2L) leaves per ‘row’. The node at column ¢ and row j is called v; ;. The nodes of every row are
connected via a complete binary tree. The roots of these binary trees are connected in such a way that
for every ¢ € {0,...,¢ — 1} the roots of the trees in rows i - logn,i-logn+1,...,(i +1)logn — 1 and
rows (20 — (1 +1))logn, (20 — (i +1))logn +1,...,(2¢ —i)logn — 1 form a tree called T;. The roots
r; of the trees T; are connected by another complete binary tree T on top to from a single, complete
binary tree.

Suppose now that we have a set S of requests (v;o,v; ) for all i € {0,...,n/(2L) —1}. A path p
connecting any of these requests is said to cover k leaves of T if the number of leaves r; under (or equal
to) the nodes in T visited by p is equal to k. Then the following lemma holds.

Lemma 2.6 Any path p of length at most L/2 that connects a request in S must have the property
that it covers at least £/2 leaves of T'.



complete binary tree over each row
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Figure 2: The construction of the network 7" from a linear array and a binary tree.

Proof. Consider a path p of length at most L/2 connecting any request in S. W.l.o.g. let this be the
request (vp,vo,,). Suppose that p covers less than ¢/2 leaves of T'. Since each leaf allows to *bridge’
at most logn nodes along the columns of the linear array, the total vertical distance p can ‘bridge’ on
the linear array from v o to vg 7, must be less than L/2. Since the edges within a subtree T} cannot be
used to have a shortcut for the linear array, p would have to use more than L/2 further edges to get
from wvp o to v . Since p is only allowed to have a length of at most L/2, this is a contradiction to our
assumption. O

The lemma implies that the BGA with parameter L/2 is only able to connect at most 2 of the
requests. Because the total number of requests is n/(2L), we arrive at a competitive ratio of at least
R/(4AL).

If the BGA uses parameter L instead of L/2 in our construction above, then all requests can be
connected. However, in this case we know that n/(2L) — 2 of the corresponding paths must have a
length of at least L/2. If n/(2L) > 4, that is L < n/8, then we extend the requests by adding L new
requests requiring a path of length 1 overlapping with each request that got a path of length at least
L/2. In this case we arrive at a competitive ratio of at least Q(L).

Replacing now each (tree and linear array) edge in 7' of size R/ by a path of length § with
d = D/logn also yields all other combinations of R and D, which concludes the proof of the theorem.

g

The proof of Theorem 2.5 can also be used to prove the following result.

Theorem 2.7 For any network G of size n with D-bounded routing number R there is a network G' of
size ©(n) with ©(D)-bounded routing number O(R) so that the competitive ratio of any deterministic
on-line algorithm applied to G' is at least Q(v/R + D).

Proof. The proof is based on the construction of T for L = ©(v/R). (VR minimizes the bound
R/L + L in Theorem 2.5). As in the proof of Theorem 2.5, we consider the set of requests (v; 0, w;,r.)
for alli € {0,...,n/(2L) — 1}. Any deterministic on-line algorithm either has to reject many of these
requests or must connect many of them with a path of length at least L/2. In the latter case we extend
the requests by many short requests that have to be rejected. This causes for both cases the competitive
ratio to be at least Q(v/R). If D > /R, then it follows from Theorem 2.1 that the competitive ratio
can be improved to Q(D). 0



Iterative BGA. As mentioned already in the introduction, there are algorithms [23, 36] with ap-
proximation ratio dy, where dy denotes the average path length in the optimal solution, for the given
instance of the problem. Consider the following off-line modification of the BGA, called Iterative BGA:
run the BGA logn times, starting with parameter L = 1, and doubling L in each subsequent run.
Finally, as your solution, choose the best one.

Theorem 2.8 For an instance of the MDPP, let dy denote the average path length in the optimal
solution. Then the approzimation ratio of the Iterative BGA is 8 - dy.

Proof. Clearly, since one of the choices for L must be in the interval [2 - dy,4 - dy — 1], and since at
least half of the paths in the optimal solution are shorter than 2 - dy, using the witnessing argument in
Theorem 2.3 results in an approximation ratio of at most 2(1 4 (4dp — 1)) = 8 - dp. a

2.2 Unsplittable flow problem

The BGA can also be efficiently used for solving the unit-capacity unsplittable flow problem in the off-
line setting. Consider the following procedure. First, sort all the requests according to their demands,
starting with the heaviest. Then run the BGA with L = 2 - R on the requests in this order.

Theorem 2.9 Consider any unit-capacity UFP on a graph G, and let R denote the routing number of
G and A be the mazimal degree in G. Then the approzimation ratio of the BGA when run on requests
ordered according to their demands is O(A R) = O(A%a~tlogn).

Proof. For simplicity we will assume that each edge in G has integral capacity C and that also all
requests are integral. This will influence our bounds only by a constant.

As usual, let B denote the set of paths for the requests accepted by the BGA and O be the set
of paths in the optimal solution. The notion of the witness has to be modified. For this purpose
the following notion will be useful. For a path p € B or p € O let d(p) denote the demand of the
corresponding request. For a set Q of paths let ||Q|| = >°,cod(p), that is, [|Q]| denotes the sum of
demands of its paths (for simplicity we will sometimes talk about a demand of a path, meaning the
demand of the corresponding request). For an edge e € E and a path p € O, let D(e,p) denote the
sum of demands of all paths from B passing through e whose demand is at least as large as the demand
of p, that is, D(e,p) = ||{q | ¢ € B, e € q, d(q) > d(p) }||- A path ¢ € B is a witness for a path p if
d(q) > d(p) and ¢q and p intersect in an edge e such that D(e,p) + d(p) > C. We say that g serves as a
witness on the edge e and p has a witness on the edge e. Let D(e) = ||{q | ¢ € B, e € q }||. We start
with a simple observation.

Lemma 2.10 For any path p and edge e: if p has a witness on e then D(e,p) > C/2.

Proof. Let ¢ be the witness of p on e. Assume, by contradiction, that D(e,p) < C/2. Then it easily
follows that d(q) < C/2. Since d(p) < d(q) and D(e,p) + d(p) > C by the witness definition, we have
a contradiction. O

Let @' C O be the set of paths that are longer than 2 - R and that correspond to requests not
accepted by the BGA and that do not have a witness in B. The next two bounds on ||O — O'|| and
||O’|| complete the proof. O

Lemma 2.11
O -0 <(1+4-R)-|B]| .



Proof. Consider the following partitioning of @ — O’ into two parts. Let Oy C O — O’ consist of the
paths corresponding to requests accepted by the BGA and let Oy = (O — O') — O;. First note that
each p € Oy must have a witness in B. Let E' C E denote the set of edges on which some path from
O has a witness. Then ||Oq|| < 3 ,cpr C <23 cpr D(e) <4-R-||B]|, with the help of Lemma 2.10
and the fact that all paths in B are of length at most 2 - R. Obviously ||O;]|| < ||B|| which concludes
the proof. O

Lemma 2.12
0| <4-A-R-|B]

Proof. For this purpose we are going to modify the set of flows O into a set of short flows only. For a
pathp € O' between s and t let ap 1 = s,ap2, -, ap g denote its first R nodesand b, 1, -, b, r—1,bp R =

t its last R nodes. Let £ be the multiset |J,cor R U?gl){(apyi, bpi)} (recall our assumption that all
d(p)’s are integral). Since the paths in O’ satisfy the capacity constraints, each node of the graph G
appears in at most A - C pairs in £. Thus, the pairs can be split into % (partial) permutation
routing problems. It follows from Lemma 1.1 that there exists a set of paths connecting the pairs in £
with congestion at most R - # and dilation at most R.

Consider now the following random experiment: for each long path p € O', choose uniformly and
independently at random exactly one its R - d(p) shortcuts. Let P’ be the set of the chosen shortcuts.
For every £ € P, let the binary random variable X, be one if and only if / is chosen to be in P’. Assume
now that each of the shortcuts is used to carry the original demand of the corresponding long flow.
Since the BGA processed the requests according to their demands, starting from the heaviest, each of
the shortcuts in P’ will have a witness. Let E' C E denote the set of edges on which some path from

P has a witness. Since ||O'|| = |[P'|], it suffices to give an upper bound on |[P’|| = E [||P'||].
NG
B[P < E|Y > dO)- X,
ecE' [cP:ect
ecE' (cP:ect d(ﬁ - eck’ R 2

ecE'’

The following facts were used in the reasoning;:

(1

each path in P’ must pass at least one edge in E’
[Xl] = .—g)

)

2)

3) the congestion of paths for £ is at most
)
)

L ACH2
R- =3

4) Lemma 2.10 and the assumption that A > 2

(
(
(
(5

all paths in B are of length at most 2- R
O

The problem with the UFP in the on-line setting is that an acceptance of a single request with very
small demand may cause a rejection of a request with very large demand which results in a competitive
ratio that cannot be bounded in terms of the network G. That is why it is interesting to focus on
problem instances for the on-line case that satisfy an additional constraint: an instance of the UFP is
e-bounded for € > 0, if the maximum demand is at most 1 — € [19]. Then we arrive at the following
result for the on-line unit-capacity UFP:
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Theorem 2.13 Consider any unit-capacity UFP on a graph G, and let R denote the routing number
of G and A the mazimal degree in G. If the sequence of requests is e—bounded then the competitive

ratio of the BGA is O(e 'A R) = O(e 'A%a logn).

Proof. Consider the following modification of D(e,p): let D(e,p) be the sum of demands of paths
in B passing through the edge e that were accepted by the BGA prior to appearance of the request
corresponding to p in the input sequence. Then the bound of Lemma 2.10 changes to ||D(e,p)|| > €-C.

O

3 Relaxing the Disjointness Constraint

In this section, slightly different conditions on the established paths are considered. Instead of insisting
on edge—disjointness, a congestion of two is allowed, both for the on-line algorithm as well as for the
optimal off-line solution. This will substantially simplify the proof of the performance of the on-line
algorithm. In the next section it will be shown how this relaxation can be avoided at the cost of
introducing randomization in the decisions.

Suppose we have a graph of D-bounded routing number R. The algorithm is again rather simple.
We may think of the graph as a graph with two copies of each edge, a blue and a red one. Given a
request (s,%), accept it whenever there exists a free path with at most 2eR blue edges and at most 2- D
red edges for some fixed € € [D/R, 1]. We stress that this is a deterministic algorithm.

Theorem 3.1 Suppose we have a network G of mazimum degree A and D-bounded routing number
R. For any € € [D/R,1], the competitive ratio of the BGA with parameters (2¢R,2D) is at most
4-(eR+ (A +3)-DJe).

Proof. We call a path ¢ a witness for a path p if p and ¢ share an edge in G, no matter whether
their colors match or not. Let B denote the set of paths accepted by the BGA and O be the set of
paths in the optimal solution. Let O' C O denote the subset of paths that are longer than 2- (eR+ D),
that correspond to requests not accepted by the BGA and that do not have a witness in 5. Then
|O—-0'|<4-(eR+D)-|B|

As in the proof of Theorem 2.3, we are going to transform the paths in O into paths fulfilling the
restrictions of the BGA that, at the same time, do not intersect much with paths of the BGA. For a path
p € O' between s and t let ap1 = s,ap2,- -, ap g denote its first eR nodes and by 1, -+, by er—1,bp.cr =1
its last eR nodes. Let £ be the set U,cor US% {(ap,i,bpi)}. Since every edge is used by at most two
paths in @', each node of the graph G appears in at most 2 - A requests in £. Similar to the proof of
Theorem 2.3 there exists a set of paths connecting the requests in £ with congestion at most (A+2)-R
and dilation at most D. Now, each path p € O’ chooses uniformly and independently at random exactly
one of its possible shortcuts, say (ap,b,). We route all the shortcuts on the red edges and everything
else (i.e., the initial and final parts of the paths in O') on the blue edges. This may cause up to two
paths in O’ to use the same blue edge. By exactly the same argument as in the proof of Theorem 2.3,
it is possible to show that the expected congestion of shortcuts on red edges is (A + 2)/e only. Let
S denote the set of all selected shortcuts. Obviously, every path in § must have a witness in 5. In
particular, there must be a path in B using the corresponding edge also as a red edge. Since each path
of the BGA consists of at most 2 - D red edges, each path in B is a witness to at most 2- D - (A +2)/e
paths in §. Thus, putting together the bounds on |O — O'| and on |O’| = |S|, the competitive ratio of
the algorithm is as desired. O

11



Obviously, the (asymptotically) best possible competitive ratio is reached when eR = AD/e. If €
is required to be more than 1 for this, we simply use the BGA to obtain a competitive ratio of O(R).
Otherwise, we obtain the following result.

Corollary 3.2 Suppose we have a network G of maximum degree A and D-bounded routing number

R. Then the competitive ratio of the BGA with parameters (2/R/(A - D),2D) is O(VA - D - R).

It is worth noting that the sizes of optimal solutions for congestion one and congestion two problems
may differ dramatically. Think about the brick wall and let aq,---,a,, denote the border nodes on
the upper side, going from left to right, and by,---,b,, denote the border nodes on the lower side,
going from right to left. If |J;Z,(ai,b;) is the set of requests, then the size of an optimal solution for
congestion one is only 1, whereas for congestion two it is m.

4 The Shrewd Algorithm

In this section, we will present a randomized on-line algorithm that achieves a competitive ratio that
is similar to the deterministic algorithm in Section 3. It consists of a preprocessing phase and a path
selection phase.

4.1 Preprocessing

Suppose that we have a graph of maximum degree A and D-bounded routing number R. Before
the algorithm selects any path, it first computes a path system 7 (consisting of a path for every
source-destination pair) with dilation D and congestion n - R + O(y/n- R -logn). This can be done
in polynomial time [33]. Since the O(y/n - R -logn) term is significantly smaller than n - R, we will
assume in the following for simplification reasons that the congestion is at most n - R. Afterwards, the
algorithm randomly selects a well-connected subset W C V of nodes: each node decides independently
at random with probability % to belong to W, for a suitably chosen e. Let n’ denote the size of W.
Obviously, E[n'] = Z5. Furthermore, it follows from the Chernoff bounds that n’ = ©(Z;) w.h.p. if
e < 1/logn. Let @ C T be a collection of paths that contains all paths in 7 for all pairs of nodes in
W. The set Q will serve as a path system for W. Define the (absolute) congestion of an edge with
regard to Q as the number of paths traversing it, and the relative congestion of an edge as its absolute

congestion divided by n’. These parameters have the following property.

Lemma 4.1 For any fized edge, its absolute congestion concerning Q is at most E[n']/e in the expected
case and, for € < 1/logn, also O(E[n']/€) with high probability. Furthermore, its expected relative
congestion is at most 1/e.

The proof of the lemma can be found in the appendix. In the following, we call all edges with
congestion of n’ or more due to paths in Q heavy edges and all other edges light.

4.2 Path selection

Given a request, the Shrewd algorithm accepts it whenever there is a free path between its terminal
nodes consisting of at most 2-eR + 4 - D edges of which at most 4 - D are heavy. Such paths are called
legal paths. What is the idea behind this strategy? The heavy edges are (usually) edges that represent
bottlenecks in the path system. When selecting paths for the requests, the algorithm avoids using too
many bottleneck edges per path, because a single path passing through many bottlenecks could cause
the rejection of many subsequent requests.

12



Theorem 4.2 Suppose we have a network G of mazimum degree A and D-bounded routing number
R. For any € € [D/R, 1], the competitive ratio of the shrewd algorithm with parameters (2¢R,4 - D) is
O(A(eR + D/e)) in the expected case and also O(A(eR + D/e)) w.h.p. if e < 1/logn.

Proof. Let O denote the set of paths in the optimal solution, B the set of paths accepted by the
shrewd algorithm and let O" C O consist of all illegal paths in O whose corresponding requests were
rejected by the shrewd algorithm and that, moreover, have no witness in B (i.e., they do not intersect
in an edge with any path in B). The proof idea is the same again: we transform O’ into an ‘illegal’
solution of almost the same size consisting of legal paths only that do not intersect much with paths
in B. By ‘illegal’ solution we mean that the modified paths are not mutually edge-disjoint. The
transformation heavily depends on the path system Q for the well-connected subset W. It is done in
two main steps. First, we show how to connect for most of the paths p € O its end nodes s and ¢
to two nodes ag,a; € W. Then, in the second step, for each pair (as,a;) a path between ag and a; is
constructed. This is done with the help of ©@. The main difficulty in the proof is to ensure that the
resulting modified paths will be legal and that they will not intersect much with paths from B.

Step 1: With each terminal node s of a path p € O a subpath py of the path p is associated. The
subpath p, is the shorter one of the following two:

e a subpath of length eR starting in s,
e a minimal subpath containing D/2 heavy edges starting in s.

In the first case, s and py are called insecure, in the other case secure. Since each path in O between,
say, s and ¢, contains either more than 4D heavy edges or more than 2¢R + 4D edges altogether, the
two constructed subpaths ps and p; are (node) disjoint and are well defined.

First we show how to connect secure nodes to nodes from W. Each secure subpath ps chooses
uniformly and independently at random one of its D/2 heavy edges, say fs (choice 1), and then each
of the chosen heavy edges chooses, again uniformly and independently at random, one of the paths
from the path system Q that are passing through it (choice 2). Let ¢s; denote the path chosen by fs.
The desired node a; € W for s is the one of the two terminal nodes of ¢, that is closer to fs w.r.t. g
(Figure 3). Clearly, the combination of ps; and gs between s and as contains at most D heavy edges
and at most eR + D edges in total.

secure subpath p;

heavy edge fs chosen by ps
in choice 1

heavy not chosen edges
paths from the path system Q

path gs € Q chosen 2 by f,
. in choice 2

Figure 3: Connection between a secure node s and a node a; € W

In the case of the insecure nodes, only a part of them will be provided with a node from W. Since
the nodes in W were chosen independently at random and since the insecure subpaths are quite long
(eR edges), many of them will contain a node from W. If the subpath ps contains at least one node
from W, then the closest of them to the terminal node s is chosen as the desired a,. If there is no such
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node on it, then no node a; € W is provided for s and the corresponding request will therefore not be
able to participate in step 2.

If |O'| = O(eR+ A-D/e), we do not care how many of the paths in O’ cannot be connected to two
nodes in W. Since |B| > 1, the competitive ratio claimed in Theorem 4.2 would immediately follow.
Otherwise, let O” C O’ denote the subset of paths for which nodes as and a; in W can be provided.
The following lemma states that O” contains many of the paths in O'. It’s proof can be found in the
appendix.

Lemma 4.3 For any O with |O'| = w(eR+ A - D/e), |0"| > |O'|/4 with high probability.

Step 2: Let £ =Upcor{(aps,apt)}. It remains to provide connections for all the pairs (as,at) in
L. For this we use the path system Q and Valiant’s trick with random intermediate destinations: each
pair (as,a;) € L chooses uniformly and independently at random an intermediate destination cs; € W
(choice 3) and uses the paths from the path system Q to connect as with ¢g; and ¢g; with a; (Figure 4).
For a path p € O” from s to t, let l, denote the path between as and a; via cg as described above.

illegal path p € 0"
--- paths from Q

s - secure vertex

t - insecure vertex
Figure 4: A modification of an illegal path p.

From the description of the modification it follows that all the modified paths are legal.

Bounding the congestion: Let k; be the total number of light edges and kj; the total number of
heavy edges used by the paths in B. Let P denote the set of all paths for the pairs in £, that is
P = Upeor lp, and let U = Uy .ccure -

Consider any node u € W. We are going to bound the number of pairs in £ in which « appears.
First, we bound the number of secure nodes that chose u as as or a;. For each heavy edge f, let y; be
the number of paths in Q that are passing through f and terminate in u. Let H, = {f | ys > 0}. Note
that > repr, yr < n' - D, because u is terminal node of n’ paths in Q and all paths in Q have length
at most D. For an edge f € H,, the probability that f was chosen in choice 1 is at most %. For an
edge f € H, that was chosen in choice 1, the probability that f chose in choice 2 a path terminating
in u is at most 37/1—{ Thus, the expected number of secure nodes that chose u as as or a; is bounded by
> FEH, % . %4 < 2. Concerning insecure nodes, at most A of them can choose u as as or a; since the
paths in O are edge-disjoint. In total, the expected number (with respect to the random choices 1, 2
and 3) of pairs from £ terminating in u is at most A + 2.
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Consider now any light edge e in the graph. We want to bound the congestion of paths in &/ and P
on e. A path ¢ € U adds to the congestion of e if there is a heavy edge f on ¢ such that f was chosen
in choice 1 and, moreover, the edge f chose the path ¢ in choice 2 and ¢ passes through e (Figure 5).
A path [ € P between ag and a; adds to the congestion of e if the pair (as,a;) chose such a node ¢ in
choice 3 that either the path between a; and cg or between cg and a; in the path system Q is passing
through e.

For each heavy edge f, let z; be the number of paths in Q that are passing both through e and
f.- Let H. = {f | xy > 0}. Note that 3" ;. z; < n'-D, because e is a light edge and all paths in
Q have length at most D. For an edge f € H,, the probability that f was chosen in choice 1 is at
most %. For an edge f € H, that was chosen in choice 1, the probability that f chose in choice 2 a
path going through e is at most “£. The expected congestion of paths from U on e is thus bounded by

n
2 xr
EfeH.,z 5'n_{ <2

.
T formp =1 D light edge e

v

I' I heavy edges chosen in choice 1
: 3

I heavy not chosen edges

\ paths from the paths system Q

N

\,\ path gs € U chosen in choice 2 by fs

) subpath ps

Figure 5: Congestion of paths in &/ on a light edge e.

For each node v € W, let z, be the number of paths in Q that terminate in u and go through e.
Note that Y, cy 2y, < n'. We noticed above that for a fixed u € W, the expected number of pairs from
L in which u appears is at most A + 2. For each of these pairs (as, a;), the probability that it chose
such an intermediate node cg4 in choice 3 that either the path between ag and cg or between ¢y and
a; from Q is passing through e (depending on whether a; = v or a; = u) is at most 7%. The expected
congestion of paths from P on e is thus bounded by Y,y (A +2) - 2 < A +2. In total, the expected
congestion on a light edge is A + 4.

Recall the congestion bound in Lemma 4.1. Consider now any heavy edge e in the graph. Let the
random variable C denote the number of paths in O that traverse e. Using the same arguments as
above, the expected congestion of paths from U on e is at most 2C,/n’', and the expected congestion
of paths from P on e is at most (A + 2)C,/n’. Thus, the expected number of conflicts between the
modified paths and the paths in B is at most (A +4) -k + (A +4) Ypeavy ecs Ce/n’. We conclude that
there exist choices 1, 2 and 3 with that many conflicts at most. According to Lemma 4.1 we know
that E[C./n] < 1/e (recall that C./n' is the relative congestion of e) and that for ¢ < 1/logn both
n' = O(E[n']) and C, = O(E[n']/€) w.h.p. Hence, both in the expected case and the high probability
case with € < 1/logn, the number of conflicts between the modified paths and the paths in B is at
most (A+4)-k; 4+ (A+4)-O(kp/e). This is also the maximal number of paths in S that have a witness
in B.
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Summary: For a path p € O” between s and ¢, let p’ denote its modification as described in the
two steps. That is, p’ goes from s to as first, then from ag to a; via cg, and finally from a; to t.
Let § = U,cor p' denote the set of the modifications. With high probability (with respect to the
initial random choice of W), |S| > |O'|/4, that is, most of the paths in O’ have a modification in
S (Lemma 4.3). All paths in S are legal and because requests corresponding to them were rejected
by the shrewd algorithm, each of them must have a witness in B. Thus, in the expected case, |S| <
(A+4) - k+(A+4) -kp/e<(A+4)-(2¢-R+4-DJe)-|B| =O(A-(eR+ DJe)) - |B|. Also, w.h.p.
|IS| = O(A - (eR + D/e¢)) - |B] for € < 1/logn. Hence, the shrewd algorithm is O(A - (eR + D/e))—
competitive in the expected case and also O(A - (eR + D/e))—competitive w.h.p. if e < 1/logn. 0

Choosing the best possible €, we arrive at the following result.

Corollary 4.4 Suppose we have a network G of maximum degree A and D-bounded routing number
R. The competitive ratio of the shrewd algorithm with parameters (2v/D - R,4 - D) is O(AvD - R) in
the expected case and also O(AVD - R) w.h.p. if R > Dlog®n.

In the same way as the BGA, the shrewd algorithm can be used to solve the unit-capacity UFP
problem. Use several runs of the shrewd algorithm to transform the expected competitive ratio into
an approximation ratio that holds w.h.p. for any R and D.

Corollary 4.5 Consider any unit-capacity UFP on o graph G of mazimum degree A and D-bounded
routing number R. Then the approzimation ratio of the shrewd algorithm with parameters (2v'D - R, 4-
D), when run on requests ordered according to their demands, is O(AvV D - R), w.h.p.

Corollary 4.6 Consider any e-bounded unit-capacity UFP on a graph G of mazimum degree A and
D-bounded routing number R. Then the competitive ratio of the shrewd algorithm with parameters

(2V/D-R,4- D) is O(e *AVD - R), w.h.p.

5 Conclusions

In this paper we presented a simple deterministic on-line algorithm for general networks with an
optimal competitive ratio when using the routing number of a network. Furthermore, we introduced a
new parameter called the D-bounded routing number and showed that with the help of this parameter
on-line algorithms can be constructed with a competitive ratio that can be significantly below the
best possible upper bound of a deterministic on-line protocol if only the routing number of a graph is
known. Our upper and lower bounds for the case of using bounded routing numbers are not tight. It is
therefore an interesting open question what the best possible competitive ratio is that can be reached
by deterministic or randomized on-line algorithms in this setting. Furthermore, it would be interesting
to know whether simple algorithms can reach such an optimal ratio.
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A  Proof of Lemma 4.1

We first prove bounds for the absolute congestion. Because the congestion of 7 is at most n - R
and every node is chosen independently at random with probability % to belong to W, the expected
congestion at any fixed edge is at most

1\2 n 1 E[n]
R(=) =2 .2 = .
" ( > eR ¢

eR €

The main problem for finding a bound for the congestion that holds with high probability is that the
probabilities for the paths traversing an edge may not be independent.

In the following, we assume that e < 1/logn. Suppose for a moment that the paths had inde-
pendent probabilities to be taken. Let p = (i)2 represent this probability, and for any sequence
z={(z1,...,2n) € IR" let

Pj(z) = Z Ziy Ziy * Zij -
i1 <ip<...<ij

Consider some fixed edge e. Let 7T, denote the set of all paths in 7 that are traversing e, and assume
these paths to be numbered from 1 to m = |7;|. Furthermore, for every path ¢ let the binary random
variable X; be one if and only if path 7 belongs to Q, and let X =", X;. Then we would have that

for any 7 € {1,...,m}. We will not be able to show this for our situation, but what we can show is
that up to some large enough k € {1,...,m} there is a p' close to p with the property that

BIPj(X1, ..., Xm)] < Bi(p, ..., p)

for all 7 < k. As we will see later, this allows us to use Chernoff bounds to estimate the probability
that X is far away from its expected value.

2
Proposition A.1 For any k € {1,...,m} it holds with p’ = min][l, %2] + min][l, %W”] L4 (i)
that
E[Pj(X1,...,Xn)] < Pi(p',...,D")

for any 5 <k.

Proof. Let path i be represented by its source-destination pair (s;,%;). Take any subset U C T, =
{(s1,t1), .-+, (Sm,tm)} of size at most k—1 and any (s;,¢;) € {(s1,¢1),---, (Sm,tm)} \U. We distinguish
between three cases.

1. If both s; and #; already appear in other pairs in U, then we only know that

Pr [X(sutl) =1 | H X(shtl) - 1] =1.

(Sl,tl)EU

2. If exactly one of s; and ¢; appears in U, then

Pr [X(si,ti) =1| H X)) =1
(shtl)eU
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3. If none of s; and t; appear in U, then

1 2
Pr [X(Si,ti) =1| H X(sn) = 1] = (J{) .

(sl7tl)eU

Suppose now that (s;,%;) is chosen uniformly at random out of {(s1,%1),...,(Sm,tm)} \ U. Then the
probability for case (1) is at most
k‘2
< min ll, —] ,
m
20k—1)

since there can be at most (“\, ") < (k — 1)? pairs of nodes that use nodes in U. Furthermore, the
probability for case (2) is at most

n{l, 2(’“_1)77;(_”(;1_)1_)(]“_1)} < min {1, kan] ,

(k-1 —(k—1)
m— (k—1)

min [1,

because in the worst case every one of the at most 2(k — 1) different nodes in U has all of the n —
1 paths from 7, that can have it as endpoint, running through e. Combining these probabilities
with the probabilities in the cases above, we get that for (s;,¢;) chosen uniformly at random out of

{(s1,81), -+, (Sms tm) }\ U,
+ min [1, 2k;nn} % + <$>2 .

BIP;(X1,..., Xm)] < Bi(p's- ., p)

. k?
Pr X(Si,ti) =1 | H X(Sl,tl) = 1-| S min [1, E
|~ (Sl,tl)eU J

Hence, for any j <k,

2
where p’ = min[1, %2] + min[l, 0], L4 (i) . 0

Using the techniques in [34] (in particular, see inequality (1) on page 227), it follows from Propo-
sition A.1 that for m = R-n, p = p'-m, and any § > 0,

PIX > (1 + )] < e~ On/3H0/34k/2)

According to the definition of p’,

2k-n n-R
—— ) =0(k* + E[n']- k + E[n]/e) .
S ) = O + Bk ElY/e)
Choosing k = ©(logn), we obtain that u = O(E[n']/e) for any € < 1/logn. Using this in the probability
bound above, we obtain a polynomially small probability that X > (1 + d)u for some constant ¢ > 0.
Since the probability bound also holds for all m < R -n (just introduce dummy paths to get back to

m = R -n), the proof for the bounds of the absolute congestion is completed.

M:®<k2+

Next we consider the relative congestion. Consider some fixed edge e. Let C, denote the absolute
congestion caused by paths in Q traversing e. Furthermore, let C. = C./n’ represent its relative
congestion. It holds that

E[C.] = Zi-Pr[C’e:c An' =m]
c,m
= Zl-Pr[n':m]-Zc-Pr[Ce:c|n':m].
mm C
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Furthermore,

Pr[n/ =m] = <:L> <$>m (1 - £>nm

and if n' = m, then the probability for a fixed path to belong to Q is equal to

(my) _mlm —1) <m>2 |

(m)  nln=1) =

Hence,
R-m?

n

Zc-Pr[Ce:c|n':m]:E[Ce|n':m]:n-R-(%)2:

Therefore,

oo
CS)
INA
M=
3=
S
3 3
N————
[a)
&)=
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3
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|
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3
=
s 5

3
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This completes the proof of the lemma.

B Proof of Lemma 4.3

For every path ¢ € O', let the binary random variable X, be one if and only if two nodes in W can be
provided for ¢q. Furthermore, let the binary random variable Y, be one if and only if among the first
and among the last eR nodes in p (called in the following source part and destination part) there is at
least one node in W. Obviously, if Y, = 1 then also X, = 1. Thus,

v, <> X,

qeO’ qeO’
Hence, we obtain for X =3, X, and Y = }_ Y, that
PrlY <] > Pr[X <

for all ¢ > 0. Thus, for any p with Pr[Y < ¢] < p it also holds that Pr[X < ¢] < p. We will therefore

continue in the following to bound Pr[Y < ¢].
Since the nodes decide independently of each other to belong to W, the probability that the source

part resp. destination part of the path ¢ contains a node in W is equal to

1\ 1
1—(1—-— >1—=.
( eR) - e

Hence, PrY, = 1] > (1 — 1/e)? for all ¢ € O, which implies that E[Y] > (1 — 1/e)?|0'| > 2|0O'|.
Unfortunately the Y, are not independent. This is due to the fact that parts of paths may overlap.
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However, knowing that a certain set of paths has no node in W can only increase the probability that
also some other path has no node in W, since some of its nodes may be contained in these paths and
every node not contained in any one of these paths still has an independent probability of belonging
to W. Hence, for any g € O" and any subset of paths U C O’ \ {q} we have

Pril-Y)=1]J[Q1-%)=1] <Pf1-Y) =1
peU

Thus, the random variables Z, = (1 —Y;) are self-weakening with parameter A = 1 (see [34, 30] for
the definition). This implies [34, 30] that we can use the usual Chernoff bounds to obtain that for
p=(1-(1-1/e)?)|O'] and for any 0 < § < 1 we have

Pr[>" Z, > (14 0)u) < e 0#2,
q

Hence, ,
P} (1—Yy) > (1+0)p] <e " H/2,
q

and therefore ,
Pr[Y < |O'| = (1 +0)u] < e 12

Since

0] = (L +d)p = (1 = 1/e)? = 6(1 — (1 = 1/e)*))|O'| > (2/5 = §-3/5)| 0|
and Pr[Y < ¢| > Pr[X < ¢ for all ¢, we get
Pr[X < (2/5—6-3/5)|0'|] < e T2
As any network of maximum degree A must have a diameter of at least loga_; n and we have € < 1,

it follows that A - D/e > logn. Thus, |O'| = w(logn) and therefore also p = w(logn). Hence, the
probability that X < |O'|/4 is polynomially small in n, which proves the lemma.
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