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Abstract In the last couple of years a dramatic
growth of data storage capacity can be observed. To
manage the explosion of data, a common approach
is to combine storage devices into a dedicated net-
work, called storage area network. One of the major
requirements for these networks is scalability. Ex-
isting concepts often lack scalability either because
they are based on central components, or because
the routing cannot handle large or irregular topolo-
gies efficiently.

In a project at the Paderborn University, we are
currently developing concepts for storage area net-
works ensuring that every function is performed in
a completely distributed way. In this paper, we
concentrate on our routing concepts. We present
a completely distributed path selection algorithm
called DPS that is applicable to arbitrary network
topologies. Surprisingly, this algorithm does not
need any information about the topology of the net-
work and, although very simple, is able to compute
paths that provably reach a best possible distribution
of paths among the links. To demonstrate the ap-
plicability of our algorithm, we compare its perfor-
mance with several other approaches for standard
networks such as meshes and butterflies.

Keywords: parallel and distributed algorithms,
distributed storage networks, path selection strate-
gies

1 Introduction

In the last couple of years a dramatic growth
of enterprise data storage capacity can be ob-
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served. A common approach is to combine
storage devices into a dedicated network, called
storage area network, that is connected to sev-
eral LANs and/or servers. One of the major
requirements for these networks is scalability.
In order to ensure a high scalability it is vi-
tal to avoid central instances of any kind, since
they cause bottlenecks in the system. Thus,
distributed strategies are sought that can han-
dle all aspects of a storage area network.

In the PRESTO (Paderborn real-time
storage network) project, a joint project of
the electrical engineering and computer sci-
ence department of the Paderborn University,
we aim to develop intelligent routing switches,
called active routers, that can be used to man-
age storage area networks in a completely dis-
tributed way. Each active router can be con-
nected to disks via a SCSI interface and to
the outside world via a fast Ethernet inter-
face. Furthermore, the router has four dedi-
cated links which can be used to construct a
network of active routers of arbitrary size and
topology (for an example, see Fig. 1).

We assume that for each Ethernet port of
the network connected to the outside world
data requests arrive with a fixed maximum in-
jection rate. Each of these requests has to be
forwarded to the router that is connected to the
storage device storing the requested data item.
In the case of read requests, the requested data
has to be sent back to the routers connected to



the corresponding Ethernet ports. Obviously,
the data layout, i. e. the distribution of the data
items among the storage devices of the net-
work, determines the communication pattern
in the network. In the PRESTO project, we
choose the common approach [1, 2, 3, 4] of dis-
tributing the data items randomly among the
storage devices. The great advantage of ran-
dom placement strategies is that they ensure a
statistically fixed communication pattern which
allows us to assign fixed bandwidth demands to
each source/destination pair of active routers.

AR ARAR AR

AR

AR

AR

AR

AR

AR

AR

AR

LAN LANLAN LAN

Controller

SCSI

Controller

SCSI

Controller

SCSI

Controller

SCSI

Figure 1: A parallel storage network (“AR”
means “active router”).

In this paper, we concentrate on routing
concepts for storage area networks. Routing
involves two basic activities: a path selection
strategy, and a strategy for sending the in-
formation units (usually called packets) along
the selected paths. In this paper, we focus on
the first part, the path selection. We present
a fully distributed path selection algorithm,
called Diffusive Path Selection (or DPS) that
exploits the fact that we have a statistically
fixed communication pattern. The algorithm
finds paths for each source/destination pair so
that the capacity constraints on the links in
the network are kept and, therefore, requests
and data streams do not overload the network.
In particular, DPS has the property that for
any set of bandwidth demands for which there
exists a path system that keeps the constraints
on the link capacities, DPS finds such paths.

This means that if the bandwidth demands are
maximal (i. e., any increase of a bandwidth de-
mand results in overloaded links), then DPS
will converge towards a best possible path sys-
tem. Previous path selection algorithms such
as RIP and OSPF do not ensure this property
in general. Like RIP, DPS works in a com-
pletely distributed way and does not require
any knowledge about the topology. It applies
a simple local load balancing method to find
fractional flows through the network for the
bandwidth demands.

We believe that our path selection strategy
is applicable to many more networking scenar-
ios than just storage networks. Basically, the
only condition that has to be fulfilled is that
the bandwidth demands are quasi-stable (in a
sense that they only change slowly).

1.1 Specification of the problem

Suppose we are given a network N = (V, E) of
active routers which connects a set of sources
S = {s1, . . . , sn} to a set of destinations T =
{t1, . . . , tm}, S, T ⊆ V . We do not require that
S and T are disjoint (that is, a node can be
both source and destination). The link capac-
ities are determined by the function C : E →
IR+. Furthermore, the demands are given by a
matrix D = (di,j), 1 ≤ i ≤ n and 1 ≤ j ≤ m.
di,j represents the bandwidth demand of the
source/destination pair (si, tj). The goal is to
find a path system which complies with the
edge capacities and which is able to fulfill the
bandwidth demands of all source/destination
pairs.

In general, solutions to this problem are clas-
sified into fractional and integral ones. In the
former case there can be more than one path
for a single source/destination pair, i. e. its
bandwidth is split over several paths. In the
latter case only one path is allowed for each
source/destination pair. A standard technique
to convert fractional paths into integral paths
is to use randomized rounding [5].



1.2 Previous results

The problem defined in the previous section
is related to multicommodity flow problems.
Problems of this kind can be solved through
linear programming in polynomial time (see
e.g. [6]). There are also a number of fast
approximation algorithms [7, 8, 9, 10] for the
multicommodity flow problem. In [11] Garg
and Könemann present an interesting new
approach that finds good approximate solu-
tions to multicommodity flow problems solely
through an iterative use of shortest path cal-
culations. We decided to compare this algo-
rithm with our algorithm. However, we note
that in contrast to DPS the Garg-Könemann
algorithm, like OSPF, is not a distributed al-
gorithm. In order to use it in a network, every
processor has to know the entire topology of
the network.

The basic approach of our DPS algorithm
is based on approximation algorithms for the
multicommodity flow problem [9, 10] and on
a routing algorithm presented in [12]. In [9]
Awerbuch and Leighton present a distributed
approximation algorithm for the multicom-
modity flow problem that runs in a time that is
polynomial in the number of nodes of the net-
work. The algorithm is based on a simple load
balancing approach, called diffusion: in each
round, every processor attempts to balance its
load with all of its direct neighbors. In [10],
the same authors present a related algorithm
that has a better running time and that even
works in networks where edge capacities can
vary in an unpredictable and unknown fash-
ion. In [12], Aiello et al. use a similar diffusion
approach in order to design a routing proto-
col that “discovers” routes which avoid “traf-
fic jams”. They assume an adversarial injec-
tion model. Their protocol is very simple, dis-
tributed, and deterministic and applies to any
network topology. Furthermore, it guarantees
that for any injection sequence generated by
the adversary the number of the packets in the
system is bounded. However, the drawback of
this protocol is that packets may experience a
delay that can be polynomial in the number of

nodes in the network.
The difference between these results and our

algorithm is that Awerbuch and Leighton use
different, more complicated strategies to bal-
ance the load and Aiello et al. do not use their
diffusion method for the design of path sys-
tems, but directly for the routing of packets.

The diffusion approach is well known in ar-
eas such as physics and load balancing in net-
works. For example, in the area of load balanc-
ing Cybenko and Boillat [13, 14] were the first
to study a simple diffusive load balancing strat-
egy. In [15] Diekmann, Frommer, and Monien
design a general mathematical framework to
analyze the properties of nearest neighbor bal-
ancing algorithms using the diffusion approach.

2 The DPS Algorithm

In this section, we present the distributed
path selection algorithm DPS. We will restrict
our attention to a uniform link bandwidth of
C(e) = k for every link e, i. e. in every round,
at most k packets can cross any edge in both di-
rections. However, our algorithm can be easily
extended to the non-uniform case. We assume
that we have n sources and m destinations and
that packets can be split into arbitrarily small
parts.

In order to compute a path system, DPS
simulates a fractional flow of data through the
network. This flow will be used to obtain a
fractional path system. The fractional path
system is represented by local routing tables
which are stored on every node of the network.
In contrast to standard routing tables, the ta-
ble of node i stores a weight we

i,j for every in-
cident edge e and every destination j. The
weight can be regarded as the fraction of pack-
ets reaching i with destination j that have to
be sent across edge e.

DPS works in rounds. During every round,
each node i has to perform the following ac-
tions. According to the bandwidth demands,
it injects di,j packets for each destination j.
Then, node i calculates ui,j , the number of
packets stored in it with destination j, and dis-



tributes these packets evenly among its outgo-
ing edges, resulting in pi,j packets per edge.
Furthermore, it computes for every incident
edge e = (i, w) the difference U e

j between pi,j

and pw,j . This will determine the number of
packets to be sent from i to w. After send-
ing ¯̀e

i,j packets with destination j along link e,
node i updates the value of the weight we

i,j for
each incident edge and each destination j, and
the next round starts.

Let `i,j (resp. `e
i,j) count the total number

of packets with destination j that were sent
out of node i (resp. along link e) during all
rounds. In the following, we present a detailed
description of one round of DPS at node i.

1. Inject di,j packets for every destination j.
2. For each destination j compute ui,j and

pi,j := ui,j/(degree of node i)
3. For each outgoing link e = (i, w)

(a) Exchange the variables pi,j with the
adjacent neighbor w.

(b) Compute the total potential differ-
ence

U e
i :=

∑
j∈T

pi,j>pw,j

pi,j − pw,j .

(c) For all destinations j, if pi,j > pw,j

• send

¯̀e
i,j :=

pi,j − pw,j

2
·min

[
1, k

Ue
i

]

of the packets destined for des-
tination j across e

• `e
i,j := `e

i,j + ¯̀e
i,j

• `i,j := `i,j + ¯̀e
i,j

• we
i,j := `e

i,j/`i,j

4. Receive all incoming packets and remove
any packets that have reached their desti-
nation.

The algorithm terminates if the change of we
i,j

is smaller than some constant ε for every node.
In order to convert this path system into an in-
tegral one we use the technique of randomized
rounding.

There are two important aspects one has to
consider. First of all, the most expensive part

of DPS is Step 3(a), since it involves exchang-
ing a large amount of data between neighbors.
We note, however, that there are strategies
(see, for instance, [12]) that allow to signif-
icantly reduce this amount without violating
the fact that DPS converges to a valid solution.
Furthermore, we note that at the termination
of our algorithm there may be fractional paths
for some source/destination pairs that are not
connected to the destination. However, if the
number of rounds performed by DPS is large
enough, the weight of such a path is guaran-
teed to be so small that it can be neglected.
Therefore, we simply eliminate such paths.

3 Performance study

We developed an accurate simulation environ-
ment for storage area networks to compare
DPS with different other path selection strate-
gies. In this section, we present the results
we obtained for meshes, expanders, hyper-
cubes, DeBruijn networks, and butterfly net-
works (see [16]).

We compare an integral and a fractional
path system computed by DPS with three
other path systems. In the first case, the path
system only consists of shortest paths. For
meshes, hypercubes, and butterfly networks we
use standard shortest path selection strategies
(such as the X−Y routing for meshes). These
strategies provide a system of integral paths
with an optimal congestion. (The congestion
is defined as the maximum number of paths
crossing a link.) For the expander networks we
computed shortest path systems with the help
of the Dijkstra algorithm, and for the DeBruijn
networks we use a standard path system. Fur-
thermore, we used path systems which are
constructed according to fractional and inte-
gral solutions of the multicommodity flow algo-
rithm of Garg and Knemann, in the following
called GK-algorithm (see Section 1.2).

In order to compare the path systems deter-
mined by the different strategies, we looked at
different criteria. First, we calculated the max-
imum expected congestion caused by sending
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0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

number of nodes

m
ax

im
um

 c
on

ge
st

io
n

shortest path 
GK integral   
GK fractional 
DPS integral  
DPS fractional

(b) Expander
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(c) Hypercube
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Figure 2: Max. congestion of router links.

one packet per source/destination pair (that
is, the maximum expected number of paths
taken by the packets that cross a link), us-
ing the given path system. Second, we sim-
ulated the situation that packets are contin-
uously injected into the storage network, us-
ing the following approach. We assume for ev-
ery network except of the butterfly networks
that every node of the network serves as a
source and a destination, i.e. every node is con-
nected to a disk array and a local area network.
Each node injects 16.250 packets per second
into the system with a fixed size of 8 KBit.
Hence, each node injects 128 MBit/s. The des-
tinations of the packets are evenly distributed
among the m possible destinations of the net-
work. This results in a bandwidth requirement

of di,j = 128MBit/s
m for each source/destination

pair (si, tj). The edge capacity is 500 MBit/s.
We use the FIFO rule to send the packets along
the selected paths. The simulations provide in-
formation about the link load (i.e., the maxi-
mum expected amount of packets injected into
the system within a time unit that intend to
cross a particular edge) of the active routers
and the packet latency. Finally, we evaluated
the number of rounds needed by the DPS al-
gorithm to terminate.

Figure 2 deals with the first evaluation cri-
teria and depicts the maximum expected con-
gestion for the different path systems. In order
to compute these values, we assume that each
source sends exactly one packet to each des-
tination. As noted above, for the hypercube
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Figure 3: Average response time for a packet
request.

and mesh networks the simple shortest path
systems have a minimal congestion. There-
fore, these path systems serve as a reference
for our DPS algorithm. It is remarkable that
the expected congestion for the fractional path
systems calculated by DPS is within 2% of the
minimum possible congestion. Comparing the
fractional solution of the DPS-algorithm with
the solutions for expander and DeBruijn net-
works, DPS has an up to 30% better conges-
tion. Another observation is that the integral
solution of the DPS-algorithm is up to 83%
worse than the fractional solution. Further-
more, the fractional and integral solutions of
the GK-algorithm (obtained after running it
a reasonable amount of time) do not provide
better solutions than the shortest path systems
and the path systems calculated by our DPS-
algorithm.

Now we turn to the second evaluation crite-
ria, the simulation of storage networks. Fig-
ure 3 shows the influence of the path selec-
tion strategies on the response time of a data
request. The response time is defined as the
amount of time between the injection of a data
request and the delivery of the data packet to
the requesting user. We normalized the re-
sponse time to the response time of a 2x2 net-
work with a shortest path system. Although
the congestion obtained by using DPS is higher
than that of the shortest path systems, the re-
sponse time under DPS is up to 16% shorter.

The reason for this is that in our simulations
we assumed data blocks to be of size 64KByte.
Thus, a requested data block will be sent back
in 64 packets of 8KBit each. Since a frac-
tional path system provided by DPS allows
these packets to follow different paths, whereas
for the shortest path systems all of these pack-
ets have to follow the same path, the link load
is more evenly balanced in the case of DPS.

Table 1: Link load of an Expander with 64
nodes.

Expander with 64 nodes

Algorithm avg. load max. load min. load

shortest path 1.00 1.43 0.41

int. GK 1.19 1.88 0.47

frac. GK 1.26 1.63 0.82

int. DPS 1.04 1.40 0.53

frac. DPS 1.03 1.30 0.68

Table 2: Link load of an 8 × 8 mesh.
8x8 Mesh

Algorithm avg. load max. load min. load

shortest path 1.00 1.36 0.55

int. GK 1.15 1.89 0.27

frac. GK 1.30 1.60 0.93

int. DPS 1.03 1.79 0.28

frac. DPS 1.03 1.40 0.63

Table 1 and 2 give a detailed picture of the
link load caused by the path selection strate-
gies for the 8 × 8 mesh and an Expander net-
work with 64 nodes. The numbers are normal-
ized to the best possible average link load in
these networks. The tables demonstrate that
the fractional variants of GK and DPS always
have a lower maximum link load than their in-
tegral variants. For the 8×8 mesh, the average
and maximum link load of the fractional DPS
is very close to the values of the optimal short-
est path system. For the Expander network
with 64 nodes, the fractional DPS has the best
maximum link load.

Finally we present the results concerning the
number of rounds until DPS terminates (see
Figure 4). This number is even moderate for
relatively large networks.
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Figure 4: Number of rounds until DPS termi-
nates for different network topologies.
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