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ABSTRACT

In the last couple of years a dramatic growth of enterprise
data storage capacity can be observed. As a result, new
strategies have been sought that allow servers and storage
being centralized to better manage the explosion of data
and the overall cost of ownership. Nowadays, a common
approach is to combine storage devices into a dedicated net-
work that is connected to LANs and/or servers. Such net-
works are usually called storage area networks (SAN). A
very important aspect for these networks is scalability. If a
SAN undergoes changes (for instance, due to insertions or
removals of disks), it may be necessary to replace data in
order to allow an efficient use of the system. To keep the
influence of data replacements on the performance of the
SAN small, this should be done as efficiently as possible.

In this paper, we investigate the problem of evenly distribut-
ing and efficiently locating data in dynamically changing
SANs. We consider two scenarios: (1) all disks have the
same capacity, and (2) the capacities of the disks are allowed
to be arbitrary. For both scenarios, we present placement
strategies capable of locating blocks efficiently and that are
able to quickly adjust the data placement to insertions or
removals of disks or data blocks. Furthermore, we study
how the performance of our placement strategies changes if
we allow to waste a certain amount of capacity of the disks.
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1. INTRODUCTION

In the last couple of years a dramatic growth of enterprise
data storage capacity (as much as 50-100% annually in most
companies) can be observed. A number of factors are con-
tributing to the recent explosion of data that is overwhelm-
ing traditional storage architectures. The introduction of
enterprise resource planning, on-line transaction processing,
e-business, data warehousing, and especially the increasingly
media-rich contents found in intranets and the Internet are
heavily adding to that load. This causes a tremendous need
for scalable storage systems.

It was already known more than 20 years ago that disk ar-
rays can serve as a scalable storage system (of limited char-
acter). They are able to provide not only a flexible disk
space but also a higher I/O bandwidth when disks are used
in parallel. Mechanisms for enabling a higher I/O band-
width have been pioneered by Patterson et al.[14] when they
introduced RAID!. This technology had a significant impact
on the development of storage systems. Today, every ma-
jor player in the field of storage systems offers RAID arrays.
Many of these systems are based on SCSI, which allows only
to attach a small number of disks to a processing unit. To
manage all its data an enterprise may need more than one
such storage system. But the data distribution and place-
ment has to be done locally by each host, which results in
a heterogeneous layout. Hence, these systems lack flexibil-
ity and suffer from high maintainance costs. As a result,
new strategies have been sought that allow servers and stor-
age being centralized and consolidated to better manage the
explosion of data and the overall cost of ownership.

Nowadays, a common approach is to combine storage de-
vices into a dedicated network that is connected to LANs
and/or servers. Such networks are usually called storage
area networks (SAN) [19, 9]. Major requirements for these
networks are scalability, reliability, availability and service-
ability. Availability includes the important demand that
SANs can adapt quickly to a changing number of disks. Due
to the fact that SANs may consist of a large number of disks,
classical data placement strategies like disk striping [7] may
cause severe problems. If, for instance, the striping methods
defined in the RAID levels 4 or 5 are used as a global place-
ment strategy, any removal or insertion of a disk causes the
redistribution of virtually all the data in the system. Cur-

'RAID means “Redundancy Array of Independent (for-
merly, Inexpensive) Disks”



rent solutions often circumvent this problem by organizing
the SAN in clusters of small RAID systems. This, how-
ever, has the drawback that complicated data distribution
strategies may have to be used to ensure that data requests
can be evenly distributed among all sub-systems. (For in-
stance, by splitting popular data sets into many parts or by
producing many copies of them that are stored at different
sub-systems.) Another approach that is capable of avoiding
too many data replacements is the use of spare disks. If,
for instance, a disk fails, a spare disk is used to replace it,
keeping the number of operating disks fixed. Only once in
a while, a number of spare disks may be added to the set
of operating disks, which also helps to keep the number of
data replacements low. The drawback of using spare disks,
however, is that the available I/O bandwidth of the SAN is
not fully exploited.

In this paper, we propose new data placement strategies
that always keep the data as evenly distributed among the
disks as possible (in fact, close to evenly distributed with
high probability). They have the ability to adjust quickly
to situations in which data or disks are added or removed.
In other words, our algorithms allow the disks to be per-
fectly “assimilated”. Hence, spare disks can be completely
avoided. Our strategies do not only have the advantage that
the location of a block can be computed fast and with very
limited space requirements, but that they can also be imple-
mented in a distributed way. These features are of crucial
importance to ensure a high scalability, throughput, and
adaptability for SANs.

1.1 TheModd

For the scope of this paper, we will not consider the prob-
lem of routing messages within a SAN. We simply abstract
a SAN as a set of n disks, labeled Dy, ... , D,, that are com-
pletely interconnected. Let U = {1,... ,p} represent the set
of all numbers available for addressing data blocks, where
p may be arbitrarily large. All data blocks are assumed to
be of equal size. Only a subset of the blocks in U may be
defined at a time. We will call these blocks used blocks in
the following. Any used data block has to be assigned to a
unique disk. Note that this does not limit the applicability
of our approach, since any uniform striping or duplication
technique (for instance, any redundant placement strategy
that stores k sub-blocks for each block: k — 1 resulting from
splitting the block into k—1 parts of equal size, and 1 result-
ing from the parity of these sub-blocks) can be interpreted
as having a set of equal sized (sub-)blocks that must be
assigned to unique disks. Each of the disks has a limited
capacity C;, representing the number of data blocks that
can be stored on it. The total capacity of the system is the
sum over all disk capacities and denoted by Cioter. We will
always assume that Cioter is at least the number of used
blocks.

Our aim is to find data placement strategies that ensure that

1. the used data blocks are as evenly distributed among
the disks as possible,

2. the data layout is efficiently computable, and

3. adding or removing disks or data blocks results only
in a small fraction of redistributions.

By an even distribution we mean the minimization of the
maximum number of blocks stored on a disk.

To find such placement strategies is a challenging problem
if other methods than lookup tables are sought. There are
many reasons why lookup tables should be avoided. First of
all, lookup tables for large SANs may be huge. Therefore,
storing a copy of such a table in each server connected to the
SAN may be a tremendous waste of resources. On the other
hand, having a central instance in the SAN that stores the
lookup table may limit severely the scalability of the SAN,
or may lead to an unnecessarily high price (due to the need
of expensive, fast hardware for such a center). The alter-
native approach, storing the lookup table in a distributed
way, may cause bottlenecks (e.g. in the case that some com-
ponent stores information about many popular data blocks)
and communication overhead. Furthermore, a breakdown of
a single component may lead to a loss of placement infor-
mation if no fault-tolerant lookup tables are used. Storing
a lookup table in the disks of the SAN is also a bad op-
tion, since this involves disk accesses, which are magnitudes
slower than internal computations or even communication.
Instead, we want to find placement strategies that require
only a small amount of resources and therefore can be stored
and implemented locally at every device of the SAN. That
disks will have the resources and computational power to
support a distributed layout is substantiated by the current
efforts of the National Storage Industry Consortium (NSIC).
They launched the NASD (Network Attached Storage De-
vices [www.nsic.org/nasd]) project, which is supposed to
develop, explore, validate, and document new technologies
for network attached storage devices. One of their main
premise is that disks have to become smarter and more so-
phisticated.

We will analyze our data placement strategies from two per-
spectives: the layout quality (which only considers items (1)
and (2) above) and the adaptability (which considers item
(3) above). In the former case, we judge our data layout
and give some evidence for its feasibility. The latter case
characterizes the behavior in a dynamic setting, where the
number of disks or used blocks in the system changes.

111 Layout Quality

Given some placement strategy, the goal is to show that, for
any set M C U of used data blocks and any number n of
disks, items (1) and (2) above hold (in the expected case,
with high probability, or with certainty).

112 Adaptability
Consider any placement strategy S that fulfills item (1).
To model the performance of S for the case that disks or
data blocks are added or removed, we employ competitive
analysis. For any operation that represents the insertion or
removal of a disk or a data block, we intend to compare the
number of (re-)placements of data blocks performed by S
with the number of (re-)placements of data blocks performed
by an optimal strategy that ensures that, after every oper-
ation, the used data blocks are evenly distributed among
the disks. A placement strategy will be called c-competitive
concerning operation w if it induces the (re-)placement of at
most ¢ times the number of data blocks an optimal strategy
would need for w.



In this work, we only consider the case of anticipated re-
movals of disks and not the case that disks may fail. Such
failures require the use of fault tolerant placement strate-
gies, which will be beyond the scope of this paper. Many
strategies may be used to allow the reconstruction of lost
data. Among them are, e.g. parity layouts [14, 5], declus-
tered layouts [8, 18], or multi-fault tolerant schemes [6]. It
is not difficult to extend our strategies so that they not only
work for the planned removal but also in case of a failure of
a disk.

1.2 Previous Results

The exploration of disk arrays as an efficient and flexible
storage system imposes a number of challenging tasks to
solve. First of all, one has to find a suitable data layout,
i.e. a mapping of blocks to disks, that allows a fast data ac-
cess (to improve I/O bandwidth one needs to use the disks
in parallel). Additionally, the use of disk arrays calls for
fault tolerant layouts because such a system is more sus-
ceptible to failure due to an increased mean time between
failure (MTBF) [4]. Furthermore, the used access strategy
(scheduling of requests), space requirements (buffers) and
application properties (pattern of requests) have a large im-
pact on the usefulness of such distribution strategies.

The simplest data layout used is disk striping [7] which is
applied with different granularity in a number of approaches
[14, 20, 6, 8, 4]. Here, the data is cut into equal sized blocks
and assigned to disks in a round robin fashion so that logi-
cally consecutive blocks are put on consecutive disks, cycling
repeatedly over all of them. This simple and effective strat-
egy has the disadvantage that the layout is fixed for any
number of disks. A change of the array size results in an
almost complete redistribution of blocks, which is not feasi-
ble.

In [3], Berson et al. generalized the idea of disk striping.
They proposed a staggered scheme in which consecutive
blocks are separated by a certain stride (in disk striping
this stride is 0) and compare it to clustered approaches [20]
where the disks are partitioned into groups. They claim that
their strategy improves the data access when requests with
variable bandwidth are concerned. Nevertheless, their ap-
proach is still based on unchanging array sizes. When disks
fail within a cluster they need to be replaced or the cluster
runs in degraded mode and can not tolerate another disk
failure.

The application of randomization for data layouts was found
to be promising by many researchers [1, 5, 17, 12]. In such
a scheme the data blocks are assigned to a random posi-
tion at a random disk. One of the first who studied random
data placement strategies were Mehlhorn and Vishkin [13].
Among other results, they suggest to keep several copies of
each data item. In their scheme, if all requests are read
requests, the easiest copy will be read. In case of a write re-
quest, all copies will be updated. Upfal and Wigderson [21]
showed how to obtain a balanced distribution of both read
and write requests. They introduced the majority trick: if
2k copies are available, accessing k + 1 of them for both
read and write requests always ensures consistent informa-
tion. Karp, Luby, and Meyer auf der Heide [11] were the
first to present precise bounds on the distribution of re-

quests among memory units if several copies are available
for each data item. Alemany and Thathachar [1] introduced
a randomized data placement for a News on Demand Server.
They also apply replication for short term load balancing
and showed that such a strategy can get arbitrary close to
the maximum server bandwidth.

Birk [5] proposes a similar data layout, but uses parity in-
formation instead of replication. This scheme explores re-
dundancy by choosing k — 1 out of k possible blocks (k — 1
data and one parity block) depending on the length of the
disk queues. The parity information ensures that all blocks
can be reconstructed correctly.

The RIO (Randomized I/O) storage server by Santos and
Muntz [17, 15] is designed to meet the requirements of real-
time systems. They compare the randomized approach with
traditional striping techniques [16]. Surprisingly, even in sit-
uations for which striping was designed for (regular access
pattern), the random allocation method is equally good or
better. However, their pseudo-random function is imple-
mented by using a fixed distribution pattern. They derive
such a pattern for a data space of size m and apply it repeat-
edly until the entire address space is covered. This cannot
guarantee a correlation free distribution of data blocks.

Recently, it came to our attention that independently an
approach similar to ours has been presented to ensure an
even distribution of the data blocks among caches (instead
of disks in our case) and to ensure that a minimum num-
ber of blocks has to be replaced in case of additional or
removed caches [10]. The advantage of this method is that
the expected time to compute the location of a block is O(1),
whereas we require an expected time of Q(logn). However,
our strategy needs a much lower space complexity: (disre-
garding the necessity of O(nlogn) bits to store the loca-
tions of the disks/caches in the network and the space for
storing a hash function) the computation of the position of
a data block requires a data structure of O(nlog?n) bits
in [10], whereas we only need O(logn) bits. Furthermore,
for the case of n uniform disks, the strategy in [10] is only
able to ensure that at most O(m/n) data blocks are stored
in any disk, w.h.p., whereas our strategy ensures that at
most (1 + O(y/(nlogn)/m))m/n data blocks are stored in
any disk, w.h.p. To achieve the same degree of balance, the
method in [10] would need (m) bits, which is unacceptably
high, since m can be very large.

1.3 New Results

In our approach, we assume that we are given a family H
of high quality pseudo-random hash functions mapping the
elements in U = {1,...,p} to real numbers in the interval
[0,1] (logp-universal hash functions would already suffice
for our constructions). The starting point of any of our
placement strategies is to choose a hash function h out of H
independently and uniformly at random to ensure that used
blocks are given values h(b) that are uniformly distributed
in [0, 1].

In order to map the blocks to the disks, we use a so-called
assimilation strategy. The task of this strategy is to cut the
interval [0,1] into a finite set of ranges and assign them to
the disks in such a way that
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Figure 1: The overall placement strategy.

1. the maximal expected number of blocks at a disk is
minimized,

2. for any number in [0, 1] the hosting disk is efficiently
computable,

3. adding or removing disks or data blocks results in mov-
ing only a small fraction of [0,1].

Figure 1 illustrates our approach. To ensure that this results
in an (close to) even distribution of the used blocks among
the disks, we will always assume in the following that m,
the number of used blocks, is significantly larger than n, the
number of disks. This is obviously a reasonable assumption.
It is easy to see that by the use of a pseudo-random hash
function we obtain an even distribution with high probabil-
ity. Hence, our requirements on data placement strategies
formulated in Section 1.1 are fulfilled.

Apart from these properties, our strategy ensures that re-
quests can be close to evenly distributed among the disks (in
the expected case) for any probability distribution of access-
ing the used blocks. This is due to the use of pseudo-random
hash functions.

We study placement strategies for two scenarios: the case
that all disks are uniform (i.e., have the same capacity) and
the case that disks may be arbitrarily non-uniform. The
competitive ratios given below hold in the expected case, or
multiplied by (1 + o(1)) also w.h.p.

1.3.1 Uniformdisks

For uniform disks, we present a placement strategy that al-
lows to compute the location of any block in O(log n) steps.
Furthermore, it is 1-competitive for adding a disk and 2-
competitive for removing a disk.

1.3.2 Non-uniform disks

For non-uniform disks, we choose an approach that separates
the capacities of the disks into several levels and uses our
strategy for the uniform case in each level. We can show
that it is always possible to use less than O(log m/logq),
where m = n?, levels, even if no two disks are of the same
size and the whole capacity is needed to store all blocks.
Thus, our non-uniform strategy allows to compute the loca-
tion of a block in O((logn - logm)/logq) steps, with m =
n?. Furthermore, we present refined strategies that are
logm -competitive concerning the insertion or removal of
data blocks and the insertion or removal of disks. Then, we
look at the question by how much the number of levels can

1 2 Dnrl n Dn+1

Figure 2: The assimilation of ranges in the uniform
case.

be reduced if the balancing condition is relaxed, considering
two different cases: a certain percentage of the capacity of
each disk is allowed to be wasted, and a certain percentage of
the overall capacity is allowed to be wasted. If, for instance,
a constant percentage of waste is allowed, then the number
of levels reduces to ©(logn) in the first case and may, un-
der certain circumstances, even reduce to a constant in the
second case.

2. THE UNIFORM CASE

In this section, we consider the situation that all disks have
the same capacity. We present a simple algorithm that was
proposed by us in [2]. As will be shown, this algorithm
provides a very efficient mapping of the data blocks to the
disks.

2.1 A simpleplacement strategy

As noted in Section 1.3, our placement strategy is based on
the assumption that we have a suitable pseudo-random hash
function h that maps the used data blocks to real numbers
in the interval [0, 1]. Given a number of n disks, our aim is
to cut [0, 1] into a finite number of ranges and to assign these
ranges in such a way to the disks that the sum of the ranges
is equal to 1/n for every disk. To simplify the construction,
we will denote the set of ranges assigned to disk ¢ simply by
[0,1/n];. Our strategy works as follows.

We start by assigning the interval [0, 1] to disk 1. Given n
disks, we cut off the range [1/(n + 1),1/n]; from every disk
i € {1,...,n} and concatenate these intervals to a range
[0,1/(n+1)]n41 for disk n+ 1 by assigning [1/(n+1),1/n];
to the sub-interval [(n — i)/(n(n + 1)),(n —i + 1)/(n(n +
1))]n+1 for every i (see also Figure 2). Given any situation
in which there are n working disks, we demand that the
interval [0, 1] is distributed among these disks as would come
out when applying our strategy consecutively from 1 to n
disks, no matter what sequence of insertions and removals
has been used to arrive at the n disks. This ensures that
the distribution of [0, 1] among the disks is unique in every
situation.

2.2 Analysisof the layout quality

Obviously, our strategy ensures that every disk has the same
share of [0,1]. This ensures that the used data blocks are
very close to evenly distributed among the disks, w.h.p.

In order to compute the location of a block for a given num-
ber n of disks, our aim is to follow all replacements of the
block from 1 to n disks caused by the movement of ranges de-
scribed above. The time efficiency of this strategy, of course,
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crucially depends on the maximum number of replacements
necessary for any block. In the following theorem we show
that this number is low.

THEOREM 1. The mazimum number of times a block is
replaced from 1 to n disks is at most |logn]| + 2.

PROOF. For any ¢ € {1,... ,n} and any data block b, let
hi(b) € [0,1/i] denote the height of b at the presence of i
disks. Initially, hi(b) = h(b), and h;(b) is determined by
the position in [0,1/3]; of the disk j that contains the range
including h(b). Now, consider any block b on disk D.,,. This
block has to be moved to disk Dy,, when 1/m1 < hp, (b) for
the first time. Hence, mi1 = [1/hm,(b)]. Furthermore, the
height of block b on disk D, is hm, (b) < =m0l The

= mi(mi—1)°
next time b will be moved will be to a disk D,,, with ma >
%]. Having in mind that mi > mo, it is not difficult
to show that -210™1=Y e minimized for mi = 2mg + 1.
mo(m1—mg)
Hence, for any choice of mg and hup,, (b), m2 > 4mo—2. From
this it follows that the 2ith position of any block is at a disk

with a label at least 4!, which proves the theorem. [

The theorem implies that O(logn) calculations suffice to
determine the actual position of any block. One may ask,
whether the number of replacements of a block can be re-
duced. The following result shows that our scheme is nearly
optimal in this sense.

THEOREM 2. For any placement scheme, the mazimum
number of times a block is replaced from 1 to n disks must
be at least Inn — 1.

PRrROOF. Assume that we have m used blocks. To keep an
even distribution of blocks from 1 to n disks, m/i blocks have
to be moved from i — 1 to 7 disks for every ¢ > 2. Hence,
the total number of replacements is at least > ,m/i >
m(lnn—1). Thus, the average (and therefore also the worst
case) number of times a block is replaced is at least Inn —1,
proving the theorem. []

2.3 Analysisof the adaptability
New disks

Adding new disks is easy because we just need to perform the
replacements induced by one step of our assimilation tech-
nique. Since only an expected fraction of 1/n of the blocks
is moved when increasing the number of disks from n —1 to
n, and any placement strategy also has to move a fraction
of 1/n blocks in this case to keep an even distribution of the
blocks, we obtain:

THEOREM 3. Our assimilation strategy is 1-competitive
(in the erpected case and 1+ o(1)-competitive, w.h.p.) when
adding o new disk.

Removal of disks

Assume that we have n disks, and disk D; is to be removed.
Since all disks have the same capacity, we do this by first
reversing our assimilation technique for disk n (which means
that all of its blocks are moved back to the other disks).
Afterwards, we let disk n take over the role of disk ¢ by
simply moving all blocks in disk ¢ to disk n. This results in
the following theorem.

THEOREM 4. Our assimilation strategy is 2-competitive
(in the ezpected case and 2+ o(1)-competitive, w.h.p.) when
removing a disk.

Note that our algorithm requires only space for storing the
hash function and n. This information can easily be stored
locally in the SAN without requiring large resources. Fur-
thermore, this concept allows the disks to react indepen-
dently on an insertion or removal of disks. All that needs to
be done is to announce the new disk or the position of the
removed disk to all disks in the system, e.g. via broadcast.

3. THE NON-UNIFORM CASE

We previously assumed a homogeneous set of disks. This
seems to be reasonable for a new system. However, if the
system needs to be upgraded after a period of time, for in-
stance, to store more data, new disks will have to be added
to it. Since disk capacity is changing rapidly, most prob-
ably the new disks will have different characteristics than
the original ones, such as being faster and having a larger
capacity. In this case, assigning each disk the same share
of data blocks may lead to a bad performance or may even
be impossible. We will restrict ourselves to consider in this
section only differences in capacity and not in speed or other
characteristics. It is not difficult to see that also other con-
siderations, such as speed, can be incorporated into our al-
gorithms.

Recall, that we aim to minimize the maximum number of
data blocks stored in a disk. In this case, some disks may
need to use all their capacity to store blocks. Such disks will
be called saturated.

Our basic approach is to reduce the problem of placing data
in non-uniform disks to the problem of placing data in uni-
form ones. This allows the application of our strategy pre-
sented in the previous section. We achieve the reduction by
introducing levels, starting with level 0. In each level, we
attempt to distribute all the (remaining) data blocks evenly
among the disks. All blocks that cannot be stored due to
saturated disks will be attempted to be placed in the next
higher level. Obviously, the number of levels used can be
at most n, since a new level is only introduced when a disk
saturates.

For each level j, let n; denote the number of disks partic-
ipating in this level, i.e., they were not already saturated
in previous levels. Clearly, no = n. Furthermore, let B;



be the number of blocks each disk is supposed to store in
level j. If m is the number of used blocks, then we have
Bozni0 mandB]H—M B; for every j > 0. We

define ¢; € [0, 1] to be the rate by which the number of disks
decreases from level j to j + 1, i.e., €5 = n;j+1/n;. Hence,

1—¢; . BJ

njy1 = €jn; and Bjy1 =

3.1 A lower bound on the number of levels
We start with presenting a lower bound for the maximum
number of levels needed by any algorithm that uses our ap-
proach.

THEOREM 5. For any n and m = n? with ¢ > 2 there is a
collection of n disks for which our approach requires at least
(logm)/(2log q) levels for placing m data blocks.

PrOOF. To derive a counterexample, we assume €; to be
equal to some fixed € for all levels. Using the notation ab_ove,
it follows for level i that n; = €'no and B; = (1=£)" Bo.
Clearly, for all levels we must have n; > 1 and B; > 1. We
will show that for e = 2~ % with k = qu these inequali-
ties hold for at least k - log n levels, which would prove the
theorem.

With the choice of € above, we obtain that n; = 27i/kn0.
This is at least 1 for all ¢+ with ¢ > k- logn. It remains to

show that B; > 1 for all ¢ > k- logn. We have 12k

>—1/k
2M/k(1 —271/ky = 2Y/*k _ 1 and

k
ok _1>1 4 4> 1+1 ’
= 9%k = 2k ’

which is true for all kK > 1. Moreover,
1 k-logn 1
(_) — 27k-10g(2k)logn > 27(log m)/2 —

ok Jm

Thus, Bilogn = (25)F1087 ™ > Y™ > q for all ¢ > 2, which
completes the proof. [l

3.2 A naive placement strategy

In this section we propose a first, naive strategy for dis-
tributing data blocks among non-uniform disks. The strat-
egy simply works by using a new, independently chosen hash
function and applying the strategy presented for the uniform
case at each level. The reason for choosing independent hash
functions is to avoid that the placements for different levels
are correlated. There are simple counterexamples that show
that these correlations can result in a very uneven distribu-
tion of the data blocks.

For each level j, we apply the uniform strategy in the follow-
ing way: First, we distribute the interval [0, 1] among the n;
disks in the same way as done in Section 2. Assuming that
B; used blocks have to be placed on each disk and disk
has a (remaining) capacity of ¢;, we define the height of disk
i by 8i = min{1/n;j,c;/(Bj - n;)}. All blocks in the interval
[0, B;]; will be placed at disk ¢ and all others will be moved
to the next higher level. Note that changing the number of
disks or the number of used blocks changes the heights of
the disks and therefore may result in replacements of data.
In the following, we analyze how bad this can be.

Analysis of the layout quality

The time complexity of locating a block in the system de-
pends not only on the number of replacements within each
level but also on the number of levels possible. Hence, it
is of crucial importance for an efficient strategy to keep the
number of levels small. We will show the following worst
case bound.

THEOREM 6. For any m and m = n? with ¢ > 1, the
mazimum number of levels caused by distributing m blocks

among n disks is at most lfé‘(]:ﬂ) -logn.

ProoOF. Using our notation, we derive two equations for
the number of blocks in any level ¢ and the number of

disks participating in that level: n; = (H;;}) Ej) -n and

conditions if ¢ levels are used:

q)) m. This implies the following two

We will show that this can be fulfilled for at most lfg(‘g;:i) -
log n levels.

Suppose, the conditions can be fulfilled for ¢ > 3klogn lev-
els, where k = Then there must be at least klogn
1/k

10g(q+1)
levels ¢ with ¢; < 277/%, or at least 2klogn levels with
€ > 27 1k 1f €6 < 2= 1% for at least klogn levels, then
Hf o€ < 271°8™ < 1/n, which violates the first condition.

If €; > 27/* for at least 2k log n levels, then

(-1

[[a-«) < a-

=0
2k logn
- (l) og SZ_qlogn:l'
k m

2—1/k)2k'10gn (1)

Inequality (1) holds, since (1—1/k)¥ < 1/2forallk > 1. O

This demonstrates that the number of levels used by our
strategy is very close to the lower bound. Theorems 1 and
6 imply the following corollary.

COROLLARY 1. The number of computations needed to lo-
cate any block b is bounded by O(logn - logm/logq).

Keeping the used data blocks under any circumstances dis-
tributed among the disks as prescribed by the naive place-
ment strategy has the disadvantage that it may involve mov-
ing many data blocks. For example, the insertion or removal
of a single data block may cause a disk to enter or leave a
level. This might require to move at least B; blocks. Thus,
any one of these operations can be very expensive, leading
to a bad competitive ratio. Hence, we would like to improve
our strategy.



3.3 A-refined placement strategy

In this section we will propose a refined version of the naive
placement strategy that ensures that for any operation we
obtain a low competitive ratio under any circumstances.
The idea of our refined strategy is to be more lazy in re-
placing data blocks to ensure an even distribution among
the disks.

One possible solution is to modify our naive strategy in a
way that, for the case of increasing the number of disks from
n to n+ 1, ranges are not simply concatenated when moved
from disks 1 to n to disk n+1 within a level, but that we use
a new pseudo-random hash function to provide new heights
in [0,1/(n + 1)] for the blocks in the corresponding ranges.
The hash function ensures that for any height 8;41 of disk
i+ 1, every disk j < i has the same number of blocks with
new heights at most B;4+1. Thus, if we only replace those
blocks of new height at most 3,41 and keep all other blocks
where they are, then we obtain a distribution of the blocks
that is (very close to) as even as possible. However, we treat
the untouched blocks for the next levels as if they would par-
ticipate there (as they would in the naive strategy). It can
be shown that using a new pseudo-random hash function for
each replacement ensures the properties that the blocks are
evenly distributed among the disks and that every block is
replaced at most O(log n) times in each level, w.h.p. Hence,
the bounds shown for the naive strategy also hold for the
refined strategy.

The drawback of our new placement strategy is that the
location of a block might be ambiguous. It may have been
kept back at some level, since some new disk was not able to
store it. Also, it could have been moved to the next higher
level due to the insertion of blocks. However, in each level,
there is only one possible location for any block: the last
disk that was able due to its capacity to store it. Hence, for
[ levels, our new strategy only causes at most [ requests to be
sent to all possible locations of a block. Since every block
is only stored at one location, only one of these requests
will involve a disk access and the transport of data along
communication links.

We note that the drawback of sending [ requests can be eas-
ily avoided in many cases: By default, only one request will
be sent, namely to the disk at which the corresponding data
block is supposed to be when applying the naive placement
strategy. Only if the block is not found there, I requests will
be sent. Upon accessing the block, it will be moved to its
correct position.

3.4 Analysisof the adaptability

Adding and removing data blocks

Adding or removing a block does induce some overhead be-
cause the internal structure of our construction needs to be
preserved. Suppose, a new block is introduced. Obviously,
every placement strategy has to perform the (re-)placement
of at least one block (namely, the new one) in this case. In
our strategy, this operation can be more complicated. In
the worst case, our strategy wants to put a block on a satu-
rated disk D,. Suppose, the height of that block is less than
the height of D, (otherwise, the block will be moved to the
next level and no additional placement will occur). Disk
D; must store that block because we have to keep ranges

compact. This may cause another block to be removed from
D, (naturally, the one with the largest height) and moved
to the next higher level. The worst case occurs when this
situation repeats itself in each level. It can be shown by a
similar argumentation that removing a block results in the
same number of replacements. Thus, we can conclude the
following lemma.

THEOREM 7. Assuming that the number of introduced lev-
els is £, the refined placement strategy is £-competitive for the
removal and ¢ + 1-competitive for the insertion of a block.

New disks

Suppose that a new disk D,41 of capacity Cr+1 is added
to the system. In order to keep the distribution of blocks
among the disks as balanced as possible, any strategy has
to replace a certain amount of blocks. Then, two cases have
to be considered. If the capacity of the new disk is less than
1/(n + 1) of all the blocks in the system, then an optimal
algorithm replaces just the number of blocks that suffice to
saturate this disk. Otherwise, the new disk can store its
share completely. In this case, an optimal algorithm will
move at least 1/(n+ 1) of all the blocks (but at most Cr41)
to this disk.

Surely, the refined strategy will move in both cases the same
number of blocks to the new disk. Additionally, however, it
will also move other blocks since some previously saturated
disks may be able to store additional blocks. This can be
viewed as removing blocks from the system. Thus, we can
use Theorem 7 to obtain the following result.

THEOREM 8. Assuming that the number of introduced lev-
els is £, the refined placement strategy is {-competitive when
a new disk is added to the system.

Removal of disks

Our strategy, called zero-height-strategy, works as follows:
In order to remove a disk, we set its disk height to zero in
all levels in which it participates. This ensures that all of
its blocks will be moved to the next higher level in the usual
way. When a new disk is added to the system, it will take
over the positions of the removed drive in as many levels as
its capacity allows.

Suppose, D; denotes a removed disk that stored m blocks.
Further, assume the last level in which Dy participated is
k. The number of replacements performed by an optimal
algorithm is at least m; because it has to move the blocks
in Dy to the other disks. The zero-height-strategy achieves
the following result.

THEOREM 9. The zero-height-strategy is O(log m/logq)-
competitive when a disk is removed.

PRrROOF. As stated above, an optimal algorithm needs C'y
redistributions. The zero-height-strategy has to move Cjy
data blocks to the remaining disks. This can be viewed as
adding new data blocks to the system. Thus, Theorem 7
finishes the proof. [



Hence, incorporating the zero-height-strategy in our refined
strategy yields a placement strategy with a low competitive
ratio for any operation involving the insertion or removal of
disks or blocks. A slight drawback of using the zero-height-
strategy is that the number of disks used for the placement
may not be equal to the number of working drives. This
may lead to a slightly increased computation time as the
upper bounds on the number of replacements and levels now
depend on maximal number of disks that has ever been in
the system (see Theorems 1 and 6).

One may ask whether it is possible to avoid two drawbacks of
our construction: 1) that we cannot ensure a unique position
of a data block at any time, and 2) that a data block is
not guaranteed any more (only w.h.p.) to be replaced at
most O(logn) times within a level of n disks. However,
using the approach of defining the unique position of a data
block by the naive placement strategy, it is not difficult to
see that both properties cannot be avoided together with a
low competitive ratio. Thus, a completely new placement
approach would be necessary to obtain better results.

4. EXPLOITING SLACKNESS

In many applications, the most important and costly disk
feature is not anymore the capacity but the bandwidth of
a disk. Assuming capacities of 50 GByte and more, a sin-
gle disk is able to store up to 15 MPEG-2 movies, but it
is not able to serve hundreds of requests demanding the
same movie with different starting points. The previously
described algorithms are designed to fully exploit the avail-
able capacity of the disks. In this section, we investigate the
situation that a certain amount of the capacity of the disks
is allowed to be wasted. Under that assumption, of course,
an even distribution cannot be guaranteed.

Suppose, we would like to explore only a fixed amount of
the available capacity. Then, two different approaches can
be investigated:

1. Up to a fixed ratio w € (0,1) of the capacity of each
disk is allowed to be wasted. We call this strategy local
slackness strategy, because it can be checked locally at
each disk whether the capacity constraint is fulfilled.

2. Up to a fixed ratio w € (0,1) of the overall capacity
of the system is allowed to be wasted. This strategy is
called global slackness strategy. It has the advantage
that the capacity constraints at the disks can be han-
dled with much more flexibility. However, changes in
the number of disks may affect the whole system.

In particular, we are interested in the question whether sac-
rificing a fixed part of the disk capacity reduces the number
of levels and therefore improves the computational complex-
ity for locating a data block.

4.1 Thelocal dackness strategy

There is a major disadvantage when the disk capacity is not
allowed to be wasted: disks may oscillate between two levels
and consequently, many blocks need to be moved between
consecutive levels. To avoid this, we use the following local

slackness strategy. Assume, it is allowed to waste a fixed
fraction w € (0,1) of the capacity at each disk. Let z =
w/(1 —w). Of course, all disks participate in level 0. For
each level ¢ with ¢« > 1, we allow a disk to participate in ¢ only
if its remaining capacity is at least = times the capacity used
for the previous levels. This ensures that at most a fraction
of w of its capacity is dissipated. It is evident that level 4 is
the last level, if B; < x~z;;}) B;. For all disks participating
in a level, the previously described strategies may be used.

An important consequence of our participation rule is that
as soon as the capacity threshold to take part in a level is
above the capacity necessary to store an even share of the
blocks, there will be no higher level. Moreover, oscillations
of disks between two levels and the amount of blocks moved
to higher levels can be reduced significantly.

It is easy to check that, as long as the number of used blocks
is at most (1 —w) - Ciotal, our placement strategy will always
be able to place all blocks. Furthermore, the maximum rela-
tive deviation from an even distribution of the blocks among
the disks can be at most w.

4.1.1 Anupper bound on the number of levels
In the following, we present an upper bound for the maxi-
mum number of levels caused by the local slackness strategy.

THEOREM 10. For any w, m and n, the mazimum num-
ber of levels caused by the local slackness strategy is at most
log,,,n+1, where x = w/(1 — w).

ProOF. For every level i, let §; = 1/¢;. It can be shown
that the number of blocks stored at a disk in level 741 is at
most Bi+1 = (6; —1)(B;—= Z;;E Bj). Iflevel i+1 is not the
last level, then we have B;;1 > xz;zo B;. It follows that
(6; —1)(Bi—=x Z;;E Bj)>«x Z;‘:O Bj and (6; —1)B; > zB;.
In this case, §; — 1 > = and therefore d; > 1 + z, yielding
the theorem. [

Note that the number of levels only depends on n and z,
but not on m as it was the case in Section 3. This demon-
strates that, for our approach, sacrificing disk space helps to
improve the computational complexity for block location.

4.1.2 Alower bound on the number of levels

In this section, we present a lower bound on the maximum
number of levels showing that our upper bound above is
close to optimal.

THEOREM 11. For any n and any w, the mazimum pos-
sible number of levels is at least logy(y 4,2+ 1.

ProOF. To derive a counterexample, we assume ¢; to be
equal to some fixed € for all levels and that a fixed ratio & of
the stored data of level 7 is transferred to level i+1 (see figure

4). It follows for level i that n; = €'no and B; (%)l Bo.

Furthermore we introduce k = 1;—:§ and b; = k- B;. For
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Figure 4: Illustration for the proof of theorem 11.

all levels we must have n;, > 1 and b; > z - E; L B;. In the
following we will show that the second condltlon could be
fulfilled for any .

Cbo> @B
= HORUAES S = (ORE!
- (9 > e G
= k()7 =) (8 4o > 0
= (O —Ek+2) (5 > 0
= k (%)—(k%—a:) > 0
We now choosee—mandﬁ 2(1+$) Then k - ()

(k+z) > 0 for any x > 0 and any w > 0, which proves the
theorem. [

4.2 Theglobal slackness strategy

Next, we consider the problem of finding a way of organizing
the n disks into g groups of disks of equal capacity so that
at most a fraction of w of the overall capacity of the system
is wasted. Clearly, if there are at most g different capacities
then our placement strategies create at most g many levels.
To prove bounds on g, we introduce some notation. Recall
that for every disk ¢, C; denotes its capacity. W.l.o.g. we
assume that the disks are ordered such that C; > C;41 for
all i > 1. We define the relative height of disk i by v; =
Ci/Cy and the area covered by the disks by I' = £ 37" | ;.
Obviously, 1/n <T' < 1.

4.2.1 Anlower bound on the number of levels
In this section we prove the following theorem.

THEOREM 12. For any I’ and w, there exists a collection
of disks such that g > (1 — w)In(1/T).

PROOF. Suppose that it is possible to organize the disks
into g capacity groups so that at most wI' of the capacity
is wasted. Then there must be g integers 1 < i1 < 42 <

. < iy < n (and additionally ip = 0 and ig41 = n) with
the property that if, for all j € {1,...,g9 + 1}, all disks
with numbers in {i;_1 +1,...,i;} is given a height of ~;;
(resp. a capacity of ;;C1), then the total capacity of the g
groups is at least (1 —w)I. For every ¢ € {1,...,n}, define
Ai = L .. Then, >9—1 Ai; > (1 —w)I. This implies that

there must exist a j with A;; > (1 —w)I'/g. We will show
up to which g it is possible to avoid this, which implies that
this g is a lower bound for the worst case number of groups
needed.

Our aim is to find the maximum g for which it is possible to
set A; < (1—w)l'/gforallie {1,... ,n}. Since 4; = L.,
it follows that v; < n(1 — w)I'/(i- g). Since y; < 1 for all ¢,
the maximum possible area that can be covered under this
restriction is

15 i [1, PAzw)
rymin 1, 2]
1 [ nl—-wl - n(l —w)l'
z = T ig
n 9 i=n(1—;)l“/g+1 v
1 (n(l —w)l nl —w)f
> - <T + (Inn —In(n(1 — w)F/g))T)
> (

T)F i ((1 —gw>r> = _gw)F

This is at least I if, for e = (1 — w)/g,
e(1+1In(1/(el))) > 1

which is equivalent to I' < % -e'~1/¢. This is the case if
e > 1/1n(1/T), that is, g < (1 — w)In(1/T"), which proves
the theorem. [

The theorem shows that, somewhat surprisingly, the number
of groups required to cover a certain percentage of I' is not
independent of I'. Most definitely, our lower bound is not
sharp. We assume that the correct bound may be close to
g > l“(vlﬂﬁ, but a proof for this is not known yet.

4.2.2 Anupper bound on the number of levels
Finally, we present an upper bound for g that is close to the
lower bound if I" and w are large.

THEOREM 13. For any T' and w, g < 2log?(1/T)/w

Proor. We will construct a staircase with g stairs by
an induction argument. Owur starting point is the point
(zo,y0) = (0,1), where x represents the disk number di-
vided by n and y represents the height. Assuming that,
for some ¢ > 0, we are currently at a point (z;,y;) with
z; > 3 5_, 2T (which implies that y; < 1/2°), we will show
that we need at most 2log(1/T")/w stairs to get to a point
(:Ei+1, yi—H) with Ti41 Z Z;J’:_ll ZjF. If this is true, then we
require at most 2log®(1/T)/w stairs to reach a point (z,vy)
with & > 1, which ends the construction and proves the
theorem.

For i = 0, our assumption for the induction step clearly
holds. So assume in the following that the assumption holds
for some ¢ > 0. Then we show that it also holds for ¢ + 1.
Suppose as a worst case that we start at the point (z;,y;) =
(Z;.:l 211,1/2%). In the following, let the z-coordinates be
defined relative to z; (that is, instead of =" we use =’ — x;).
Consider some fixed positive number A. We intend to bound



the number of stairs of waste at most A, each, it takes to
reach a point (z}1,yi41) with 2}, > 2°T'T (relative to z;).
Clearly, such a point is reached if we end up at a point (z,y)
with the property that either z > 2°7'T or y < 0. Assume
that we need m stairs of wastage A for this, numbered from
1 to m. Suppose that stair s represents a rectangle of height
~vs and width bs. Then, v - bs > A. As a worst case, we
assume that s -bs = A. We require that 37| vs < 27* and
> bs < 27T In order to find the maximum m for which
these restrictions can be fulfilled, we assume that v, = €A
for all s, where ¢ € [0,1]. In this case, m-eA < 27" and
m-1/e < 2777, That is, m < 1/(2°cA) and m < 27 el
To maximize m, we choose € such that 1/(2'¢A) = 2¢1el.
This is the case for ¢ = 1/(2°v/2AT). From this we obtain
m = /2I'/A. The wasted area, W, is therefore limited to
m- A = +2I'A. We require that W < wI'/log(1/T") to end
up with a total wasted area of at most wI'. In this case,

I w\/f
VITA< —=__ o Ja<—“2Y
= (/D) = V2log(1/T)
Plugging this in the equation for m, we obtain
< yiE . YZIoB(/T) _ 21og(1/T)
wVT w

Summing this over all log(1/T") induction steps yields the
theorem. [

The theorem shows that if I' is large, then the number of
levels may be much lower than logn. No other approach
considered above was able to achieve this. Hence, it may be
interesting to look at efficient solutions in this direction.
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